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1. INTRODUCTIONThe tehnology for sequential implementation of logi programming languages has evolved onsiderably in thelast two deades. In reent years, it has reahed a notable state of maturity and eÆieny. Today, a widevariety of ommerial logi programming systems are available that are being used to develop large, real-lifeappliations. An exellent survey of sequential implementation tehnology that has been developed for Prologis presented by Van Roy [Van Roy 1994℄.For years logi programming has been onsidered well suited for exeution on multiproessor arhitetures.Indeed researh in parallel logi programming is vast and dates bak to the ineption of logi programmingitself|one of the earliest published work being Pollard's Ph.D. Thesis [Pollard 1981℄. Even Kowalski mentionsthe possibility of exeuting logi programs in parallel in his seminal book \Logi for Problem Solving" [Kowalski1979℄. There has been a healthy interest in parallel logi programming ever sine, as is obvious from the numberof papers that have been published in onferenes and journals devoted to logi programming and parallelproessing, and the number of advaned tutorials and workshops organized on this topi in suh onferenes.This interest in parallel exeution of logi programs arises from two perspetives:(1) ontinuous researh in simple, eÆient, and pratial ways to make parallel and distributed arhitetureseasily programmable drew the attention to logi programming, sine, potentially, parallelism an be ex-ploited impliitly from logi programs (i.e., parallelism an be extrated from logi programs automatiallywithout any user intervention);(2) the everlasting myth that logi programming languages have low exeution eÆieny: this promptedresearhers to look for alternative ways of ahieving speed, i.e., through the use of parallelism.As mentioned, the literature on parallel exeution of logi programs is vast and varied. There are twomajor (and non-independent) shools of thought. The �rst approah, whih is the main fous of this survey,relies on impliit exploitation of parallelism from logi programs. This means that the parallelization of theexeution an (potentially) our without any input from the programmer. Note that these model do notprevent programmer intervention, but usually they either make it optional or they keep it at a very high level.In ontrast, a number of approahes have been developed whih target the extration of parallelism throughthe use of expliit onstruts introdued in the soure language. This an be done by extending a logiprogramming language with expliit onstruts for onurreny or by modifying the semantis of the logiprogramming language in a suitable way. Approahes to expliit exploitation of parallelism from logi programsan be largely lassi�ed into three ategories:(1) Those that add expliit message passing primitives to Prolog, e.g., Delta Prolog [Apar�iio et al. 1986℄ andCS-Prolog [Futo 1993℄. Multiple Prolog proesses are run in parallel and they ommuniate with eahother via expliit message passing or other rendezvous mehanisms.(2) Those that add blakboard primitives to Prolog, e.g., Shared Prolog [Cianarini 1993℄. These primitivesare used by multiple Prolog proesses running in parallel to ommuniate with eah other via the ommonblakboard.Some reent proposals in this ategory inlude� the Jinni system [Tarau 1998℄ developed by Tarau, a Java-based logi programming system inludingmulti-threading and blakboard-based ommuniation; this work is a ontinuation of the previous workby Tarau and de Bosshere [de Bosshere and Tarau 1996℄;� the CIAO system [Hermenegildo 1994℄ supports novel Prolog database operations whih allow to usethe database as a (synhronizing) blakboard [Carro and Hermenegildo 1999℄.Blakboard primitives are urrently supported by a number of other Prolog systems, inluding SICStus[Carlsson et al. 1995℄ and YAP [Santos Costa, Damas, Reis, Azevedo 1999℄.(3) Those based on guards, ommitted hoie, and data-ow synhronization, e.g., Parlog, GHC, KL1 (andits portable C-based implementation KLIC [Chikayama et al. 1994℄), and Conurrent Prolog [Clark andGregory 1986; Ueda 1986; Shapiro 1987; 1989℄.This lass inludes the lass of onurrent onstraint languages (e.g., LIFE [Ait-Kai 1993℄ and l(fd) [VanHentenryk, Saraswat, Deville 1998℄) and the lass of distributed onstraint languages suh as Oz/Mozart[Haridi, Van Roy, Brand, Shulte 1998; Smolka 1995℄ and AKL [Haridi and Jason 1990℄.- 4 -



Eah of the three approahes above has been explored and there is extensive researh literature that anbe found. They all involve omplex issues of language extension and design, as well as of implementation.However, in order to keep the paper foused we will onsider these approahes only marginally or in thoseases where they introdue exeution mehanisms whih are appliable also in the ase of impliit exploitationof parallelism (e.g., ommitted hoie languages).In the rest of this work we will fous primarily on the parallel exeution of Prolog programs, althoughoasional generalizations to logi languages with a di�erent operational semantis will be onsidered (e.g., webriey disuss parallelization in onstraint logi programming languages). This hoie is ditated by the wideruse of Prolog w.r.t. other logi languages, and a onsequent wider appliability of the results aomplished.Observe also that parallelization of Prolog raises issues that are absent from the parallelization of other logilanguages (e.g., due to the presene of extra-logial prediates). Throughout this work we will often use theterms \logi programs" and \Prolog programs" interhangeably, thus assuming sequential Prolog semantisas the target operational behavior (a disussion of the di�erenes between general logi programming andProlog is presented in Setion 2). Parallel exeution of other logi-based languages, suh as ommitted-hoielanguages, raises issues similar to those disussed in this paper.The objetive of this paper is to provide a uniform view of the researh in parallel logi programming. Dueto the extensive body of researh in this �eld, we will not be able to over every single aspet and model whihhave been presented in the literature. Thus, our fous will lie on highlighting the fundamental problems andthe key solutions that have been proposed. This survey expands on the work done by other researhers inthe past in proposing an organized overview of parallel logi programming. In partiular, this work expandson the remarkable survey on parallel logi programming systems by Chassin de Kergommeaux and Codognet[Chassin de Kergommeaux and Codognet 1994℄ by overing the researh performed in the last 8 years andby provide a more in-depth analysis of various areas. Other surveys have also appeared in the literature,mostly overing more limited areas of parallel logi programming [Gupta and Jayaraman 1993b; Kasuk 1990;Takeuhi 1992; Delgado-Rannauro 1992a; 1992b℄.The paper is organized as follows. The next setion provides a brief introdution to logi programming andparallel logi programming, fousing on the distintion between the di�erent forms of parallelism exploitedin logi programming. Setion 3 illustrates the issues involved in or-parallel exeution of Prolog programs.Setion 4 desribes independent and-parallelism and disusses the solutions adopted in the literature to handlethis form of parallelism. Setion 5 introdues the notion of dependent and-parallelism and desribes di�erenttehniques adopted to support it in di�erent systems. The issues arising from the onurrent exploitation ofand- and or-parallelism are presented in Setion 6, along with the most relevant proposals to takle suh issues.Setion 7 desribes the tehniques adopted in the literature to exploit data parallelism from logi programs.Setion 9 overs a variety of issues related to implementation and eÆieny of parallel logi programming (e.g.,optimizations, stati analysis, support tools). Setion 10 gives a brief overview of the types of appliations towhih parallel logi programming has been suessfully applied. Finally, Setion 11 draws some onlusionsand gives some insights on urrent and future researh diretions in the �eld.In the rest of this work we assume the reader to have familiarity with the basi terminology of logiprogramming and Prolog [Lloyd 1987; Sterling and Shapiro 1994℄.2. LOGIC PROGRAMMING AND PARALLELISMIn this setion we present a brief introdution to logi programming and Prolog. A more detailed presentationof these topis an be found elsewhere [Lloyd 1987; Ait-Kai 1992; Sterling and Shapiro 1994℄.2.1 Logi Programs and PrologA logi program is omposed by a set of Horn lauses. Using Prolog's notation, eah lause is a formula ofthe form Head : �B1; B2; : : : ; Bn- 5 -



where Head, B1; : : : ; Bn are atomi formulae and n � 0.1 Eah lause represents a logial impliation of theform 8(B1 ^ : : : ^ Bn ! Head)A separate type of lauses are those where Head is the atom false, whih are simply written as: �B1; : : : ; BnThese type of lauses are alled goals (or queries). Eah atom in a goal is alled a subgoal.Eah atomi formula is omposed by a prediate applied to a number of arguments (terms), and this willbe denoted as p(t1; : : : ; tn)|where p is the prediate name, and t1; : : : ; tn are the terms used as arguments.Eah term an be either a onstant (), a variable (X), or a omplex term (f(s1; : : : ; sm), where s1; : : : ; smare themselves terms and f is the funtor of the term).Exeution of a logi program typially involves a program P and a goal : �G1; : : : ; Gn, and the objetive isto verify whether there exists an assignment � of terms to the variables in the goal suh that (G1 ^ : : :^Gn)�is a logial onsequene of P .2 � is alled a substitution: a substitution is an assignments of terms to a setof variables (the domain of the substitution). If a variable X is assigned a term t by a substitution, then Xis said to be bound and t is the (run-time) binding for the variable X . The proess of assigning values to thevariables in t aording to a substitution � is alled binding appliation.Prolog, as well as many other logi programming systems, make use of SLD-resolution to arry out program'sexeution. Exeution of a program P w.r.t. a goal G proeeds by transforming a resolvent using a sequeneof resolution steps. Eah resolvent represents a onjuntion of subgoals. The initial resolvent orresponds tothe goal G. Eah resolution step proeeds as follows:� Let us assume that : �A1; : : : ; Ak is the urrent resolvent. An element Ai of the resolvent is seleted (seletedsubgoal) aording to a prede�ned omputation rule. In the ase of Prolog, the omputation rule selets theleftmost element of the resolvent.� If Ai is the seleted subgoal, then the program is searhed for a lause Head : �B1; : : : ; Bh whose headsuessfully uni�es with Ai. Uni�ation is the proess whih determines the existene of a substitution �suh that Head� = Ai�. If there are rules satisfying this property then one is seleted (aording to aseletion rule) and a new resolvent is omputed by replaing Ai with the body of the rule and properlyinstantiating the variables in the resolvent:: �(A1; : : : ; Ai�1; B1; : : : ; Bh; Ai+1; : : : ; Ak)�In the ase of Prolog, the lause seleted is the �rst one in the program whose head uni�es with the seletedsubgoal.� If no lause satis�es the above property, then a failure ours. Failures are ured using baktraking.Baktraking explores alternative exeution paths by reduing one of the preeding resolvents with a di�erentlause.� The omputation stops either when a solution is determined (i.e., the resolvent ontains zero subgoals) orwhen all alternatives have been explored without any suess.An intuitive proedural desription of this proess is represented in Figure 2. The operational semantis of alogi based language is determined by the hoie of omputation rule (seletion of the subgoal in the resolvent|alled seletliteral in Figure 2) and the hoie of seletion rule (seletion of the lause to ompute thenew resolvent|alled seletrule). In the ase of Prolog, the omputation rule selets the leftmost subgoalin the resolvent, while the seletion rule selets the �rst lause in the program whih suessfully uni�es withthe seleted subgoal.Many logi languages (e.g., Prolog) introdue a number of extra-logial prediates, used to perform taskssuh as:1If n = 0 then the formula is simply written as Head and alled fat.2Following standard pratie, the notation e� denotes the appliation of the substitution � to the expression e|i.e., eah variableX in e will be replaed by �(X). - 6 -



