J. Parallel Distrib. Comput. 72 (2012) 144-154

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Parallel discovery of network motifs

Pedro Ribeiro *, Fernando Silva, Luis Lopes
CRACS & INESC-Porto LA, Faculdade de Ciéncias, Universidade do Porto, R. Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

ARTICLE INFO

Article history:

Received 14 October 2010

Received in revised form

4 July 2011

Accepted 29 August 2011

Available online 29 September 2011

Keywords:

Parallel algorithms
Complex networks
Graph mining
Network motifs

ABSTRACT

Many natural structures can be naturally represented by complex networks. Discovering network motifs,
which are overrepresented patterns of inter-connections, is a computationally hard task related to graph
isomorphism. Sequential methods are hindered by an exponential execution time growth when we
increase the size of motifs and networks. In this article we study the opportunities for parallelism in
existing methods and propose new parallel strategies that adapt and extend one of the most efficient
serial methods known from the Fanmod tool. We propose both a master-worker strategy and one
with distributed control, in which we employ a randomized receiver initiated methodology capable of
providing dynamic load balancing during the whole computation process. Our strategies are capable
of dealing both with exact and approximate network motif discovery. We implement and apply our
algorithms to a set of representative networks and examine their scalability up to 128 processing cores.
We obtain almost linear speedups, showcasing the efficiency of our proposed approach and are able to

reach motif sizes that were not previously achievable using conventional serial algorithms.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Many natural structures are intuitively represented by complex
networks, which have received increased attention by the research
community in recent years [2,24]. In order to mine interesting fea-
tures from these networks, several different measurements can
be applied [6]. In 2002, Milo et al. [23] noted that some subnet-
works appeared with a much higher frequency in the studied net-
works than it would be expected in similar randomized networks,
i.e., with the same degree sequence. These overrepresented topo-
logical patterns were named as network motifs.

Network motifs are important in the analysis of networks
from several domains, particularly in the biological domain [3].
For example, it has been demonstrated that they can have
functional significance in transcriptional regulatory networks [36]
or protein-protein interaction networks [1]. They have been
applied in other biological areas, like brain networks [37] or food
webs [18], and they are also significant in networks from other
domains, like electronic circuits [15] or software architecture [38].
We should note that the usage of network motifs does have some
criticism [39,11,14], but in this article we do not try to position
ourselves in that conceptual discussion. Instead, we focus our
attention on the algorithmic aspect of finding network motifs, in
order to obtain more efficient methods that can bring new insight
into this topic.

* Corresponding author.
E-mail addresses: pribeiro@dcc.fc.up.pt (P. Ribeiro), fds@dcc.fc.up.pt (F. Silva),
Iblopes@dcc.fc.up.pt (L. Lopes).

0743-7315/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2011.08.007

Finding network motifs is a computationally hard task, since
at its core, we are basically dealing with the graph isomorphism
problem [8]. Current methods are almost all sequential in nature
and revolve around finding the frequency of all subgraphs of a
determined size (i.e., doing a subgraph census), both in the original
network and in a random ensemble of similar networks [30].
The problem is that the execution time increases exponentially
when we increase the motif or network size. Sampling has been
introduced by Kashtan et al. [17] as a way to trade accuracy for
time spent, but the process can still be very time consuming.
Analytical methods to estimate the significance of motifs are now
appearing [21,27]. These methods would be able to escape the need
for the ensemble of random networks and their respective census,
but there is still a long path to be accomplished in order for them to
be general and practical enough to be used. In any case, we would
still have to compute the subgraph census on the original network.

One way of improving network motif discovery is to resort to
parallelism. Work in this area is still very scarce and it could have
a significant impact in many application areas. It could lead not
only to a speedup in the network motif calculation, but also to the
discovery of larger motifs in bigger graphs that were previously
unsuspected due to efficiency and time constraint reasons.

In this article we analyze the opportunities for parallelism in
the existing sequential methods, leading to a parallel strategy
able to have almost linear speedup in the whole network motif
discovery process. We propose several parallel strategies for
distributed memory systems that adapt and expand one the most
efficient serial methods [43,30]. We study the applicability of
both centralized control (with a master-worker strategy [13])
and completely distributed control (with a randomized receiver

http://dx.doi.org/10.1016/j.jpdc.2011.08.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:pribeiro@dcc.fc.up.pt
mailto:fds@dcc.fc.up.pt
mailto:lblopes@dcc.fc.up.pt
http://dx.doi.org/10.1016/j.jpdc.2011.08.007

P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154 145

Feed Forward

Original Network
Loop (Motif) A F

1 A

® >
‘/‘:l BQiII/ EpE B
cO—»CjD

Random #1

Random #2

Random #3

Fig. 1. An example motif of size 3. The three random networks present the exact same degree sequence as the original one, with each vertex preserving its in and out
degrees. The feed forward loop, indicated by dashed edges, appears exactly three times in the original network ({A, B, C}, {C, F, D}, {D, E, F}), but only once in each random
network. Note that different occurrences of the motif can share vertices and connections.

initiated strategy [33]). We use small independent work units
that can be redistributed to provide dynamic load balancing
both for exhaustive complete computations and approximations
using sampling, efficiently parallelizing the whole network motif
discovery problem. We implement our strategies using MPI and
apply them on a series of representative networks. We obtain
almost linear speedup up to 128 processing cores, demonstrating
the efficiency and usability of our proposed method (from now on,
the term core will be used to reference processing cores).

The reminder of this article is organized as follows. Section 2
establishes a network terminology, formalizes the problem we
want to tackle and overviews related work. Section 3 points out the
opportunities for parallelism and describes in detail our strategies
for parallel network motifs discovery. Section 4 gives practical
results when applying to a set of representative networks, studying
the scalability. Section 5 concludes the article, commenting the
results and describing possible future work.

2. Preliminaries
2.1. Network terminology

In order to have a well defined and coherent network terminol-
ogy throughout the article, we first review the main concepts and
introduce some notation that will be used in the following sections.

A network can be modeled as a graph G composed of the set
V(G) of vertices or nodes and the set E(G) of edges or connections.
The size of a graph is the number of vertices and is indicated as
|[V(G)|. A k-graph is a graph of size k. Every edge is composed by a
pair of two endpoints in the set of vertices. This pair is ordered in the
case of a directed graph, in opposition to undirected graphs where
edges do not express direction. The neighborhood of a vertex u in a
graph G, is a subgraph, denoted as N (u), composed by the set of all
other vertices v of G such that (u, v) or (v, u) belong to E(G). All
vertices are assigned consecutive integer numbers starting from 0,
and the comparison v < u means that the index of v is lower than
that of u.

A subgraph Gy of a graph G is a graph of size k in which V(G;) C
V(G) and E(Gy) € E(G). This subgraph is said to be induced if for
any pair of vertices u and v of V(Gy), (u, v) is an edge of G if and
only if (u, v) is an edge of G, that is, a vertex set of the subgraph has
all the edges that the same vertex set has in the complete graph G.
The exclusive neighborhood of a vertex v relative to a subgraph G is
defined as Neycsive (v, G) = {u € N(v) : u € GUN(u)}.

A mapping of a graphis a bijection where each vertex is assigned
a value. Two graphs G and H are said to be isomorphic, denoted as
G ~ H, if there is a one-to-one mapping between the vertices of
both graphs where two vertices of G share an edge if and only if
their corresponding vertices in H also share an edge.

2.2. Network motif problem

We start by formally defining the exact problem that we are
trying to solve. For the sake of simplicity, from now on we will
refer to network motifs simply as motifs. The motifs concept has

several variations. We refer the reader to our previous work [30]
or Ciriello and Guerra [5] for a more detailed view on this. In this
article we will concentrate on the standard definition established
by Milo et al. in the original article on motifs [23], and which is
widely used in the literature.

Basically motifs are patterns of interconnections occurring in a
complex network in significantly higher numbers than in similar
random networks. Given a network, we want to calculate all of its
motifs of size k as defined below:

Definition 1 (k-Network Motif). An induced k-subgraph of a graph
G(k < |V(G)|) is considered a network motif if its frequency of
occurrence in G is statistically overrepresented in relation to its
frequency in R random graphs with the same degree sequence.

