
Network motifs detection using random
networks with prescribed subgraph frequencies

Miguel E.P. Silva, Pedro Paredes, Pedro Ribeiro

CRACS & INESC-TEC
DCC-FCUP, Universidade do Porto, Portugal

mepsilva@dcc.fc.up.pt, pparedes@dcc.fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract. In order to detect network motifs we need to evaluate the
exceptionality of subgraphs in a given network. This is usually done by
comparing subgraph frequencies on both the original and an ensemble of
random networks keeping certain structural properties. The classical null
model implies preserving the degree sequence. In this paper our focus is
on a richer model that approximately fixes the frequency of subgraphs
of size K − 1 to compute motifs of size K. We propose a method for
generating random graphs under this model, and we provide algorithms
for its efficient computation. We show empirical results of our proposed
methodology on neurobiological networks, showcasing its efficiency and
its differences when comparing to the traditional null model.

Keywords: Network Motifs, Random Graphs, Subgraph Counting

1 Introduction

Complex networks have been established as essential tools to model and analyze
several real-life systems and problems. A technique that greatly contributed for
this reputation is network motif analysis [15]. Network motifs consist of over-
represented substructures of a network, or subgraphs that appear in a higher
number than expected. This method has been used successfully in many fields
of science, such as biology [22, 23] or sociology [4].

In order to perform a meaningful network motif analysis, it is important to
decide on a definition of what is the expected frequency of a certain subgraph.
To do so, one chooses a determined null model of random graphs and computes
the average frequency of the given subgraph on this null model. The most used
null model is maintaining the degree sequence of the original network [4, 13, 14,
23]. Other models have been proposed [3, 15], but here we focus on a new model.

One can think of graph edges as subgraphs of size 2. A natural extension
would therefore be to maintain counts of larger subgraphs. Moreover, certain pat-
terns can be essentially the consequence of over-represented smaller subgraphs
contained in them. With all of this mind we propose to keep the frequency of
subgraphs of size K − 1 when discovering motifs of size K, aiming towards a
much richer null model, able to really distinguish when a subgraph is really
significant by itself and not just a product of smaller subtopologies. A limited

version of this idea for size 4 motifs was shown in [15], but here we aim for a
generic method (that works for any feasible K) and that is also efficient.

Our main contributions to the stated problem are the following:
– A method that generates random networks using the invariant of subgraphs

of frequency K − 1, up to a certain margin, with an algorithm based on
simulated annealing [10];

– A study of different ways of applying the previous method by using additional
invariants like the classic degree sequence invariant;

– An algorithm, based on [17, 25], that updates the frequency of subgraphs
after an edge addition or removal, which is used in order to compute the
frequencies of subgraphs of size K − 1 that the mentioned method requires;
We analyze our method to show that it is both efficient and accurate. To

do so, we rely on different real complex networks and show that our method
obtains different results when comparing with the classic degree sequence model.
We also show that our frequency update algorithm performs much better than
recalculating all frequencies in every iteration of the generation method.

The rest of this paper is organized as follows. Section 2 discusses some pre-
liminaries and background concepts regarding network motif analysis, needed for
the following sections. Section 3 presents our generation method and also show
some of its properties. In section 4 we showcase our frequency updating algo-
rithm and prove its correctness. Section 5 contains a brief experimental analysis
of our proposed methods and algorithms. Finally we conclude in Section 6.

1.1 Related Work

Milo et al. [15] use, as null model, random graphs that maintain the degree
sequence and subgraph count of size K − 1, when calculating motifs of size
K. Their implementation uses a Monte Carlo Metropolis-Hastings algorithm for
directed networks to calculate motifs of size 4, but does not suggest an immediate
strategy for undirected networks or subgraph size greater than 4.