(1) perform input/output (e.g., read and write �les);(2) add a limited form of ontrol to the exeution (e.g., the ut (!) operator, used to remove some unexploredalternatives from the omputation);(3) perform meta-programming operations; these are used to modify the struture of the program (e.g., assertand retrat, add or remove lauses from the program), or query the status of the exeution (e.g., varand nonvar, used to test the binding status of a variable).An important aspet of many of these extra-logial prediates is that their behavior is order-sensitive, meaningthat they an produe a di�erent outome depending on when they are exeuted. In partiular, this meansthat they an potentially produe a di�erent result if a di�erent seletion rule or a di�erent omputation ruleis adopted.In the rest of this work we will fous on exeution of Prolog programs (unless expliitly stated otherwise);this means that we will assume that programs are exeuted aording to the omputation and seletion rule ofProlog. We will also frequently use the term observable semantis to indiate the overall observable behaviorof an exeution|i.e., the order in whih all visible ativities of a program exeution take plae (order ofinput/output, order in whih solutions are obtained, et.). If a omputation respets the observable Prologsemantis, then this means that the user does not see any di�erene between suh omputation and a sequentialProlog exeution of the same program.2.2 The Warren Abstrat MahineThe Warren Abstrat Mahine (WAM) [Warren 1983; Ait-Kai 1992℄ has beome a de-fato standard forthe sequential implementations of Prolog and Logi Programming languages. The WAM de�nes an abstratarhiteture whose instrution set is designed to(1) allow an easy mapping from Prolog soure ode to WAM instrutions;(2) be suÆiently low-level to allow an eÆient emulation and/or translation to native mahine ode.Most implementations of Prolog urrently rely either diretly on the WAM, or on a suÆiently similar arhi-teture.The WAM is a stak-based arhiteture, sharing some similarities with imperative languages implementationshemes (e.g., use of all/return instrutions, use of frames for maintaining proedure's loal environment),but extended in order to support the features peuliar to Logi Programming, namely uni�ation and bak-traking (and some other variations, like the need of supporting dynami type heking).The WAM is a stak-based arhiteture. At any instane, the state of the mahine is de�ned by the ontentof its memory areas (illustrated in �gure 1). The state an be subdivided into internal and external state.� Internal State: it is desribed by the ontent of the mahine registers. The purpose of most of the registersis desribed in �gure 1.� External State: it is desribed by the ontent of the logial data areas of the mahine:� Heap: data areas in whih omplex data strutures (lists and Prolog's ompound terms) are alloated.� Loal Stak: (also known as Control Stak) it serves the same purpose as the ontrol stak in theimplementation of imperative languages|it ontains ontrol frames, alled environments (akin to theativation reords used in implementation of imperative languages), whih are reated upon entering anew lause (i.e., a new \proedure") and are used to store the loal variables of the lause and the ontrolinformation required for \returning" from the all.� Choie Point Stak: hoie points enapsulate the exeution state for baktraking purposes. A hoiepoint is reated whenever a all having multiple possible solution paths (i.e., more than one lausesuessfully math the all) is enountered. Eah hoie point should ontain suÆient information torestore the status of the exeution at the time of reation of the hoie point, and should keep trak ofthe remaining unexplored alternatives.� Trail Stak: during an exeution variables an be instantiated (they an reeive bindings). Nevertheless,during baktraking these bindings need to be undone (to restore the previous state of exeution). Inorder to make this possible, bindings that an be subjet to this operation are registered in the trail stak.Eah hoie point reords the point of the trail where the undoing ativity needs to stop.- 7 -
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Fig. 1. Organization of the WAMProlog is a dynamially typed language; hene it requires type information to be assoiated with eah dataobjet. In the WAM, Prolog terms are represented as tagged words: eah word ontains:(1) a tag desribing the type of the term (atom, number, list, ompound struture, unbound variable);(2) a value whose interpretation depends on the tag of the word; e.g., if the tag indiates that the wordrepresents a list, then the value �eld will be a pointer to the �rst node of the list3.Prolog programs are ompiled into a series of abstrat instrutions operating on the previously desribedmemory areas. In a typial exeution, whenever a new subgoal is seleted (i.e., a new \proedure all" isperformed), the following steps are taken:� the arguments of the all are prepared and loaded into the temporary registers X1; : : : ; Xn|the instrutionset ontains a family of instrutions, the \put" instrutions, for this purpose.� the lauses mathing the subgoal are deteted and, if more than one is available, a hoie point is alloated(using the \try" instrutions);� the �rst lause is started: this requires head uni�ation|i.e., uni�ation between the head of the lauseand the subgoal to be solved|to be performed (using \get/unify" instrutions). If head uni�ation issuessful (and assuming that the rule ontains some user-de�ned subgoals), then an environment for thelause is reated (\alloate") and the body of the lause is exeuted, otherwise baktraking to the lasthoie point reated takes plae.� baktraking involves extrating a new alternative from the topmost hoie point (\retry" will extrat thenext alternative, assuming this is not the last one, while \trust" will extrat the last alternative and remove3Lists in Prolog, as in Lisp, are omposed of nodes, where eah node ontains a pointer to an element of the list (the head) anda pointer to the rest of the list (the tail). - 8 -



the exhausted hoie point), restoring the state of exeution assoiated with suh hoie point (in partiular,the ontent of the topmost part of the trail stak is used to remove bindings performed after the reationof the hoie point), and restarting the exeution of the new alternative.The WAM has been designed in order to optimize the use of resoures during exeution, improving speed andmemory onsumption. Optimizations whih are worth mentioning are:� Last Call Optimization: [Warren 1980℄ represents an instane of the well-known Tail-reursion optimizationommonly used in the implementation of many programming languages. Last all optimization allows toreuse the environment of a lause for the exeution of the last subgoal of the lause itself;� Environment Trimming: [Ait-Kai 1992℄ allows a progressive redution of the size of the environment of alause during the exeution of the lause itself, by removing the loal variables that are not needed in therest of the omputation.� Shallow Baktraking: [Carlsson 1989℄ the priniple of prorastination [Gupta and Pontelli 1997℄ has beenapplied to the alloation of hoie points in the WAM: the alloation of a hoie point is delayed until asuessful head uni�ation has been deteted. This allows in many oasions to avoid the alloation of thehoie point at all|if no head uni�ation sueed, or if the suessful one is the last lause de�ning suhprediate.� Indexing: this tehnique is used to guide the analysis of the possible lauses that an be used to solvethe urrent subgoal. The values of the arguments an be used to prune the searh spae at runtime.The original WAM supplies some instrutions (\swith" instrutions) to analyze the funtor of the �rstargument and selet di�erent lusters of lauses depending on its value. Sine many programs annot pro�tfrom �rst-argument seletion, more powerful indexing tehniques have been proposed, taking into aountmore arguments and generating more omplex deision trees [Hikey and Mudambi 1989; Van Roy andDespain 1992; Taylor 1991℄.2.3 Logi Programming and ParallelismParallelization of logi programs an be seen as a diret onsequene of Kowalski's priniple [Kowalski 1979℄Programs = Logi + ControlProgram development separates the ontrol omponent from the logial spei�ation of the problem, thusmaking the ontrol of exeution an orthogonal feature, independent from the logial spei�ation of theproblem. The lak (or, at least, the limited presene) of knowledge about ontrol in the program allowsthe run-time systems to adopt di�erent exeution strategies without a�eting the delarative meaning of theprogram (i.e., the set of logial onsequenes of the program). Not only does this allow leaner (delarative)semantis for logi programs, and hene a better understanding of them by their users, it also permits anevaluator of logi programs to employ di�erent ontrol strategies for evaluation. That is, di�erent operationsin a logi program an be exeuted in any order without a�eting the meaning of the program. In partiular,these operations an be performed by the evaluator in parallel.Apart from the separation between logi and ontrol, from a programming languages perspetive, logiprogramming o�ers two key features whih make exploitation of parallelism more pratial than in traditionalimperative languages:(1) From an operational perspetive, logi programming languages are single-assignment languages; variablesare mathematial entities whih an be assigned a value at most one during eah derivation|this relievesa parallel system from having to keep trak of omplex ow dependenies, as in the parallelization oftraditional programming languages [Zima and Chapman 1991℄.(2) The operational semantis of logi programming, ontrary to imperative languages, makes substantial useof non-determinism|whih in turn an be easily onverted into parallelism without radial modi�ationsof the overall operational semantis. Furthermore, ontrol in most logi programming languages is largelyimpliit, thus limiting programmers' inuene on the development of the ow of exeution.The seond point is of partiular importane: the ability to onvert existing non-determinism into parallelismleads to the possibility of extrating parallelism diretly from the exeution model without any modi�ationto the language (impliit parallelization). - 9 -



while (Query ≠ ∅ ) do
begin
    selectliteral B from Query;
    repeat
        selectclause (H :- Body) from Program;
    until (unify(H, B) or (no clauses left);

    if (no clauses left) then
             FAIL;
    else
        begin
            σ = MostGeneralUnifier(H,B);
            Query = ( Query \ { B } ∪ { Body } )σ
        end
end.