In order to determine the frequency of a specific subgraph, we
also use the canon definition by Milo et al. [23], allowing arbi-
trary overlapping of vertices and connections between different
occurrences of a subgraph. Fig. 1 illustrates this frequency concept.
Schreiber and Schwobbermeyer [35] introduce different notions of
frequency that could potentially be used when calculating motifs.

Typically the over-representation is calculated taking into
account the subgraph frequency in the original network (foriginar)
and the mean subgraph frequency in the random networks
(frandom), by calculating the probability defined in Eq. (1).

PrOb(frandom (Gy) > foriginal(ck)) <P. (1)

P is the probability threshold used for defining when a subgraph
is considered a motif (0.01 is the value used by Milo et al. [23]).
Again, there are several possible small variations (see [30,5]),
including the need for a minimum frequency (forigina must be bigger
than a pre-defined parameter) and minimum deviation (forigina
must be sufficiently apart from frgngom), but what matters is that
this measure can be analytically calculated in O(R) time for a
determined subgraph knowing its frequency both on the original
and randomized networks.

If one can only have an approximate value of the frequencies
(for example, obtained by sampling and not by exhaustive search),
then we can use subgraph concentrations (see Eq. (2)) to derive an
approximation of the required probability,

f(Gk)

Concentration(Gy) = W (2)
k

all subgraphs i

2.3. Related work

2.3.1. Sequential methods

We are aware of seven different main algorithmic strategies
for finding motifs, all based on serial algorithms: mfinder [23],
ESU [43], FPF [35], Grochow and Kellis (grochow) [9], G-Tries
[28], Kavosh [16] and MODA [25].

Conceptually, these strategies are divided in three main cate-
gories:

146 P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154

e network-centric methods, that produce a k-subgraph census
by enumerating all subgraphs of size k of the original graph
(mfinder, FPF, ESU and Kavosh).

e single-subgraph methods, that excel in computing the frequency
of a pre-defined single individual k-subgraph (grochow and
MODA).

e subgraph-set methods, that specialize in counting the frequency
of a set of pre-defined k-subgraphs, that do not necessarily have
to be all of the possible k-subgraphs (G-Tries).

Regarding network-centric methods, mf inder was the original
one, appearing in 2002, and it is based on a recursive backtracking
algorithm that generates all k-subgraphs. Due to potential
subgraph symmetries, the same subgraph can be found several
times, since the search procedure can be started on any of
its constituent nodes. MAVisto, from 2004, excels in using
different frequency concepts and has an algorithmic performance
comparable to Mf inder on the canon definition of frequency. ESU
is an improved algorithm first introduced in 2005 that only allows
searches being initiated on the nodes with an index higher than the
root node. This breaks symmetries and each subgraph is found only
once, leading to a more efficient method that can be sometimes
orders of magnitude faster than Mfinder. Kavosh appeared
in 2009, uses a novel counting algorithm that also exhibits a
symmetry breaking behavior and appears to be asymptotically
equivalent to ESU in algorithmic execution time terms.

In what concerns single-subgraph methods, Grochow intro-
duced this concept in the motif finding problem in 2007 and uses
a set of pre-built conditions to break symmetries. MODA, appearing
in 2009, uses a pattern growth approach that starts with k-trees in
order to arrive at a complete k-subgraph and also looks for non-
induced subgraphs. It achieves considerable speedups when com-
pared to Grochow for some types of k-subgraphs.

Finally, G-Tries, which constitute previous work in this field
from our team and was first published in 2010, implements a
subgraph-set methodology that relies on a specialized tree-like
data structure able to identify common substructure on a set of
k-subgraphs, using that to search at the same time the frequency
of several subgraphs. G-Tries can achieve considerable speedups
when compared to ESU and Grochow.

In a previous work from 2009 we provided pseudo-code
and a practical empirical comparison of three of the algorithms
described above (mfinder, ESU and Grochow) on a common
platform, showing that ESU has the best general performance in
exhaustive and complete subgraph census for different complex
networks [30]. Note that at that time Kavosh, MODA and G-Tries
did not exist.

All of the above mentioned methods, except Grochow and
G-Tries, have publicly available source code (we expect to soon
release the G-Tries source code). Three of those provide free
graphical production software tools: mf inder [23], Fanmod [44]
(which implements ESU) and MAVisto [43] (which implements
FPF).

The described methods all have the option to produce exact
exhaustive results. Some of them allow trading accuracy for speed,
by using sampling. This concept was introduced for finding motifs
in 2004 by Kashtan et al. [17], as an improvement to the mf inder
tool. It relies on a procedure capable of extracting a single random
k-subgraph, that is repeated a desired number of times. One
problem with their approach is that the sampling is biased in
the sense that not all subgraphs have the probability of being
randomly chosen. Fanmod also has a sampling option that avoids
that problem by extending the ESU algorithm in order to only show
a fraction of the whole enumeration, obtaining unbiased sampling
and guaranteeing that the same subgraph will never be sampled
twice. This algorithm is called ESU-Rand and it is notably faster
than the Mf inder sampling process [43]. However, it only allows

pre-determination of an approximate number of samples wanted,
in opposition to Mf inder, in which we can get the exact number of
subgraphs we desire. In our previous work we give pseudo code for
these two sampling algorithms [30]. G-Tries also has a unbiased
sampling option similar to ESU [29]. The other algorithm allowing
sampling is MODA, and relies on a probability distribution that
is derived from the degree distribution of the original network.
However, ESU-Rand still emerges as the fastest algorithm for the
general case [25].

2.3.2. Parallel methods

Research work on parallel algorithms for motif discovery is
still very scarce. Specific to the motif discovery problem and
its associated subproblems, we are only aware of four distinct
implemented and studied parallel approaches [31,41,32,34]. All
four approaches focus essentially on parallelizing a single complete
census. Parallelism on the whole motif discovery problem can
then only be achieved by calculating consecutively the parallel
census of the original and random networks, making it necessary
to have synchronization after each census. The process of randomly
generating a set of similar networks is also done sequentially. This
clearly distinguishes these algorithms from ours, since we try to
parallelize the complete motif discovery process and not just a
single census. We also show how to parallelize the motif discovery
by sampling, and not just by exhaustive enumeration.

We will now describe in more detail the existing approaches.
Schreiber and Schwobbermeyer [35] do refer they were working in
implementing a parallel version of their algorithm, but they defer
the scalability analysis and further studies to future work that, to
our best knowledge, has not yet been done or published.

Wang et al. [41] rely on finding neighborhood assignments for
each vertex that avoids overlapping and redundancy on subgraph
counts (as in the ESU algorithm), and try to balance the workload
before the computation begins using mostly the node degrees.
However, they do not detail the static scheduling process and they
do not study the scalability of their approach, limiting the empirical
analysis to a single network (the E coli transcriptional regulation
network), and a fixed number of cores (32). Another characteristic
of their approach is that they do not do isomorphism tests during
the parallel computation, they wait until the end to check all the
subgraphs and compute the corresponding isomorphic classes.

In a previous work [31], we also parallelize a single complete
subgraph census. As in this work (see Section 3.2), we used
the ESU algorithm as the starting point and extended it to
obtain parallelization. However, two main differences separate
that work from this one. First, we only parallelized a single
subgraph census, and not the whole motif discovery process,
which makes it necessary to synchronize the consecutive census
and the sequential generation of random networks. Second, we
used only a master-worker strategy [13] with a centralized work-
sharing scheduling framework. In opposition, here we parallelize
the whole motif discovery computation while also providing
a completely distributed and dynamic receiver-initiated
scheduling strategy, in a work-stealing framework.

In other previous work from us [32] we adapted and parallelized
the g-tries subgraph matching algorithm, which computes the
census of a pre-defined set of subgraphs. Again, it is different from
what we are doing in this work, since we used g-tries as an
underlying structure and parallelized only a single census.

