
Efficient Subgraph Frequency Estimation

with G-Tries

Pedro Ribeiro and Fernando Silva

CRACS & INESC-Porto LA
Faculdade de Ciências, Universidade do Porto, Portugal

{pribeiro,fds}@dcc.fc.up.pt

Abstract. Many biological networks contain recurring overrepresented
elements, called network motifs. Finding these substructures is a com-
putationally hard task related to graph isomorphism. G-Tries are an
efficient data structure, based on multiway trees, capable of efficiently
identifying common substructures in a set of subgraphs. They are highly
successful in constraining the search space when finding the occurrences
of those subgraphs in a larger original graph. This leads to speedups
up to 100 times faster than previous methods that aim for exact and
complete results. In this paper we present a new efficient sampling algo-
rithm for subgraph frequency estimation based on g-tries. It is able to
uniformly traverse a fraction of the search space, providing an accurate
unbiased estimation of subgraph frequencies. Our results show that in
the same amount of time our algorithm achieves better precision than
previous methods, as it is able to sustain higher sampling speeds.

Keywords: complex networks, network motifs, subgraph frequency,
sampling, g-tries.

1 Introduction

A wide variety of real-life systems can be modeled and analyzed with complex
networks [4]. It has been found that many of these networks contain recurring
elements, called network motifs [15]. These are overrepresented subnetworks,
i.e., subgraphs that appear in higher frequency than it would be expected in
randomized networks with similar topological characteristics.

Network motif analysis has a broad multidisciplinary applicability. Just to
name a few domains, it has been applied on biological systems (like in brain
networks [20], protein-protein interactions [1] or gene regulation [5]), social net-
works [9]), engineering systems like electronic circuits [8] and even on software
architecture [21]. Discovering these motifs is a computationally hard task closely
related to the graph isomorphism problem. Currently, this is done by comput-
ing the frequency of subgraph classes of a determined size both in the original
network and in a randomized ensemble of networks sharing similar topological
features, namely the degree sequence.

Discovering subgraph frequencies is the main bottleneck of the whole com-
putation, with an explosive combinatorial effect as the subgraph size increases.

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 238–249, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Subgraph Frequency Estimation with G-Tries 239

This is typically tackled using one of two approaches: either we compute the
frequency of each possible individual subgraph class, one at the time (subgraph-
centric approach) [7], or we enumerate all subgraphs and then we compute which
ones are isomorphic (network-centric approach) [15,23].

Recently we have proposed a new specialized data-structure, g-tries [17]. It
takes advantage of common subgraph substructures in order to avoid redundant
computations, matching an entire set of the subgraph classes at the same time
in a given network. This leads to significant performance gains when compared
to previous methods, up to one hundred times faster for some networks.

In the network-centric approach, approximation techniques have been de-
veloped in order to improve execution time at the cost of reducing the accu-
racy [11,23,16]. This is done by sampling a fraction of the subgraph occurrences,
instead of exhaustively enumerating all of them.

Our main contribution is an efficient heuristic sampling algorithm for discov-
ering network motifs using g-tries. We take the already existing g-trie exhaustive
and complete algorithm and extend it in order to obtain an unbiased sample that
can be used to estimate the desired subgraph frequencies. This leads to a new
algorithm that, by taking advantage of g-tries, achieves higher sampling rates
and thus is able to reach more accurate predictions than previous algorithms for
the same computing time. To substantiate this claim, we empirically evaluate
the sampling speed, accuracy and total execution time of the algorithm in a set
of representative networks. Our results show that in the same amount of time
our algorithm can potentially reach higher subgraph and graph sizes. It can also
only sample subgraphs from a predefined set.

The remainder of this paper is organized as follows. Section 2 establishes a
network terminology and gives an overview of related work. Section 3 overviews
the used g-trie data structure and details our sampling algorithm. Section 4
discusses the obtained results on a set of representative networks. Section 5
concludes the paper, with comments on the results and possible future work.

2 Preliminaries

To ensure a coherent network terminology, we briefly review the main concepts
and notation that will be used throughout the paper, and discuss related work.

