DRAFT

© 2002 Kluwer Academic Publishers
Ranking Learning Algorithms
Using IBL and Meta-Learning on Accuracy and Time Results

Pavel B. Brazdil (pbrazdil@liacc.up.pt) and

Carlos Soares (csoares@liacc.up.pt)
LIACC/Faculty of Economics, University of Porto, Portugal

Joaquim Costa (jpcosta@liacc.up.pt)
LIACC/Faculty of Science, University of Porto, Portugal

Abstract. We present a meta-learning method to support selection of candidate
learning algorithms. It uses a k-Nearest Neighbor algorithm to identify the datasets
that are most similar to the one at hand. The distance between datasets is assessed
using a relatively small set of data characteristics, which was selected to represent
properties that affect algorithm performance. The performance of the candidate
algorithms on those datasets is used to generate a recommendation to the user in
the form of a ranking. The performance is assessed using a multicriteria evaluation
measure that takes not only accuracy, but also time into account. As it is not common
in Machine Learning to work with rankings, we had to identify and adapt existing
statistical techniques to devise an appropriate evaluation methodology. Using that
methodology, we show that the meta-learning method presented leads to significantly
better rankings than the baseline ranking method. The evaluation methodology is
general and can be adapted to other ranking problems. Although here we have
concentrated on ranking classification algorithms, the meta-learning framework pre-
sented can provide assistance in the selection of combinations of methods or more
complex problem solving strategies.

1. Introduction

Multistrategy learning is concerned with the combination of different
strategies to solve complex data analysis or synthesis tasks. A task
may involve a number of steps, each requiring one or more methods or
strategies to be tried out. Some may be concerned with pre-processing
(e.g., discretization of numeric values), others involve transformation of
the given problem into a different one (e.g., division of a problem into
interrelated subproblems). These are followed by the stage of model
generation (e.g., generation of a classifier for a subset of data).
Clearly, the best combination of strategies depends on the problem
at hand and methods that help the user to decide what to do are
required (Mitchell, 1997; Brachman and Anand, 1996). It would be
useful to have a method that could not only present all different options
at each step, but also rank them according to their potential utility. In
this paper we present an approach to this problem, focussing on one
stage only, model generation. In particular we examine a framework

';:‘ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.1

Denise Gibson

Denise Gibson

2

that provides us with a ranking of candidate classification algorithms to
be used. This is a special case of the problem of obtaining a recommen-
dation on the utility of different combinations of solution strategies. We
have chosen to deal with the simpler problem because it does provide
us with enough challenges and needs to be resolved first.

1.1. SUPPORT FOR AUTOMATIC CLASSIFIER RECOMMENDATION

Ideally, we would like to be able to identify or design the single best
algorithm to be used in all situations. However, both experimental re-
sults (Michie et al., 1994) and theoretical work (Wolpert and Macready,
1996) indicate that this is not possible. Therefore, the choice of which
algorithm(s) to use depends on the dataset at hand and systems that
can provide such recommendations would be very useful (Mitchell,
1997).

We could reduce the problem of algorithm recommendation to the
problem of performance comparison by trying all the algorithms on the
problem at hand. In practice this is not usually feasible because there
are too many algorithms to try out, some of which may be quite slow.
The problem is exacerbated when dealing with large amounts of data,
as it is common in Knowledge Discovery in Databases.

One approach to algorithm recommendation involves the use of
meta-knowledge, that is, knowledge about the performance of algo-
rithms. This knowledge can be either of theoretical or of experimental
origin, or a mixture of both. The rules described by Brodley, 1993
(Brodley, 1993) for instance, captured the knowledge of experts con-
cerning the applicability of certain classification algorithms. More of-
ten the meta-knowledge is of experimental origin, obtained by meta-
learning on past performance information of the algorithms (i.e., per-
formance of the algorithms on datasets used previously) (Aha, 1992;
Brazdil et al., 1994; Gama and Brazdil, 1995). Its objective is to cap-
ture certain relationships between the measured dataset characteristics
and the performance of the algorithms. As was demonstrated, meta-
knowledge can be used to give useful predictions with a certain degree
of success.

1.2. RECOMMENDING INDIVIDUAL CLASSIFIERS OR RANKING?

An important issue concerns the type of recommendation that should
be provided. Many previous meta-learning approaches limit themselves
to suggesting one algorithm or a small group of algorithms that are ex-
pected to perform well on the given problem (Todorovski and Dzeroski,
1999; Kalousis and Theoharis, 1999; Pfahringer et al., 2000). We believe
this problem is closer in nature to ranking tasks like the ones commonly

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.2

3

found in Information Retrieval and recommender systems. In those
tasks, it is not known beforehand how many alternatives the user will
actually take into account. For instance, the first suggestion given by
a search engine may be ignored in favor of the second one because
the latter site is faster and contains similar information. The same can
be true of algorithm selection. The user may decide to continue using
his favorite algorithm, if its performance is slightly below the topmost
one in the ranking. Furthermore, when searching a topic on the web,
one may investigate several links. The same can also apply to a data
analysis task, if enough resources (time, CPU power, etc.) are available
to try out more than one algorithm. Since we do not know how many
algorithms the user might actually want to select, we provide a ranking
of all the algorithms. Algorithm recommendation using meta-learning
was first handled as a ranking task by Brazdil et al., 1994 (Brazdil
et al., 1994). Later Nakhaeizadeh and Schnabl, 1998 (Nakhaeizadeh
and Schnabl, 1998) and more recently Keller et al., 2000 (Keller et al.,
2000) and also Brazdil and Soares, 2000 (Brazdil and Soares, 2000)
used a similar approach. Here we cover some of these issues in greater
depth.

1.3. META-LEARNING ALGORITHM

The issue concerning which method should be used for meta-learning
does not yet have a satisfactory answer. Here we chose to use the
instance-based learning (IBL) approach for the reasons explained next.
In meta-learning the amount of data available (dataset descriptions,
including algorithm performance) is usually quite small. Hence the task
of inducing models that are general is hard, especially with algorithms
that generate crisp thresholds, like decision tree and rule induction
algorithms usually do. IBL has also the advantage that the system is
extensible; once a new experimental result becomes available, it can be
easily integrated into the existing results without the need to reinitiate
complex re-learning. This property is relevant for algorithm selection
because, typically, the user starts with a small set of meta-data but
this set increases steadily with time.

Existing IBL approaches have been used either for classification or
regression. Given that we are tackling a different learning problem,
ranking, we had to adapt this methodology for this aim. We opted
for a simple algorithm, the k-Nearest Neighbor (Mitchell, 1997, ch.
8), discussed in Sections 2 and 3. A distance function based on a set
of statistical, information theoretic and other dataset characterization
measures is used to select the most similar neighbors, that is, the
datasets whose performance is expected to be relevant for the dataset

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.3

4

at hand. The prediction, i.e., the recommended ranking, is constructed
by aggregating performance information for the given candidate algo-
rithms on the selected datasets. There are various ways how we can do
that. We have shown earlier that a ranking method based on the relative
performance between pairs of algorithms, assessed using success rate
ratios, competes quite well with other alternative approaches (Brazdil
and Soares, 2000).

1.4. MULTICRITERIA ASSESSMENT OF PERFORMANCE

The evaluation measure that is commonly used in prediction problems
is success rate.! However, it has been argued that it is important to
consider several measures, especially in KDD, where the final user of the
model is often not a data analyst (Nakhaeizadeh and Schnabl, 1997).
We may consider, in addition to success rate, the interpretability of
the model and also the speed of the algorithm. Interpretability is a
highly subjective criterion because it depends on the expertise of the
user as well as on its preferences. As for speed, some people could argue
that it is not so important due to the increasing computational power
available nowadays. In our view this objection does not hold in general
because some algorithms may simply run for too long on the volumes
of data gathered. Therefore, we have decided to investigate how to take
into account the information regarding accuracy and speed (measured
by the total execution time). It represents one important step in the
direction of multicriteria evaluation of classification algorithms.

The ML and KDD communities usually ignore the issue of mul-
ticriteria evaluation, with the noteworthy exception of Nakhaeizadeh
and Schnabl, 1998 (Nakhaeizadeh and Schnabl, 1998; Nakhaeizadeh
and Schnabl, 1997). There are obviously many different ways of doing
that but none has been widely adopted. Two important issues should
affect the design of multicriteria evaluation. Firstly, it should be taken
into account that the compromise between the criteria involved is often
defined by the user. Thus, it should be defined in a simple and clear
way. Secondly, multicriteria measures should yield values that can be
interpreted by the user. We have tried to take these issues into account
in the measure presented in Section 3.1.

1.5. EVALUATION OF RANKING METHODS

Ranking can be seen as an alternative ML task, similar to classification
or regression, which must therefore have an appropriate evaluation

! Given that this paper focus on classification tasks, we will use the term “success
rate” and “accuracy” interchangeably.

mlj_mslO0_apa.tex; 30/07/2002; 16:49; p.4

5

method. We describe a methodology for evaluating and comparing
ranking methods and how this is applied to our situation. This is
done in Sections 4 and 5, respectively. The rankings recommended
by the ranking methods are compared against the observed rankings
using Spearman’s rank correlation coefficient (Neave and Worthington,
1992). To compare different ranking methods we use a combination of
Friedman’s test and Dunn’s Multiple Comparison Procedure (Neave
and Worthington, 1992).