Schatz et al. [34] focuses instead on parallelizing the Grochow
and Kellis [9] approach. They do different single subgraph queries
at the same time on different cores in a master-worker strategy,
experimenting with static pre-computed scheduling (the same
number of queries for each core) and first-fit scheduling (meaning
that workers only process one query at a time and when they
finish it they ask the master for more work). The latter has been

P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154 147

shown to have almost linear speedup against the corresponding
sequential algorithm up to 64 cores, although it should be
noticed that they only used one experimental network and in
terms of motif discovery, following the Grochow and Kellis [9]
approach, they would have to query the entire set of possible k-
subgraphs, even when some of those subgraphs may not even
appear on the networks. They have also tried to parallelize a
single query using a network partition algorithm that creates small
overlapping regions, adding some overhead for possibly repeated
computations. This lead to some speedup, but again it was only
tested on a single network and for eight different 7-subgraph
queries.

2.3.3. Remark about other related methods

We should notice that motif discovery is conceptually quite
different from frequent subgraph discovery [19,12], which derives
from the frequent itemset problem [26]. In the former, we are
looking for subgraphs that occur at least a pre-determined number
of times in a minimum number of elements of a set of graphs. This
is in opposition to really determining the frequency in a single
original graph. Because of this, the algorithmic techniques used
are different and parallelism on the frequent subgraphs problem is
not directly applicable to our problem, even when sometimes the
authors use the term motifs to designate the frequent subgraphs,
like in the work of Wang and Parthasarathy [40].

3. Parallelizing motif discovery

We will now describe our strategies for parallelizing the whole
network motif discovery. Section 3.1 describes the sequential
workflow of the best known algorithms and points out the
opportunities for parallelism. Section 3.2 introduces the adapted
and extended serial algorithm that we will parallelize, showcasing
work units as independent and atomic pieces of computation.
Section 3.3 details our proposed parallel algorithm, describing the
main workflow, the pre-processing phase, the main work phase,
the final aggregation phase and the adaptation for parallelizing the
approximation version of the algorithm, using subgraph sampling.

3.1. Serial workflow and opportunities for parallelism

The basic workflow of a serial motif discovery program, such
as Mfinder or Fanmod, is depicted in the algorithm of Fig. 2.
Basically, it revolves around doing a k-subgraph census on the
original network (line 1) and then exhaustively creating a series of
R similar random networks (line 3) and doing a k-subgraph census
on each of them (line 4). After that, knowing the frequency of each
existing isomorphic subgraph on all networks, its significance is
calculated (line 5).

We identify the opportunities for parallelization that exist in
the above algorithm, and define a taxonomy for later reference and
use:

e Census Parallelization: do a complete census of all subgraphs of
a determined size in parallel (lines 1 and 4). This could be done
in several ways:

- Partition: the network is pre-divided in several (possibly
overlapping) partitions/regions and different cores analyze
different partitions.

- Tree: a recursive search procedure is executed in parallel,
with different search tree branches being searched at the
same time in different cores.

- Query: on single-subgraph algorithms, each individual sub-
graph query is done separately by different cores.

e Random Network Parallelization: distribute the random net-
works between the cores, e.g. if we have to generate 100 ran-
dom networks and have access to 100 cores, then each core
could compute its own random network and its corresponding
census.

Require: Graph G and integers k and R
Ensure: Motifs of size k in graph G
1: subgraphCensus(k, G)
2 for i + 1..R do
3: R; « generateSimilarRandomNetwork(G)
4 subgraphCensus(k, R;)
5: calculateSignificanceMotifs()

Fig. 2. Algorithm for serial network motif discovery.

Require: Graph G and integer k

Ensure: Complete k-subgraphs census of graph G
1: for all v € V(G) do
2 Vit ¢« {ue N(v) : u > v}

3 EXTENDSUBGRAPH({v}, VEzt, v)

4: procedure EXTENDSUBGRAPH(Vsung, VEat, V)

5: if |Vb‘uhg| =k then

6: FOUND(Vgung)

T else

8: while Vi # ? do

9: remove random chosen w € Vg

10: View & {t € Neger(w, Veupg) + u >
v}

11: I/(’Lt « Vr?'l'! U VI:(:‘(L‘

12: EXTENDSUBGR.:\P]](VWQ,H U
{w}, Vi v)

Fig. 3. ESU algorithm.

e Significance Parallelization: distribute the significance calcula-
tion after the census is computed.

With this nomenclature we can now classify the strategies
described in Section 2.3. All of them only use census parallelization.
In order to do that, Wang et al. [41] rely on partition parallelization,
we [31,32] rely on tree parallelization and Schatz et al. [34] discuss
separately partition and query parallelization.

If we profile the serial algorithm during real computations, we
find that the main bottleneck is the census computation, taking
on average more than 95% of the whole execution time. Therefore,
census parallelization is really a key issue and if we can do a single
census in parallel, one way of doing the whole computation is to do
exactly as the serial algorithm, except that the census calls are done
in parallel. On its own, and as referred in Section 2.3, this strategy
presents two main drawbacks:

e Synchronization is necessary after each census, ensuring that
all cores have completed before the next census begins. Since
typically we generate at least dozens of random networks, this
can provoke a significant amount of unwanted idle time on
cores.

o The other steps of the network motif discovery must be done
sequentially. In particular, repeating the process of generating
a similar network for every new random network can be time
consuming.

We could therefore do better if we parallelized at the same time
all the steps needed to discover motifs (not just the census) and
this is precisely what we do in our proposed strategies. More than
that, we also provide a version capable of using sampling in order
to trade some accuracy for an improved execution time behavior.

3.2. Work units and a new serial algorithm

As a starting point we will use one of the most efficient
methods known that also allows for sampling [30], which is the
ESU algorithm. Fig. 3 details how ESU works.

148 P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154

1 4
l>3<5 ro|ot
! ! } ! }
({13423} ({21.{3}) ({3}.{4.5}) ({4}, 4} ({5}. ¢}

({1,2}.{3}} ({1,3}.{4.5}) ({2,3}.{4.5}) ({3.4},{|5}} ({3.5}. 6)

! T i 1 —1

2 3 3 3 3 3
/N /N /N /N /N A\
1—3 1 4 1 5 2 4 2 5 4 5

Fig. 4. The ESU algorithm generates this search tree for the given undirected
network. Each tree internal node indicates the vertex sets passed as parameters
to the procedure extendSubgraph, respectively Vs, and Vy;.

Source: Taken from Ribeiro et al. [30].

Its core idea is that we only expand a partially constructed
subgraph with nodes that have a greater index number than the
initial root node (lines 2 and 10). A list of possible extension
vertices is therefore built (lines 2 and 11) and whenever a vertex
is chosen to be extended, it is removed from the list (line 9). Its
exclusive neighbors are then added to the new possible extensions
(line 10). The fact that they are exclusive guarantees that each
subgraph is enumerated exactly only once, because the ones
which are not exclusive will be added on another instance of
the recursion. Fig. 4 exemplifies in detail how the algorithm
enumerates all 3-subgraphs of a graph with 5 vertices, showing
how the algorithm transposes to a search tree.

Important to notice is that calls to extendSubgraph() are
independent from each other and each one generates a set of other
extendSubgraph () calls until we reach the desired subgraph
size. Therefore, we define a single call to extendSubgraph() as
the smallest piece of work we will use. This call is an ESU work
unit (EWU) that is completely defined by a tuple of four values, as
defined in Eq. (3).

EWU = (Gld9 chrrentv Vexpandabl& Uroot)- (3)

Giq is anetwork identifier (represented by a number: 0 (zero) for
the original network, i for the i-th random network) and the three
other tuple values correspond exactly to the extendSubgraph ()
parameters, and therefore map to a node in the tree of Fig. 4. From
now on we will also be representing an EWU by a square Oigs)
where id and s represent respectively the network identifier and
the size of the partially constructed subgraph (|Veyrrent|)-

Besides this, we will represent the calculation of the census
in a single network by a circle (O,; where id represents a
network identifier and the calculation of the significance of a
single subgraph g by a diamond ¢g,. Note that different O, are
independent from each other, and so are ¢.