2.1 Graph Terminology

A graph G is composed by the set of vertices V (G) and the set of edges E(G).
The size of a graph is |V (G)|, the number of vertices. A k-graph has size k. An
edge is a pair (a, b) : a, b ∈ V (G). If the graph is directed the order of the pair
expresses direction, while in undirected graphs there is no direction in edges.
The neighborhood of a vertex u is defined as N(u) = {v : (v, u)∨ (u, v) ∈ E(G)}.
All vertices are assigned consecutive integer numbers starting from 0, and the
comparison v < u means that the index of v is lower than that of u. The
adjacency matrix of a graph G is denoted as GAdj, and GAdj [a][b] represents a
possible edge between vertices with index a and b.

240 P. Ribeiro and F. Silva

A k-subgraph Gk of a graph G is a k-graph such that V (Gk)⊆V (G) and
E(Gk)⊆E(G). This subgraph is said to be induced if u, v ∈ V (Gk) and (u, v) ∈
E(G) implies (u, v) ∈ E(Gk). Two graphs G and H are said to be isomorphic
(G∼H) if there is a one-to-one mapping between the vertices of both graphs
where two vertices of G share an edge if and only if their corresponding vertices
in H also share an edge.

2.2 Network Motifs and Frequency Count

In network motif discovery, frequency count is the central subproblem being
addressed, and thus, we define it more precisely:

Definition 1 (Subgraph Counting Problem). Given a set of subgraphs SG

and a graph G, count the number of all induced occurrences of subgraphs of SG

in G. Two occurrences are considered different if they have at least one node or
edge that they do not share. Other nodes and edges can overlap.

Note especially that we only count induced occurrences and how we distinguish
occurrences. Although other frequency concepts exist [19], we resort to the stan-
dard definition for the network motif discovery problem [18]. It has direct im-
plications on the number of occurrences and on the tractability of the problem,
with no downward closure property [12] on the frequencies, i.e., a subgraph may
appear more times than a subgraph contained in it.

2.3 Related Work

A general and informal survey on algorithms for network motifs discovery can be
seen in [3], and [18] provides a more technical comparison of the algorithms. The
overall most efficient exhaustive network-centric algorithms are ESU [23] and
Kavosh [10]. MODA [16] and Grochow and Kellis [7] provide efficient subgraph-
centric algorithms and we provided the g-trie data-structure for an efficient in-
termediate appproach [17].

Regarding heuristic approximate algorithms, there are three different ap-
proaches that we are aware of. Kashtan et al [11] propose to sample one subgraph
at a time, following a random graph walk, which results in a biased estimator.
RAND-ESU [23] algorithm provides unbiased sampling by associating probabil-
ities with each recursive search tree branch of the ESU algorithm. MODA [16]
chooses nodes with a probability proportional to their degree. Our sampling al-
gorithm differs from all previous approaches since we use a different underlying
data structure and its associated methodology.

3 Sampling Algorithm

3.1 G-Tries Data Structure

A g-trie is a data structure designed to store a set of graphs. It is conceptually
inspired in prefix trees (trie) in the sense that it tries to identify common graph
substructures in the same way a trie identifies common prefixes of sequences.

Efficient Subgraph Frequency Estimation with G-Tries 241

A g-trie is a tree where each tree node contains information about a single
graph vertex and its correspondent connection to the vertices of ancestor tree
nodes. Every node can have an arbitrary number of children and the path from
the root to a node (possible a leaf) defines a single subgraph. Note that all
descendants of a node share the same initial g-trie substructure and therefore
have a common subtopology in graph terms. Figure 1 gives an example of a
g-trie with 6 undirected subgraphs.

Fig. 1. A g-trie representing a set of 6 undirected subgraphs. Each g-trie node adds a

new vertex (in black) to the already existing vertices in the ancestor nodes (in white).

The connections to these nodes are represented by a sequence of boolean numbers

indicating the corresponding adjacency matrix row.

As said, each g-trie node needs to specify the connections of is vertex to all
ancestor ones (and to itself). This can be done in several ways, but in our current
implementation we just store the correspondent part of the adjacency matrix. If
the graphs are undirected, we store in each node the adjacency matrix row up to
that vertex. If the graphs are directed we also store the adjacency matrix column
up to that vertex, because we must specify ingoing and outgoing connections. In
any case, given a path from the root to a node, we have a fully specified graph.
The g-trie root node is empty since there are two possible direct child nodes: a
vertex with or without a connection to itself.

Considering that we want an unique and univocal representation of a set of
graphs, we use a canonical adjacency matrix. This guarantees that any subgraph
will always lead to the same path traversing the tree. There are many possible
choices here, and we opted for the lexicographically bigger adjacency matrix.
This favors the occurrence of more common substructures with higher degree
nodes appearing in lower tree depth levels.