In other related work, Bois and Gayraud in [3] use prior probability to gener-
ate random graphs with a given count of subgraphs, but only present priors for
two types of directed subgraphs of size 3. Ritchie et al. [21] present an algorithm
parametrized by a degree sequence and a set of subgraphs that generates ran-
dom graphs with those parameters. It is based on the matching algorithm [14],
whereas our work uses a Markov chain Monte Carlo method of generation.

We also note that, as far as we know, there is no known method that efficiently
updates subgraph frequencies on an edge addition or removal.

2 Network Motif Finding

2.1 Definition of Network Motif

The concept of motifs as building blocks of networks was first described by
Milo et al. in [15] as patterns of inter-connections occurring in numbers that are

significantly higher than what one would expect. To simplify notation, we will
refer to network motifs simply as motifs.

A determined subgraph is considered significant if its frequency in the orig-
inal graph is exceptionally high in comparison with its frequency on random
networks under a certain null model. To assess exceptionality, one computes
the probability that the number of times the subgraph appears on a random-
ized network is lower than on the original network and then compares it with a
certain threshold P . This probability can be estimated using Z-scores on a stan-
dard normal distribution, by computing the standardized difference between the
observed and expected frequency.

To be classified as a motif, according to the original definition [15], it is
also required to fulfill two other properties. For a given subgraph, let fo be the
frequency of the subgraph on the original network and fr the average frequency of
the same subgraph on random networks with an unspecified null model. The first
constraint is minimal frequency, that is, fo has to have a minimum value of U ,
to ensure a quantitative minimum. The second constraint is minimal deviation,
that is, fo needs to be significantly larger than fr, to prevent the detection of
motifs that have a small difference between these two values but have a narrow
distribution in the random networks. This can be stated has fo − fr > D · fr,
where D is a proportionality threshold.

With this information, we can give a formal definition of motif. Given a set
of parameters {P,U,D}, a subgraph of a given graph is considered a motif if:

– P (fr > fo) ≤ P (over-representation)
– fo ≥ U (minimal frequency)
– fo − fr > Dfr (minimum deviation)

2.2 Algorithms for Subgraph Counting

The main primitive of motif finding is counting subgraphs on graphs, which is
called a subgraph census. There are essentially three different ways of doing so:
in a network centric way, which corresponds to counting the occurrences of all
subgraphs up to a certain size K; in a subgraph centric way, which corresponds
to counting the occurrences of a single subgraph; in a set centric way, which
corresponds to counting the occurrences of a set of subgraphs.

The state of the art algorithms that do a generic network centric census are
QuateXelero [9] and FaSE [17], which are similar contemporaneous algorithms.
Both build on previous methods [25] that do an enumeration of all subgraphs
up to a certain size K and then perform isomorphism tests on each one us-
ing a tool like nauty [11]. By building an intermediate structure (a quaternary
tree and a g-trie, respectively) the number of necessary isomorphism tests is de-
creased to a multiple of the number of different types of subgraph present in the
network. More recently, some methods [12, 18] explore combinatorial properties
of graphs to achieve algorithms that are orders of magnitude better than any
generic method, but that can only work with subgraphs up to a certain size
(currently up to 5 for undirected graphs [18] and 4 for directed [12]).

The most well known subgraph centric algorithm is the work by Grochow
and Kellis [8], which efficiently counts the frequency of a single subgraph using a
set of generated symmetry breaking conditions. Finally, there is only one known
set centric algorithm, the work by Ribeiro and Silva [20].

2.3 Random Graphs

The study of random graphs is growing rapidly as a model of complex networks.
Altough the research on this topic dates back to the late 1950s, where, in a series
of publications, Paul Erdos and Alfréd Rényi [6, 5] introduce a model, known as
Erdos-Rényi (ER). In this model, each pair of vertices is connected with an
independent probability p. More recently, other models have been proposed that
follow closely characteristics from real world networks. Among these, Watts and
Strogatz [24], propose a model to generate smalls-world graphs, networks whose
average path length grows proportionally to the logarithm of the number of nodes
in the network, and Barabasi-Albert [1] introduce another model for scale-free
graphs [2], where the degree distribution follows a power law.