Require: Work Units Queue @ and motif size k
Ensure: A new updated @@ and motif dictionary
Dic
1: procedure PROCESSWORKUNIT(W)
2 if TYPE(W) = (Ojq then
3 for i+ 1...|V(G)| do
4 I(t:!.’l.(‘.i!si!}fl <~ {U, S }V(l) U > 7,}
51 D(ifi:'i) — (ida {i}:fﬁ:z:ufn.ﬁiona 'L)
6 Q.pushFront(O;q,5)
7 else if TYPE(W) = O) then
8 (f(t. V;uhg: M’:r,f,- "') — D(fdf.e:)

9: if s ==k then

10: count[id][CANONICALSTRING(Viypg)] ++

11: else

12: while Vg, # 0 do

13: remove random chosen w € Vg,

14: V-;:m(; — {U S]Vri:x:r:i('w~ Vsubg) :
u> v}

15: Vzm — Vege U V;;e.'w

16: Oid,s+1) + (id, Voubguw, Vige, v)

17: Q.pushFront(O ;4 s+1));

18: else if TYPE(W) = ¢4 then

19: if ISSIGNIFICANT(Gy) then

20: REPORT(G)

Fig. 6. Processing a single work unit.

Solving the network motif problem can, from now on, be ex-
pressed using our work units symbols. If we have R random net-
works with N different classes of isomorphic induced subgraphs,
what we need is to solve in order the work queues Qepsys and
Qsignificance» defined in Eqs. (4) and (5).

Qcensus = {Oov Olv OZ! EERE) OR} (4)
Qsigniﬁcance = {<>Oa 1,02, 01, <>N}~ (5)

Our processing of the work units takes into account that
each O;y can be decomposed in several smaller Ogg,;. So, for
example, Gy can be decomposed in {Do, 1), J0,2), - - - » Deo,vo)n }-
Every O,y will then be decomposable in several Oy and
so on until the motif size is reached. Note that different Oq ;)
will generate a different number of smaller work units and
have a completely unbalanced total execution time weight,
corresponding to different topological parts of the network. Fig. 5
exemplifies the ensemble of work units that compose a network
motif discovery problem.

Our algorithm for processing a single working unit is depicted in
Fig. 6. If the work unit is a complete network (), it does generate
a O for each of the network nodes (lines 3-6). This is the equivalent
to executing the main procedure of the ESU algorithm as depicted

Global Computation of Network Motifs

Synch|ronization

Census
Random #1

Census
Original Graph

Random #R

Beforei After /
Gl GN
LI B |
G2

Subgraph
Significance

Fig. 5. An example motif computation of 3-motifs. The circles represent a complete census of a graph, the square an ESU Work Unit (a partially constructed subgraph) and
the diamond the statistical significance of a k-subgraph. The census trees are completely unbalanced and that different random networks can lead to completely different

sized trees. The significance can only be calculated after all the census are completed.

P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154 149

Require: Graph G, integers k and R
Ensure: Report k-motifs in G using R random
networks

1: Q.clear()

2: for i+ 0...R do

3: Q.pushBack(();)

4: while Q.notEmpty() do

5: PROCESSWORKUNIT(Q.popFront())

6: for all G; : do

7 if count[0][G;]> 0 then

8: PROCESSWORKUNIT(< ;)

Fig. 7. New serial algorithm using defined work units.

in Fig. 3. If the work unit is a partially constructed subgraph (O),
then it processes it exactly as in the ESU algorithm (8-17), except
that instead of recursively calling itself, it puts all the expanded
subgraphs in the work queue. Finally, if it is a significance work unit
(¢), it calculates its significance and reports the subgraph when it
is considered a motif (lines 18-20).

One more aspect needs additional explanation: line 10 of
the algorithm. We we use a canonical string representation to
deal with isomorphic subgraphs. We opted to use McKay’s nauty
algorithm [22], a widely known fast and practical implementation
of isomorphism detection, to generate a canonical labeling and
then use its adjacency matrix. In order to store the frequencies, we
maintain a dictionary structure count [id] [sg] where id stands
for the graph identifier and sg for the subgraph. This dictionary
could be implemented in many ways, and we currently use C++
STL’s map, which is implemented using a balanced red-black tree.

With all of this, discovering network motifs in serial can now be
done using the following algorithm (Fig. 7):

Lines 2 and 3 construct Qgensys, lines 4 and 5 process it and lines
6-8 create and process Qsignificance (Cf. Eqs. (4) and (5)). Note that we
pop work units from the front of the queue, and since we push new
work units also to the front, we traverse the search space in depth-
first order. Therefore, analysis of random network #1 only starts
after the original, random network #2 only after #1 and so on.

3.3. Parallel algorithms

Now that we have defined simple work units, the EWUs, we
are ready to show our parallel strategies. In addition to the already
mentioned variable, we will use P to represent the number of cores
available.

The challenge is to divide the EWUs among all worker cores
and our goal is to keep all workers busy, always computing some
unprocessed EWU. Since the ESU tree is really unbalanced, a
static division of the EWUs is not adequate to obtain a balanced
load among all workers. It is preferable to have a dynamic load
balancing scheme that constantly adapts during runtime and keeps
redistributing work among the workers.

3.3.1. Main workflow and parallel strategy
There are three main steps in our algorithms, done in this order:

1. Pre-Processing Phase: in this phase we do all the necessary
calculations in order to start our work, providing an initial work
queue for each CPU.

2. Work Phase: in this phase we really do the bulk of the work,
analyzing subgraphs and discovering their frequency. We will
propose two different algorithms for this phase.

3. Aggregation Phase: in this phase we aggregate the subgraph
frequencies found in each CPU and calculate the motif signifi-
cances.

Our proposed strategies use basically the same pre-processing
and aggregation phases and differ on the work phase, with two
different possibilities:

R=6, P=4: R+1>=P
OO O4 Ol 05 OZ OG OB
Q1 Q2 Q3 Q4
R=1, P=5, |V(G)|=100: R+1<P
0-33 0-49 33-66) 50-99| 67-99
(V] 1 Oo Ol OO
0o..0|f) |\Oo0..0{/ (00..01) (O0..0)) |00..0
Q1 Q2 Q3 Q4 Q5

Fig. 8. Example of two pre-processing static divisions of work units among cores.
When there are more networks than cores we divide the networks among the cores.
When the opposite happens, we do the reverse and divide the cores among the
networks, and then divide the nodes of networks equally between the cores. In both
cases we use a round-robin scheme.

1. Master-Worker strategy: in this case there is a worker dedicated
exclusively for the load balancing and work distribution
(the master) and all the other workers process work and
communicate only with the master in what regards the work
phase. From now on we will call this strategy master-worker.

2. Distributed strategy: in this case all workers are responsible both
for the work itself and the load balancing. At any time they can
communicate with any other worker and dynamically try to
redistribute the work. We will call this strategy distributed.

More details on this will be given in the next sections.

3.3.2. Pre-processing phase

Each core has its own work queue. In the case of distributed
this means all cores, and in the case of master-worker this means
all the cores except the master. Our first step is to initialize each of
these work queues (let Q; be the work queue of corei, 1 < i < P).
We need to make sure that all computational work units are in
some work queue, i.e., UQ; = Qcensus- We identified two basic
alternatives for this task:

o all-in-one: Q1 = Qgensys and Vi # 1, Q; = . This initializes the
entire work queue on a single core and when the computation
starts, all other cores must steal work from it.

e static division: We divide Qepnsys among all cores. We preferred
this option since then all cores can start working on their work
queues, without the need for initial communication between
cores. In order to do that we do the following:

- IfR+ 1 > P we allocate networks () to the cores in round-
robin fashion.

- IfR+ 1 < P, we allocate the cores in round-robin fashion
to the networks (). We will end up with at least some
networks having more than one core allocated, and we divide
the network id initial nodes (Oq,1)) equally between the

respective cores (Qf’d_b means we generate only ESU work

units with root nodes from a to b).

Fig. 8 gives a practical example of how the static division
scheme would work in practice. No matter what option we take
for the initial division of work, whenever a core empties its work
queue, it will immediately try to obtain more work, as you will be
able to see in Section 3.3.3. What is important here is to give some
initial more or less balanced work to all cores, in order to avoid
unnecessary communication in the beginning of the computation.

3.3.3. Work phase
After having established an initial work queue we are ready to
start doing the bulk of the computation.

Master-Worker strategy
In this case, there is a worker dedicated exclusively to perform
load balancing and all other workers do the main work phase.