2. Selection of Relevant Datasets by the IBL Meta-Learner

Given a new problem (query dataset), we wish to generate a ranking
of the given set of candidate algorithms that would be related to their
actual performance on that dataset, without actually executing them.
As it is not possible to determine a unique ranking that would be
valid for all datasets, we proceed as follows. We select, from a set of
previously processed datasets (training datasets), those that are similar
to the given query dataset. We expect that if two datasets are quite
similar, so should be the corresponding performance of a given candi-
date algorithm. Then we build the ranking based on this information.
Selection is performed with a simple instance-based learner, the k-
Nearest Neighbor (k-NN) algorithm (Mitchell, 1997). Given a case, this
algorithm simply selects k cases that are nearest to it according to some
distance function.

Measuring the similarity between datasets is not a simple task. Here
we follow the approach of characterizing datasets using general, statisti-
cal and information theoretic measures (meta-attributes), described by
Henery, 1994 (Henery, 1994). Examples of these three types of measures
are number of attributes, mean skewness and class entropy, respectively.
These kinds of measures have frequently been used in meta-learning
(Brazdil et al., 1994; Kalousis and Theoharis, 1999; Lindner and Studer,
1999). However, the number of meta-attributes available is relatively
large considering that the performance information available includes
relatively few examples (datasets). This problem is exacerbated by the
fact that the nearest-neighbor algorithm is rather sensitive to irrelevant
attributes (Mitchell, 1997). Therefore we selected a priori a small sub-
set that, we believe, provides information about properties that affect
algorithm performance. Below, we present a summary of those measures
and the properties which they are expected to represent:

— The number of examples (n.ezamples) discriminates algorithms
according to how scalable they are with respect to this measure.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.5

— The proportion of symbolic attributes (prop.symb.attrs) is indica-
tive of the aptitude or inadequacy of the algorithm to deal with
symbolic or numeric attributes.

— The proportion of missing values (prop.missing.values) discrimi-
nates algorithms according to how robust they are with respect to
incomplete data. This measure was later eliminated, as explained
below.

— The proportion of attributes with outliers (prop.attr.outliers) dis-
criminates algorithms according to how robust they are to outlying
values in numeric attributes, which are possibly due to noise.? An
attribute is considered to have outliers if the ratio of the variances
of mean value and the a-trimmed mean is smaller than 0.7. We
have used a = 0.05.

— The entropy of classes (class.entropy) combines information about
the number of classes and their frequency, measuring one aspect
of problem difficulty.

— The average mutual information of class and attributes (mut.info)
indicates the amount of useful information contained in the sym-
bolic attributes. This measure was later dropped, as explained
below.

— The canonical correlation of the most discriminating single lin-
ear combination of numeric attributes and the class distribution
(can.cor) indicates the amount of useful information contained in
groups of numeric attributes.

More details can be found in (Henery, 1994). Next, we performed a
visual analysis of this set of measures with the aim of identifying mea-
sures that seem to provide little useful information. This was done by
analyzing the correlation between values of a particular meta-attribute
chosen and the performance of each algorithm. For each meta-attribute
and algorithm pair, we plotted the values of the given meta-attribute
and the ranks of the algorithm for all the datasets considered (Section
3.3). Figure 1 shows the graphs for algorithm C5.0 (tree) and the meta-
attributes proportion of symbolic attributes and proportion of missing
values. In the graph on the left-hand side, two clusters of points can be
observed, on the top-left and bottom-right corners. This indicates that
C5.0 performs better on datasets with more symbolic attributes and

2 We have no corresponding meta-attribute for symbolic attributes because none
was readily available.

mlj_mslO0_apa.tex; 30/07/2002; 16:49; p.6

o o0 o
0 — o 0 —0
o 0 o o
© —o oo © —o
x x
= o © o = o
(i f (il
<+ o o] <+ —o
o o] O O o] o O o]
N —O w @0 N @O0 o
[00 Cco o ©
I I]]] I I I | I]]
00 02 04 06 08 1.0 0.00 0.10 0.20
prop.symbolic.attrs prop.missing.values

Figure 1. Plots of two meta-attribute (proportion of symbolic attributes and pro-
portion of attributes with missing values) values against the rank of C5.0 (tree) for
53 datasets (see Section 3.3).

hence that this attribute should be kept. On the other hand, we cannot
observe clear patterns in the graph on the right-hand side, concerning
the proportion of missing values. This indicates that this meta-attribute
may not be so useful. We performed this analysis for all pairs of meta-
attributes and algorithms, and decided to drop two of the measures:
proportion of missing values and average mutual information of class
and attributes.

The distance function used here is the unweighted L; norm (Atkeson
et al., 1997).

/U:L‘,d7; - IUCL‘,dj

dist(d;, d;) Z

— max(vz,q,) — min(vy,q,)

where d; and d; are datasets, and v 4, is the value of meta-attribute
z for dataset d;. The distance is divided by the range to normalize the
values, so that all meta-attributes have the same range of values.

It may be the case that a meta-attribute is not applicable to a
particular dataset. If dataset d; has mo numeric attributes, then it
makes no sense to calculate, for instance, the canonical correlation
meta-attribute. For such an attribute, dataset d; can be considered
close to dataset d; if it also does not have any numeric attributes

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.7

8

and their distance is 0. On the other hand, if dataset d; does have
numeric attributes, the dataset is considered to be different from dj;
in this respect. So, the distance is the maximum possible, i.e., 1, after
normalization.

3. Ranking Based on Accuracy and Time

The method described further on, referred to as the adjusted ratio of
ratios (ARR) ranking method, aggregates information concerning ac-
curacy and time. It can be seen as an extension of the success rate ratios
(SRR) method. This method is presented in (Brazdil and Soares, 2000)
together with two other basic ranking methods, average ranks (AR)
and significant wins (SW). The methods differ in the way performance
information is aggregated to generate a ranking and are commonly used
in literature on comparative studies.

The argument that one algorithm is better than another is often
supported by ratios of success rates. This motivated us to consider
the SRR method. Others prefer to provide information about how the
algorithms are ranked on different datasets. Finally, some researchers
prefer to count on how many datasets one method is significantly better
than another. These approaches provided a motivation to consider the
AR and the SW ranking methods.

We could ask the question of which one is “better” in a given situa-
tion. We have investigated this issue earlier (Brazdil and Soares, 2000).
As the SRR method competed well with the other two on the datasets
considered, we have adopted it in further studies. This method has
an additional advantage: it can be easily extended to also incorporate
time, as we shall see in the next section.

3.1. COMBINING SUCCESS RATES AND TIME

The ARR multicriteria evaluation measure combines information about
the accuracy and total execution time of learning algorithms. ARR is
defined as:

SRE;
SRy
ARR% = e (1)

Qp,aq d;

1+ AceD * log (;‘ffi)

aq

where SRg;’) and Tg;’ represent the success rate and time of algorithm
ap on dataset d;, respectively, and AccD, which is explained below,

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.8

9

represents the relative importance of accuracy and time, as defined by
the user.

The ARR measure can be related to the efficiency measure used in
Data Envelopment Analysis (DEA), an Operations Research technique
(Charnes et al., 1978) that has recently been used to evaluate clas-
sification algorithms (Nakhaeizadeh and Schnabl, 1998; Nakhaeizadeh
and Schnabl, 1997; Keller et al., 2000). The efficiency measure of DEA
identifies the set of efficient algorithms, lying on a frontier (efficiency
frontier). The philosophy underlying both measures is the same. The
efficiency measure of DEA uses a ratio of benefits and costs to assess the
overall quality of a given candidate, when compared to others. In the
SRR method presented earlier, the ratio of success rates, SRg; / SRgf],
can be seen as a measure of the advantage of algorithm a, over algo-
rithm a, (i.e., a benefit). The equivalent ratio for time, T,f}f / qu", can be
seen as a measure of the disadvantage of algorithm a, over algorithm
aq (i-e., a cost). Thus, like in DEA, if we take the ratio of the benefit
and the cost, we obtain a measure of the overall quality of algorithm
ap. However, we note that time ratios have, in general, a much wider
range of possible values than success rate ratios. If a simple time ratio
were used it would dominate the ratio of ratios. This effect can be
controlled by re-scaling. We use log (Tg]j /T(f;) that provides a measure
of the order of magnitude of the ratio. The relative importance between
accuracy and time is taken into account by multiplying this expression
by the AccD parameter. This parameter is provided by the user and
represents the amount of accuracy he/she is willing to trade for a 10
times speedup or slowdown. For example, AccD = 10% means that the
user is willing to trade 10% of accuracy for 10 times speedup/slowdown.
Finally, we also add 1 to yield values that vary around 1, as happens
with the success rate ratio.

