
Plugging Computer Labs to the Grid

Pedro Ribeiro, Pedro Pereira, Lúıs Lopes, Fernando Silva

DCC-FCUP & LIACC, Faculdade de Ciências, Universidade do Porto, Portugal
{pribeiro,pdr,lblopes,fds}@dcc.fc.up.pt

Abstract. We present an architecture that allows the seamless configu-
ration of computer labs to work as dedicated computing clusters during
periods of user inactivity. The operation of the cluster is fully automated
by making use of differentiated network booting and a job management
system. We have prepared it to be plugged to a larger computational
grid. We provide some preliminary performance results obtained.

1 Introduction

The need for high-performance computing platforms to solve challenging prob-
lems has been the main force behind the development of new hardware and
software frameworks to aggregate computational power. Cluster computing (de-
veloped during the late 80s) was a relatively low-cost and potentially highly
scalable solution for this problem. The late 90s introduced a very high level ab-
straction for high-performance computing resources: Grid Computing. A multi-
layered software package manages the resources in the computational grid and
schedules the requests of the clients in a transparent way. Several of these frame-
works have been implemented, and most follow the original specification of the
Globus Toolkit [6].

In this paper we describe a case study experiment in which we aggregate
the computational resources of our Department’s computer laboratories during
their idle hours. Despite the multitude of software frameworks available to ag-
gregate and explore these resources, the task of dynamically building such a
cluster is often hindered by the amount of work required for configuring the
entire system to automatically switch behaviors and start processing jobs. One
of the contributions of this paper is therefore an architecture and configuration
system that allows interested parties to setup a cluster and make it work in dual
mode in a fully automatic way. After that, we can plug this resource to a wider
computational grid in a seamless way.

2 Architecture

Our framework has a very concrete target: computer laboratories (with normal
desktop computers) that are used daily by students, either during classes or free
time, for a multitude of goals. Internally, the computers are connected with basic
Ethernet networks.

One possible approach to aggregate the computational power of such a re-
source would be to use a system such as Condor [8] to harvest idle cycles on the



computers, while maintaining the original operating systems running, but this
would present several disadvantages (no dedicated resources, higher volatility
and a need of a more close coordination with the system administrators).

In this context, we decided to transform the laboratories into a dedicated
cluster for some hours each day, and design a solution that makes the change in
context from the normal daily use of the computers to the cluster, and vice-versa,
seamless. In this way, we can have the dedicated computers we need (although
only during the time the labs are closed) and we manage to separate the clus-
ter management system from the normal operating system images. This is very
important as we want to make the infra-structure independent from the type of
system the labs are running and as much as possible from the system adminis-
tration. This option also guarantees less failure points.

To achieve this goal, we decided to use a master-slave architecture with a
job-scheduler serving as control point, responsible for launching and executing
unattended background programs. For the purpose of our work, we wanted an
experimented and flexible job-scheduler. We analyzed in detail four fully working
schedulers (SGE [3], Condor [8], OpenPBS [2] and Torque [4]) and decided to
use SGE. Condor was a close call, but, besides the problems described above, its
more complex structure (it was originally built for cycle scavenging and gradu-
ally upgraded) and lack of available source code (although available by special
request) made us look elsewhere. SGE allows us to use message parsing inter-
faces parallel environments, and a more detailed description of it can be seen
on [3]. Figure 1 illustrates the architecture of our Grid environment.

Fig. 1. Proposed architecture for the computer labs based Grid environment.

The Master is responsible for everything related to the cluster. It isolates as
much as possible the cluster administration, making it independent from local
services. It should be a secure server, with no open ports except the strictly
needed ones. To achieve this goal, we used the Ubuntu Server distribution, al-
though other similar Linux distributions could be used without affecting the
global architecture. The master node in SGE provides a multitude of services,
as seen on figure 1. Given the central and vital role of the master, the SGE
natively and transparently supports a shadow master that can automatically
substitute and assume the master role in case of failure. The master is also the



only administration and submit host in the SGE context, providing access to
the command line and graphical user interface. Finally, the master has a local
package repository, for serving the necessary software for the execution nodes.

All computational nodes are, of course, executing hosts in the SGE envi-
ronment. Besides that, they have all necessary software for running specific
problems. As in the master host case, we have chosen Ubuntu Server as the
distribution to use, providing security and homogeneity.