When focusing on more local properties, random graphs using a given degree
sequence have become one of the most studied models, after their widespead
use as null model for network motifs discovery [13, 15]. There is a multitude of
algorithms to generate this type of graphs, of which we highlight the main two:

– The switching method [19] uses a Markov chain, starting with an initial
network with the desired degree sequence and carries out a series of Monte
Carlo switches that preserve that sequence.

– The matching algorithm [16] is based on “stubs”. Each vertex is assigned a
set of edge extremities, either incoming or outgoing. For each of these stubs,
the vertex tries to connect with another one with the opposite type of stub.

On their original work, Milo et al. [15] use as null model both the degree
sequence and subgraph frequency of size 3. To achieve this, they use the switching
method to preserve the degree sequence and a Monte Carlo Metropolis-Hastings
algorithm to approximate the subgraph count of the referred size. The frequency
vectors are updated using analytical expressions using the neighbours of the
vertices used for the edge switch.

3 Generation of Random Graphs

In this section, we discuss a generator of random graphs, with the novelty of
allowing the random networks to be generated with approximately the same
frequency of subgraphs of size K − 1 as an original network. We also permit the
graphs to maintain or vary their degree sequence. The generation procedure is
split in two phases: randomization and convergence.

3.1 Randomization

We offer three ways of creating an initial network. The first two employ a Markov
chain edge swapping technique like in [15] and the third is a classical ER model,
with number of edges equal to the number of edges in the original network.

The two Markov chain algorithms we utilize are similar, they both start with
a real network and perform edge switches. The first version, which maintains
degree sequence, given different nodes A, B, C and D, with connections A→ B
and C → D, removes these existing connections and adds the new edges, A→ D
and C → B. Nodes are selected in a way that ensures the prior inexistence of
these two new connections. We do not distinguish between single and double
edges, considering double edges simply as two independent single ones. The
undirected case is easily generalizable.

The second type of Markov chain edge swap modifies the out-degree sequence
of the network, for directed networks, and both in and out-degree sequences, in
undirected networks. Given different nodes A, B and C, we delete the connection
A → B and annex the edge C → B, reducing the out-degree of node A by 1,
while incrementing C’s by the same amount. As before, nodes are selected with
the requirement that A is connected to B but C is not.

The difference between the initial graphs produced by these two Markov
chain variants lies in the time taken to converge to the desired subgraph count,
the first version requires a lesser number of iterations. However, both produce
graphs with a similar level of energy. Given two vectors (V1 and V2) with the
number of appearances of each type of subgraph, where Γ denotes the set of
these subgraphs, in two different networks, we define energy as the distance
between these two vectors and calculate it as:

e =

∑
i∈Γ

|V1,i−V2,i|
V1,i+V2,i

|Γ |

We refer to the energy of a random network as the distance between its vector
of subgraph frequency and the corresponding vector from the original network.

For both Markov chain schemes, we repeat the edge swapping process O(E)
times, where E represents the number of edges in the graph. The constant used is
diverse in the existing literature, so we studied how the energy varies in function
of the number of switches applied to the original network. We observed that a
higher number of switches does not lead to higher energy. It should be noted
that energy is not the sole measure of how well a graph is randomized and a low
number of switches may not cause enough impact on other measures.

3.2 Convergence

After generating the initial network, we start the process of switching edges to
obtain a subgraph count close to that of the real network. The convergence phase
stops when the energy reaches a certain tunable threshold, where energy equal to

0 means that the subgraph frequencies of the random network and the original
network are the same. In this phase, we use simulated annealing [10].

Simulated annealing is a metaheuristic technique used to approximate the
global optimum of a large search space. On a general case, on each iteration, the
heuristic chooses a random neighbouring state of the current state and decides
probabilistically between changing to the new state or staying in the current one.
This process is repeated until a global optimum solution is found or a solution
that differs from the optimum less than a given threshold.