150 P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154

1: procedure MASTER

2: while not all workers are idle do

3: msg + ReceiveMessage(AnyWorker)

4: if msg.type = RequestForWork then

5: if Q.notEmpty() then

6: EWU = @.popFront()

T: sendMessage(msg.Sender, EWU)

& else

9: IdleWorkers.pushBack(msg.Sender)

10: else if msg.type = NewWorkUnit
then

11: if IdleWorkers.notEmpty() then

12: worker =IdleWorker.popFront()

13: sendMessage(worker,
msg. EWU)

14: else

15: Q.pushBack(msg. EWU)

16: BroadcastMessage(Terminate);

Fig. 9. Work Phase procedure for master core within the master-worker strategy.
Q is the list of unprocessed EWU'’s and idleWorkers the list of workers that are
currently waiting for work.

1: procedure WORKER

2 while notFinished do

3: if Q.empty then

4: sendMessage(master,
RequestForWork)

5: msg < ReceiveMessage(master)

6: if msg.type = Terminate then ex-
itWhile

T Q.pushBack(msg. EWU);

: PROCESS WORKUNIT(Q.popFront())

9: if checkSplitThreshold() then

10: while Q.hasMoreThanOneElement
do

11: sendMessage(master,
Q.popBack())

Fig.10. Work Phase procedure for worker within master-worker strategy. Q stores
the local work queue.

This is in its essence an extension to what we did previously in [31],
but then it was only applied to a single subgraph census. The
algorithms of Figs. 9 and 10 detail our strategy.

Basically the master keeps receiving messages from the workers
(line 3) and acts accordingly. If the message is a request for more
work (line 4) then it can either send the first unprocessed EWU
(lines 6 and 7) or, if its work queue Q is empty, add the worker
which sent the message to the list of workers that are in need of
work (idleWorkers). If the message contains a new unprocessed
EWU, then it either adds it to the work queue for future processing
(line 15) or sends it directly to an idle worker, in case there is one
(lines 11-13). If all workers are idle, it means that there are no more
unprocessed EWUs and therefore we can end the work phase (line
2) and broadcast a termination message to all workers (line 16).

Regarding the worker execution, while there is no termination
message (lines 2 and 6) it keeps processing its own work queue
Q (line 8). If this queue is empty, then it asks the master for
new work (line 4) and waits until a message is received (line 5),
adding the newly received EWU to the local queue. Whenever
splitThreshold isreached (line 9), the worker gives all but one
of its unprocessed work units to the master, in order for them to
be distributed among workers that are or will become idle. Note
that this threshold is very important. If it is set too high, the work
units will not be sufficiently divided in order to adequately balance

1: while notFinished() do

2 if Q.isEmpty() then

3: askForWork()

4 PROCESSWORKUNIT(Q.popFront())
5 if checkRequestsThreshold() then
6: serveWorkRequests()

Fig. 11. Work Phase main procedure.

the work among all workers. If it is too low, work will be divided
too soon and the communication costs will increase. We tried two
different options for the threshold: either a time limit or a number
of EWUs processed limit. Section 4 gives more details on this.

Distributed strategy

In this case the load balancing decisions are distributed among
all cores and every one of them, a worker, runs the algorithm of
Fig. 11.

The basicidea is simple: while a worker still has work in its work
queue, it keeps processing work units (line 4). If its queue becomes
empty, then it asks for work from another worker (lines 2 and 3)
and continues processing the new work units. If at a point in time
a consensus is reached that the computation is over, the worker
stops (line 1). The other key component is serving work requests
from other workers (lines 5 and 6).

We will now explain in more detail the work request mech-
anism. The first thing to notice is that due to the nature of our
desired environment (distributed memory with message passing)
there is no way to steal work from another core without inter-
vention from it. We must send a message and wait for an answer.
All cores have a polling mechanism and from time to time (line 5,
checkRequestsThreshold () function) they will check if there
are any incoming requests. This threshold is important and can im-
pact performance. If it is set too low, the receiver worker will be
checking for messages too often and will spend valuable execution
time trying to serve nonexistent requests. If it is set too high, the
sender worker will have to wait for new work while remaining idle,
because the receiver will take some time to check for messages.

We tried two different options for the threshold value:
either a time limit or a number of EWUs processed, as in the
splitThreshold of the master-worker. Section 4 details our
experiments, that lead us to opt for a threshold based on the
number of units processed.

We will now explain from which worker should we try to steal
work from. Ideally we would know the worker that still has more
work to do, but since in a completely distributed environment, that
is not possible without incurring a major computation overhead.
Besides, since the ESU trees are unbalanced, we cannot even have
a precise prediction of our own work queue. Therefore we opted
to always choose to ask a random worker for work, which was
established as an adequate heuristic [33].

The third aspect to detail is our strategy for dynamically sharing
work in a distributed setting. The main question here is to decide
exactly which work units from our work queue should we share
whenever a work request is received. The ideal option is to divide
as equally as possible the work, in order to maximize the time
in which both workers will not need to ask for work again. In
order to do that we opted for a diagonal work-queue splitting
scheme. Basically we distribute work units in the following way:
one for the sender, one for the receiver, one for sender, and so
on. As we are exploiting the search tree in a depth-first order,
this will distribute as evenly as possible the work units, taking
into account that work units at the same search depth will
have similar computational costs. Of course that since the tree
is really unbalanced, this cannot promise equal execution time,
but it constitutes our best prediction implemented by a simple

P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154 151

Tree View Work Queue View

Work Steal Requester

@ Serve request

[| [| r—i [} B
a3 a9 5 (@
Work Steal Receiver

[i | [| S Tz >
112 18 '10 |_6_| 3)
Work Steal Requester

Fig.12. Example of a diagonal work-queue splitting scheme. Dashed work units are
yet to be explored. The shaded area corresponds to the work units that will remain
in the receiver of the request. The other nodes go to the requester.

yet elegant solution, diagonally distributing along the search tree.
Fig. 12 exemplifies our splitting scheme.

We will now explain our termination mechanism. Whenever
someone asks for work and receives as response that the receiver’s
work queue is empty, it will ask another random worker, making
sure that it does not repeat workers until new work units are found.
If it happens that everyone answers that it has no more work, the
worker will be able to conclude that indeed there is no more work
and it will broadcast a “termination” message to everyone, ending
this phase of the network motif discovery computation.

3.3.4. Aggregation phase

After the work-phase has ended, every worker will have its own
dictionary of frequencies for every network analyzed (the original
one and the random ones) and subgraphs discovered. There will
probably exist many zeros, meaning that a particular network was
not analyzed at all by that particular worker, but potentially there
can be valuable information for every worker, for any subgraph,
on any network. This is a huge a amount of data that we need to
aggregate in order to calculate the subgraph significance. Note that
the number of possible k-subgraphs grows super-exponentially as
k increases.

For each class of isomorphic subgraphs, we need to know the
frequency in the original network and its average frequency and
standard deviation in the set of random networks. We choose to
have a “root” worker, responsible for storing the global results.
After gathering all needed frequencies, this worker can calculate
the necessary subgraph significance in serial (note that, as said, the
majority of the work is done during the computation of the census
and that at this phase, since a computation of a single subgraph
significance is done in constant time, it would not improve if it was
sent to another worker—on the contrary it would take more time).

A simple primitive approach for this would be for each worker
to communicate in turn with the root worker, sending its own
results. In order to do that, it would have to send pairs of subgraph
descriptions (for example using the canonical labeling) and their
respective frequencies. We call this strategy naive.

This naive approach is not enough and we improved it. Our
strategy is to first agree on the list of subgraphs that are being
computed. If all workers have that list before communicating its
own frequencies found, we could avoid the need to communicate
graph identifications, because we can induce a fixed order of
relevant subgraph types. Therefore, if we communicate a vector
of frequencies, the position in the vector will determine which
subgraph we are referring too.