And-Parallelism

Or-Parallelism

Unification Parallelism

Fig. 2. Operational Semantis and Non-determinismThe typial strategy adopted in the development of parallel logi programming systems has been basedon the translation of one (or more) of the non-deterministi hoies present in the operational semantis (seeFigure 2) into parallel omputations. This leads to three main forms of parallelism:� And-Parallelism, whih originates from parallelizing the seletion of the next literal to be solved|thusallowing multiple literals to be solved onurrently.� Or-Parallelism, whih originates from parallelizing the seletion of the lause to be used in the omputationof the resolvent|thus allowing multiple lauses to be tried in parallel.� Uni�ation Parallelism, whih arises from the parallelization of the uni�ation proess.The next three subsetions elaborates on these three forms of parallelism.2.3.1 Uni�ation ParallelismUni�ation parallelism arises during the uni�ation of the arguments of a goal with the arguments of alause head with the same name and arity. The di�erent argument terms an be uni�ed in parallel as an thedi�erent subterms in a term [Barklund 1990℄. This an be easily illustrated as follows: a standard uni�ation(�a la Robinson) is approximatively strutured asunify(Arg1, Arg2):if (Arg1 is a omplex term f(t1,...,tn) and Arg2 is a omplex term g(s1,...,sm)) thenif (f is equal to g and n is equal to m) thenunify(t1,s1), unify(t2,s2), ..., unify(tn,sn)elsefailelse....Thus, uni�ation of two omplex terms is broken down in pairwise uni�ation of the di�erent arguments. Forexample, the proess of unifying two termsperson(birth(day(12),month(1),year(99)),address(street(foothills),number(2),ity(rues)))person(birth(day(X),month(1),Y), address(Z,W,ity(rues)))- 10 -



requires the separate uni�ation between the argumentsbirth(day(12),month(1),year(99)) = birth(day(X),month(1),Y)address(street(foothills),number(2),ity(rues)) = address(Z,W,ity(rues))Uni�ation parallelism takes advantage of the sequene of uni�ations between the arguments of omplexstrutures, by performing them onurrently:doallr1 = unify(t1,s1);...rn = unify(tn,sn);endallreturn (r1 and ... and rn);where doall indiates the parallel exeution of all the statements between doall and endall.Uni�ation parallelism is very �ne-grained and is best exploited by building speialized CPUs with multipleuni�ation units [Singhal and Patt 1989℄. Parallel uni�ation also needs to deal with omplex dependenyissues [Singhal and Patt 1989; Barklund 1990℄. Uni�ation parallelism has not been the major fous of researhin parallel logi programming.2.3.2 Or-ParallelismOr-Parallelism originates from the parallelization of the seletlause phase in Figure 2. Thus, or-parallelism arises when more than one rule de�nes a relation and a subgoal uni�es with more than one rulehead|the orresponding bodies an then be exeuted in parallel with eah other, giving rise to or-parallelism.Or-parallelism is thus a way of eÆiently searhing for solutions to the query, by exploring in parallel thesearh spae generated by the presene of multiple lauses appliable at eah resolution step. Observe thateah parallel omputation is potentially omputing an alternative solution to the original goal.Note that or-parallelism enompasses not only the atual onurrent exeution of di�erent alternatives,but also the onurrent searh for the di�erent alternatives whih are appliable to the seleted subgoal; someresearhers have proposed tehniques to expliitly parallelize this searh proess, leading to the so alled searhparallelism [Bansal and Potter 1992; Kasif, Kohli, Minker 1983℄.Or-parallelism frequently arises in appliations that explore a large searh spae via baktraking. This isthe typial ase in appliation areas suh as expert systems, optimization and relaxation problems, parsing,natural language proessing, and sheduling. Or-parallelism also arises in the ontext of parallel exeution ofdedutive database systems [Ganguly et al. 1990; Wolfson and Silbershatz 1988℄.2.3.3 And-ParallelismAnd-Parallelism arises from the parallelization of the seletliteral phase in Figure 2. Thus, and-parallelism arises when more than one goal is present in the resolvent, and (some of) these goals are exeuted inparallel. And-parallelism thus permits exploitation of parallelism within the omputation of a single solutionto the original goal.And-parallelism arises in most appliations, but is partiularly present in divide&onquer appliations, listproessing appliations, various onstraint solving problems and system appliations.In the literature it is ommon to distinguish two forms of and-parallelism:� Independent and-parallelism (IAP) arises when, given two or more subgoals, the runtime bindings for thevariables in these goals prior to their exeution are suh that eah goal has no inuene on the outome ofthe other goals. Suh goals are said to be independent and their parallel exeution gives rise to independentand-parallelism. The typial example of independent goals is represented by goals whih, at run-time, do notshare any unbound variable|i.e., the intersetion of the sets of variables aessible by eah goal is empty.More re�ned notions of independene, e.g., non-strit independene, have also been proposed [Cabeza andHermenegildo 1994℄.� Dependent and-parallelism arises when, at runtime, two or more goals in the body of a proedure havea ommon variable and are exeuted in parallel, possibly \ompeting" in the reation of bindings for the- 11 -



ommon variable (or \ooperating", if the goals share the task of reating the binding for the ommonvariable). Dependent and-parallelism an be exploited in varying degrees, ranging from models whihfaithfully reprodue Prolog's observable semantis to models whih use speialized forms of dependent and-parallelism (e.g., stream parallelism) to support oroutining and other alternative semantis|as in thevarious ommitted hoie languages [Shapiro 1987; Tik 1995℄.The distintion between independent and-parallelism and dependent and-parallelism is based on the gran-ularity of omputation onsidered. Parallelism is always obtained by exeuting two (or more) operations inparallel if those two operations do not inuene eah other in any way (i.e., they are independent); otherwise,parallel exeution would not be able to guarantee orretness. For independent and-parallelism entire goalshave to be independent of eah other to be exeuted in parallel. On the other hand, in dependent and-parallelism the steps inside exeution of eah goal are examined, and steps in eah goal that do not interferewith eah other are exeuted in parallel. Thus, independent and-parallelism ould be onsidered maro leveland-parallelism, while dependent and-parallelism ould be onsidered as miro level and-parallelism. As isperhaps now obvious to the reader, dependent and-parallelism is harder to exploit for Prolog (unless adequatehanges to the operational semantis are introdued, as in the ase of onurrent logi languages [Shapiro1987℄).2.4 DisussionOr-parallelism and and-parallelism identify opportunities for transforming ertain sequential omponents ofthe operational semantis of logi programming into onurrent operations. In the ase of or-parallelism, theexploration of the di�erent alternatives in a hoie-point is parallelized, while in the ase of and-parallelismthe resolution of distint subgoals is parallelized. In both ases, we expet the system to provide a numberof omputing resoures whih are apable of arrying out the exeution of the di�erent instanes of parallelwork (i.e., lauses from a hoie-point or subgoals from a resolvent). These omputing resoures an be seenas di�erent Prolog engines whih are ooperating in the parallel exeution of the program. We will oftenrefer to these omputing entities as workers or agents. The term proess has also been frequently used in theliterature to indiate these omputing resoures|as workers are typially implemented as separate proesses.The omplexity and apabilities of eah agent vary aross the di�erent models proposed. Certain modelsview agents as proesses whih are reated for the spei� exeution of an instane of parallel work (e.g., anagent is reated to spei�ally exeuted a partiular subgoal), while other models view agents as representingindividual proessors, whih have to be repeatedly sheduled to exeute di�erent instanes of parallel workduring the exeution of the program. We will return to this distintion later on in Setion 9.1.Intuitively, or-parallelism and and-parallelism are largely orthogonal to eah other, as they parallelizeindependent points of non-determinism in the operational semantis of the language. Thus, one would expetthat the exploitation of one form form of parallelism does not a�et the exploitation of the other, and it shouldbe feasible to exploit both of them simultaneously. However, pratial experiene has demonstrated thatthis orthogonality does not easily translate at the implementation level. For various reasons (e.g., onitingmemory management requirements) ombined and/or-parallel systems turned out to be extremely ompliated,and so far no eÆient parallel system has been built that ahieves this ideal goal. At the implementationlevel, there is onsiderable interation between and- and or-parallelism and most proposed systems have beenfored into restritions on both forms of parallelism (these issues are disussed at length in Setion 6).On the other hand, one of the ultimate aims of researhers in parallel logi programming has been to extratthe best exeution performane from a given logi program. Reahing this goal of maximum performaneentails exploiting multiple forms of parallelism to ahieve best performane on arbitrary appliations. Indeed,various experimental studies (e.g., [Shen and Hermenegildo 1991; Pontelli, Gupta, Wiebe, Farwell 1998℄) seemto suggest that there are large lasses of appliations whih are rih in either one of the two forms of parallelism,while others o�er modest quantities of both. In these situations, the ability to onurrently exploit multipleforms of parallelism beomes essential.It is important to underline that the overall goal of researh in parallel logi programming is the ahievementof higher performane through parallelism. Aomplishing good speedups may not neessarily translate toan atual improvement in performane with respet to state-of-the-art sequential systems|e.g., the ost- 12 -



of managing the exploitation of parallelism an make the performane of the system on a single proessoronsiderably slower than a standard sequential system.In the rest of the paper, we disuss or-parallelism, independent and-parallelism and dependent and-parallelism in greater detail, desribing the problems that arise in exploiting them. We desribe the varioussolutions that have been proposed for overoming these problems, followed by desription of atual parallellogi programming systems that have been built. We disuss the eÆieny issues in parallel logi program-ming, and urrent and future researh in this area. We assume that the reader is familiar with sequentialimplementation tehniques for logi programming languages. An exellent desription of these an be foundin [Ait-Kai 1992℄. A general familiarity with various onepts in parallelism is also assumed. An exellentexposition of the needed onepts an be found in [Gottlieb and Almasi 1994; Zima and Chapman 1991℄.The largest part of the body of researh in the �eld of parallel logi programming foused on the developmentof systems on Shared Memory arhitetures|and indeed many of the tehniques presented are spei�allydesigned to take advantage of a single shared storage. Researh on exeution of logi programs on DistributedMemory arhitetures (e.g., [Benjumea and Troya 1993; Kasuk and Wise 1992℄) has been more sparse andless inisive. The urrent trend of researh indiates an inreasing emphasis towards distributed memoryarhitetures [Araujo and Ruz 1998; Castro et al. 1998; Gupta and Pontelli 1999a℄, thanks to their inreasedavailability at a�ordable pries and their salability. Nevertheless, the fous of this survey is on desribingexeution models for shared memory arhitetures.3. OR-PARALLELISMOr-parallelism arises when a subgoal an unify with the heads of more than one lause. In suh a ase thebodies of these lauses an be exeuted in parallel with eah other giving rise to or-parallelism. For example,onsider the following simple logi program:f :- t(X, three), p(Y), q(Y).p(L) :- s(L, M), t(M, L).p(K) :- r(K).q(one).q(two).r(one).r(three).s(two, three).s(four, five).t(three, three).t(three, two).and the query ?- f. The alls to t, p, and q are non-deterministi and lead to the reation of hoie-points.In turn, the exeution of p leads to the all to the subgoal s(L,M), whih leads to the reation of anotherhoie-point. The multiple alternatives in these hoie-points an be exeuted in parallel.A onvenient way to visualize or-parallelism is through the or-parallel searh tree. Informally, an or-parallelsearh tree (or simply an or-parallel tree or a searh tree) for a query Q and logi program LP is a tree ofnodes, eah with an assoiated goal-list, suh that:(1) the root node of the tree has Q as its assoiated goal-list;(2) eah non-root node n is reated as a result of suessful uni�ation of the �rst goal in (the goal-listof) n's parent node with the head of a lause in LP , H :- B1; B2; : : : ; Bn. The goal-list of node n is(B1; B2; : : : ; Bn; L2; : : : ; Lm)�, if the goal-list of the parent of n is L1; L2; : : : ; Lm and � = mgu(H;L1).Figure 3 shows the or-parallel tree for the simple program presented above. Note that, sine we are onsideringexeution of Prolog programs, the onstrution of the or-parallel tree will follow the operational semantis ofProlog|at eah node we will onsider lauses appliable to the �rst subgoal, and the hildren of a node willbe onsidered ordered from left to right aording to the order of the orresponding lauses in the program.- 13 -