There are a few differences between ARR and the efficiency measure
of DEA. The ARR measure captures the relative performance of two
algorithms for a given compromise between the criteria. To compare
an algorithm to others, some aggregation must be performed, as it will
be shown in the next section. Furthermore, the weights are assumed
to have pre-defined values. In DEA the efficiency of an algorithm is
obtained by comparing it to others candidates and the compromise
between the criteria is set automatically.

3.2. GENERATION OF RANKINGS
A ranking of the candidate algorithms is built by calculating the ARR

value for each of them, expressing their relative quality. For that pur-
pose we aggregate the performance information selected by the k-NN

mlj_mslO0_apa.tex; 30/07/2002; 16:49; p.9

10

algorithm for each algorithm in the following way. First we calculate
the geometric mean across all datasets and then the arithmetic mean

acCross algorithms:
n\l . ARRdl
ARRap - an Hdl Tt (2)

m

where n represents the number of datasets and m the number of al-
gorithms. The higher the ARR value of an algorithm, the higher the
corresponding rank.? The ranking is derived directly from this measure.

We used a geometric mean because we prefer that the relative per-
formance of ap and aq across several datasets, ARRp 4, verifies the
following property: ARRp og = 1/ARRgq,qp- This would not be true if
the arithmetic mean was used.

In the following section we present the experimental setting and a
simple example illustrating the use of this ranking method.

3.3. EXPERIMENTAL SETTING AND AN EXAMPLE OF RANKINGS

The set of meta-data used here was obtained from the METAL project
(METAL Consortium, 2002). It contains estimates of accuracy and
time for 10 algorithms on 53 datasets, using 10-fold cross-validation.*
The algorithms include three decision tree classifiers, C5.0, boosted
C5.0 (Quinlan, 1998) and Ltree, which is a decision tree algorithm
that can induce oblique decision surfaces (Gama, 1997). Two rule-based
systems were also used, C5.0 rules and RIPPER (Cohen, 1995), as well
as two neural networks from the SPSS Clementine package, Multilayer
Perceptron (MLP) and Radial Basis Function Network (RBFN). We
also included the instance-based learner (IB1) and the naive Bayes
(NB) implementations from the MLC++ library (Kohavi et al., 1994).
Finally, an implementation of linear discriminant (LD) (Michie et al.,
1994) was also used. All algorithms were executed with default param-
eters which is clearly a disadvantage for some of them (e.g., MLP and
RBFN).

The 53 datasets used included all datasets from the UCI repository
(Blake et al., 1998) with more than 1000 cases,? plus the Sisyphus data®
and two confidential datasets provided by DaimlerChrysler.

3 We represent higher ranks with smaller integers.

4 Not all experiments were executed on the same machine and so, a time
normalization mechanism was employed.

5 Some preparation was necessary in some cases, so some of the datasets were
not exactly the same as the ones used in other experimental work.

5 research.swisslife.ch/kdd-sisyphus.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.10

11

Table I. Overall rankings based on the 53 datasets for three different settings of the
compromise between accuracy and speed. The dominant criterion is indicated next to
the AceD value.

AceD 0.1% (accuracy) 1% 10% (time)
Rank ap ARR,, ap ARR,, ap ARR,,
1 boosted C5.0 1.13 boosted C5.0 1.14 C5.0 (tree) 1.26

2 C5.0 (rules) 1.11 C5.0 (rules) 1.12 C5.0 (rules) 1.20
3 C5.0 (tree) 1.10 C5.0 (tree) 1.11 Ltree 1.18
4 Ltree 1.10 Ltree 1.10 boosted C5.0 1.17
5 IB1 1.06 IB1 1.06 LD 1.11
6 RIPPER 1.00 RIPPER 1.00 IB1 1.05
7 LD 0.98 LD 0.99 NB 1.03
8 NB 0.95 NB 0.96 RIPPER 0.99
9 MLP 0.88 MLP 0.87 MLP 0.77
10 RBFN 0.79 RBFN 0.78 RBFN 0.68

To illustrate the ARR ranking method presented earlier, we apply
it to the full set of meta-data, for three different settings of the com-
promise between accuracy and time, AccD € {0.1%,1%,10%}. The
setting AccD = 0.1% (AccD = 10%) represents a situation where ac-
curacy (time) is the most important criterion. The setting AccD = 1%
represents a more balanced compromise between the two criteria.

The rankings obtained (Table I) represent an overall picture of the
performance of the algorithms on the 53 datasets. We observe that, as
expected, the ranks of faster algorithms (e.g., Ltree and LD) improve
as time is considered more important (i.e., AccD = 10%), while the
opposite occurs for slower ones (e.g., boosted C5.0 and RIPPER).

To illustrate how we can generate a ranking using the k-NN meta-
learning method, we present an example. Suppose we want to obtain a
ranking of the given algorithms on a given dataset, abalone, without
conducting tests on that dataset. We must, thus, use only information
about the performance of the algorithms on the remaining 52 train-
ing datasets in the process. Table II presents a ranking generated by
the ARR with the 5-NN method (AccD = 0.1%), which selected the
following datasets: vowel, pendigits, vehicle, satimage, and letter.

The obvious questions is how good is this ranking? The overall
ranking (Table I) can be used as a baseline for the purpose of this
comparison. We note that this ranking is somewhat different from the
one shown in Table II. In the following Section we explain how different
ranking methods can be evaluated and compared.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.11

12

Table II. Recommended ranking
for abalone dataset using 5-NN for

AceD = 0.1%.
Rank ap ARR,,
1 boosted C5.0 1.13
2 IB1 1.13
3 Ltree 1.07
4 C5.0 (rules) 1.06
5 C5.0 (tree) 1.05
6 RIPPER 1.01
7 MLP 1.01
8 LD 0.93
9 RBFN 0.87
10 NB 0.82

4. Evaluation of Ranking Methods

The framework for the empirical evaluation of rankings is based on
a leave-one-out procedure. For each dataset (test dataset), we do the
following: (1) build a recommended ranking by applying the ranking
method under evaluation to all but the test dataset (training datasets),
(2) build an ideal ranking for the test dataset, and (3) Measure the
agreement between the two rankings. The score of a ranking method is
expressed in terms of the mean agreement between the recommended
ranking and the ideal ranking.

The agreement is a measure of the quality of the recommended
ranking and thus also of the ranking method that generated it.

4.1. GENERATION OF THE IDEAL RANKING

The ideal ranking should represent, as accurately as possible, the cor-
rect ordering of the algorithms on the test dataset. It is constructed
on the basis of their performance as estimated by conducting tests on
that dataset. However, the ranking obtained simply by ordering the
estimates may not capture well the notion of a true situation.

In one of the tests carried out we have observed that, on the glass
dataset, C5.0 (error 30%) and Ltree (error 32%) were ranked 2nd and
3rd, respectively. However, their performance was not significantly dif-
ferent and the ideal ranking should reflect this. One possibility would
be to represent this tie explicitly, e.g., assign rank 2.5 to both. Our
approach here is different, and exploits the fact that in such situations

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.12

13

these algorithms often swap positions in different folds of the N-fold
cross-validation procedure. Therefore, we use N orderings to repre-
sent the true ideal ordering, instead of just one. The ideal ordering
corresponding to fold j of dataset d; is constructed by ordering the
algorithms a, according to (an ARRg;’,{lq) /m, where m is the num-
ber of algorithms and ARRg;’,{Lq is calculated in a similar manner to
Equation 1, but using the performance information in the fold j rather
than the average.

4.2. EVALUATION OF THE RECOMMENDED RANKING

To measure the agreement between the recommended ranking and each
of the N orderings that represent the ideal ranking, we use Spearman’s
rank correlation coefficient (Neave and Worthington, 1992)

6> (rr; — ir;)?
m3 —m

rg=1— (3)
where rr; and ir; are the recommended and ideal ranks of algorithm ¢
respectively, and m is the number of algorithms. An interesting prop-
erty of this coefficient is that it is basically the sum of squared errors,
which can related to the commonly used error measure in regression.
Furthermore, the sum is normalized to yield more meaningful values:
the value of 1 represents perfect agreement and -1, perfect disagree-
ment. A correlation of 0 means that the rankings are not related, which
would be the expected score of the random ranking method.