This capability of identifying common subtopologies is the main strength of
a g-trie. We are compressing information and avoiding redundant storage. But
more than that, at a later stage, when using the g-trie to search for sugraphs
and when matching a specific vertex in the g-trie, we are matching at the same
time all possible descendant subgraphs stored in the g-trie.

In order to avoid subgraph symmetries, g-tries also store symmetry breaking
conditions of the form a < b indicating that the vertex in position a should have

242 P. Ribeiro and F. Silva

a graph index smaller than vertex in position b. Similar to what was done in [7],
these conditions establish an order for the vertices of the same symmetry group
and guarantee that each subgraph can be found only once. More details on this
can be seen in our previous work [17].

For the sake of clarity, from now on we will use the term node to refer to a g-
trie tree node, and vertex to refer to a vertex of the stored graphs. Given a g-trie
node T , we will use T.vertex to refer the new vertex of that node (represented
in black in Figure 1), and T.in[i] and T.out[i] to refer to the boolean value of the
new vertex having respectively an ingoing or outgoing connection to the vertex
with index i, i.e., the new node represented in the ancestor of depth i. Note
that if the g-trie stores undirected graphs, then T.in[i] = T.out[i] (and in fact
T.out is not even stored in memory). We will also use T.cond to denote the set
of conditions that break symmetries for the descendant nodes that correspond
to a full graph. T.root denotes the g-trie root node and T.isGraph indicates if
the node is the end vertex of a graph (in fig. 1 this corresponds to all leaf nodes).

3.2 Exact Subgraph Frequency

Given a g-trie T and a graph G, the g-trie matching algorithm will find the
occurrences of all graphs of T as subgraphs of G, as shown in [17]. The basic idea
is to find a set of vertices of G that match completely with a path in T , and we
heavily constraint our search by using the information stored about connections
and symmetry breaking conditions. For the sake of clarity, we show the matching
algorithm, in Algorithm 1, with a subtle modification. It encapsulates some of the
work in the matchingVertices() function, thus allowing for a logical separation
of the recursion calls and the isomorphic matching.

At any stage, Vused represents the currently partial match of graph vertices to
a g-trie path. We start with the g-trie root children nodes and call the recursive
procedure match() with an initial empty matched set (line 2). The later proce-
dure starts by creating a set of vertices that completely match the current g-trie
node (line 4). We then traverse that set (line 5) and recursively try to expand
it through all possible tree paths (lines 7 and 8). If the node corresponds to a
full subgraph, then we have found an occurrence of that subgraph (line 6). Note
that at this time no isomorphic test is needed, since this was implicitly done as
we were matching the vertices.

Generating the set of matching vertices is done in the matchingVertices()
procedure. The efficiency of the algorithm heavily depends on the above men-
tioned constraints as they help in reducing the search space. To generate the
matching set, we start by creating a set of candidates (Vcand). If we are at a root
child, then all graph vertices are viable candidates (line 10). If not, we select
from the already matched vertices that are connected to the new vertex (line
12), the one with the smallest neighborhood (line 13), reducing the possible can-
didates (line 14). Then, we traverse the set of candidates (line 16) and if one
respects all connections to ancestors (lines 17 to 19), and respects at least one
set of symmetry breaking conditions for a possible descendant subgraph (line
19), we add it to the set of matching vertices (line 20).

Efficient Subgraph Frequency Estimation with G-Tries 243

Algorithm 1. Finding subgraphs of g-trie T in graph G.
1: procedure matchAll(T, G)
2: for all children c of T.root do match(c, ∅)
3: procedure match(T, Vused)
4: V = matchingVertices(T,Vused)
5: for all vertex v of V do
6: if T.isGraph then foundMatch()

7: for all children c of T do
8: match(c, Vused ∪ {v})
9: function matchingVertices(T,Vused)

10: if Vused = ∅ then Vcand := V (G)
11: else
12: Vconn = {v : v = Vused[i], T.in[i] ∨ T.out[i], i ∈ [1..|Vused|]}
13: m := m ∈ Vconn : ∀v∈ Vconn, |N(m)| ≤ |N(v)|
14: Vcand := {v ∈ N(m) : v �∈ Vused}
15: V ertices = ∅
16: for all v ∈ Vcand do
17: if ∀i∈[1..|Vused|]:
18: T.in[i] = GAdj [Vused[i]][v] ∧ T.out[i] = GAdj [v][Vused[i]] then
19: if ∃C ∈ T.cond : Vused + v respects C then
20: V ertices = V ertices ∪ {v}
21: return V ertices

3.3 Uniform Sampling

Algorithm 1 creates an exhaustive and complete enumeration of all subgraph
occurrences. Our contribution to the existing g-tries methods is to sample only
a fraction of all the occurrences. Similarly to what was done in [23], we will be
trading accuracy for execution speed. The main idea is that each search branch
is only chosen with a certain probability as depicted in Algorithm 2. Note that it
is exactly the same as the previous algorithm with the exception of the indicated
lines 3 and 9.