Note that eah node of the or-parallel tree in Figure 3 ontains the variables found in its orrespondinglause, i.e., it holds that lause's environment. During sequential exeution this or-parallel tree is searhedin a depth-�rst manner. However, if multiple agents are available, then multiple branhes of the tree anbe searhed simultaneously giving rise to or-parallelism. If the di�erent branhes are searhed in or-parallel,then note that one will be onfronted with the following problem: the variable Y reeives di�erent bindings indi�erent branhes of the tree all of whih will be ative at the same time. Storing and later aessing thesebindings eÆiently is a problem. In sequential exeution the binding of a variable is stored in the memoryloation allotted to that variable. Sine branhes are explored one at a time, and bindings are untrailed duringbaktraking, no problems arise. In parallel exeution, multiple bindings exist at the same time, hene theyannot be stored in a single memory loation allotted to the variable. This problem, known as the multipleenvironment representation problem, is a major problem in implementing or-parallelism and is disussed inthe next setion.Or-parallelism manifests itself in a number of appliations [Klu�zniak 1990℄. It arises while exerising rules ofan expert systems where multiple rules an be �red simultaneously to ahieve a goal. It also arises in someappliations that involve natural language sentene parsing. In suh appliations the various grammar rulesan be applied in or-parallel to arrive at a parse tree for a sentene. If the sentene is ambiguous then themultiple parses would be found in parallel. Or-parallelism also frequently arises in database appliations, wherethere are large numbers of lauses, and in appliations of generate-and-test nature|the various alternativesan be generated and tested in or-parallel. This an be seen for example in the following simple program tosolve the 8-queen problem:queens(Qs) :- queens(Qs, [℄, [1,2,3,4,5,6,7,8℄).queens([℄,_,[℄).queens([X|Xs℄, Plaed, Values):-delete(X, Values, New_values),noattak(X, Plaed),queens(Xs,[X|Plaed℄,New_values).delete(X, [X|Xs℄, Xs).delete(X, [Y|Ys℄, [Y|Zs℄) :- delete(X, Ys, Zs).noattak(X, Xs) :- noattak(X, Xs, 1).noattak(_, [℄, _).noattak(X, [Y|Ys℄, Nb) :-X =\= Y-Nb,X =\= Y+Nb,Nb1 is Nb + 1,noattak(X,Ys,Nb1).The all to delete/3 in the seond lause of queens/3 ats as a generator of bindings for the variable X andreates a number of hoie-points. The prediate delete/3 will be alled again in the reursive invoations ofqueens/3, reating yet more hoie-points and yet more untried alternatives that an be piked up by agentsfor or-parallel proessing.3.1 Challenges in the Implementation of Or-parallelismIn priniple, or-parallelism should be easy to implement sine various branhes of the or-parallel tree areindependent of eah other, thus requiring little ommuniation between agents. However, in pratie, imple-mentation of or-parallelism is diÆult beause of the sharing of nodes in the or-parallel tree. That is, giventwo nodes in two di�erent branhes of the or-tree, all nodes above (and inluding) the least ommon anestornode of these two nodes are shared between the two branhes. A variable reated in one of these anestor- 14 -



f:- t(X,three),p(Y),q(Y).
p(L):-s(L,M),t(M,L).
p(K):-r(K).
q(one).
q(two).
 

s(two,three).
s(four,five).
t(three,three).
t(three,two).
r(one).
r(three).
?-f.

?-f.

Y:   
X: 

Y:&L 
M: 

t(X,three),p(Y),q(Y)

s(L,M),t(M,L),q(Y)

Y:&K 
 

r(K),q(Y)

[L <- Y]
[K <- Y]

[ L <- two
M <- three]

[K <- one]

q(one)

success

t(three, two),q(two)

q(two)

success

Note: Each node contains
space for variables that
appear in its corresponding
clause. Each node also
contains the goal list,
or list of pending subgoals.
&X denotes pointer to var. X.

fail

q(three)

[K <- three]

fail

[L <- four
M <- five]

t(five,four),q(four)

[X<-three]

p(Y),q(Y)

Fig. 3. An Or-parallel Treenodes might be bound di�erently in the two branhes. The environments of the two branhes have to beorganized in suh a fashion that, in spite of the anestor nodes being shared, the orret bindings appliableto eah of the two branhes are easily disernible.Consider a variable V in node n1, whose binding b has been reated in node n2. If there are no branh pointsbetween n1 and n2, then the variable V will have the binding b in every branh that is reated below n2. Suha binding an be stored in-plae in V|i.e., it an be diretly stored in the memory loation alloated to Vin n1. However, if there are branh points between n1 and n2, then the binding b annot be stored in-plae,sine other branhes reated between nodes n1 and n2 may impart di�erent bindings to V. The binding b isappliable to only those nodes that are below n2. Suh a binding is known as a onditional binding and suh avariable as a onditional variable. For example, variable Y in Figure 3 is a onditional variable. A binding thatis not onditional, i.e., one that has no intervening branh points (or hoie points) between the node wherethis binding was generated and the node ontaining the orresponding variable, is termed unonditional. Theorresponding variable is alled an unonditional variable (for example, variable X in Figure 3).The main problem in implementing or-parallelism is the eÆient representation of the multiple environmentsthat o-exist simultaneously in the or-parallel tree orresponding to a program's exeution. Note that themain problem in management of multiple environments is that of eÆiently representing and aessing theonditional bindings; the unonditional bindings an be treated as in normal sequential exeution of logiprograms (i.e., they an be stored in-plae).Essentially, the problem of multiple environment management has to be solved by devising a mehanism whereeah branh has some private area where it stores onditional bindings appliable to itself. There are manyways of doing this [Warren 1987b; Gupta and Jayaraman 1993b℄. For example:� Storing the onditional binding reated by a branh in an array or a hash table private to that branh, fromwhere the binding is aessed whenever it is needed.� Keeping a separate opy of the environment for eah branh of the tree, so that every time branhing oursat a node the environment of the old branh is opied or rereated in eah new branh.- 15 -



� Reording all the onditional bindings in a global data struture and attahing a unique identi�er with eahbinding whih identi�es the branh a binding belongs to.Eah approah has its assoiated ost. This ost is non-onstant time and is inurred either at the time ofvariable aess, or at the time of node reation, or at the time a worker begins exeution of a new branh. In[Gupta and Jayaraman 1993b℄ three riteria were derived for an ideal or-parallel system, namely:(1) The ost of environment reation should be onstant-time;(2) The ost of variable aess and binding should be onstant-time; and(3) The ost of task swithing4 should be onstant-time.It has been shown that it is impossible to satisfy these three riteria simultaneously [Gupta and Jayaraman1993b℄. In other words, the non-onstant time osts in managing multiple or-parallel environments annot beavoided. Although this non-onstant ost annot be avoided in supporting or-parallelism, it an be signi�antlyredued by a areful design of the sheduler, whose funtion is to assign work to workers (where work in anor-parallel setting will mean an unexplored branh of the or-parallel tree represented as an untried alternativein a hoie-point). The design of the sheduler is very important in an or-parallel system, and is disussed inthe ontext of the various exeution models proposed (Setion 3.5).3.2 Or-parallel Exeution ModelsA number of exeution models have been proposed in the literature for exploiting or-parallelism (a listing ofabout 20 of them an be found in [Gupta and Jayaraman 1993b℄). These models di�er in the tehnique theyemploy for solving the problem of environment representation. The three riteria mentioned in the previoussetion allows us to draw a lean lassi�ation of the di�erent models proposed|the models are lassi�eddepending on whih riteria they meet. This is illustrated in Figure 4; the di�erent models will be assoiatedto one of the leaves of the tree, depending on whih riteria they meet and whih riteria they violate. Observethat the rightmost leave in the tree is neessarily empty, sine no model an meet all the three riteria (this isdisussed more formally in Setion 3.4). The lassi�ation of the models presented in this setion is summarizedin the table in Figure 4.For instane, the following models employ an environment representation tehnique that satis�es rite-ria 1 and 2 above (onstant-time task reation and variable aess): Versions Vetors Sheme [Hausman,Ciepielewski, Haridi 1987℄, Binding Arrays Sheme [Warren 1984; 1987a℄, Argonne-SRI Model [Warren 1987b℄,Manhester-Argonne Model [Warren 1987b℄, Delphi Model [Cloksin and Alshawi 1988℄, Randomized Method[Janakiram, Agarwal, Malhotra 1988℄, BC-Mahine [Ali 1987℄, MUSE [Ali and Karlsson 1990a℄ (and its vari-ations, suh as stak splitting [Gupta and Pontelli 1999a℄, SBA [Correia et al. 1997℄, PBA [Gupta and SantosCosta 1992; Gupta, Santos Costa, Pontelli 1994℄), Virtual Memory Binding Arrays model [V�eron et al. 1993℄and, Kabu-Wake Model [Masuzawa et al. 1986℄; while the following models employs an environment rep-resentation tehnique that satis�es riteria 2 and 3 above (onstant-time variable aess and task swith):Diretory Tree Method [Ciepielewski and Haridi 1983℄, and Environment Closing Method [Conery 1987b℄; andthe following models employs an environment representation tehnique that satis�es riteria 1 and 3 above(onstant-time task-reation and task-swith): Hashing Windows Method [Borgwardt 1984℄, Favored-BindingsModel [Disz et al. 1987℄, and Virtual Memory Hashing Windows model [V�eron et al. 1993℄. Likewise, ex-ample of a model that only satis�es riterion 1 (onstant time task-reation) is the Time-Stamping Model[Tinker 1988℄, while the example of a model that only satis�es riterion 3 (onstant-time task swithing) is theVariable Import Sheme [Lindstrom 1984℄. We desribe some of these exeution models for or-parallelism ingreater detail below. A detailed study and derivation of some of the or-parallel models has also been done in[Warren 1987b℄. Some alternative models for or-parallelism, suh as Sparse Binding Array and Paged BindingArrays, are separately desribed in Setion 6.3, sine their design is mostly motivated by the desire of integrateexploitation of or- and and-parallelism.As noted in Figure 4, we are also imposing an additional lassi�ation level, whih separates the modelsproposed into two lasses. The �rst lass ontains all those models in whih the di�erent workers explore aunique representation of the omputation tree|whih is shared between workers. The seond lass ontains4That is, the ost assoiated with updating the state of a worker when it swithes from one node of the tree to another.- 16 -
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Tree Fig. 4. Classi�ation of Or-parallel Modelsthose models in whih every worker maintains a separate data struture representing (part of) the omputationtree.3.2.1 Shared Representation of Computation TreeA. Diretory Tree MethodIn the diretory tree method [Ciepielewski and Haridi 1983℄, developed by Ciepielewski and Haridi in the early80s for their or-parallel Token Mahine [Ciepielewski and Hausman 1986℄, eah branh of the or-tree has anassoiated proess. A proess is reated eah time a new node in the tree is reated, and the proess expiresone the reation of the hildren proesses is ompleted. The binding environment of a proess onsists ofontexts. A new ontext is reated for eah lause invoked. Eah proess has a separate binding environmentbut allows sharing of some of the ontexts in its environment by proesses of other branhes. The ompletebinding environment of a proess is desribed by a diretory|thus, a diretory is essentially a \summary"of a branh up to the node representing the proess. A diretory of a proess is an array of referenes toontexts. The environment of the proess onsists of ontexts pointed to by its diretory. The ith loation inthe diretory ontains a pointer to the ith ontext for that proess.When branhing ours, a new diretory is reated for eah hild proess. For every ontext in the parentproess whih has at least one unbound variable, a new opy is reated, and a pointer to it is plaed at thesame o�set in the hild diretory as in the parent diretory. Contexts ontaining no unbound variable (alledommitted ontext) an be shared and a pointer is simply plaed in the orresponding o�set of the hild'sdiretory pointing to the ommitted ontext. - 17 -