To support interpretation of the values obtained, we can use the
following function:

dle) — 6e?
(6)—— 7n3 —-m

which calculates the difference in the value of Spearman’s rank cor-
relation if an algorithm is incorrectly ranked by e positions, i.e., e =
|rr; — ir;|. For example, suppose that the algorithms in the 3rd and
5th positions have been swapped, in a ranking of 10 algorithms. There-
fore, for each of them e = |3 —5| = 2 and the total difference in
the correlation value is 2 * d(2) = 2 * (6 x 22/(10% — 10)) = 0.048. If
all other algorithms were ranked correctly the correlation would be
1—0.048 = 0.952. The inverse of this function can be used to interpret
correlation values obtained. Suppose, for instance, that a correlation
value of 0.952 was obtained in a ranking of 10 algorithms. As the
previous calculations show, this difference means that 2 algorithms two
ranks apart were swapped. Table IIT lists values of d(e) for rankings
with 10 algorithms.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.13

14

Table III. Effect of rank error e = |rr; — 4r;| in the value of the Spearman’s rank
correlation coefficient.

e 1 2 3 4 5 6 7 8 9
d(e) 0.006 0.024 0.055 0.097 0.152 0.218 0.297 0.388 0.491

Table IV. Simplified example of the evalua-
tion of a recommended ranking using Spear-
man’s rank correlation coefficient.

i rry arg (e —irg)?
C5.0 (tree) 4 4 0
Ltree 1 0
IB1 6 6 0
LD 2 2.5 0.25
NB 5 2.5 6.25
boosted C5.0 3 5 4
Sl (rri —iri)? 10.5
Ts 0.7

We illustrate the use of Spearman’s rank correlation coefficient (Eq.
3) for recommended ranking evaluation with a simplified example (Ta-
ble IV). Given that the number of algorithms is m = 6, we obtain ry =
1— 66*319'65 = (.7. Note that naive Bayes and linear discriminant share the
second place in the recommended ranking, so they are both assigned
rank % = 2.5, following the method in (Neave and Worthington,
1992).7

As explained in the previous section, these calculations are repeated
for all the folds, permitting us to calculate the score of the recom-
mended ranking as the average of the individual coefficients or simply,
as average correlation, Tg.

One important consequence of having several orderings to represent
the ideal ranking is the following. The correlation coefficient will be
1 only if all the rankings are exactly the same. In other words, the
maximum average correlation will be less than 1 if at least one of the
orderings is different from the others. This sets a limit for the maximum
achievable value for the recommended ranking.

7 The same reasoning is applied in the ideal rankings and when more than two
algorithms are tied.

mlj_ms1l00_apa.tex; 30/07/2002; 16:49; p.14

15

The critical values (Neave and Worthington, 1992) provide, for a
given number of items and confidence level, the threshold which de-
termines whether two rankings are significantly correlated or not. The
critical value for a ranking of ten algorithms and for a 95% confidence
level (one-sided test) is 0.564. So, if the value is higher, it indicates
that a significant correlation might exist. As we are dealing with average
values of the coefficient, strictly speaking, no definite conclusions should
be drawn. However, the critical value provides a reference value that
can be used to assess the quality of the generated rankings.

4.3. RESULTS

The k-NN approach to ranking was evaluated empirically using two
values of the number of neighbors (k), 1 and 5. We chose 1-NN because
it is known to perform often well (Ripley, 1996). The 5 neighbors repre-
sent approximately 10% of the 52 training datasets, and this has lead to
good results in a preliminary study (Soares and Brazdil, 2000). Finally
we have evaluated a simple ranking method consisting of applying ARR
to all the training datasets (i.e., 52-NN), which will be referred to
as ARR. The ARR method can be considered as a baseline to assess
the improvements obtained due to meta-learning with k-NN. Three
different settings of the compromise between accuracy and time were
considered, namely AceD € {0.1%,1%,10%}.

The three variants of the method were evaluated following the leave-
one-out procedure defined at the beginning of Section 4. The rec-
ommended rankings were compared to each of the individual ideal
orderings using Spearman’s rank correlation coefficient and the aver-
age correlation obtained, Tg, represents the score of the corresponding
method on that iteration.

The results are presented in Table V. The most important conclu-
sion is that using meta-learning with k-NN improves the results of the
baseline ranking method, ARR. Furthermore, the difference increases
with the importance of accuracy. This is expected, given that the se-
lection of meta-attributes was made mainly having accuracy in mind.
Besides, the baseline value for ARR when time is considered important
(AccD = 10%) is relatively high (0.736), and it is obviously more
difficult to improve this value further.

We also observe that there is a clear positive correlation between the
recommended rankings generated and the ideal rankings. As mentioned
earlier, Table III can be used to provide an approximate interpretation
of the values obtained. One such interpretation for the score of 0.759
obtained by 1-NN for AccD=10% is that, on average, this method
approximately swapped one pair of algorithms by two positions and

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.15

16

Table V. Mean average correlation (7g) obtained with ARR with 1-NN, 5-NN and
all data for different values of AccD on the METAL meta-data. The +/- column
indicates the number of datasets where the corresponding method has higher/lower
correlation than ARR. The best results for each setting are emphasized. The
dominant criterion is indicated next to the AccD value.

accuracy/time compromise ~ARR with 1-NN ARR with 5-NN ARR

AccD mean7s +/- mean7Ts +/- ~meanTg
0.1% (accuracy) 0.619 32/21 0.543 28/24 0.524
1% 0.649 31/22 0.587 30/23 0.569
10% (time) 0.759 30/23 0.758 31/22 0.736

another one by four (2%0.0244-2%0.097 = 0.242). Another interpretation
for the same situation is that it misplaced two pairs of algorithms by
three positions and another two by one rank (4 x 0.055 + 4 * 0.006 =
0.242).

One surprising result is the good performance of the baseline method,
ARR. The expected performance of this method — in an unrealistic
setting where the distribution of the ranks of algorithms was uniform
— would be equal to the expected performance of a random ranker,
i.e., 0. In our experiments, the values obtained ranged from 0.524 to
0.737. The explanation for this is that the rank distribution in our
meta-data is very uneven. The algorithm boosted C5.0 is very often
in the first position. This was unmatched, say, by RBFN with default
parameters. Therefore, the task of improving the performance of the
baseline ranking method is quite difficult.

The performance of 1-NN is particularly good, with an advantage
of almost 0.10 when accuracy is the dominant criterion. In summary,
our results show that the IBL approach proposed together with an
adequate selection of meta-features performs better than the baseline,
despite the good performance of the latter. To determine whether this
improvement is statistically significant rather than caused by chance,
we conducted appropriate statistical tests which are presented in the
next section.

5. Comparison of Ranking Methods

To test whether the results presented in the previous section are sta-
tistically significant, we have used Friedman’s test, a distribution-free
hypothesis test on the difference between more than two population
means (Neave and Worthington, 1992). The reasons for this choice

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.16

17

are (1) we have no information about the distribution of the average
correlation coefficient in the population of datasets, so a distribution-
free test is required, (2) the number of methods we wish to compare
(i.e., samples) is larger than 2, and (3) the samples are related because
the methods are evaluated on the same set of datasets. According
to Neave and Worthington, 1992 (Neave and Worthington, 1992) not
many distribution-free methods can compete with Friedman’s test with
regard to both power and ease of computation.
Here, the hypotheses are:

H,: There is no difference in the mean average correlation coefli-
cients, Tg, for the three ranking methods (ARR with 1-NN, ARR
with 5-NN and ARR with all data).

Hi: There are some differences in the mean average correlation
coefficients, 7g, for the three ranking methods.

To illustrate Friedman’s test we compare four fictitious ranking
methods (j = 1,...,4) on simulated meta-data consisting of three datasets
(Table VI). For the sake of simplicity, we assume that the ideal ranking
consists of a single ordering rather than N, one for each fold of the
cross-validation procedure (Section 4). First, we rank the correlation
coefficients obtained by the ranking methods for each dataset. We
thus obtain R¢i, representing the rank of the correlation obtained by
ranking method j on dataset d;, when compared to the corresponding
correlations obtained by the other methods on the same dataset. Next,

>R

we calculate the mean rank for each method, Rj = =il where n
is the number of points in the sample (datasets in the present case)
and the overall mean rank across all methods, R. As each method is
ranked from 1 to k, where k is the number of methods being compared,
we know that R = % = 2.5. Then, we calculate the sum of the
squared differences between the mean rank for each method and the
overall mean rank, S = 3°;(R; — R)?. Finally, we calculate Friedman’s

statistic, M = kl(zﬁsl) In this simple example, where n = 3 and k = 4,
we obtain § = 4.56 and M = 8.2.

The rationale behind this test is that if Hy is true, that is, if all
methods perform equally well on average, then the distribution of ranks
should be approximately uniform for all methods. In other words, each
method should be ranked first approximately as many times as it is
ranked second, and so on. If this were true, the mean rank for each
method would be similar to the overall mean rank, i.e., Rj ~ R and
the sum of the squared difference between those values would be small,
S ~ (. Consequently, Friedman’s statistic, M, which can be seen as
a normalized value of S, taking into account the size of the data, will

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.17

18

Table VI. Some steps in the application of Friedman’s test to compare
ranking methods.

dataset 1 dataset 2 dataset 3

Method j 7o R} r. R} 7, R} R; (Rj—R)

1 0357 1 -0171 2 0630 1 1.3 1.36
2 0314 2 -0.086 1 0577 2 1.7 0.69
3 0300 3 -0.214 3 0.552 3 3 0.25
4 0295 4 -0401 4 0218 4 2.25

also be small. The larger the differences in performance, the larger the
value of M. The null hypothesis will be rejected if M > critical value,
where the critical value is obtained from the appropriate table, given
the desired confidence level, the number of samples (i.e., methods), &,
and the number of points (i.e., datasets), n. If this were the case, we can
claim, with the given confidence level, that the methods have different
performance. In the example of Table VI, where n = 3 and k = 4, the
critical value is 7.4 for a confidence level of 95%. As the test 8.2 > 7.4
is true, we reject the null hypothesis that the average performance of
the four ranking methods is the same.