Algorithm 2 . Sample subgraphs of g-trie T in graph G. Probability of each
occurence is P , with P =

∏
Pd, where Pd is probability of depth d.

1: procedure sampleAll(T, G)
2: for all children c of T.root do
3: With probability P0 do sample(c, ∅) � changed line

4: procedure sample(T, Vused)
5: V = matchingVertices(T,Vused)
6: for all node v of V do
7: if T.isGraph then foundMatch()

8: for all children c of T do
9: With probability PT.depth do sample(c, Vused ∪ {v}) � changed line

244 P. Ribeiro and F. Silva

In order to follow a probabilistic approach, the algorithm uses a set of prob-
abilities associated to each g-trie depth:, {P0, P1, . . . , Pgtrie max depth} where
0 ≤ Pi ≤ 1. Any given node of depth d will therefore only be reached with
probability P0 × . . .×Pd−1. With this, we can produce an unbiased estimator of
the frequency count of a single subgraph. Let Pi be the probability associated
with depth i and Fsample(Gk) be the number of occurrences of the k-subgraph
Gk found in G by the sampleAll() procedure of Algorithm 2. Then, an unbiased
estimator F̂ (Gk, G) of the total number of occurrences of Gk in G is given by
the following equation:

F̂ (Gk, G) =
Fsample(Gk, G)

P0 × P1 × . . . × Pk−1
(1)

We say that the estimator is unbiased because any occurrence of Gk can be
found with equal probability, and as we increase the probabilities, the estimator
gets closer to the real value. In fact, if we choose Pi = 1 for all i, then the result
is the same as the original complete algorithm.

As seen, the parameters Pi control the search. Regarding the accuracy, we
should avoid small values of probability for lower depths, closer to the root. Its
effect is to increase the variance of the result because any disregarded branch
in lower depths may correspond to entire parts of the graph, and therefore may
correspond to a higher number of subgraph occurrences not found. As to the
execution time, the opposite happens. Very high probabilities in the lower depths
will increase the execution time, since more parts of the search tree will have to
be computed. For example, in the extreme case of having all probabilities equal
to one except the last one, in the higher possible depth d, means that in practice
we will explore all possible subgraphs of depth d − 1.

Picking the parameters is therefore a delicate choice that will influence both
the accuracy and speed of our method. Section 4 gives more details on actual
useful real parameters. Note that if only k-subgraphs are being sought, than all
complete subgraphs of the tree will correspond to leaf nodes and therefore the
probability at depth k should always be 1 since when we are at that point, all
computation needed to identify the occurrence is already made (no isomorphism
test is needed after that), and choosing any value smaller than 1 would only
decrease the number of samples without any gain in execution time.

The main benefit of our sampling algorithm regarding previous ones, is that
it is able to sample only the desired set of subgraphs (mfinder and ESU can only
sample the entire set of possible k-subgraphs and MODA can only sample the
occurrences of a particular single subgraph). To our best knowledge, this is the
first algorithm doing that.

The quality of the estimation depends on many factors. A fully fledged ana-
lytical determination of tight bounds on error margins is very complicated since
we do not know beforehand the distribution of the subgraphs that we are looking
for. For example, if the subgraph is very well spread in the entire subgraph, we
will have less variance than if all occurrences are clustered in a small number
of nodes, where a search branch not followed can imply a significant number of
occurrences not found.

Efficient Subgraph Frequency Estimation with G-Tries 245

3.4 Network Motif Discovery

With the algorithms previously defined we can discover all network k-motifs
in the following way: first we find all k-subgraphs that occur in the original
graph using another algorithm (for example ESU). Then we build a g-trie with
those k-subgraphs and only search that particular set in the similar ensemble of
randomized networks. Eventually, if we have other conditions, like a minimum
frequency in the original graph, we can already discard some subgraphs and take
advantage of the fact that we can search only for the ones that interest us.