In order to create that list of relevant subgraph types, the root
worker will start by advertising a set of T concrete subgraphs that it
knows to occur in the original subgraph, by broadcasting a message
(note that a root worker will always have in its work queue at

Require: Work Units Queue ¢ and motif size k
Ensure: A new updated @ and
approximate motif dictionary Dic
. procedure PROCESSWORKUNIT(W)
if TYPE(W) = (Oiq then
lines 3 to 5 of the algorithm in Figure 6
With probability P;:
Q.pushFront(D;q,:))
else if TYPE(W) = Oq,,) then
lines 8 to 17 of the algorithm in Figure 6

A S

e

8: With probability Piiq:
Q.pushFront(D;g s41))

9: else if TYPE(W) = ¢4 then

10: lines 19 and 20 of the algorithm in Fig-
ure 6

Fig. 13. Processing a single work unit with sampling.

least part of the original network). Then, all workers, organized in
a binary tree, communicate to tree ancestors their list of subgraph
types not found by the root worker. After this process is complete,
the root will have a list of new subgraphs that it will broadcast to
all workers.

Having the pre-defined list at hand, the workers can just
communicate frequencies (and not graph descriptions). Instead
of using point-to-point messages (from one worker to another
worker), we use the specialized MPI collective communications
facilities. We use MPI_Reduce to gather and sum all frequency
values in a vector. The position in the vector denotes which
network and subgraph type it refers to. We therefore delegate to
the MPI implementation the gathering of information, by explicitly
denoting that we want to aggregate and sum the frequencies.

We call this strategy of first reducing the information that
we need to communicate (by agreeing on the list of sub-
graphs and communicating it using an underlying binary tree)
hierarchical and then use MPI primitives for collective aggre-
gation.

3.3.5. Parallel sampling

The ESU algorithm also allows sampling and we have imple-
mented that option, providing a quicker but only approximate par-
allel calculation of motifs. The basic idea is to only follow each
search branch with a probability related to the depth. Fig. 13
details our sampling version of processWorkUnit, emulating
RAND-ESU, the sampling version of the ESU algorithm.

The algorithm is basically the same with the exception of lines 5
and 8, that establish that each EWU is only explored with a certain
depth-related probability. When looking for k — subgraphs, each
possible occurrence will only be found with probability Py x P; x
..o X P, k—1)-

This(is zlirectly parallelizable using the described algorithms
and essentially adds an even more unpredictable search tree
topology, since a branch can sometimes be completely eliminated
because it was not selected in the respective probabilistic test.

4. Results

All experimental results were obtained on a dedicated cluster
with 12 SuperMicro Twinview Servers for a total of 24 nodes. Each
node has 2 quad core Xeon 5335 processors and 12 GB of RAM,
totaling 192 cores, 288 GB of RAM, and 3.8 TB of disk space, using
Infiniband interconnect. For our experiments, we had access to
a maximum of 128 cores. The code was developed in C++ and
compiled with gcc 4.1.2. For message passing we used OpenMPI
1.2.7. All the times measured were wall clock times meaning real
time from the start to the end of all processes.

152 P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154

Table 1

Networks used for experimental testing of our parallel strategy.
Network Nodes Edges Avg. degree Directed Description
foodweb [10] 37 203 5.48 Yes Food web middle Chesapeake Bay in summer
social [20] 62 159 2.56 No Social network of a dolphins community
neural [42] 297 2345 7.89 Yes Neural network of C. elegans
metabol [7] 1057 2527 2.39 Yes Metabolic network of S. pneumoniae
protein[4] 2361 7182 3.04 No Protein-protein interaction network of S. cerevisiae
power [42] 4942 6549 1.32 No USA western states power grid

Table 2

Maximum achievable subgraph sizes k with a serial program for computing motifs using 100 random graphs.

Network k Execution time (s) Average growth Approx. total nr subgraphs Nr isomorphic classes
foodweb 8 24363 92+27 2 x 10° 478654
social 8 7428 8.1+20 1x 10° 4940
neural 5 23082 46.5+0.8 1x 10 7072
metabol 5 113676 815+33 4 x 108 24
protein 5 30572 319+ 1.8 7 x 10° 21
power 7 10842 6.12+ 14 7 x 108 626

In order to evaluate our parallel algorithms, we used six differ-
ent representative networks, from different domains and with dif-
ferent topological features. These are summarized in Table 1.

The number of possible parameter choices is too vast to show all
its correspondent results in this article. Therefore we had to make
some choices. The first one is related to the random graphs. For our
first batch of tests, we opted to fix the number R of random graphs
to 100, a quantity capable of already giving meaningful results in
terms of subgraph significance (and used in many articles, such
as [37]). The random graphs were generated by exchanging each
edge 3 times similarly to what is done in Fanmod.

We want to show that our strategies are able to effectively
parallelize the problem at hand, so we need to use cases where the
sequential execution time is big enough to justify parallelization
up to the 128 cores. For that purpose we measured the sequential
execution time for computing all motifs of size k as we increase k,
and we stopped when that time was larger than one hour. We also
calculated the average growth ratio, that is, for increasing values
of k, how much the execution time grew. We also calculated the
approximate total number of different occurrences of k-subgraphs
in all the graphs and the number of different subgraph types
(isomorphic classes) found in the original network. The results
obtained, using algorithm 3, can be seen in Table 2.

The average growth ratios have a relatively low standard
deviation (the number after), which means we can make rough
estimates on how much more time we would need to compute
increased greater motif sizes. Note also that growth differs a lot
from network to network, and is not directly related to the size of
the network. Typically, directed networks present a larger growth,
since they implicitly represent more connectivity options and
more possible subgraph types.

Before showing results from the whole parallel motif computa-
tion, we will first show results for the aggregation phase, in order
to establish the best option for this part of our strategy. For the
fixed networks used and for the k subgraph size chosen (Table 2),
we show the time it takes solely for aggregating in the root the
frequencies of all subgraph types that appear in the original net-
work. We show the two alternatives described in Section 3.3.4: the
naive and the hierarchical approach.

Table 3 details the results we obtained, using from 8 up to 128
cores (with one core, no aggregation is needed).

As expected, it takes more time to aggregate results when
there are more isomorphism classes, i.e., there are more different
types of subgraphs to communicate. Generally speaking, the
naive approach always seems to be worse. When we double the
number of cores we roughly need twice the amount of time.

Table 3
Aggregation times (in seconds) for two different approaches with 100 random
networks and 8-128 cores.

Network k Method #CPUs: time spent (s)
8 16 32 64 128
foodweb 8 ngive 6.23 47.31 129.44 29443 62451
hierar. 2098 3.65 4.66 4.92 9.77
social 3 naive 0.05 0.43 1.28 2.98 6.37
hierar. 0.02 0.16 0.34 0.36 133
neural 5 naive 0.06 0.37 1.09 251 5.39
hierar. 0.04 0.08 0.47 0.47 0.97
metabol 5 nz?ive 0.01 0.03 0.04 0.07 0.14
hierar. 0.00 0.02 0.04 0.03 0.03
protein 5 naive 0.02 0.03 0.04 0.07 0.15
hierar. 0.00 0.04 0.04 0.03 0.04
power 7 naive 0.03 0.06 0.14 0.34 0.71
hierar. 0.01 0.11 0.06 0.07 0.08

This can limit the scalability and it is a serious problem if we
have more frequencies to communicate (for example, by using
more random networks or by searching larger motifs). Using our
hierarchical strategy, we can overcome this linearity and cut
the time logarithmically. Note especially the case of the foodweb
network, with a really significant improvement from the naive
execution time. Based on these results we can see that our
collective approach performs better in the general case, and from
now on we will assume all results are obtained using it.

We can now show the global behavior of our parallel
algorithms, described in Section 3.3, both with master-worker and
distributed strategies. One important aspect of both algorithms
are the thresholds. Initially we thought of using time spent as
the respective unit, but we discovered that precious time was
being wasted by calling the operating system time functions.
We then empirically verified that using the number of work
units processed would give better results, and we proceeded by
obtaining threshold values that performed generally well for our
computing environment. In our case, we ended up using units
equivalent to 0.5 s of processing time for both our strategies: in
the case of the master-worker for the splitting threshold; in the
case of distributed for the check requests threshold. What we want
to show is that our parallel algorithms are viable, efficient and
scalable options for motif discovery. Table 4 details the speedups
we obtained, i.e., the relative time gain when compared to the
sequential version.