Dealing with Ties: When applying this test ties may occur, meaning
that two ranking methods have the same correlation coefficient. In that
case, the average rank value is assigned to all the methods involved,
as explained earlier for Spearman’s correlation coefficient. When the
number of ties exceeds a limit, the M statistic must be corrected.

Assuming, for the sake of argument, that the figures in Table VI
were as follows. Suppose that the correlation of methods 2, 3, and 4 on
dataset 1 was 0.314 and the correlation of methods 3 and 4 on dataset
2 was -0.401, we thus would have ties in dataset 1 among methods 2,
3, and 4 and in dataset 2 between methods 3 and 4. In the former case,
rank (243 +4)/3 = 3 is assigned to all the tied methods and, in the
latter, rank (3 +4) /2 = 3.5 to methods 3 and 4. Next, we calculate
Friedman’s statistic as before, M = 5.5. Then, for each dataset, we
calculate t* = ¢3 — ¢, where ¢ is the number of methods contributing
to a tie. Given that three methods are tied on dataset 1, we obtain
t = 3 and ¢t* = 24. On dataset 2, we obtain ¢t = 2 and t* = 6 and on
dataset 3, ¢ = t* = 0. Next, we obtain 7' = 30 by adding up all £*’s.
The correction factor is C =1 — m, yielding 0.83 in our example.
The modified statistic is M* = M/C = 6.6. The critical values for M*
are the same as for M, so the null hypothesis cannot be rejected for a
confidence level of 95% because 6.6 > 7.4 is false.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.18

19

Table VII. Results of Friedman’s test. The dominant criterion is indicated next
to the AceD value.

Accuracy/Time Compromise (AcecD) 0.1% (accuracy) 1% 10% (time)

Rinn 1.90 1.89 1.95
Rs .y 2.00 2.00 1.88
RaRR 2.10 2.11 2.17
M 10.0 13.8 24.4
k 3

nN 530

Critical value (99%) 9.21
Significantly different? Yes Yes Yes

5.1. RESULTS OF FRIEDMAN’S TEST

In the example used above, we have assumed, for simplicity sake, that
the data consists of n correlation values for each ranking method, where
n is the number of datasets. However, as explained in Section 4, our
evaluation methodology generates n * N points for each method, where
N is the number of folds in the cross-validation procedure used. Qur
comparison is based on these detailed results. The only change required
to the test described is to replace n by n* N. Applying Friedman’s test
to the results of Section 4.3, we observe that there are statistically
significant differences at a 99% confidence level between the ranking
methods compared (Table VII).

5.2. WHICH METHOD IS BETTER?

In the previous section we have shown that there are significant differ-
ences between the £ = 3 methods. Naturally, we must determine which
methods are different from one another. To answer this question we use
Dunn’s multiple comparison technique (Neave and Worthington, 1992).
Using this method we test p = %k(k — 1) hypotheses of the form:

Hgi’j). There is no difference in the mean average correlation coeffi-
cients between methods 7 and j.

Hgi’j) There is some difference in the mean average correlation
coefficients between methods 7 and j.

Again we refer to the example in Table VI to illustrate how this
procedure is applied. First, we calculate the rank sums for each method.
In this case they are 4, 5, 9 and 12 respectively for methods 1 to 4. Then

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.19

20

we calculate the normalized differences of rank sums, T; j = D; j/stdev
for each pair of ranking methods, where D; ; is the difference in the

rank sums of methods ¢ and j, and stdev = \/%. As before, k
is the number of methods and n is the number of datasets. In the
example, where n = 3 and k£ = 4 we obtain stdev = 3.16. To compare,
for example, method 1 to methods 2 and 4, we get D1o = —1 and
D, 4 = —8 and finally, we obtain T7 3 = —0.32 and 71 4 = —2.53. These
calculations are repeated for all pairs of methods.

The values of T; j, which approximately follow a normal distribution,
are used to reject or accept the corresponding null hypothesis at an
appropriate confidence level. As we are doing multiple comparisons
simultaneously, we have to carry out the Bonferroni adjustment. This
technique redefines the significance level® to be used in individual tests
by dividing the overall significance level, «, by the number of tests.
It aims to prevent the chance of obtaining significant conclusions by
chance. Here we are doing pairwise comparisons between k& methods, so
the adjusted significance level is o/ = a/k (k — 1). However, given that
the risk of obtaining false significant differences is somewhat reduced
due to the previous application of Friedman’s test, Neave and Wor-
thington, 1992 (Neave and Worthington, 1992) suggest a rather high
overall significance level, «, (between 10% and 25%). If we use an overall
significance level @ = 25%, we obtain o = a/k (k — 1) = 2.08% for our
example where k£ = 4. Consulting the appropriate table we obtain the
corresponding critical value, z = 2.03. If |T; ;| > z then the methods
i and j are significantly different. Using the values calculated above,
we can conclude that method 1 is significantly better than method
4 (|T14] > 2.03 is true) but not significantly better than method 2
(|Th 2| > 2.03 is false).

5.3. RESULTS OF DUNN’S MULTIPLE COMPARISONS PROCEDURE

Given that Friedman’s test has shown that there are significant differ-
ences between the three methods compared, 1-NN, 5-NN and ARR, we
have used Dunn’s multiple comparison procedure to determine which
ones are significantly different. Given that three methods are being
compared, the number of hypotheses being tested is p = 3. The overall
significance level is 25% which, after the Bonferroni adjustment, be-
comes 4.2%, corresponding to a critical value of 1.73. We observe (Table
VIII) that the 1-NN method is significantly better than the baseline
method, ARR, on all settings of the accuracy/time compromise we
have tested. On the other hand, 5-NN is also significantly better than

8 The significance level is (1 - confidence level).

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.20

21

Table VIII. Results of Dunn’s Multiple Comparison test. The symbol > repre-
sents the “significantly better” relation. The dominant criterion is indicated next
to the AceD value.

Accuracy/Time Compromise (AceD) 0.1% (accuracy) 1% 10% (time)

T1.NN,ARR 3.16 3.71 3.55
Ts5.NN,ARR 1.67 1.90 4.74
T1.NN,5-NN 1.49 1.81 1.20
critical value (25%) 1.73

1-NN >ARR Yes Yes Yes
5-NN >ARR No Yes Yes
1-NN>5-NN No Yes No

the baseline, except when accuracy is very important (AceD = 0.1%),
although the p-value (1.67) is quite close the critical value (1.73). The
performance of 1-NN and 5-NN is only significantly different when
AceD = 1%, although, as before, the p values are also close to the
critical value. These results confirm that IBL improves the quality of
the rankings when compared to the baseline.

6. Discussion and Further Work

We have shown that meta-learning with k-NN improves the quality
of rankings in general, but the results raise a few questions that are
addressed here.

Meta-learning within complex multistrategy learning sys-
tems: In this paper we have focussed our attention on the issue of
how we can exploit meta-learning to pre-select and recommend one
or more classification algorithms to the user. The choice of adequate
methods in a multistrategy learning system may significantly improve
its overall performance. The approach described here is a first step in
this direction. As the meta-knowledge can be extended depending on
which types of problem get encountered, the whole system can adapt to
new situations. Adaptability is often seen as a desirable property and a
crucial aspect of intelligent systems. Having a multiplicity of (possibly
adaptable) methods is on one hand an advantage, but of course, a
question arises which ones one should use when. One interesting prob-
lem in future should investigate how the methodology presented could
be applied and/or extended to make complex multistrategy learning
systems adaptable, so as to provide us with efficient solutions.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.21

22

Meta-learning versus simpler strategies: Here we analyze the
results of our meta-learning approach in terms of the trade-off be-
tween accuracy loss and time savings (Figure 2). Two simple reference
strategies for this purpose are cross-validation (CV) and the selection
of the algorithm with the best average accuracy. Although CV may
also fail, it is currently the best method for performance estimation
and also for algorithm selection (Schaffer, 1993). However, it is rather
impractical in a wide variety of situations due to the size of the data
and the number of algorithms available.? In our experimental setting,
it achieved an accuracy of 89.93%, taking on average approximately
four hours to run all the algorithms on one dataset. As for the use of
the algorithm with the best performance, it can be seen as the “default
decision” for algorithm recommendation. In our experimental setting
it is boosted C5.0, achieving an accuracy of 87.94% and taking less
than two minutes to run, on average. One could argue that, with such
a small margin for improvement (2%), it is not worthwhile to worry
about algorithm selection: choosing boosted C5.0 will provide quite
good results on average. However, in some business applications (e.g.,
cross-selling in a e-commerce site that sells thousands of items daily),
an improvement of 2% or even less may be significant.