A onditional variable is denoted by the triple hdiretory address, ontext o�set, variable o�seti where thediretory address is the address of the base of the diretory, ontext o�set is the o�set in the diretory arrayand variable o�set is the o�set within the ontext. Notie that in this method all variables are aessed inonstant time, and proess swithing (i.e., assoiating one of the proesses to an atual proessor) does notinvolve any state hange.A prototypial implementation of this sheme was developed and some results onerning memory performaneare reported in [Ciepielewski and Hausman 1986℄. The ost of diretories reation is potentially very high andthe method leads to large memory onsumption and poor loality [Crammond 1985℄.B. Hashing Windows MethodThe hashing windows sheme, proposed by Borgwardt [Borgwardt 1984℄, maintains separate environments byusing hashing windows. The hashing window is essentially a hash table. Eah node in the or-tree has itsown hashing window where the onditional bindings of that partiular node are stored. The hash funtion isapplied to the address of the variable to ompute the address of the buket in whih the onditional bindingwould be stored in the hash window. Unonditional bindings are not plaed in the hash window, rather theyare stored in-plae in the nodes. Thus, the hash window of a node reords the onditional bindings generatedby that node. During variable aess the hash funtion is applied to the address of the variable whose bindingis needed and the resulting buket number is heked in the hash-window of the urrent node. If no valueis found in this buket, the hash-window of the parent node is searhed reursively until either a binding isfound, or the node where the variable was reated is reahed. If the reator node of the variable is reahedthen the variable is unbound. Hash windows need not be dupliated on branhing sine they are shared.The hashing windows sheme has found implementation in the Argonne National Laboratory's ParallelProlog [Butler et al. 1986℄ and in the PEPSys system [Westphal, Robert, Chassin, Syre 1987; Chassin deKergommeaux and Robert 1990℄. The goal of the PEPSys (Parallel ECRC Prolog System) projet was todevelop tehnology for the onurrent exploitation of and-parallelism and or-parallelism (details on how and-parallelism and or-parallelism are ombined are disussed in Setion 6.3.1). The implementation of hashingwindows in PEPSys is optimized w.r.t. what mentioned earlier. Bindings are separated into two lasses[Chassin de Kergommeaux and Robert 1990℄:� Shallow Bindings: these are bindings whih are performed by the same proess whih reated the variables;suh bindings are stored in-plae (in the environment). A stamp (alled Or-Branh-Level (OBL)) is alsostored with the binding. The OBL keeps trak of the number of hoie points present in the stak at eahpoint in time.� Deep Bindings: these are binding performed to variables whih lay outside of the loal omputation. Aessto suh bindings is performed using hashing windows.Variable look-up makes use of the OBL to determine whether the in-plae binding is valid or not|by omparingthe OBL of the binding with the OBL existing at the hoie point whih originated the urrent proess.Details of these mehanisms are presented in [Westphal, Robert, Chassin, Syre 1987℄. A detailed study of theperformane of PEPSys has been provided in [Chassin de Kergommeaux 1989℄.C. Favored-Bindings MethodThe favored binding method [Disz et al. 1987℄ proposed by researhers at Argonne National Laboratory isvery similar to the hash-window method. In this method the or-parallel tree is divided into favored, private,and shared setions. Bindings imparted to onditional variables by favored setion are stored in-plae in thenode. Bindings imparted by other setions are stored in a hash table ontaining a onstant number of bukets(32 in the Argonne implementation). Eah buket ontains a pointer to the linked list of bindings whih mapto that buket. When a new binding is inserted, a new entry is reated and inserted at the beginning of thelinked list of that buket as follows: (i) The next pointer �eld of the new entry reords the old value of thepointer in the buket. (ii) The buket now points to this new entry. At a branh point eah new node is givena new opy of the bukets (but not a new opy of the lists pointed to by the bukets).- 18 -



When a favored branh has to look up the value of a onditional variable it an �nd it in-plae in thevalue-ell. However, when a non-favored branh aesses a variable value it omputes the hash value usingthe address of the variable and loates the proper buket in the hash table. It then traverses the linked listuntil it �nds the orret value. Notie how separate environments are maintained by sharing the linked list ofbindings in the hash tables.D. Time Stamping MethodThe time-stamping method, developed by Tinker and Lindstrom [Tinker 1988℄, uses time stamps to distinguishthe orret bindings for an environment. All bindings for a variable are visible to all the workers (whih aredistint proesses reated when needed). All bindings are stamped with the time at whih they were reated.The bindings also reord the proess-id of the proess whih reated them. The branh points are also stampedwith the time at whih they were reated. An anestor stak, whih stores the anestor-proess/binding-timepairs to disambiguate variables, is also kept with eah proess. The anestor stak reords the binding spansduring whih di�erent proesses worked on a branh. The anestor stak is opied when a new proess isreated for an untried alternative.To aess the value of a variable, a proess has to examine all its bindings until the orret one is found,or none qualify, in whih ase the variable is unbound for that proess. To hek if a partiular binding isvalid, the id of the proess, say P, whih reated it and the time stamp are examined. Next, one heks ifthe time stamp falls in the time span of the proess P in any one of its entries in the anestor stak. If suha P/binding-span entry is found then the binding is valid, else the next binding is examined until there arenone left in whih ase the variable is not bound.This sheme was provided as part of the design of the BOPLOG system|an or-parallel Prolog systemfor BBN's Buttery arhitetures (a distributed memory mahine with global addressing apabilities). Themethod suggests a potential for lak of loality of referene, as the global address spae is extensively searhedin aessing bindings.E. Environment Closing MethodThe environment losing method was proposed by Conery [Conery 1987b℄ and is primarily designed for dis-tributed memory systems. The idea behind losing an environment is to make sure that all aesses are onlyto variables owned by searh tree nodes that reside loally. A node in the searh tree (Conery refers to nodesas frames) A is losed with respet to another node B by eliminating all pointers from the environment ofnode A to the environment of node B (hanging them from node B to node A instead). The proess involvestraversing all the strutures in node B whih an be reahed through the environment of node A. For eahunbound variable V in suh a struture a new variable V' is introdued in A. The unbound variable is made topoint to this new variable. The struture is opied into A, with the variable V in that struture being replaedby the new variable V'. Note that multiple environments for eah lause mathing a goal are represented inthis method through expliit opying of all unbound variables that are aessible from the terms in the goal.During exeution, eah new node introdued is losed with respet to its parent node after the uni�ation isdone. After the body of the lause orresponding to the node is solved the parent node is losed with respetto its hild node so that the hild's sibling an be tried. If the hild node orresponds to a unit lause theparent node is immediately losed with respet to its hild after uni�ation. Closing the hild node ensuresthat no variables in anestor nodes would be aessed. Closing the parent node ensures that the variablebindings produed by the exeution of its hildren are imported bak into the parent node's environment.This method trades synhronization time required to exhange variable bindings during parallel omputa-tions, with the extra time required to lose the environment. The foundation of this method an be traedbak to the Variable Import method [Lindstrom 1984℄, where forward uni�ation is used to lose the environ-ment of a new lause and bakward uni�ation is used to ommuniate the results at the end of a lause. Thesheme presented by Conery has also been adopted in the ROPM system [Kal�e, Ramkumar, Shu 1988℄.F. Binding Arrays Method - 19 -