Both algorithms present very good performances and scale well
up to 128 cores. The distributed strategy is the better option since
all cores can be used for the computation, with no CPU power
wasted. Note that the algorithms are very flexible and work well

P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154 153

Table 4
Parallel performance of the algorithm. The speedup is measured when compared to
the sequential version of algorithm 3.

Network k Strategy #CPUs: speedup
8 16 32 64 128
foodweb 8 M_astfsr—Worker 6.8 14.6 29.6 59.8 117.4
Distributed 7.8 154 30.9 61.7 118.1
social 3 M_ast‘er—Worker 6.6 14.1 29.2 59.0 117.5
Distributed 7.7 15.4 31.1 61.3 120.2
neural 5 Mastgr—Worker 6.6 14.7 29.9 59.9 1233
Distributed 7.7 15.3 313 60.9 1244
metabol 5 M_astgr—Worker 6.6 14.6 30.1 60.7 120.9
Distributed 7.7 15.5 31.2 614 123.2
protein 5 Mastgr—WOﬂ(er 6.7 14.3 29.7 60.4 1213
Distributed 7.8 15.6 31.3 61.9 1224
pover 7 M_astfsr—Worker 6.6 14.5 29.2 61.4 119.0
Distributed 7.6 154 30.7 61.4 1229
Table 5

Parallel performance with 128 cores as the number of random networks change.
The speedup is measured when compared to the sequential version of algorithm 3.

Network k Nr of random networks
0 10 100 1000
foodweb 8 124.05 121.57 118.1 106.71
social 8 122.98 121.37 120.1 114.45
neural 5 123.24 123.96 1244 121.36
metabol 5 124.32 124.29 123.2 122.46
protein 5 122.91 122.62 1224 122.47
power 7 123.06 124.62 122.9 124.05
Table 6
Parallel performance of the sampling version of the algorithm. In all networks we
sampled 10% of the k-subgraphs by using probabilities (1, 1, ..., 1, 0.1).
Network k #CPUs: speedup
8 16 32 64 128
foodweb 8 7.8 15.1 30.3 59.5 105.9
social 8 7.6 15.3 307 61.6 115.7
neural 5 7.7 154 313 61.8 120.6
metabol 5 7.7 15.7 31.0 62.0 123.8
protein 5 7.7 15.6 30.6 61.6 123.6
power 7 7.8 15.3 31.2 62.1 121.8

both for cases where the number of random networks is greater
than the number of CPUs, and when this number is smaller. In
order to further verify this claim, we used the full 128 cores on all
networks using the distributed strategy, while varying the number
of random networks. The most extreme lower case is when we
have zero random networks (in that case we are merely doing
a subgraph census of the original network, with no statistical
significance) and we extend the number of random networks up
to 1000. Table 5 details the results we obtained.

The algorithm scales well for all cases, being able to create
a good load balance, regardless of the variation in the number
of networks. The speedup decreases as we increase the number
of random networks since we are increasing the number of
frequencies found and therefore we need to communicate and
aggregate more data in the end.

As described in Section 3.3.5, the sequential ESU algorithm
allows one to trade accuracy for execution time. We have proposed
a parallel version of the sampling version of ESU (Fig. 13) and
we experimented to sample 10% of all subgraphs, by using
as probability parameters (1, 1,...,1,0.1), a customary setting
nicknamed a “fine” version in [43], with a good trade-off between
speed and accuracy. Table 6 details the results obtained (we used
the distributed strategy).

As before, the algorithm adapts well to the even more
unpredictable search tree shape and is able to maintain scalability.
The speedup is relatively smaller than the one obtained with the
complete exhaustive enumeration since with sampling we take
less time to enumerate but we still need roughly the same time
for the aggregation phase.

Given all the results shown, we can say that our parallel
algorithm is very flexible and achieves near optimal scalability
for all experimented settings of the network motif discovery
problem. Our best option in terms of performance is to adopt a
distributed strategy for load balance, an hierarchical strategy for
the aggregation in the end, and a threshold value to attend work
requests that depends on the number of work units processed.
With these settings, we are able to obtain an almost perfect
speedup on all our tested use cases.

A direct comparison with previous approaches is not feasible.
However, by observing the results shown by Wang et al. [41]
and Schatz et al. [34] we achieve better performance, study the
scalability more comprehensively, and we use a larger number of
cores.

Our results allow larger motif sizes that were not previously
reachable. By observing again the average growth of execution
time in Table 2, one can see that in all cases, using 128 cores will at
least make it possible to compute motifs with one more vertex in
the same amount of time. And in some cases even more. We tested
it with the power network, and we were able to find all motifs of
size 9 in approximately 1 h, something which was estimated to
take almost a week using the basic sequential algorithm. Note that
enabling larger motif sizes could provide new valuable information
for the analysis of the respective network, even when the increase
is just by one over the previously known motifs.

5. Conclusions

In this paper we studied the opportunities for exploiting
parallelism when discovering network motifs. We provided novel
parallel algorithms that adapt and extend one of the most efficient
serial algorithms, the ESU algorithm. Our best parallel strategy is
capable of dynamically dividing the work during the computation,
using random polling, and of guaranteeing a really distributed load
balance where all cores are working in the motif discovery process.
We also provided a scalable strategy for aggregating the results in
the end of the computation.

We tested our algorithms on a set of different representative
networks and we achieved almost linear speedup up to 128
cores in all networks, for a vast amount of different settings. Our
algorithm is even capable of parallelizing a sample version of the
original sequential algorithm, which paves the way for even further
performance gains.

We have shown that our methodology cannot only greatly
speed up the discovery of motif of sizes already feasible, but can
also allow for increasing both network and motif sizes to limits
that were before unfeasible for practical reasons, due to the huge
amount of time that was needed. This paves the way for the
discovery of new potentially unknown motifs than can assume
great importance. The applicability of our method is also very
broad, and is not restricted to biological networks, but basically to
whatever structure that can be represented as a complex network.

In the future, we plan to automatically and dynamically
compute all threshold parameters, allowing the algorithm better
adaptability for very different computing environments. We also
want to give a more applicational view to our methodology, by
effectively searching for bigger motifs on real networks that may
be of interest. Finally, very soon we expect to release a working tool
for discovering motifs based on our algorithms.

154 P. Ribeiro et al. /]. Parallel Distrib. Comput. 72 (2012) 144-154

Acknowledgments

We thank Enrico Pontelli for the use of Inter Cluster in
the New Mexico State University. Pedro Ribeiro is funded by
an FCT Research Grant (SFRH/BD/19753/2004). This work was
also partially supported by project CALLAS of the FCT (contract
PTDC/EIA/71462/2006). Finally, we would like to thank the
reviewers for the valuable comments and suggestions.

References

[1] L Albert, R. Albert, Conserved network motifs allow protein-protein interac-
tion prediction, Bioinformatics 20 (18) (2004) 3346-3352.

[2] R.Albert, A.L. Barabasi, Statistical mechanics of complex networks, Reviews of
Modern Physics 74 (1) (2002).

[3] E. Alm, A.P. Arkin, Biological networks, Current Opinion in Structural Biology
13 (2) (2003) 193-202.

[4] D.Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang,
G.Li, R. Chen, Topological structure analysis of the protein-protein interaction
network in budding yeast, Nucleic Acids Research 31 (9) (2003) 2443-2450.

[5] G. Ciriello, C. Guerra, A review on models and algorithms for motif discovery
in protein-protein interaction networks, Briefings in Functional Genomics 7
(2)(2008) 147-156.

[6] LF. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Characterization of
complex networks: a survey of measurements, Advances in Physics 56 (2007)
167.

[7] J. Duch, A. Arenas, Community detection in complex networks using extremal
optimization, Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics) 72 (2005) 027104.

[8] P. Foggia, C. Sansone, M. Vento, A performance comparison of five
algorithms for graph isomorphism, in: Graph Based Representations in Pattern
Recognition, 2001.

[9] J. Grochow, M. Kellis, Network motif discovery using subgraph enumeration
and symmetry-breaking, Research in Computational Molecular Biology (2007)
92-106.