The strategy of executing the algorithm ranked in the first position
is worse than executing boosted C5.0. However, if we use the full po-
tential of a ranking method, and execute the top 2 algorithms in the
ranking (strategy Top-2 in the figure), the time required is larger than
boosted C5.0’s, although still acceptable in many applications (less
than 6 min.) and the loss of accuracy would be only 1.20%. Running one
more algorithm (method Top-3) would provide further improvement in
accuracy (0.90% loss) while taking only a little longer (less than 10
min.). CV performance is almost achieved by Top-5, (0.15% losses),
still taking what would be an acceptable amount of time in many
applications (approximately 15 min.). The overhead of meta-learning is
negligible. On the 53 datasets used in this study, the time to calculate
the measures was never higher than 1min!? and meta-learning using
this Nearest-Neighbor algorithm is almost instantaneous.

Ranking versus ensemble methods: It could be argued that a
suitable ensemble method could be used, eliminating, thus, the need
to rank individual algorithms. This is an interesting possibility, but it

® A few methods have been proposed to speed-up cross-validation (e.g. racing
(Maron and Moore, 1994)). However, these methods achieve much smaller gains in
time when compared to our approach and, thus, were not considered here.

10 We used the Data Characterization Tool (Lindner and Studer, 1999) that
computes many measures other than the ones we used. This means that the value
presented is an upper bound on the time that is really necessary to obtain them.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.22

23

o™
o
o
=] 56 7 8 9 10
g -] o 3 4 mm " = = .
| | | |
© n
— % < 0C5.0 (boosted)
~0 o
L 1
>
g | "
5 o
8
< 3
o
[3')
0
S
o
d)_ —
= \ \ \ T T \ \
100 200 500 1000 2000 5000 10000
Time (s)

Figure 2. Average accuracy versus average execution time for the strategy of exe-
cuting the top-N algorithms in the recommended ranking, for all possible values of
N, and simpler strategies of cross-validation (Top-10) and selecting the algorithm
which obtains the best accuracy, on average, (boosted C5.0).

should be noted that we included one ensemble method in our study,
namely boosted C5.0. As Figure 2 shows, this method, like any other
ensemble method, is expected to work well in some situations only
(boosted C5.0 was the best method in 19 out of 53 datasets). We expect
that similar situations will happen for other ensemble methods and,
therefore, from our perspective, the information about the performance
of ensemble methods in the past can be used to rank them, together
with other algorithms.

Other meta-learning approaches: Meta-learning has been used
to combine different biases in the same model. CAMLET iteratively
searches for the best bias for a given problem (Suyama et al., 1999).
The Model Class Selection system recursively chooses the bias that is
most adequate for different subsets of the data (Brodley, 1993). One
disadvantage of these methods is that they require reprogramming to
include new biases, unlike our ranking method, which can be applied
to off-the-shelf algorithms.

Meta Decision Trees (MDT) select a particular classifier for each case
in a dataset, rather than providing a prediction directly (Todorovski
and Dzeroski, 2000; Todorovski and Dzeroski, 2003). In general, these
alternative meta-learning approaches perform better than the basic

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.23

24

algorithms on some datasets and worse in others. Their performance
could possibly be improved if information about the past performance
of algorithms was used.

Another different approach to meta-learning is based on so-called
self-modifying policies (Schmidhuber et al., 1997). This methodology
is used to build complex probabilistic algorithms based on a set of
instructions, some of which are capable of changing other instructions
as well as themselves. This enables the algorithm to adapt its bias to the
problem at hand, not only in-between problems but also during their
solution. However, it is assumed that the series of problems are similar
and thus bias selection depends on long-term performance rather than
focussing on the problems that are most similar to the one at hand.

The knowledge transfer in between problems has recently been dis-
cussed also by Hochreiter et al., 2001 (Hochreiter et al., 2001), who
proposed a method for meta-learning for recurrent neural networks.

Analysis of ranking methods performance: Our results show
that no meta-learning method is universally better than the others,
as would be expected. We analyzed the space of datasets, as defined
by our characterization measures, with the aim of identifying regions
where each method performs best. Since the set of features selected
seems to be more adequate for discriminating accuracy, we focussed on
the setting where this is the dominant criterion (AceD = 0.1%). First,
we standardized each of the data characteristics X: the values X; were
replaced with (X; — X)/ox, where X and ox represent the average
value and the standard error of X. Then, we separated the datasets into
three groups, depending on which of the ranking methods obtained the
best result, with 22 datasets on the 1-NN group, 13 in the 5-NN group
and 19 in the baseline group.!! Then, for each group, we calculated
the average (standardized) value of each of the characteristics. Some
striking trends can be observed for most data characteristics (Figure
3). For instance, analyzing the proportion of symbolic attributes meta-
feature, 5-NN seems to be better for datasets with values above average
while the baseline wins in exactly the opposite type of dataset. On the
other hand, 1-NN has a tendency to be the best for datasets where the
proportion of symbolic attributes is close to the average. Another inter-
esting meta-feature is class entropy, where we observe that the baseline
performs better for datasets with less-than-average values, while the
opposite occurs for the IBL variants.

Meta-learning algorithm: In previous work where IBL was used
for meta-learning, some positive (Gama and Brazdil, 1995; Lindner and
Studer, 1999) and some negative (Kalousis and Hilario, 2000; Pfahringer

1 Tn one of the datasets we observed a tie between 1-NN and the baseline.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.24

25

o _

(<) 0 1-NN
| 5-NN

© | W Baseline

o

<

3

[aY}

g

o

S C-. :.-

o~

d —

1

s

a

' T 1

prop.attrs.outhers can.cor class.entropy prop.symb.attrs n.examples

Figure 3. Average standardized value of data characterization measures, grouping
the datasets by the method which performed best.

et al., 2000) results have been reported. These results are not contra-
dictory, however, because the meta-learning problems addressed are
different. Some address it as a regression problem, i.e., prediction of
individual algorithm performance, while others as a classification prob-
lem, i.e., selection of the best algorithm from a set of candidate algo-
rithms. We follow yet another approach to meta-learning, where the
aim is to rank all the candidate algorithms (Section 1.2). Our choice of
k-NN is due to some of its properties, like extensibility and ability to
deal with small data (Section 1.3). The results obtained indicate that
this was a good choice (Sections 4 and 5).

One common criticism of the IBL approach is that it does not
provide explicit knowledge (e.g., a set of rules) to the user. However,
each individual prediction can be explained quite simply by showing
the instances on which the decision is based. This can be particularly
useful in meta-learning because the user is probably more familiar with
previous datasets than with some of the complex measures that are
used to characterize them. However, the issue of whether a better
ranking method can be devised remains open. We believe, however,
that the use of other types of algorithms, like decision trees, depends on
the availability of more meta-data (i.e., datasets), which may possibly
be generated artificially. It is also conceivable that the IBL approach
could be improved (Atkeson et al., 1997), namely by weighting the

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.25

26

contribution of each neighbor by its distance to the query dataset. The
evaluation methodology presented here can be used to prove or dis-
prove whether any new ranking method brings about any quantitative
improvement.

Comparison with other ranking methods: In (Keller et al.,
2000), an IBL approach to meta-learning is also used to generate rank-
ings of the algorithms. The main difference to our work is that the
performance of the algorithms on the selected datasets is aggregated in
a different way, using the concept of efficiency from Data Envelopment
Analysis (Charnes et al., 1978). It is not trivial to compare these two
ranking methods because the ideal rankings are not created in the
same way. Measures that are independent of the ranking methods are
required to enable a fair comparison (Berrer et al., 2000). We plan to
do this in the future.

A different approach to ranking is proposed by Bensusan and Kalousis,
2001 (Bensusan and Kalousis, 2001). The authors proceed in two stages.
In the first stage, the method predicts the performance of the algo-
rithms using regression algorithms and then it generates a ranking by
ordering the estimates. They test different regression algorithms and
report better results for some of them when compared to IBL ranking.
However, these results should be interpreted with caution given than
the ideal ranking used consisted only of a single ordering based on
average performance (Section 4.1).

An interesting system is presented by Bernstein and Provost, 2001
(Bernstein and Provost, 2001), called Intelligent Discovery Electronic
Assistant (IDEA). IDEA consists of two components (1) a plan gen-
erator that uses an ontology to build a list of valid processes (i.e., a
learning algorithm plus pre- and post-processing methods), and (2) a
heuristic ranker that orders the valid processes based on some heuristic.
The heuristics are knowledge-based and can take into account user
preferences regarding accuracy and time, much like in the ARR mea-
sure presented here. Good results are presented, but a more thorough
evaluation could be carried out, namely because the ideal ranking is
again based on a single ordering only and the method is not compared
to appropriate baselines. IDEA is independent of the ranking method
and, thus, it would be interesting to replace their heuristic ranking
method with ours, which is based on past performance.