In our implementation of the method, the neighbouring state is chosen us-
ing the edge swapping mechanism described previously. If our initial network
was obtained through the ER model or the out-degree changing Markov chain
method, the swap also uses the out-degree changing switch. Otherwise, if the
degree sequence was maintained throughout the randomization process, we only
perform the type of switch that preserves it.

In order to decide if the the new candidate graph is accepted, we use an
acceptance probability function P (e, e′, t), where e represents the current graph’s
energy, e′ the candidate graph’s energy and t is a parameter that decays over
time, called the temperature. We use the same acceptance function as in the
original formulation by Kirkpatrick et al. in [10], if e′ < e, we always accept the

transition, otherwise, we accept it with probability exp(e−e
′

t).
A feature of simulated annealing is the decreasing temperature over time.

This forces the state to converge to an optimum as, with lower temperature, the
probability of accepting a state with higher energy is lessened. Upon reaching
a point in the computation where the temperature reaches 0, only states with
lesser energy are accepted and the computation eventually stops. The rate at
which the temperature decreases is called the cooling factor of the algorithm.

4 Updating frequencies of subgraphs

The main bottleneck of the method described in the previous section is comput-
ing the frequencies of subgraphs in every iteration, to estimate the energy of the
current solution. In [15], an analogous operation was done recounting the fre-
quencies of subgraphs after each iteration of their algorithm until convergence.
Our approach avoids recomputing all of the frequencies by only considering the
subgraphs that are changed by the addition or removal of a certain edge.

The base of our method is the FaSE [17] algorithm, which we will extend in
order to only count subgraphs that touch a given edge. Firstly, we will briefly
describe the algorithm.

4.1 FaSE Algorithm

The original FaSE algorithm enumerates all connected subgraphs of a given size
K and in the end computes the isomorphism of some of the subgraphs. To avoid
having to compute the isomorphism of all subgraphs, the algorithm partitions
subgraphs into intermediate classes during the enumeration process. By requiring

that all subgraphs in one of the intermediate classes are isomorphic, in the
end we only need to compute one isomorphism test per class. This is done by
encapsulating the topological features of the enumerating graph in a tree like
data structure. Thus, we can divide the algorithm into two interleaved concepts:
the enumeration and a tree data structure.

Enumeration: The enumeration step can be done using any algorithm that
grows a set of connected vertices. The algorithm from [25], ESU, was chosen
since it is simple, efficient and fulfills all the requirements. We will describe its
functioning since it will be useful for the end of this section.

ESU works by enumerating all size K subgraphs exactly once. It does so by
keeping two ordered sets of vertices: Vs, which represents the partial subgraph
that is currently being enumerated; Vext, which represents the set of vertices
that can be added to Vs as a valid extension. Each vertex is represented by a
label which is unique and defined between 1 and |V |.

For each vertex v the algorithm repeats the same procedure setting initially
Vs = {v} and Vext = N(v), where N(v) are the neighbors of v. This procedure
starts by removing one element u of Vext at a time. For each u, a new V ′s and V ′ext
are created and the same procedure is repeated. V ′s is set to Vs ∪ {u} and V ′ext
is set to Vext without u and with additionally each element in Nexc(u, Vs) with
value greater than v. Nexc(u, Vs) are the exclusive neighbors of u given Vs, that
is, the neighbors of u that are not neighbors of elements in Vs. This procedure
stops when the size of Vs reaches K, in which case Vs contains one occurrence
of size K. The addition of elements in Nexc(u, Vs) along with the u > v, ensure
that there is no subgraph enumerated twice, and it can be proved [25] that this
procedure stops and enumerates all subgraphs.

The tree data structure: During the enumeration process, this data struc-
ture is used to encapsulate information about the subgraph contained in Vs. Since
this is a recursive procedure, one can use information about the initial content
of Vs to build a partial isomorphism representation, that can be complemented
on each vertex insertion in Vs. For this, a data structure called a gtrie is used,
which is similar to a prefix tree of subgraphs. Whenever a new vertex is added
to Vs, one uses the information of connectivity with the previous elements of Vs
to generate a label that identifies the current partial subgraph, which is used as
the identifier for the mentioned intermediate classes.