4 Results

In order to evaluate the performance of our proposed algorithm (which from
now on we will call RAND-GTRIE) we implemented it using C++. Isomorphisms
and canonical labellings were computed using the nauty tool [14]. All tests were
made on a computer with an Intel Core 2 6600 (2.4GHz) with 2GB of memory.
We used four different biological networks from different domains, with varied
topological features that are summarized in Table 1.

Table 1. Networks used for experimental testing of RAND-GTRIE

Network Nodes Edges Directed Description Source

Social 62 159 no Social network of a community of dolphins [13]

Neural 297 2345 yes Neural network of C. elegans [22]

Metabolic 453 2025 yes Metabolic network of C. elegans [6]

Protein 2361 6646 no Protein-protein inter. of S. cerevisiae [2]

In all tests the construction of the g-trie in itself was a very small fraction of the
execution time, and we could even store and reuse canonical labellings on other
program runs. On the network discovery problem, the g-trie can be computed
once, at the beginning, and then reused for the ensemble random networks. Given
this, we chose to leave the g-trie creation out of the picture when stating execution
time. For the purposes of this section, we also limited the choice of probability pa-
rameters to three levels of quality. In order to sample a fraction f of all k-subgraph
occurrences, we can opt for one of the following levels:

– high: {P0 = 1, . . . , Pk−3 = 1, Pk−2 = f, Pk−1 = 1}
– medium: {P0 = 1, . . . , Pk−4 = 1, Pk−3 =

√
f, Pk−2 =

√
f, Pk−1 = 1}

– low: {P0 = k−1
√

f, . . . , Pk−2 = k−1
√

f, Pk−1 = 1}
Our first test was to analyze the speed at which RAND-GTRIE is able to generate

samples. For that we counted how many k-subgraphs per second it was able to
generate, both with a complete enumeration (all Pi = 1) and with only 10% of the
k-subgraphs obtained by sampling with high quality level. We also compared
the performance with RAND-ESU, the present most efficient network centric
method that also allows sampling in a way similar to ours. For that, the publicly

246 P. Ribeiro and F. Silva

available FanMod tool was used, with the same probabilities at the same depths.
FanMod is also implemented in C++ and uses nauty for isomorphism. All sizes
between 3 (the minimum acceptable for a subgraph to be taken in account)
and 6 (the maximum that guarantees computation in a matter of a few hours)
were used. We first used ESU to discover all the k-subgraphs in the original graph,
constructed a g-trie with those and then used it to estimate the frequency (as we
would do with the randomized networks if we were discovering motifs). Figure 2
details the results obtained.

10
4

10
5

10
6

10
7

su
bg

ra
ph

s/
se

co
nd

3 4 5 6

subgraph size

Full Enumeration

♣

♣ ♣ ♣

RAND-GTRIE social
RAND-GTRIE neural
RAND-GTRIE metabolic
RAND-GTRIE protein

RAND-ESU social
RAND-ESU neural
RAND-ESU metabolic
RAND-ESU protein

10
4

10
5

10
6

10
7

su
bg

ra
ph

s/
se

co
nd

3 4 5 6

subgraph size

High Quality (10%)

♣

♣ ♣
♣

RAND-GTRIE social
RAND-GTRIE neural
RAND-GTRIE metabolic
RAND-GTRIE protein

RAND-ESU social
RAND-ESU neural
RAND-ESU metabolic
RAND-ESU protein

Fig. 2. Sampling speed of RAND-GTRIE and RAND-ESU

The main aspect to note is that RAND-GTRIE is always faster, being an order
of magnitude faster. This was also the case for all other networks tested, with
the more extreme speedup bigger than 100×, for a power grid network [22].
RAND-GTRIE also appears to scale well with an increasing subgraph size, as is
the case with RAND-ESU, since the sampling rate is sustained. Mfinder, the other
major alternative for sampling, was shown to be much slower than RAND-ESU
and it does not scale well [23].

In order to test the accuracy of our algorithm, we applied all levels of sampling
quality, while increasing the fraction of subgraphs being sampled, taking note
of the percentage of subgraphs correctly identified. We considered an estimate
to be accurate when it was within a 20% error margin of the correct perfect
value. We took 100 samples for each fraction and level and only considered the
estimate correct when at least 80 of those samples were accurate. The results
for two of the networks are shown on fig. 3. As expected, higher probabilities in
lower depths correspond to better sampling quality (less variance).