Meta-attributes: As mentioned in Section 2, obtaining data char-
acteristics that are good predictors of relative performance between
algorithms is a very difficult task. Some of those measures may be
irrelevant, others may not be adequately represented (e.g., the pro-
portion of symbolic attributes is more informative than the number
of symbolic attributes), while some important ones may be missing

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.26

27

(one attribute which we could experiment with is concept complexity
Vilalta, 1999 (Vilalta, 1999)). Furthermore, the number of data charac-
teristics should not be too large for the amount of available meta-data.
Contrary to previous work using similar measures (Gama and Brazdil,
1995; Lindner and Studer, 1999; Bensusan and Kalousis, 2001; Kalousis
and Theoharis, 1999; Sohn, 1999), we selected a set of measures a priori
with the aim of representing some of the properties that affect the
performance of algorithms. This set can be refined, e.g., by introduc-
ing measures of resilience to noise, etc. (Hilario and Kalousis, 1999).
However, as our results show, most of the attributes we selected are
mostly useful to discriminate algorithms on the basis of accuracy. To
avoid this bias, one can use feature selection methods at the meta-
level to choose the appropriate characteristics for a given multicriteria
setting. Todorovski et al., 2000 (Todorovski et al., 2000) show that the
quality of rankings can be improved in this way. One important issue
is that dataset characterization is relational in nature. For instance,
skewness is calculated for each numeric attribute and the number of
attributes varies for different datasets. The most common approach,
which was also followed here, is to do some aggregation, e.g., calculate
the mean skewness. Kalousis and Theoharis, 1999 (Kalousis and Theo-
haris, 1999) use a finer-grained aggregation, where histograms with a
fixed number of bins are used to construct new meta-attributes, e.g.,
skewness smaller than 0.2, between 0.2 and 0.4, etc. Individual attribute
information was used with ILP (Todorovski and Dzeroski, 1999) and
CBR (Hilario and Kalousis, 2001) approaches, but no conclusive results
were achieved. A different type of data characterization is landmarking
(Bensusan and Giraud-Carrier, 2000; Pfahringer et al., 2000), which
can be related to earlier work on yardsticks (Brazdil et al., 1994).
Landmarks are quick estimates of algorithm performance on a given
dataset obtained using simple versions of the algorithms (Bensusan
and Giraud-Carrier, 2000; Pfahringer et al., 2000) or by sampling from
the dataset (Filirnkranz and Petrak, 2001; Soares et al., 2001b).
Multicriteria evaluation: We believe that there are situations
where the compromise between accuracy and time can be stated in
the form of a percentage of accuracy the user is willing to trade for a
certain speedup. The ARR measure fits those situations. It is impor-
tant to extend ARR to include other performance criteria. However,
some of these measures, e.g., novelty or understandability, are highly
subjective and others, e.g., complexity, are hard to compare across dif-
ferent algorithms. Relatively little work has been dedicated to this issue
(e.g., Nakhaeizadeh and Schnabl, 1998 (Nakhaeizadeh and Schnabl,
1998)) without widespread use of the resulting measures, so we opted
to concentrate on criteria which are commonly used. Nakhaeizadeh and

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.27

28

Schnabl, 1998 (Nakhaeizadeh and Schnabl, 1998) adapted DEA for this
purpose where user preferences are stated in the form “criterion A is
50 times more important than criterion B.” This is not as user-friendly
as ARR because it implicitly assumes that criteria are measured in
directly comparable units.

Ranking evaluation: Spearman’s correlation coefficient (or al-
ternative rank correlation coefficients like Kendall’s tau (Neave and
Worthington, 1992)) represents an adequate measure of the agreement
between rankings of algorithms, but it does not distinguish between
individual ranks. In practice, however, it seems that swapping, say,
the 5th and 6th algorithms, is less important than swapping the first
two. We could adopt the weighted correlation coefficient, discussed in
(Soares et al., 2001a), to solve this problem.

Although we have shown the advantages of representing the ideal
ranking as N orderings, other possibilities could also be considered
(Soares et al., 2000). One such possibility is to use a partial order
representation, based on pairwise comparisons between the algorithms.
We should note that our ideal rankings are based on CV, which is not a
perfect estimation method although it serves well for practical purposes
(Schaffer, 1993).

Ranking reduction: With the growing number of algorithms, some
of alternatives presented in a ranking may be redundant. Brazdil et al.,
2001 (Brazdil et al., 2001) present a reduction method that eliminates
certain items in the ranking. Evidence is presented that this is useful
in general, and leads to time savings.

7. Conclusions

We have presented a meta-learning method to support the selection
of learning algorithms that uses the k-Nearest Neighbor algorithm to
identify the datasets that are most similar to the one at hand. The
performance of the candidate algorithms on those datasets is used to
generate a ranking that is provided to the user. The distance between
datasets is based on a small set of data characteristics that represent
a set of properties that affect the performance of the learning algo-
rithms. Although we concentrated on classification algorithms only, this
methodology can provide assistance in the selection of combinations of
methods or more complex strategies.

The performance of algorithms is assessed using the Adjusted Ratio
of Ratios (ARR), a multicriteria evaluation measure that takes accu-
racy and time into account. Other criteria, e.g., interpretability and
complexity, could also be included in the future.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.28

29

As it is not yet a general practice in ML /KDD to work with rankings,
we had to identify and adapt existing statistical techniques to devise
an appropriate evaluation methodology. This enabled us to show that
ARR with k-NN leads to significantly better rankings in general than
the baseline ranking method. The evaluation methodology is general
and can be used in other ranking problems.

In summary, our contributions are (1) exploiting rankings rather
than classification or regression, showing that is possible to adapt the
IBL approach for that task, (2) providing an evaluation methodol-
ogy for ranking, (3) providing a multicriteria evaluation measure that
combines success rate and time, (4) identified a set of data charac-
teristics that seem to be good predictors of relative performance of
algorithms and (5) providing a ground work for ranking alternative
solution strategies in a multistrategy system.

Acknowledgements

We would like to thank anonymous referees of this paper for their
constructive comments. Thanks also to all the METAL partners for a
fruitful working atmosphere, in particular to Johann Petrak for pro-
viding the scripts to obtain the meta-data and to Jorg Keller, ITain
Paterson, Helmut Berrer and Christian Kopf for useful exchange of
ideas. We also thank DaimlerChrysler and Guido Lindner for provid-
ing us the data characterization tool. Finally, we thank Rui Pereira
for implementing a part of the methods and his useful contributions.
The financial support from ESPRIT project METAL, project ECO
under PRAXIS XXI, FEDER, Programa de Financiamento Plurianual
de Unidades de 1&D and from the Faculty of Economics is gratefully
acknowledged.

Appendix
A. The Data Mining Advisor

The method for algorithm recommendation presented in this paper was
developed as part of the METAL Esprit project (METAL Consortium,
2002). This method is incorporated in the publicly available Data Min-
ing Advisor, at www.metal-kdd.org. We would like to thank Dietrich
Wettschereck, Stefan Miiller and Adam Woznica for their contributions
to this site.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.29

30

References

Aha, D. (1992). Generalizing from case studies: A case study. In Sleeman, D.
and Edwards, P., editors, Proceedings of the Ninth International Workshop on
Machine Learning (ML92), pages 1-10. Morgan Kaufmann.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally Weighted Learning,
volume 11, pages 11-74. Kluwer.

Bensusan, H. and Giraud-Carrier, C. (2000). If you see la sagrada familia, you know
where you are: Landmarking the learner space. Technical report, Department of
Computer Science, University of Bristol.

Bensusan, H. and Kalousis, A. (2001). Estimating the predictive accuracy of a
classifier. In Flach, P. and de Raedt, L., editors, Proceedings of the 12th European
Conference on Machine Learning, pages 25-36. Springer.

Bernstein, A. and Provost, F. (2001). An intelligent assistant for the knowledge
discovery process. In Hsu, W., Kargupta, H., Liu, H., and Street, N., editors, Pro-
ceedings of the IJCAI-01 Workshop on Wrappers for Performance Enhancement
in KDD.

Berrer, H., Paterson, 1., and Keller, J. (2000). Evaluation of machine-learning
algorithm ranking advisors. In Brazdil, P. and Jorge, A., editors, Proceedings
of the PKDD2000 Workshop on Data Mining, Decision Support, Meta-Learning
and ILP: Forum for Practical Problem Presentation and Prospective Solutions,
pages 1-13.

Blake, C., Keogh, E., and Merz, C. (1998). Repository of machine learning
databases.
http:/www.ics.uci.edu/~mlearn/MLRepository.html.

Brachman, R. and Anand, T. (1996). The process of knowledge discovery in
databases. In Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.; and Uthurusamy,
R., editors, Advances in Knowledge Discovery and Data Mining, chapter 2, pages
37-57. AAAI Press/The MIT Press.

Brazdil, P., Gama, J., and Henery, B. (1994). Characterizing the applicability
of classification algorithms using meta-level learning. In Bergadano, F. and
de Raedt, L., editors, Proceedings of the European Conference on Machine
Learning (ECML-94), pages 83-102. Springer-Verlag.

Brazdil, P. and Soares, C. (2000). A comparison of ranking methods for classification
algorithm selection. In de Méntaras, R. and Plaza, E., editors, Machine Learning:
Proceedings of the 11th European Conference on Machine Learning ECML2000,
pages 63—74. Springer.