[10] J. Hagy, Eutrophication, hypoxia and trophic transfer efficiency in Chesapeake
Bay, Ph.D. Thesis, University of Maryland Center for Environmental Science,
Horn Point MD, USA, 2002.

[11] J. Hallinan, P. Jackway, Network motifs, feedback loops and the dynamics
of genetic regulatory networks, in: Proceedings of the IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology,
2005.

[12] J. Han, M. Kamber, Data Mining: Concepts and Techniques, second ed., Morgan
Kaufmann, ISBN: 1558604898, 2006.

[13] E.Heymann, M.A. Senar, E. Luque, M. Livny, Evaluation of an adaptive schedul-
ing strategy for master-worker applications on clusters of workstations, in:
Proceedings of the 7th International Conference on High Performance Com-
puting, HiPC 2000, Bangalore, India, 2000.

[14] PJ. Ingram, M.P. Stumpf, J. Stark, Network motifs: structure does not
determine function, BMC Genomics 7 (2006) 108.

[15] S.Itzkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, U. Alon, Coarse-graining
and self-dissimilarity of complex networks, Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics) 71 (Pt. 2-1) (2005).

[16] Z. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. Ansari, S. Asadi, S.
Mohammadi, F. Schreiber, A. Masoudi-Nejad, Kavosh: a new algorithm for
finding network motifs, BMC Bioinformatics 10 (1) (2009) 318.

[17] N. Kashtan, S. Itzkovitz, R. Milo, U. Alon, Efficient sampling algorithm
for estimating subgraph concentrations and detecting network motifs,
Bioinformatics 20 (11) (2004) 1746-1758.

[18] M. Kondoh, Building trophic modules into a persistent food web, Proceedings
of the National Academy of Sciences 105 (43) (2008) 16631-16635.

[19] M. Kuramochi, G. Karypis, Frequent subgraph discovery, in: IEEE International
Conference on Data Mining, 2001, p. 313.

[20] D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, S.M. Dawson, The
bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. can geographic isolation explain this unique trait?
Behavioral Ecology and Sociobiology 54 (4) (2003) 396-405.

[21] C. Matias, S. Schbath, E. Birmelé,].J. Daudin, S. Robin, Network motifs: mean
and variance for the count, REVSTAT 4 (2006) 31-35.

[22] B. McKay, Practical graph isomorphism, Congressus Numerantium 30 (1981)
45-87.

[23] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network
motifs: simple building blocks of complex networks, Science 298 (5594)
(2002) 824-827.

[24] M.E].Newman, The structure and function of complex networks, SIAM Review
45 (2003).

[25] S. Omidi, F. Schreiber, A. Masoudi-Nejad, Moda: an efficient algorithm for
network motif discovery in biological networks, Genes & Genetic Systems 84
(5)(2009) 385-395.

[26] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed
itemsets for association rules, in: ICDT’99: Proceedings of the 7th International
Conference on Database Theory, Springer-Verlag, London, UK, ISBN: 3-540-
65452-6, 1999, pp. 398-416.

[27] F. Picard,]JJ. Daudin, M. Koskas, S. Schbath, S. Robin, Assessing the
exceptionality of network motifs, Journal of Computational Biology (2008).

[28] P. Ribeiro, F. Silva, G-tries: an efficient data structure for discovering network
motifs, in: ACM Symposium on Applied Computing, 2010.

[29] P. Ribeiro, F. Silva, Efficient subgraph frequency estimation with g-tries,
in: International Workshop on Algorithms in Bioinformatics, WABI, in: LNBI,
Springer, 2010.

[30] P. Ribeiro, F. Silva, M. Kaiser, Strategies for network motifs discovery,
in: Proceedings of the 5th IEEE International Conference on E-Science, IEEE
CS Press, Oxford, UK, 2009.

[31] P. Ribeiro, F. Silva, L. Lopes, Parallel calculation of subgraph census in
biological networks, in: Proceedings of the 1st International Conference on
Bioinformatics, Valencia, Spain, 2010.

[32] P.Ribeiro, F. Silva, L. Lopes, Efficient parallel subgraph counting using g-tries,
in: IEEE International Conference on Cluster Computing, Cluster, IEEE CS Press,
2010.

[33] P. Sanders, Asynchronous random polling dynamic load balancing, in:
International Symposium on Algorithms and Computation, 1999.

[34] M. Schatz, E. Cooper-Balis, A. Bazinet, Parallel network motif finding, 2008.

[35] F. Schreiber, H. Schwobbermeyer, Towards motif detection in networks:
frequency concepts and flexible search, in: Proceedings of the International
Workshop on Network Tools and Applications in Biology, NETTAB04, 2004,
pp.91-102.

[36] S.S.Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the transcriptional
regulation network of escherichia coli, Nature Genetics 31 (1) (2002) 64-68.

[37] O.Sporns, R. Kotter, Motifs in brain networks, PLoS Biology 2 (2004).

[38] S. Valverde, R.V. Solé, Network motifs in computational graphs: a case study
in software architecture, Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics) 72 (2) (2005).

[39] A. Vazquez, R. Dobrin, D. Sergi, J.P. Eckmann, Z.N. Oltvai, A.L. Barabasi,
The topological relationship between the large-scale attributes and local
interaction patterns of complex networks, Proceedings of the National
Academy of Sciences 101 (2004) 17945.

[40] C. Wang, S. Parthasarathy, Parallel algorithms for mining frequent structural
motifs in scientific data, in: ACM International Conference on Supercomputing,
ICS, 2004.

[41] T. Wang, J.W. Touchman, W. Zhang, E.B. Suh, G. Xue, A parallel algorithm
for extracting transcription regulatory network motifs, in: Bioinformatics and
Bioengineering, IEEE International Symposium on, vol. 0, 2005, pp. 193-200.

[42] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature
393 (6684) (1998) 440-442.

[43] S. Wernicke, Efficient detection of network motifs, IEEE/ACM Transactions on
Computational Biology and Bioinformatics 3 (4) (2006) 347-359.

[44] S. Wernicke, F. Rasche, Fanmod: a tool for fast network motif detection,
Bioinformatics 22 (9) (2006) 1152-1153.

Pedro Ribeiro is an Invited Auxiliary Professor (50% FTE)
i@l in the Computer Science Department of the School of
8 Sciences at the University of Porto (UP), Portugal. He
was recently awarded his Ph.D. in Computer Science
from the University of Porto (2011). His primary research
¥ interests are in algorithms and data structures, parallel and
) distributed computing and complex network analysis. He
also has a strong interest in Computer Science Education
and Programming Contests.

Fernando Silva is an Associate Professor in the Computer
Science Department of the School of Sciences at the
University of Porto (UP), Portugal. He was awarded
his Ph.D. in Computer Science from the University of
Manchester, UK (1993), and, in 2007, obtained the
Habilitation in Informatics from the New University of
Lisbon, Portugal. He currently coordinates the Center for
Research in Advanced Computing Systems (CRACS), and
is a member of the scientific board of MAP-i, the Doctoral
Program in Computer Science of the Universities of Minho,
Aveiro and Porto (was director in 2008/09 edition). His
primary research interests are in logic programming, programming languages,
parallel and distributed computing, peer-to-peer, applications in information
mining and bioinformatics. He has advised 8 completed Ph.D. theses in these areas.

Luis Lopes is an Associate Professor in the Computer Sci-
ence Department of the School of Sciences at the Uni-
versity of Porto (UP), Portugal. He was awarded his Ph.D.
in Computer Science from the University of Porto (1999)
and his primary research interests are in programming
languages (mainly domain specific), virtual machines,
wireless sensor networks, distributed computing, and
middleware. His latest project involves the development
of type-safe, semantically robust, resource-aware, pro-
gramming languages for wireless sensor networks.

	Parallel discovery of network motifs
	Introduction
	Preliminaries
	Network terminology
	Network motif problem
	Related work
	Sequential methods
	Parallel methods
	Remark about other related methods

	Parallelizing motif discovery
	Serial workflow and opportunities for parallelism
	Work units and a new serial algorithm
	Parallel algorithms
	Main workflow and parallel strategy
	Pre-processing phase
	Work phase
	Aggregation phase
	Parallel sampling

	Results
	Conclusions
	Acknowledgments
	References