In the binding arrays method [Warren 1984; 1987a℄ eah worker has an auxiliary data struture alled thebinding array.5 Eah onditional variable along a branh is numbered sequentially outward from the root.To perform this numbering, eah branh maintains a ounter; when branhing ours eah branh gets aopy of the ounter. When a onditional variable is reated it is marked as one (by setting a tag), and thevalue of the ounter reorded in it; this value is known as the o�set value of the variable.6 The ounter isthen inremented. When a onditional variable gets bound, the binding is stored in the binding array of theworker at the o�set loation given by the o�set value of that onditional variable. In addition, the onditionalbinding together with the address of the onditional variable is stored in the trail. Thus, the trail is extendedto inlude bindings as well. If the binding of this variable is needed later, then the o�set value of the variableis used to index into the binding array to obtain the binding. Note that bindings of all variables, whetheronditional or unonditional, are aessible in onstant time. This is illustrated in Figure 5. Worker P1 isexploring the leftmost branh (with terminal suess node labeled n1). The onditional variables X and M havebeen alloated o�sets 0 and 1 respetively. Thus, the bindings for X and M are stored in the loations 0 and1 of the binding array. The entries stored in the trail in nodes are shown in square brakets in the �gure.Suppose the value of variables M is needed in node n1; M's o�set stored in the memory loation alloated to itis then obtained. This o�set is 1, and is used by worker P1 to index into the binding array, and obtain M'sbinding. Observe that the variable L is unonditionally aliased to X, and for this reason L is made point to X.The unonditional nature of the binding does not require alloation of an entry in the binding array for L.To ensure onsisteny, when a worker swithes from one branh (say bi) of the or-tree to another (say bj), ithas to update its binding array by de-installing bindings from the trail of the nodes that are in bi and installingthe orret bindings from the trail of the nodes that are in bj . For example, suppose worker P1 �nishes workalong the urrent branh and deides to migrate to node n2 to �nish work that remains there. To be able todo so, it will have to update its binding array so that the state that exists along the branh from root nodeto node n2 is reeted in its environment. This is aomplished by making P1 to travel up along the branhfrom node n1 towards the least ommon anestor node of n1 and n2, and removing those onditional bindingsfrom its binding array that it made on the way down. The variables whose bindings need to be removed arefound in the trail entries of intervening nodes. One the least ommon anestor node is reahed, P1 will movetowards node n2, this time installing onditional bindings found in the trail entries of nodes passed along theway. This an be seen in Figure 5. In the example, while moving up worker P1 untrails the bindings for X andM, sine the trail ontains referenes to these two variables. When moving down to node n2, worker P1 willretrieve the new bindings for X and M from the trail and install them in the binding array.The binding arrays method has been used in the Aurora or-parallel system, whih is desribed in more detailin Setion 3.5. Other systems have also adopted the binding arrays method (e.g., the Andorra-I system [SantosCosta, Warren, Yang 1991a℄). Furthermore, a number of variations on the idea of binding arrays have beenproposed|e.g., Paged Binding Arrays, Sparse Binding Arrays|mostly aimed to provide better support forombined exploitation of and-parallelism and or-parallelism. These are disussed in Setions 6.3.6 and 6.3.7.G. Versions Vetors MethodThe versions vetors method [Hausman, Ciepielewski, Haridi 1987℄ is very similar to the binding arrays methodexept that instead of a onditional variable being alloated spae in the binding array eah one is assoiatedwith a versions vetor. A versions vetor stores the vetor of bindings for that variable suh that the bindingimparted by a worker with proessor-id i (proessor ids are numbered from 1 to n, where n is the total numberof workers) is stored at o�set i in the vetor. The binding is also reorded in the trail, as in the bindingarrays method. Like in the binding arrays method, on swithing to another branh a worker with pid j has toupdate the jth slots of versions vetors of all onditional variables that lie in the intervening nodes to reetthe orret bindings orresponding to the new site.5Note that the desription that follows is largely based on [Warren 1987a℄ rather than on [Warren 1984℄. The binding arraystehnique in [Warren 1984℄ is not primarily onerned with or-parallelism but rather with (primarily sequential) non-depth-�rstsearh.6Most systems, e.g., Aurora, initially treat all the variables as onditional, thus plaing them in the binding array.- 20 -
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Fig. 5. The Binding Arrays MethodTo our knowledge the method has never been integrated in an atual prototype. Nevertheless, the modelhas the potential to provide good performane, inluding the ability to support the orthogonality priniplerequired by ombined exploitation of and-parallelism and or-parallelism (see Setion 6.3.7).3.2.2 Non-Shared Representation of Computation TreeA. Stak-opying MethodIn the Stak-opying method [Ali and Karlsson 1990a; 1990a℄ a separate environment is maintained by eahworker in whih it an write without ausing any binding onits. In Stak-opying even unonditionalbindings are not shared, as they are in the other methods desribed above. When an idle worker P2 piksan untried alternative from a hoie-point reated by another worker P1, it opies all the staks of P1. As aresult of opying, eah worker an arry out exeution exatly like a sequential system, requiring very littlesynhronization with other workers.In order to avoid dupliation of work, part of eah hoie point (spei�ally the set of unexplored alter-natives) is moved to a frame reated in an area easily aessible by eah worker. This allows the system tomaintain a single list of unexplored alternatives for eah hoie point, whih is aessed in mutual exlusion bythe di�erent workers. A frame is reated for eah shared hoie point and is used to maintain various shedul-ing information (e.g., bitmaps keeping trak of workers working below eah hoie point). This is illustratedin Figure 6. Eah hoie point shared by multiple workers has a orresponding frame in the separate SharedSpae. Aess to the unexplored alternatives (whih are now loated in these frames) will be performed inmutual exlusion, thus guaranteeing that eah alternative is exeuted by exatly one worker.The opying of staks an be made more eÆient through the tehnique of inremental opying. The ideaof inremental opying is based on the fat that the idle worker ould have already traversed a part of thepath from the root node of the or-parallel tree to the least ommon anestor node, thus it does not need toopy this part of staks. In Figure 7 this is illustrated in an example. In Figure 7(i) we have two workersimmediately after a sharing operations whih has transferred three hoie points from worker P1 to P2. In- 21 -
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(i) (ii) (iii)Fig. 7. Inremental Stak CopyingFigure 7(ii) worker P1 has generated two new (private) hoie points while P2 has failed in its alternative.Figure 7(iii) shows the resulting situation after another sharing between the two workers; inremental opyinghas been applied, thus leading to the opy of only the two new hoie points.Reently, inremental opying have been proved to have some drawbaks with respet to managementof ombined and-parallelism and or-parallelism as well as management of speial types of variables (e.g.,attributed variables). Reent shemes, suh as the COWL models (desribed in Setion 6.3.5) overome manyof these problems.This model is an evolution of the work on BC-mahine by Ali [Ali 1987℄|a model where di�erent workersonurrently start the omputation of the query and automatially selet di�erent alternatives when hoiepoints are reated. It has also found a di�erent instantiation in the Kabu Wake model [Masuzawa et al. 1986℄.In this method, idle workers request work from busy ones, and work is transmitted by opying environmentsbetween workers. The main di�erene w.r.t. the previously desribed approah is that the soure worker (i.e.,the busy worker from where work is taken) is required to \temporarily" baktrak to the hoie point to besplit in order to undo bindings before opying take plae.Stak opying has found eÆient implementation in a variety of systems, suh as MUSE [Ali and Karlsson1990a℄ (disussed in more detail in Setion 3.5.2), Elipse [Wallae, Novello, Shimpf 1997℄, and YAP [SantosCosta, Damas, Reis, Azevedo 1999℄. Stak opying has also been adopted in a number of distributed memoryimplementations of Prolog, suh as OPERA [Briat et al. 1992℄ and PALS [Villaverde, Guo, Pontelli, Gupta- 22 -



2000℄.B. Stak SplittingIn the stak-opying tehnique, eah hoie-point has to be \shared"|i.e., transfered to a ommon sharedarea aessible by all the workers|to make sure that the seletion of its untried alternatives by variousonurrent workers is serialized, so that no two workers an pik the same alternative. The shared hoiepoint is loked while the alternative is seleted to ahieve this e�et. As disussed in [Gupta and Pontelli1999a℄ this method allows the use of very eÆient sheduling mehanisms|suh as the sheduling on bottom-most hoie point used by Aurora and MUSE|but may ause exessive lok ontention, or exessive networktraÆ if realized on a distributed memory system. However, there are other simple ways of ensuring that noalternative is simultaneously seleted by multiple workers: the untried alternatives of a hoie-point an besplit between the two opies of the hoie-point stak. This operation is alled Choie-point Stak-Splitting, orsimply Stak-splitting. This will ensure that no two workers pik the same alternative.Di�erent shemes for splitting the set of alternatives between the two (or more) hoie-points an beenvisioned|e.g., eah hoie-point reeives half of the alternatives, or the partitioning an be guided byadditional information regarding the unexplored omputation, suh as granularity and likelihood of failure. Inaddition, the need for a shared frame, as a ritial setion to protet the alternatives from multiple exeutions,has disappeared, as eah stak opy has a hoie-point, though their ontents di�er in terms of whih unexploredalternatives they ontain. All the hoie-points an be evenly split in this way during the opying operation.The hoie-point stak-splitting operation is illustrated in �gure 8.
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P2Fig. 8. Stak-splitting based or-parallelismThe major advantage of stak-splitting is that sheduling on bottom-most an still be used without in-urring huge ommuniation overheads. Essentially, after splitting the di�erent or-parallel threads beomefairly independent of eah other, and hene ommuniation is minimized during exeution. This makes thestak-splitting tehnique highly suitable for distributed memory mahines. The possibility of parameteriz-ing the splitting of the alternatives based on additional semanti information (granularity, non-failure, userannotations) an further redue the likelihood of additional ommuniations due to sheduling.In [Gupta and Pontelli 1999a℄ results have been reported indiating that for various benhmarks, staksplitting obtains better speedups than MUSE on shared memory arhitetures|thanks to a better loality ofomputation and redued interation between workers. Preliminary work on implementing stak-splitting ondistributed memory mahine has also provided positive results in terms of speedups and eÆieny [Villaverde,Guo, Pontelli, Gupta 2000℄.C. Reomputation-based ModelsIn the stak-opying shemes, an idle worker aquires work by opying the data strutures assoiated toa given segment of the omputation, in order to rereate the state of the omputation from where the newalternative will start. An alternative approah to opying is to have idle workers rereate suh data-strutures- 23 -



by repeating the omputation from the root of the or-tree all the way to the hoie-point from where a newalternative will be taken. Thus, the ontent of the staks of the abstrat mahine is reonstruted, rather thanopied. This approah is at the base of the Delphi system [Cloksin and Alshawi 1988℄ and of the RandomizedParallal Baktraking method [Janakiram, Agarwal, Malhotra 1988℄.These reomputation-based methods have the lear advantage of reduing the interations between workersduring the sharing operations. In Delphi, the exhange of work between workers boils down to the transfer ofan orale from the busy worker to the idle one. An orale ontains identi�ers whih desribe the the path inthe or-tree that the worker needs to follow to reah the unexplored alternative. A entralized ontroller is inharge of alloating orales to idle agents. The method has attrated onsiderable attention, but has providedrelatively modest parallel performanes on arbitrary Prolog programs. Variations of this method have beene�etively used to parallelize speialized types of logi programming omputations (e.g., in the parallelizationof Stable Logi Programming omputations [Pontelli and El-Khatib 2001℄).3.3 Support for Full PrologMost of the models desribed above onsider only pure logi programs (pure Prolog) for parallel exeution.However, to make logi programming pratial many extra-logial, meta-logial and input/output prediateshave been inorporated in Prolog. Some researhers have taken the view that a parallel logi programmingsystem should transparently exeute Prolog programs in parallel [Lusk et al. 1990; Hausman, Ciepielewski,Calderwood 1988℄. That is, the same e�et should be seen by a user during parallel exeution of a Prologprograms, as far as input/output et. are onerned (inluding printing of the �nal solutions), as in itssequential exeution with Prolog omputation and seletion rules. Suh a system is said to support (observable)sequential Prolog semantis. The advantage of suh an approah is that existing Prolog programs an be takenand exeuted in parallel without any modi�ations. Two prominent or-parallel systems that have been built,namely MUSE and Aurora, do support sequential Prolog semantis by exeuting an extra-logial prediatesonly when the branh ontaining it beomes the leftmost in the searh tree. Di�erent tehniques have beenproposed to detet when a branh of the or-parallel tree beomes the leftmost ative branh in the tree [Aliand Karlsson 1990a; Kal�e, Padua, Sehr 1988; Sindaha 1993℄. Arguably, the tehniques used in Aurora havebeen the most well researhed and suessful [Hausman, Ciepielewski, Calderwood 1988; Hausman 1990℄. Inthis approah, the system maintains for eah node n in the searh tree a pointer to one of its anestor nodesm, alled the sub-root node, whih represents the highest anestor (i.e., loser to the root) suh that n lies inthe leftmost branh of the tree rooted at m. If m is equal to the root of the tree, then the node n is leftmostbranh of the searh tree.In addition to this, various or-parallel Prolog systems (e.g., Aurora and MUSE) provide variants of thedi�erent order-sensitive prediates whih an be exeuted without requiring any form of synhronization|these are typially alled avalier prediates. The use of avalier extra-logial prediates leads to an operationalbehavior di�erent from that of Prolog|e.g., a avalier write operation is going to be exeuted immediatelyirrespetively of the exeution of the other extra-logial prediates in the searh tree.An issue that arises in the presene of pruning operators suh as uts and ommits during or-parallelexeution is that of speulative work [Hausman 1989; 1990; Ali and Karlsson 1992b; Beaumont and Warren1993; Sindaha 1992℄. Consider the following program:p(X, Y) :- q(X), !, r(Y).p(X, Y) :- g(X), h(Y)....and the goal:?- p(A, B).Exeuting both branhes in parallel, orresponding to the two lauses that math this goal, may result inunneessary work, beause sequential Prolog semantis entail that if q(X) sueeds then the seond lause forp shall never be tried. Thus, in or-parallel exeution, exeution of the seond lause is speulative, in the sensethat its usefulness depends on the suess/failure outome of goal q.- 24 -



