
Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

1

Advanced Topics in Data Mining
and Logic Programming

Ricardo Rocha
DCC-FCUP, University of Porto

ricroc@dcc.fc.up.pt

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

2

Logic ProgrammingLogic Programming
Logic programming languages, together with functional programming languages,
form a major class of languages called declarative languages. A common
characteristic of both groups of languages is that they have a strong mathematical
basis:

Logic programming languages are based on the predicate calculus.
Functional programming languages are based on the lambda calculus.

Declarative languages are considered to be very high-level languages when
compared with conventional imperative languages because, generally, they allow the
programmer to concentrate more on what the problem is, leaving much of the
details of how to solve the problem to the computer. The programmer can specify
the problem at a more application-oriented level and thus simplify the formal
reasoning about it.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

3

Logic ProgrammingLogic Programming
Logic programming is a programming paradigm based on Horn Clause Logic, a
subset of First Order Logic. Logic programming is a simple theorem prover that
given a theory (or program) and a query, uses the theory to search for alternative
ways to satisfy the query:

Variables are logical variables which can be instantiated only once.
Variables are untyped until instantiated.
Variables are instantiated via unification, a pattern matching operation finding the most
general common instance of two data objects.
At unification failure the execution backtracks and tries to find another way to satisfy
the original query.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

4

Logic ProgrammingLogic Programming
Logic programming is often mentioned to include the following major advantages:

Simple declarative semantics: a logic program is simply a collection of predicate logic
clauses.
Simple procedural semantics: a logic program can be read as a collection of recursive
procedures.
High expressive power: logic programs can be seen as executable specifications that
despite their simple procedural semantics allow for designing complex and efficient
algorithms.
Inherent non-determinism: since in general several clauses can match a goal, problems
involving search are easily programmed in these kind of languages.

These advantages lead to compact code that is easy to understand, program and
transform. Furthermore, they make logic programming languages very attractive for
the exploitation of implicit parallelism.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

5

Logic ProgramsLogic Programs
A logic program consists of a collection of Horn clauses. Using Prolog's notation,
each clause may be a rule of the form

A :- B1, ..., Bn.
where A is the head of the rule and the B1, ..., Bn are the body subgoals, or it may
be a fact and simply written as

A.
Rules represent the logical implication

B1 ∧ ... ∧ Bn → A
while facts assert A as true.
A separate type of clauses is that where the head goal is false. These type of clauses
are called queries and, in Prolog, they are written as

:- B1, ..., Bn.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

6

Logic ProgramsLogic Programs
A subgoal is a predicate applied to a number of terms

p(t1, ..., tn)
where p is the predicate name, and the t1, ..., tn are the terms used as arguments.
A term can be either a:

Variable
Atom
Compound term

Compound terms have the form f(u1, ..., um) where f is a functor and the u1, ..., um

are themselves terms.
Terms in a program represent world objects while predicates represent relationships
among those objects. Variables represent unspecified terms while atoms represent
symbolic constants.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

7

Logic ProgramsLogic Programs
Information from a logic program is retrieved through query execution. The
execution of a query Q against a logic program P, leads to consecutive assignments
of terms to the variables of Q till a substitution θ satisfied by P is found.
Answers (or solutions) for Q are retrieved by reporting for each variable X in Q the
corresponding assignment θ(X). When a variable X is assigned a term T, then X is
said to be bound and T is called the binding of X. A variable can be bound to
another different variable or to a non-variable term.
Execution of a query Q with respect to a program P proceeds by reducing the initial
conjunction of subgoals of Q to subsequent conjunctions of subgoals according to a
refutation procedure. The refutation procedure of interest here is called Selective
Linear Definite resolution or simply SLD resolution.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

8

SLD ResolutionSLD Resolution
Let us assume that

:- G1, ..., Gn.
is the current conjunction of subgoals.
Initially and according to a predefined selectliteral rule, a subgoal (or literal) Gi is
selected.
Assuming that Gi is the selected subgoal, then the program is searched for a clause
whose head goal unifies with Gi. If there are such clauses then, according to a
predefined selectclause rule, one is selected.
In a computer implementation, the selectliteral and selectclause rules must be specified.
Different specifications lead to different algorithms and different languages (or
semantics) can thus be obtained.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

9

SLD ResolutionSLD Resolution
Consider that

A :- B1, ..., Bm.
is the selected clause that unifies with Gi. The unification process has determined a
substitution θ to the variables of A and Gi such that Aθ = Giθ.
Execution proceeds by replacing Gi with the body subgoals of the selected clause
and by applying θ to the variables of the resulting conjunction of subgoals:

:- (G1, ..., Gi-1, B1, ..., Bm, Gi+1, ..., Gn)θ.
If the selected clause is a fact, Gi is simply removed from the conjunction of
subgoals:

:- (G1, ..., Gi-1, Gi+1, ..., Gn)θ.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

10

SLD ResolutionSLD Resolution
A sequence of the previous reductions is called an SLG derivation. Finite SLD
derivations may be successful or failed.
A successful SLD derivation is found whenever the conjunction of subgoals is
reduced to the true subgoal, which therefore corresponds to the determination of a
query substitution (answer) satisfied by the program.
When there are no clauses unifying with a selected subgoal, then a failed SLD
derivation is found. In Prolog, failed SLD derivations are resolved through applying
a backtracking mechanism. Backtracking exploits alternative execution paths by:

Undoing all the bindings made since the preceding selected subgoal Gp.
Reducing Gp with the next available clause unifying with it.