Figure 1 summarizes the whole algorithm. The tree on the left represents
the implicit recursion tree ESU creates. The induced g-trie on the right is a
visual representation of the actual g-trie FaSE creates. More information about
the FaSE can be found in [17].

4.2 FaSE with updates

Our method to efficiently update frequency counts works by altering the enumer-
ation algorithm to count frequencies starting on edges. When adding an edge, the
algorithm first counts all subgraphs that use the edge’s two ends and decrements
their frequency. Afterwards, it adds the new edge and counts all subgraphs that

root

1

2 3

2

3 4

{0};{1,2,3} {1};{2}

{0,1};{2,3}

0

21

{1,2};{3,4}

{2};{3,4}

{2,3};{4} {2,4};0

{3};0 {4};0

1

0
2

3

4

0

31

1

2 4

0

3 4

{0,3};{4}{0,2};{3,4}

32

0

42

L1

A

B C

A

B C

A

B C

A

B

A
Graph

Subgraph Enumeration
Induced G-Trie

L2 L3

Clique

L1 L1 L1L2 L3 L3 L3 L3

Chain

0

Fig. 1. Summary of the FaSE algorithm.

touch that edge. To remove an edge we do an analogous process. Our method is
based on the ESU algorithm, altering it to start on a given edge.

For a given edge to add, {a, b}, the algorithm first considers as initial sets
Vs = {a, b} and Vext = N(a) ∪ N(b) \ {a, b} and only uses these as initial
sets (meaning it does not recurse on other initial Vs and Vext). The rest of the
procedure is similar to the original ESU algorithm, but the symmetry breaking
is removed, that is, when adding a node u′ to Vext, there is no comparison with
a: if u′ belongs to Nexc(u, Vs) it will be added to Vext.

To prove that this method is correct we use the original correction proof
of the ESU algorithm. If a is the minimal node of the graph (that is, for every
node v, a ≤ v), all subgraphs that include a will be enumerated on the first
iteration of the algorithm. For that iteration, if b is the first element of Next,
then it will be removed and the next iteration has Vs = {a, b} and Vext =
N(a) \ {b} ∪Nexc(b, {a}) = N(a)∪N(b) \ {a, b}. Since this is the only recursion
path that will include a and b (since b was the first node to be removed from
the initial Next), all subgraphs that contain a and b will be counted on this
recursive subtree. Since this is analogous to our method, its correctness implies
the correctness of our method.

5 Experimental Evaluation

We apply our techniques to four networks, two of them neurobiological, based
on [23]. The neurobiological networks are directed and represent a macaque
visual cortex, with 30 nodes and 311 connections, and a macaque cortex, with
71 nodes and 746 edges. The other two networks are undirected and represent
a social network of jazz musicians [7], with 198 nodes and 2742 edges, and a
geo-spacial network of a power grid in the United States [24], with 4941 nodes
and 6594 edges.

We measure the significance of subgraphs of size K = 4 and K = 5, using
the Z-score metric. For each network and each type of initial random network,

we generate an ensemble of 100 random networks. For the convergence phase,
we define our energy threshold as 5%, if the vectors of subgraphs count differ
in 5% or less, we stop the computation and output the network as it is at that
point. We use an initial temperature of 0.01 and a cooling factor of 0.99. Table 1
presents results for the mentioned networks, by comparing the Z-score calculated
by our methods against simply maintaining the degree sequence.