It is a good idea for a sheduler designed for an or-parallel system that supports sequential Prolog semantis totake speulative work into aount. Essentially, suh a sheduler should bias all the workers to pik work thatis within the sope of a ut from branhes to the left in the orresponding subtree rather than from branhesto the right [Ali and Karlsson 1992b; Beaumont 1991; Beaumont and Warren 1993; Sindaha 1992℄.A detailed survey on sheduling and handling of speulative work for or-parallelism is beyond the sope ofthis paper, and an be found in [Ciepielewski 1992℄. One must note that the eÆieny and the design of thesheduler has the biggest bearing on the overall eÆieny of an or-parallel system (or any parallel system forthat matter). We desribe two suh systems in Setion 3.5, where a signi�ant amount of e�ort has beeninvested in designing and �ne-tuning the or-parallel system and its shedulers.3.4 Problem Abstration and Complexity3.4.1 Abstration of the ProblemsIn this setion we provide a brief overview of the theoretial abstration of the problems arising in or-parallelexeution of Prolog programs. Complete details regarding this study an be found elsewhere [Ranjan, Pontelli,Gupta 1999℄. Exeution of a program an be abstrated as building a (rooted, labeled) tree. For the sake ofsimpliity, we will assume that the trees are binary; this assumption does not lead to any loss of generalitybeause, for a given program, the number of branhes at any given node is bounded by some onstant. Theproess of building the tree an be abstrated through the following three operations:(1) reate tree() whih reates a tree ontaining only the root, with label ;(2) expand(u; 1; 2) whih, given one leaf u and two labels 1 and 2, reates two new nodes (one for eahlabel) and adds them as hildren of u (1 as left hild and 2 as right hild);(3) remove(u) whih, given a leaf u of the tree, removes it from the tree.These three operations are assumed to be the only ones available to modify the \physial struture" of thetree.The abstration of an or-parallel exeution should aount for the various issues present in or-parallelism|e.g., management of variables and of their bindings, reation of tasks et. Variables that arise during exeution,whose multiple bindings have to be orretly maintained, an be modeled as attributes of the nodes in the tree.� denotes a set of M variables. If the omputation tree has size N , then it is possible to assume M = O(N).At eah node u, three operations are possible:� assign a variable X to a node u.� dereferene a variable X at node u|that is, identify the anestor v of u (if any) whih has been assignedX .� alias two variables X1 and X2 at node u; this means that for every node v anestor of u, every refereneto X1 in v will produe the same result as X2 and vie-versa.The previous abstration assumed the presene of one variable binding per node. This restrition an be madewithout loss of generality|it is always possible to assume that the number of bindings in the node is bound bya program dependent onstant. The problem of supporting these dynami tree operations has been referredto as the OP problem [Ranjan, Pontelli, Gupta 1999℄.3.4.2 Complexity on Pointer MahinesIn this setion we summarize the omplexity results that have been developed for the abstration of or-parallelism desribed in the previous setion. The omplexity of the problem has been studied on pointermahines [Ben-Amram 1995; Sh�onhage 1980℄. Pointer mahine is a formal model for desribing algorithms,whih relies on an elementary mahine whose memory is omposed only by reords onneted via pointers.The interesting aspet of this model is that it allows a more re�ned haraterization of omplexity than themore traditional RAM model.Lower Bound for OP: As mentioned earlier, the only previous work that deals with the omplexity of themehanisms for or-parallelism is [Gupta 1994; Gupta and Jayaraman 1993b℄. This previous work provides aninformal argument to show that a generi OP problem with N variables and M operations has a lower bound- 25 -



whih is stritly worse than 
(N +M). Intuitively, this means that no matter how good is an implementationmodel for or-parallelism, it will inur some osts during the exeution whih are dependent on the size of theomputation (e.g., the number of hoie points reated). This intuitive result has been formally proved tohold in [Ranjan, Pontelli, Gupta 1999℄, and an be summarized by the following theorem:Theorem 3.1. On pointer mahines, the worst ase time omplexity of OP is 
(lgN) per operation evenwithout aliasing.The basi idea of the proof is that sine there is no diret addressing in the pointer mahines starting froma partiular node only a \small" number of nodes an be aessed in a small number of steps. Thus, if we needto relate variables and hoie points in a very large tree, we need to inur a ost whih is dependent on thesize of the tree. Thus, at least one of the operations involved in the OP problem will take in the worst ase anamount of time whih is at least as large as lgN (where N is the number of hoie points in the omputationtree).It is also interesting to point out that the result does not depend on the presene of the alias operation;this means that the presene of aliasing between unbound onditional variables during an or-parallel exeutiondoes not reate any serious onern (note that this is not the ase for other forms of parallelism, where aliasingis a major soure of omplexity).The result essentially states that, no matter how smart is the implementation sheme seleted, there willbe ases whih will lead to a non-onstant time ost. This proof on�rms the result onjetured in [Gupta andJayaraman 1993b℄. This non-onstant time nature is also evident in all the implementation shemes presentedin the literature|e.g., the reation of the shared frames and the opying of the hoie points in MUSE [Aliand Karlsson 1990a℄, the installation of the bindings in Aurora [Lusk et al. 1990℄, management of time-stampsin various other models [Gupta 1994℄.Upper Bound for OP: The relevant researh on omplexity of the OP problem has been limited to showingthat a onstant time ost per operation annot be ahieved in any implementation sheme. Limited e�ort hasbeen plaed to supply a tight upper bound to this problem. Most of the implementation shemes proposed inthe literature an be shown to have a worst ase omplexity of O(N) per operation. Currently, the best resultahieved is the following:Theorem 3.2. The OP problem with no aliasing an be solved on a pointer mahine with a single operationworst{ase time omplexity of O( 3pN(lgN)k) for a small k.Method ComplexityKnown Upper Bound ~O(K �N 13 )Stak Copying [Ali and Karlsson 1990a℄ ~O(K �N)Diretory Tree Method [Gupta 1994℄ ~O(K �N lgN)Binding Arrays [Lusk et al. 1990℄ ~O(K �N)Environment Closing [Gupta 1994℄ ~O(K �N)Table I. Worst-ase Complexity of Some Or-parallel Shemes (K operations)The lower bound produed, O(lgN) per operation, is a on�rmation and re�nement of the results proposedby Gupta and Jayaraman [Gupta and Jayaraman 1993b℄, and a further proof that an ideal or-parallel system(where all the basi operations are realized with onstant-time overhead) annot be realized. The upper bound,~O( 3pN), even if far from the lower bound, is of great importane, as it indiates that (at least theoretially)there are implementation shemes whih have a worst ase time omplexity better than that of the existingmodels. Table I ompares the worst ase time omplexity of performing a sequene of K operations, on an- 26 -



N node tree, for some of the most well known shemes for or-parallelism [Gupta 1994℄. The proof of theorem3.2 indeed provides one of suh models|although it is still an open issue whether the theoretial superiorityof suh model an be translated into a pratial implementation sheme.3.5 Experimental SystemsIn this setion we illustrate in more detail two of the most eÆient or-parallel systems implemented.3.5.1 The Aurora Or-parallel Prolog SystemAurora is a prototype or-parallel implementation of the full Prolog language developed for UMA (UniformMemory Aess) shared-memory multiproessors suh as the Sequent Symmetry and subsequently ported[Mudambi 1991℄ to NUMA (Non-Uniform Memory Aess) arhitetures suh as the BBN TC-2000 (a salablearhiteture with Motorola 88000 proessors7). Let us remind that UMA arhitetures are haraterized by thefat that eah proessor in the system guarantee the same average aess time to any memory loation, whileNUMA arhitetures (e.g., lusters of shared memory mahines) may lead to di�erent aess time dependingon the memory loation onsidered.Aurora was developed as part of an informal researh ollaboration known as the \Gigalips Projet" withresearh groups at Argonne National Laboratory, the University of Bristol (initially at the University ofManhester), the Swedish Institute of Computer Siene, and IQSOFT SZKI Intelligent Software Co. Ltd.,Budapest as the main implementors.Aurora is based on the SRI model, as originally desribed in [Warren 1987a℄ and re�ned in [Lusk et al. 1990℄.The SRI-model employs binding arrays for representing multiple environment. In the SRI model, a group ofproessing agents alled workers ooperate to explore a Prolog searh tree, starting at the root (the topmostpoint). A worker has two oneptual omponents: an engine, whih is responsible for the atual exeutionof the Prolog ode, and a sheduler, whih provides the engine omponent with work. These omponents arein fat independent of eah other, and a lean interfae between them has been designed [Szeredi, Carlsson,Yang 1991; Carlsson 1990℄ allowing di�erent shedulers and engines to be plugged in. To date, Aurora hasbeen run with �ve di�erent shedulers, and the same interfae has been used to onnet one of the shedulerswith the Andorra-I engine [Santos Costa, Warren, Yang 1991a℄ to support both and- and or-parallelism. TheAurora engine and ompiler [Carlsson 1990℄ were onstruted by adapting SICStus Prolog 0.6 [Carlsson et al.1995℄. Garbage olletion for Aurora has been investigated by Weemeeuw [Weemeeuw and Demoen 1990℄.In the SRI model, the searh tree, de�ned impliitly by the program, is expliitly represented by a atusstak generalizing the staks of sequential Prolog exeution. Workers that have gone down the same branhshare the data on that branh. Bindings of shared variables must of ourse be kept private, and are reordedin the worker's private binding array. The basi Prolog operations of binding, unbinding, and derefereningare performed with an overhead of about 25% relative to sequential exeution (and remain fast, onstant-time operations). However, during task swithing the worker has to update its binding array by deinstallingbindings as it moves up the tree and installing bindings as it moves down another branh. This overheadinurred, alled migration ost (or task-swithing ost), is proportional to the number of bindings that aredeinstalled and installed. Aurora divides the or-parallel searh tree into a publi region and a private region.The publi region onsists of those nodes from whih other workers an pik up untried alternatives. Theprivate region onsists of nodes private to a worker that annot be aessed by other workers. Exeutionwithin the private region is exatly like sequential Prolog exeution. Nodes are transferred from the privateregion of a worker P to the publi region by the sheduler, whih does so when another idle worker Q requestswork from worker P .One of the prinipal goals of Aurora has been the support of the full Prolog language. Preserving thesemantis of built-in prediates with side e�ets is ahieved by synhronization: whenever a non-leftmostbranh of exeution reahes an order-sensitive prediate, the given branh is suspended until it beomesleftmost [Hausman 1990℄. This tehnique ensures that the order-sensitive prediates are exeuted in the sameleft-to-right order as in a sequential implementation, thus preserving ompatibility with these implementations.7Although the porting did not involve modi�ations of the system struture to take full advantage of the arhiteture's struture.- 27 -