Several problems arise when the machines to be used in the cluster are not
cluster-dedicated. To make things worse, these machines are heavily used in
classes, which means that they are frequently abused and mistreated leading to
a higher failure rate. This means that the machines are frequently repaired and
their software reinstalled. Therefore, a system for a fully automatic install was
needed. The choice of Ubuntu was not innocent. Being a derivative of Debian,
Ubuntu provides the same process of install automatization akin to Red Hat’s
Kickstart. This process known as preseeding is fairly flexible for simple setups but
lacks options for more advanced ones. Those problems were solved by patching
the install initrd. We then used PXELINUX to make a network automated
install on all computational nodes.

Preseeding does not solve all the problems, though. Since the labs are inter-
nally interconnected using Fast Ethernet (different labs are interconnected using
Gigabit Ethernet) maintaining the highest network capacity for running jobs is
problematic. To relieve the pressure on the network all software except SGE is
locally installed and not network mounted as it is usual. We manage this by
creating a meta-package that “depends” on all packages that should be installed
in the cluster nodes. Adding a new package is done by simply rebuilding the
meta-package and performing an upgrade on each node.

One nuclear part of our infrastructure is the transition between normal lab
mode and cluster mode. In our case, several computer labs are physically closed
for about seven hours, each day, after midnight thus allowing us to make the
transitions remotely. The only task our cluster requires from the existing sys-
tems administration is to automatically restart the machines at the right time.
From that point, we take control over the boot process by providing a netboot
server.The netboot process (using PXELINUX) loads a grub image to chain-
load to the cluster partition. The transition back to normal lab mode is done
using a cron entry in every node and by changing the PXELINUX and DHCP
configuration in the master.

We plan to use Globus Toolkit [6] to integrate our cluster in a grid envi-
ronment. Globus can be directly deployed to use SGE as the job manager. In
particular, we plan to use Globus GRAM web-service [5] for remote job submis-
sion and control and GridWay [7] for meta-scheduling, execution management
and resource brokering.

3 Validation and Benchmarks

In order to validate our results we measured the computational power of our
infra-structure. All laboratory machines are equipped with one gigabyte of mem-



ory and 100Mbps network cards (connections between labs uses Gigabit Ether-
net). Our choice for benchmarking was HPL (High Performance Linpack) [1],
which is almost a “de facto” standard for high performance computing. For our
initial performance experiment, we selected 30 machines from a total of 34 that
are available in two labs (17 were “Athlon XP 2600+” and 13 were “Athlon XP
2500+”).

Analyzing all the preliminary tests we did, the best performance we got
(our Rmax) was 36.31 GFLOPs. On a single machine, LINPACK [1] attained the
maximum value of 1.9 GFLOPs (“Athlon XP 2600+”) which gives theoretically
a maximum of 57 GFLOPs with thirty machines, assuming a perfect network
connection. This would mean that our cluster has an efficiency of 63%. However,
the real theoretical peak (Rpeak) of the whole thirty computers is 171 GFLOPs.

4 Conclusions and Future Work

In this paper we described an architecture that allows computational clusters
to be built seamlessly from computer labs. The cluster works in a dual mode
between computing periods and normal computer lab usage. The management
of the cluster is fully automatic and the context switch is performed using a
scheme of differentiated network boot. Our solution also has the advantage of
being orthogonal to the software installed in the labs and almost completely
independently administered. The current implementation of the architecture is
running and is stable. The preliminary results obtained with our four computer
labs and a basic assessment of the computational topology for the LINPACK
benchmark are encouraging.

We plan to extend the cluster to all laboratories (around 100 computers) and
acquire a better understanding of the network performance. We also plan to plug
this resource to the University of Porto Grid Computing platform, using Globus.
The deployment of a web-service for job submission, resource management and
visualization is also in our plans.

References

1. HPL – a portable implementation of the high-performance linpack benchmark for
distributed-memory computers. http://www.netlib.org/benchmark/hpl/.

2. PBS – portable batch system. http://www.openpbs.org/.
3. Sun grid engine. http://gridengine.sunsource.net/.
4. TORQUE resource manager. http://www.clusterresources.com/pages/products/torque-

resource-manager.php.
5. Martin Feller, Ian Foster, and Stuart Martin. GT4 GRAM: A functionality and

performance study, 2007.
6. Ian Foster and Carl Kesselman. Globus: a Metacomputing Infrastructure Toolkit.

Int. Journal of High Performance Computing Applications, 11(2):115–128, 1997.
7. Eduardo Hudo, Ruben S. Montero, and Ignacio M. Llorente. The GridWay frame-

work for adaptive scheduling and execution on grids. Scalable Computing: Practice

and Experience, 6:1–8, 2005.
8. W.J. Litzkow, M. Livny, and M.W. Mutka. Condor-a hunter of idle workstations.

In 8th International Conference on Distributed Computing Systems, pages 104–111,
June 1988.