Network K Subgraph Original
Keep K − 1

Keep Deg. Seq. Change Deg. Seq. ER

61.20a -2.29 -0.71 -4.41

Macaque
Cortex

4 182.30a 6.19 2.47 12.66

−10.17b 12.01 10.64 15.20

36.76a -1.58 -0.63 -2.88

4 14.63a -2.29 -2.20 -2.61

Macaque
Visual
Cortex

−3.49b 12.01 4.90 5.40

5
278.57b 4.11 3.85 -0.71

117.72b 8.79 6.41 1.62

Power 5

82.83b 4.88 -3.45 2.86

−21.57b -18.25 -17.65 0.09

Jazz 5

438.35b 60.47 29.62 15.82

−45.84b -17.31 6.18 70.54

Table 1. Z-score results for some subgraphs in the macaque cortex and macaque
visual cortex networks. a result was taken from [23]. b was calculated by us, using
degree sequence invariance as null model.

Using our generator as null model, the Z-score of the first and second sub-
graphs on the macaque cortex and fourth, fifth, seventh and eighth on the

macaque visual cortex was significantly lower than the Z-score calculated using
solely the degree sequence as invariant. We speculate that these subgraphs, which
are considered over-represented in the original network by Sporns et al. [23], are
simply a consequence of the prevalence of their induced subgraphs of size K−1.
By preserving the frequency of the latter, the former become more common in
the generated random networks.

On the other hand, subgraphs third and sixth from macaque cortex and
macaque visual cortex respectively, are originally considered under-represented
but, under our generator, can be considered motifs. Note that the Z-score values
are similar using different initial perturbations on the original networks.

On the power network, we show a subgraph of size 5 that was considered a
motif under the previous model, but with our new model, it is not considered
over-represented anymore. The other example for the same network, using a
Markov chain edge swap as the initial network yields a similar Z-score as the
original model, but converging from an ER network produces a significantly
different score.

For the jazz network, we present an example where an extremely over-
represented subgraph is still considered a motif under our model. It is the size
5 clique and its over-representation can not be simply explained by the number
of size 4 cliques. In the other example, each of the models for the initial random
network provides a substantially different Z-score, from being considered under
represented if the Markov chain edge swap process that retains the degree se-
quence is used, to being treated as motif if the initial network follows the ER
model.

We also study the improvement obtained by efficiently updating subgraph
counts. To this end, Table 2 shows the average execution time, in seconds, for
each network, comparing the efficient update against running a full census after
each edge swap. These tests were run with initial temperature 0.01, cooling factor
set to 0.99 and using the Markov chain edge swap variant that preserves the
degree sequence. Subgraph frequency of size 3 was maintained for the macaque
networks and size 4 for the power and jazz networks.

Macaque
Cortex

Macaque
Visual Cortex

Power Jazz

Efficient Update (s) 64.85 0.22 239.56 1034.06

Full Census (s) 103.58 12.35 4274.47 25102.0

Speedup (× faster) 1.6 56.1 17.8 24.3
Table 2. Average execution time, in seconds, and speedup, of the efficient update in
comparison with the full census, to generate a random network preserving the frequency
of subgraphs of size 3 for the neurobiological networks and size 4 for the jazz and power

networks.

For the macaque cortex network, in average, each network took nearly twice
as much doing the full census after each edge switch than using our efficient

frequency update. However, for the jazz and power networks, in average, each
network was 1 order of magnitude faster using the efficient update technique and
the macaque visual cortex was about 2 orders of magnitude faster.

Clearly, both macaque networks are outliers of efficiency, probably because
they are both small dense networks. Our efficient update method works best for
larger sparse networks, because in this case, on average, the number of subgraphs
that change after a single edge addition or removal is only a small fraction of
the total number of subgraphs. In this sense, the jazz and power networks are
better fits for this model, as are most social networks.

6 Conclusion

We introduced a generator of random graphs that preserves the frequency of
subgraphs of size K−1. The generation is split in two phases, where the original
networks first suffers an initial perturbation, via a Markov chain edge swapping
technique or a classic Erdos-Renyi model, and then converges to the desired
frequency up to a difference of percentage threshold, using simulated annealing.