The computation stops either when all alternatives have been exploited or when an
answer is found.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

11

The Prolog LanguageThe Prolog Language
Prolog is the most popular logic programming language. The name Prolog was
invented in 1973 by Colmerauer and colleagues as an abbreviation for
PROgramation en LOGic to refer to a software tool designed to implement a man
machine communication system in natural language.
In 1977, David H. D. Warren made Prolog a viable language by developing the first
compiler for Prolog. This helped to attract a wider following to Prolog and made the
syntax used in this implementation the de facto Prolog standard.
In 1983, Warren proposed a new abstract machine for executing compiled Prolog
code that has come to be known as the Warren Abstract Machine, or simply
WAM. The WAM became the most popular way of implementing Prolog and
almost all current Prolog systems are based on WAM's technology.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

12

The Prolog LanguageThe Prolog Language
The operational semantics of Prolog is based on SLD resolution. Prolog specifies
that the selectliteral rule chooses the leftmost subgoal in a query and that the
selectclause rule follows the textual order of the clauses in the program.

member(Elem, [Elem | _]).
member(Elem, [_ | Tail]) :- member(Elem, Tail).

0. member(b, [a, b]).

1. member(b, [b]).

2. yes

0. member(E, [a, b]).

1. E = a

4. member(E, []).

2. member(E, [b]).

3. E = b

5. no

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

13

The Prolog LanguageThe Prolog Language
append([], List, List).
append([Head | Tail1], List2, [Head | Tail]) :- append(Tail1, List2, Tail).

0. append([a, b], [c, d], L).

2. append([], [c, d], Tail’).

1. append([b], [c, d], Tail).

3. L = [a, b, c, d] 4. no

L = [a | Tail]

Tail = [b | Tail’]

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

14

The Prolog LanguageThe Prolog Language
append([], List, List).
append([Head | Tail1], List2, [Head | Tail]) :- append(Tail1, List2, Tail).

0. append(L1, L2, [a, b]).

1. L1 = [] ; L2 = [a, b]

4. append(Tail1’, L2, []).

2. append(Tail1, L2, [b]).

3. L1 = [a] ; L2 = [b]

6. no

L1 = [a | Tail1]

Tail1 = [b | Tail1’]

5. L1 = [a, b] ; L2 = []

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

15

The Prolog LanguageThe Prolog Language
reverse([], []).
reverse([Head | Tail], List) :- reverse(Tail, List1), append(List1, [Head], List).

0. reverse([a, b], L).

2. reverse([], List1’), append(List1’, [b], List1), append(List1, [a], L).

1. reverse([b], List1), append(List1, [a], L).

3. append([], [b], List1), append(List1, [a], L).

…

6. L = [b, a]

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

16

The Prolog LanguageThe Prolog Language
To make Prolog a useful programming language for real world problems, some
additional features not found within first order logic were introduced. These
features include:

Meta-logical predicates: these predicates inquire the state of the computation and
manipulate terms.
Cut predicate: this predicate adds a limited form of control to the execution. It prunes
unexploited alternatives from the computation.
Extra-logical predicates: these are predicates which have no logical meaning at all.
They perform input/output operations and manipulate the Prolog database, by adding or
removing clauses from the program being executed.
Other predicates: these include arithmetic predicates to perform arithmetic operations,
term comparison predicates to compare terms, extra control predicates to perform simple
control operations, and set predicates that give the complete set of answers for a query.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

17

The WAMThe WAM
The WAM is a stack-based architecture with simple data structures and a low-level
instruction set. At any time, the state of a computation is obtained from the contents
of the WAM data areas, data structures and registers.
The WAM defines the following execution stacks:

Code area: stores the WAM code corresponding to the loaded programs.
Stack: stores the environment and choice point frames. Environments track the flow of
control in a program and choice points store open alternatives. Some WAM
implementations use separate execution stacks to store environments and choice points.
Heap: sometimes also referred as global stack, it is an array of data cells used to store
variables and compound terms that cannot be stored in the stack.
Trail: organized as an array of addresses, it stores the addresses of the (stack or heap)
variables which must be reset upon backtracking.
PDL: a push down list used by the unification process.

Ricardo Rocha DCC-FCUP

ATDMLP 2007/2008 Logic Programs and Prolog

18

The WAMThe WAM
Four main groups of instructions can be enumerated in the WAM instruction set:

Choice point instructions: these instructions allow to allocate/remove choice points and
to recover the state of a computation through the data stored in choice points.
Control instructions: these instructions allow to allocate/remove environments and to
manage the call/return sequence of subgoals.
Unification instructions: these instructions implement specialized versions of the
unification algorithm according to the position and type of the arguments.
Indexing instructions: these instructions accelerate the process of determining which
clauses unify with a given subgoal call. Depending on the first argument of the call, they
jump to specialized code that can directly index the unifying clauses.