If we measure the execution time for the exact same tests, we can see that
the opposite happens, with better quality sampling taking more execution time
as detailed in fig. 4. All quality levels have an execution growth proportional
to the percentage of samples, but higher quality levels have a minimum time
bigger than lower quality minimum time. For example, on the protein network,
sampling just 0.1% of the subgraphs in high level of quality takes more then 6%
of the time it takes to do a full enumeration. This is because we are traversing
the entire tree up to depth k − 2. Judging by our empirical tests, 10% on high
level exhibits a good balance between execution time and sampling quality, but
depending on the situation, any other values can be used.

Efficient Subgraph Frequency Estimation with G-Tries 247

0

20

40

60

80

100

%
of

su
bg

ra
ph

s
co

rr
ec

tly
es

tim
at

ed

0.1 0.2 0.5 1 2 5 10 20 50 100

% of subgraphs samples

Protein Network

high
medium
low

0

20

40

60

80

100

%
of

su
bg

ra
ph

s
co

rr
ec

tly
es

tim
at

ed

0.1 0.2 0.5 1 2 5 10 20 50 100

% of subgraphs samples

Metabolic Network

high
medium
low

Fig. 3. Accuracy of RAND-GTRIE for 5-subgraphs, measured in percentage of correctly
estimated subgraphs as the percentage of samples grows

0

20

40

60

80

100

%
of

tim
e

re
la

tiv
e

to
fu

ll
en

um
er

at
io

n

0.1 0.2 0.5 1 2 5 10 20 50 100

% of subgraphs samples

Protein Network

high
medium
low

0

20

40

60

80

100
%

of
tim

e
re

la
tiv

e
to

fu
ll

en
um

er
at

io
n

0.1 0.2 0.5 1 2 5 10 20 50 100

% of subgraphs samples

Metabolic Network

high
medium
low

Fig. 4. Execution time of RAND-GTRIE for 5-subgraphs, relative to the time a full enu-
meration with g-tries takes (i.e., with Pi = 1 for every i)

If we take a closer look to what RAND-GTRIE is computing, we can see that the
more rare subgraphs are the ones with less estimating quality. This is because
a smaller number of occurrences will obviously imply more variance in the esti-
mated values (a “miss” has more weight). For example, with high level setting
and 10% of samples on the metabolic network we have 84.27% subgraph classes
estimated correctly. Almost all of the ones not identified appear less than 100
times in the sample, and therefore are estimated to appear less than 1000 times
in the original network. On the other hand, with the same high level setting
and only 0.1% of samples, the 7.49% that were estimated correctly correspond
to subgraph classes that were sampled at least 1000 times, which means that
they are estimated to occur more than one million times in the original graph.

Finally, regarding motifs, we experimented to discover all motifs of sizes 3 to
6 in the four networks, using 10% sampling with high quality level, and we were
able to find more than 90% of the motifs that a full enumeration would find. More
than that, we spend on average less than 20% of the time it would take using g-
tries full enumeration. If we take into account that g-tries are themselves a more
efficient data structure than previous methods, we can magnify even more the
speedup and potentially reach previously unfeasible network and subgraph sizes.
Note that since we can choose the subgraphs that we are looking for, we can
even experiment with different probability parameters for different subgraphs,
thus paving the way for a more adaptive algorithm.

248 P. Ribeiro and F. Silva

5 Conclusion

In this paper we presented a novel sampling algorithm for discovering network
motifs. It employs as a basis the g-trie data structure, an efficient specialized
tree that uses common topologies in subgraphs in order to heavily constraint
the search. By associating a probability with each tree depth, it is able to uni-
formly traverse a fraction of the whole search space. With this it provides an
unbiased estimator for the real frequency of the associated subgraphs, and a way
of efficiently discovering motifs.

Our algorithm offers many parametrization choices and it is also capable of
sampling subgraphs solely from a predefined set, in opposition to having to
sample among all of the subgraphs of a determined size, or only sampling one
individual subgraph. This has a direct beneficial impact on the execution time
and we are able to produce accurate results spending less execution time than
previously existent methods.

In the future we intend to exploit even more this property and create an adap-
tive version of our sampling algorithm that is able to make an initial estimation
and then keep refining it for the subgraphs that do not have enough estimation
quality. For example, one could remove all frequent subgraphs from the g-trie
and only repeat the search for the more rare ones, with an higher fraction of
samples. We also intend to study the impact of the original graph labeling on
the sampling quality, since our symmetry breaking conditions rely on this order.