We applied our generator to four real complex networks and compared the
significance of different subgraphs against results published in [23]. The Z-score
calculated by using our generator as null model is significantly lower for cer-
tain subgraphs of size K, which can be explained by the prevalence of induced
subgraphs of size K − 1.

We also devised a technique to efficiently update the frequency of subgraphs
after an addition or removal of a single edge. In summary, it works by searching
all the subgraphs that touch the edge’s endpoints and updates their frequency.
This technique is critical to the convergence phase of our generator, as it is, on
average, at least 2 times faster and in many cases orders of magnitude faster
than running the full networks census from scratch.

Acknowledgements: This work is funded within FourEyes, a research line
within project TEC4Growth/NORTE-01-0145-FEDER-000020.

References

1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47–97 (2002)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

3. Bois, F.Y., Gayraud, G.: Probabilistic generation of random networks taking into
account information on motifs occurrence. Journal of Computational Biology 22(1),
25–36 (2015)

4. Choobdar, S., Ribeiro, P., Bugla, S., Silva, F.: Comparison of co-authorship net-
works across scientific fields using motifs. In: ASONAM, 2012 IEEE/ACM Inter-
national Conference on. pp. 147–152. IEEE (2012)

5. Erdos, P., Rényi, A.: On the evolution of random graphs. Bull. Inst. Internat.
Statist 38(4), 343–347 (1961)

6. Erdos, P., Rényi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)

7. Gleiser, P.M., Danon, L.: Community structure in jazz. Advances in complex sys-
tems 6(04), 565–573 (2003)

8. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration
and symmetry-breaking. In: Annual International Conference on Research in Com-
putational Molecular Biology. pp. 92–106. Springer (2007)

9. Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.:
Quatexelero: an accelerated exact network motif detection algorithm. PloS one
8(7), e68073 (2013)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

11. McKay, B.D., Piperno, A.: Practical graph isomorphism, ii. Journal of Symbolic
Computation 60, 94–112 (2014)

12. Meira, L.A., Maximo, V.R., Fazenda, A.L., da Conceicao, A.F.: Accelerated motif
detection using combinatorial techniques. In: SITIS, 2012 Eighth International
Conference on. pp. 744–753. IEEE (2012)

13. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer,
M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663),
1538–1542 (2004)

14. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E., Alon, U.: On the uniform
generation of random graphs with prescribed degree sequences. arXiv preprint
cond-mat/0312028 (2003)

15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

16. Molloy, M., Reed, B.: A critical point for random graphs with a given degree
sequence. Random structures & algorithms 6(2-3), 161–180 (1995)

17. Paredes, P., Ribeiro, P.: Towards a faster network-centric subgraph census. In:
ASONAM, IEEE/ACM International Conference on. pp. 264–271. IEEE (2013)

18. Pinar, A., Seshadhri, C., Vishal, V.: Escape: Efficiently counting all 5-vertex sub-
graphs. arXiv preprint arXiv:1610.09411 (2016)

19. Rao, A.R., Jana, R., Bandyopadhyay, S.: A markov chain monte carlo method
for generating random (0, 1)-matrices with given marginals. Sankhyā: The Indian
Journal of Statistics, Series A pp. 225–242 (1996)

20. Ribeiro, P., Silva, F.: G-tries: a data structure for storing and finding subgraphs.
Data Mining and Knowledge Discovery 28(2), 337–377 (2014)

21. Ritchie, M., Berthouze, L., Kiss, I.Z.: Generation and analysis of networks with a
prescribed degree sequence and subgraph family: higher-order structure matters.
Journal of Complex Networks p. cnw011 (2016)

22. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcrip-
tional regulation network of escherichia coli. Nature genetics 31(1), 64–68 (2002)

23. Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biol 2(11), e369 (2004)
24. Watts, D., Strogatz, S.: Collective dynamics of small-world networks,. Nature 393,

440–442 (1998)
25. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on

Computational Biology and Bioinformatics (TCBB) 3(4), 347–359 (2006)