Brazdil, P., Soares, C., and Pereira, R. (2001). Reducing rankings of classifiers by
eliminating redundant cases. In Brazdil, P. and Jorge, A., editors, Proceedings of
the 10th Portuguese Conference on Artificial Intelligence (EPIA 2001). Springer.

Brodley, C. (1993). Addressing the selective superiority problem: Automatic Al-
gorithm /Model class selection. In Utgoff, P., editor, Proceedings of the Tenth
International Conference on Machine Learning, pages 17-24. Morgan Kaufmann.

Charnes, A., Cooper, W., and Rhodes, E. (1978). Measuring the efficiency of decision
making units. European Journal of Operational Research, (2):429-444.

Cohen, W. (1995). Fast effective rule induction. In Prieditis, A. and Russell, S.,
editors, Proceedings of the 11th International Conference on Machine Learning,
pages 115-123. Morgan Kaufmann.

Fiirnkranz, J. and Petrak, J. (2001). An evaluation of landmarking variants. In
Giraud-Carrier, C., Lavrac, N., and Moyle, S., editors, Working Notes of the

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.30

31

ECML/PKDD 2000 Workshop on Integrating Aspects of Data Mining, Decision
Support and Meta-Learning, pages 57—68.

Gama, J. (1997). Probabilistic linear tree. In Fisher, D., editor, Proceedings of
the 14th International Machine Learning Conference (ICML97), pages 134-142.
Morgan Kaufmann.

Gama, J. and Brazdil, P. (1995). Characterization of classification algorithms. In
Pinto-Ferreira, C. and Mamede, N., editors, Progress in Artificial Intelligence,
pages 189-200. Springer-Verlag.

Henery, R. (1994). Methods for comparison. In Michie, D., Spiegelhalter, D.,
and Taylor, C., editors, Machine Learning, Neural and Statistical Classification,
chapter 7, pages 107-124. Ellis Horwood.

Hilario, M. and Kalousis, A. (1999). Building algorithm profiles for prior model
selection in knowledge discovery systems. In Proceedings of the IEEE SM(C’99
International Conference on Systems, Man and Cybernetics. IEEE Press.

Hilario, M. and Kalousis, A. (2001). Fusion of meta-knowledge and meta-data for
case-based model selection. In Siebes, A. and de Raedt, L., editors, Proceed-
ings of the Fifth European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDDO01). Springer.

Hochreiter, S., Younger, A., and Conwell, P. (2001). Learning to learn using gradient
descent. In Dorffner, G., Bischof, H., and Hornik, K., editors, Lecture Notes on
Comp. Sci. 2130, Proc. Intl. Conf. On Artificial Neural Networks (ICANN-2001),
pages 87-94. Springer.

Kalousis, A. and Hilario, M. (2000). A comparison of inducer selection via instance-
based and boosted decision tree meta-learning. In Michalski, R. and Brazdil,
P., editors, Proceedings of the Fifth International Workshop on Multistrategy
Learning, pages 233-247.

Kalousis, A. and Theoharis, T. (1999). NOEMON: Design, implementation and
performance results of an intelligent assistant for classifier selection. Intelligent
Data Analysis, 3(5):319-337.

Keller, J., Paterson, I., and Berrer, H. (2000). An integrated concept for multi-
criteria ranking of data-mining algorithms. In Keller, J. and Giraud-Carrier, C.,
editors, Meta-Learning: Building Automatic Advice Strategies for Model Selection
and Method Combination.

Kohavi, R., John, G., Long, R., Mangley, D., and Pfleger, K. (1994). MLC++: A
machine learning library in c++. Technical report, Stanford University.

Lindner, G. and Studer, R. (1999). AST: Support for algorithm selection with a CBR
approach. In Giraud-Carrier, C. and Pfahringer, B., editors, Recent Advances in
Meta-Learning and Future Work, pages 38—47. J. Stefan Institute.
http://ftp.cs.bris.ac.uk/cgc/ICML99/lindner.ps.Z.

Maron, O. and Moore, A. (1994). Hoeffding races: Accelerating model selection
search for classification and function approximation. In Cowan, J., Tesauro, G.,
and Alspector, J., editors, Advances in Neural Information Processing Systems,
pages 59-66. Morgan Kaufmann.

METAL Consortium (2002). Esprit project METAL (#26.357). www.metal-
kdd.org.

Michie, D., Spiegelhalter, D., and Taylor, C. (1994). Machine Learning, Neural and
Statistical Classification. Ellis Horwood.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Nakhaeizadeh, G. and Schnabl, A. (1997). Towards the personalization of algorithms
evaluation in data mining. In Agrawal, R. and Stolorz, P., editors, Proceedings

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.31

32

of the Third International Conference on Knowledge Discovery & Data Mining,
pages 289—293. AAAT Press.

Nakhaeizadeh, G. and Schnabl, A. (1998). Development of multi-criteria metrics
for evaluation of data mining algorithms. In Heckerman, D.; Mannila, H., Preg-
ibon, D., and Uthurusamy, R., editors, Proceedings of the Fourth International
Conference on Knowledge Discovery in Databases € Data Mining, pages 37—42.
AAAT Press.

Neave, H. and Worthington, P. (1992). Distribution-Free Tests. Routledge.

Pfahringer, B., Bensusan, H., and Giraud-Carrier, C. (2000). Tell me who can learn
you and i can tell you who you are: Landmarking various learning algorithms.
In Langley, P., editor, Proceedings of the Seventeenth International Conference
on Machine Learning (ICML2000), pages 743-750. Morgan Kaufmann.

Quinlan, R. (1998). C5.0: An Informal Tutorial. RuleQuest.
http://www.rulequest.com/see5-unix.html.

Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge.

Schaffer, C. (1993). Selecting a classification method by cross-validation. Machine
Learning, 13(1):135-143.

Schmidhuber, J., Zhao, J., and Schraudolph, N. (1997). Reinforcement Learning
With Self-Modifying Policies, pages 293-309. Kluwer.

Soares, C. and Brazdil, P. (2000). Zoomed ranking: Selection of classification algo-
rithms based on relevant performance information. In Zighed, D., Komorowski,
J., and Zytkow, J., editors, Proceedings of the Fourth European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD2000),
pages 126-135. Springer.

Soares, C., Brazdil, P., and Costa, J. (2000). Measures to compare rankings of
classification algorithms. In Kiers, H., Rasson, J.-P., Groenen, P., and Schader,
M., editors, Data Analysis, Classification and Related Methods, Proceedings of
the Seventh Conference of the International Federation of Classification Societies
IFCS, pages 119-124. Springer.

Soares, C., Costa, J., and Brazdil, P. (2001a). Improved statistical support for match-
making: Rank correlation taking rank importance into account. In JOCLAD
2001: VII Jornadas de Classifica¢Go e Andlise de Dados, pages 72-75.

Soares, C., Petrak, J., and Brazdil, P. (2001b). Sampling-based relative land-
marks: Systematically test-driving algorithms before choosing. In Brazdil, P. and
Jorge, A., editors, Proceedings of the 10th Portuguese Conference on Artificial
Intelligence (EPIA 2001), pages 88—94. Springer.

Sohn, S. (1999). Meta analysis of classification algorithms for pattern recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):1137—
1144,

Suyama, A., Negishi, N., and Yamaguchi, T. (1999). CAMLET: A platform for
automatic composition of inductive applications using ontologies. In Giraud-
Carrier, C. and Pfahringer, B., editors, Proceedings of the ICML-99 Workshop
on Recent Advances in Meta-Learning and Future Work, pages 59-65.

Todorovski, L., Brazdil, P., and Soares, C. (2000). Report on the experiments
with feature selection in meta-level learning. In Brazdil, P. and Jorge, A.,
editors, Proceedings of the Data Mining, Decision Support, Meta-Learning and
ILP Workshop at PKDDZ2000, pages 27-39.

Todorovski, L. and Dzeroski, S. (1999). Experiments in meta-level learning with
ILP. In Rauch, J. and Zytkow, J., editors, Proceedings of the Third European
Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDDY9), pages 98-106. Springer.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.32

33

Todorovski, L. and Dzeroski, S. (2000). Combining multiple models with meta de-
cision trees. In Zighed, D., Komorowski, J., and Zytkow, J., editors, Proceedings
of the Fourth European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD00), pages 54-64. Springer.

Todorovski, L. and Dzeroski, S. (2003). Combining classifiers with meta-decision
trees. Machine Learning Journal, (current issue).

Vilalta, R. (1999). Understanding accuracy performance through concept char-
acterization and algorithm analysis. In Giraud-Carrier, C. and Pfahringer, B.,
editors, Recent Advances in Meta-Learning and Future Work, pages 3-9. J. Stefan
Institute.

Wolpert, D. and Macready, W. (1996). No free lunch theorems for search. Technical
Report SFI-TR-95-02-010, The Santa Fe Institute.
http://lucy.ipk.thg.de:80/~stephan/nfl/nfl.ps.

mlj_ms100_apa.tex; 30/07/2002; 16:49; p.33