Finally, we will also apply our methodology in real-life problems, analyzing
networks at scales that were not possible before, attempting to unveil new larger
network motifs.

Acknowledgments

Pedro Ribeiro is funded by an FCT Research Grant (SFRH/BD/19753/2004).

References

1. Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction
prediction. Bioinformatics 20(18), 3346–3352 (2004)

2. Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L.,
Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein
interaction network in budding yeast. Nucl. Acids Res. 31(9), 2443–2450 (2003)

3. Ciriello, G., Guerra, C.: A review on models and algorithms for motif discovery in
protein-protein interaction networks. Brief Funct. Genomic Proteomic 7(2), 147–
156 (2008)

4. da Costa Luciano, F., Oliveira Jr., O.N., Travieso, G., Rodrigues, F.A., Villas
Boas, P.R., Antiqueira, L., Viana, M.P., da Rocha, L.E.C.: Analyzing and modeling
real-world phenomena with complex networks: A survey of applications. ArXiv e-
prints 0711(3199) (2007)

5. Dobrin, R., Beg, Q.K., Barabasi, A., Oltvai, Z.: Aggregation of topological motifs
in the escherichia coli transcriptional regulatory network. BMC Bioinformatics 5,
10 (2004)

Efficient Subgraph Frequency Estimation with G-Tries 249

6. Duch, J., Arenas, A.: Community identification using extremal optimization. Phys.
Rev. E. (Stat. Nonlin. Soft Matter Phys.) 72, 027104 (2005)

7. Grochow, J., Kellis, M.: Network motif discovery using subgraph enumeration and
symmetry-breaking. Research in Computational Molecular Biology, 92–106 (2007)

8. Itzkovitz, S., Levitt, R., Kashtan, N., Milo, R., Itzkovitz, M., Alon, U.: Coarse-
graining and self-dissimilarity of complex networks. Phys. Rev. E (Stat. Nonlin.
Soft Matter Phys.) 71(1 Pt. 2) (January 2005)

9. Juszczyszyn, K., Kazienko, P., Musial, K.: Local topology of social network based
on motif analysis. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part
II. LNCS (LNAI), vol. 5178, pp. 97–105. Springer, Heidelberg (2008)

10. Kashani, Z., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E., Asadi, S.,
Mohammadi, S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new algorithm for
finding network motifs. BMC Bioinformatics 10(1), 318 (2009)

11. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformat-
ics 20(11), 1746–1758 (2004)

12. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: IEEE International
Conference on Data Mining, p. 313 (2001)

13. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:
The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. can geographic isolation explain this unique trait? Be-
havioral Ecology and Sociobiology 54(4), 396–405 (2003)

14. McKay, B.: Practical graph isomorphism. Cong. Numerantium 30, 45–87 (1981)
15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network

motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

16. Omidi, S., Schreiber, F., Masoudi-Nejad, A.: Moda: An efficient algorithm for net-
work motif discovery in biological networks. Genes & genetic systems 84(5), 385–
395 (2009)

17. Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network
motifs. In: ACM Symposium on Applied Computing (2010)

18. Ribeiro, P., Silva, F., Kaiser, M.: Strategies for network motifs discovery. In: 5th
IEEE International Conference on e-Science. IEEE CS Press, Oxford (2009)

19. Schreiber, F., Schwobbermeyer, H.: Towards motif detection in networks: Fre-
quency concepts and flexible search. In: Proc. of the Int. Workshop on Network
Tools and Applications in Biology (NETTAB 2004), pp. 91–102 (2004)

20. Sporns, O., Kotter, R.: Motifs in brain networks. PLoS Biology 2 (2004)
21. Valverde, S., Solé, R.V.: Network motifs in computational graphs: A case study in

software architecture. Phys. Rev. E (Stat. Nonlin. Soft Matter Phys.) 72(2) (2005)
22. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Na-

ture 393(6684), 440–442 (1998)
23. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput.

Biol. Bioinformatics 3(4), 347–359 (2006)

	Efficient Subgraph Frequency Estimation with G-Tries
	Introduction
	Preliminaries
	Graph Terminology
	Network Motifs and Frequency Count
	Related Work

	Sampling Algorithm
	G-Tries Data Structure
	Exact Subgraph Frequency
	Uniform Sampling
	Network Motif Discovery

	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