It is often the ase that this strit form of synhronization is unneessary, and slows down parallel exeution.Aurora therefore provides non-synhronized variants for most order-sensitive prediates whih ome in twoavors: the asynhronous form respeting the ut pruning operator, and the ompletely relaxed avalier form.Notably, non-synhronized variants are available for the dynami database update prediates (assert, retratet.) [Szeredi 1991℄.A systemati treatment of pruning operators (ut and ommit) and of speulative work has proved to be oftremendous importane in or-parallel implementations. Algorithms for these aspets have been investigatedby Hausman [Hausman 1989; 1990℄ and inorporated into the interfae and shedulers.Graphial traing pakages have turned out to be essential for understanding the behavior of shedulersand parallel programs and �nding performane bugs in them [Disz and Lusk 1987; Herrarte and Lusk 1991;Carro et al. 1993℄.Several or-parallel appliations for Aurora were studied in [Klu�zniak 1990℄ and [Lusk, Mudambi, Overbeek,Szeredi 1993℄. The non-synhronized dynami database features have been exploited in the implementationof a general algorithm for solving optimization problems [Szeredi 1991℄.Three shedulers are urrently operational. Two older shedulers were written [Butler et al. 1988; Brand1988℄, but have not been updated to omply with the sheduler-engine interfae:� The Manhester Sheduler. The Manhester sheduler [Calderwood and Szeredi 1989℄ tries to mathworkers to available work as well as possible. The mathing algorithm relies on global arrays, indexedby worker number. One array indiates the work eah worker has available for sharing and its migrationost, and the other indiates the status of eah worker and its migration ost if it is idle. The Manhestersheduler was not designed for handling speulative work properly. A detailed performane analysis of theManhester sheduler was done in [Szeredi 1989℄.� The Bristol Sheduler. The Bristol sheduler tries to minimize sheduler overhead by extending thepubli region eagerly: sequenes of nodes are made publi instead of single nodes, and work is taken fromthe bottommost live node of a branh. This idea was originally explored in the ontext of the MUSE system,and suessively integrated in a preliminary version of the Bristol Sheduler [Beaumont et al. 1991℄. Thepresent version of the sheduler [Beaumont and Warren 1993℄ addresses the problem of eÆiently shedulingspeulative work. It atively seeks the least speulative, seleting a leftmost branh if the work is speulativeand a `rihest' branh (i.e., branh with most work) if the work is non-speulative.� The Dharma Sheduler. The Dharma sheduler [Sindaha 1993; 1992℄ is also designed for eÆientlysheduling speulative work. It addresses the problem of quikly �nding the leftmost, thus least speulative,available work, by diretly linking the tips of eah branh.The speed-ups obtained by all shedulers of Aurora for a diverse set of benhmark programs have beenvery enouraging. Some of the benhmark programs ontain signi�ant amount of speulative work, in whihspeed-ups are measured for �nding the �rst (leftmost) solution. The degree of speedup obtained for suhbenhmark programs depends on where in the Prolog searh tree the �rst solution is, and on the frequenyof workers moving from right to left towards less speulative work. There are other benhmark programsthat have little or no speulative work beause they produe all solutions. The degree of speedup for suhbenhmark programs depends on the amount of parallelism present and on the granularity of parallelism.More on the Aurora system, and a detailed disussion of its performane results, an be found in [Calderwoodand Szeredi 1989; Szeredi 1989; Beaumont et al. 1991; Beaumont and Warren 1993; Sindaha 1992℄. Reently,Aurora was also ported on distributed memory arhitetures [Silva and Watson 2000℄.3.5.2 The MUSE Or-parallel Prolog SystemThe MUSE or-parallel Prolog system has been designed and implemented on a number of UMA and NUMAomputers (Sequent Symmetry, Sun Galaxy, BBN Buttery II, et.) [Ali and Karlsson 1990a; 1990a; 1992a;Ali et al. 1992; Ali and Karlsson 1992b; Karlsson 1992℄. It supports the full Prolog language and programsrun on it with almost no user annotations. It is based on a simple extension of the state-of-the-art sequentialProlog implementation (SICStus WAM [Carlsson et al. 1995℄).The MUSE model assumes a number of extended WAMs (alled workers, as in Aurora), eah with its ownloal address spae, and some global spae shared by all workers. The model requires opying parts of the- 28 -



WAM staks when a worker runs out of work or suspends its urrent branh. The opying operation is madeeÆient by utilizing the stak organization of the WAM. To allow opying of memory between workers withoutthe need of any pointer reloation operation, MUSE makes use of a sophistiated memory mapping sheme.The memory is partitioned between the di�erent workers; eah worker is implemented as a separate proess,and eah proess maps its own loal partition to the same range of memory addresses|whih allows foropying without pointer reloations. The partitions belonging to other proesses are instead loally mappedto di�erent address ranges. This is illustrated in Figure 9. The partition of worker 1 is mapped at di�erentaddress ranges in di�erent workers; the loal partition reside at the same address range in eah worker.
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node. If the idle worker annot �nd non-speulative work in the system, it will resume the leftmost part ofthe voluntarily suspended setion of the tree.The MUSE system ontrols the granularity of jobs at run-time by avoiding sharing very small tasks. Theidea is that when a busy worker reahes a situation at whih it has only one private parallel node, it will makeits private load visible to the other workers only when that node is still alive after a ertain number of Prologproedure alls. Without suh a mehanism the gains due to parallel exeution an be lost as the number ofworkers is inreased.A lean interfae between the MUSE engine and the MUSE sheduler has been designed and implemented.It has improved the modularity of the system and preserved its high eÆieny.Tools for debugging and evaluating the MUSE system have been developed. The evaluation of the systemon Sequent Symmetry and on BBN Buttery mahines I and II shows very promising results in absolute speedand also in omparison with results of the other similar systems. The speed-ups obtained are near linear forprograms with large amounts of or-parallelism. For programs that do not have enough or-parallelism to keepall available workers busy the speed-ups are (near) linear up to the point where all parallelism is exploited.The speed-up does not inrease or derease thereafter with inrease in number of workers. For programs withno or very low or-parallelism, the speed-ups obtained are lose to 1 due to very low parallel overheads. Moredetails of the MUSE system and a disussion of its performane results an be found in referenes ited earlier[Ali and Karlsson 1992a; Ali et al. 1992; Ali and Karlsson 1992b; Karlsson 1992℄.MUSE an be onsidered one of the �rst ommerial parallel logi programming systems to ever bedeveloped|MUSE has been inluded for a number of years as part of the standard distribution of SICS-tus Prolog [Carlsson et al. 1995℄8.4. INDEPENDENT AND-PARALLELISMIndependent and-parallelism arises when two or more independent subgoals an be exeuted in parallel. Giventwo subgoals, they either have a data dependeny between them (e.g., ourrene of the same variable in theargument terms of two subgoals at runtime) or they don't. If they don't have any data dependenies thenthey an be freely exeuted in parallel. This kind of and-parallelism is termed as independent and-parallelism.If they do have data dependenies then they an still be exeuted independently in parallel, although only upto a ertain point beause unrestrited parallel exeution of two dependent subgoals an be very ineÆient,as will be disussed in the next subsetion.To take a simple example, onsider the na��ve �bonai program shown below:fib(0, 1).fib(1, 1).fib(M, N) :- [ M1 is M - 1, fib(M1, N1) ℄,[ M2 is M - 2, fib(M2, N2) ℄,N is N1 + N2.Assuming the exeution of this program by supplying the �rst argument as input, the two lists of goals,eah enlosed within square brakets above, have no data dependenies among themselves and hene anbe exeuted independently in parallel with eah other. But the last subgoal N is N1 + N2 depends on theoutomes of the two and-parallel subgoals, and should start exeution only after N1 and N2 get bound.Similarly to the ase of or-parallelism, development of an and-parallel omputation an be depited usinga tree struture (and-tree). In this ase, eah node in the tree is labeled by a onjuntion of subgoals andit ontains as many hildren as subgoals in the onjuntion. Figure 10 illustrates a simple and-tree for theexeution of fib(2,X) w.r.t. the above program. The dashed line in Figure 10 is used to denote the fat thatit is irrelevant whether the subgoal X is N1+N2 is a hild of either of the two nodes above.Independent and-parallelism manifests itself in a number of appliation|those in whih a given probleman be divided into a number of independent sub-problems. For example, it appears in divide and onqueralgorithms, where the independent reursive alls an be exeuted in parallel (e.g., matrix multipliation,quiksort, et.).8MUSE is not supported anymore by SICS. - 30 -



fib(2,X)

[M1 is 2-1, fib(M1,N1)]  ,  [M2 is 2-2, fib(M2,N2]

fib(1,N1) fib(0,N2)

X is N1+N2Fig. 10. An And-tree for And-parallelism4.1 Problems in Implementing Independent And-parallelismIn this setion we examine the problems assoiated with implementing independent and-parallelism. Wedisuss the various phases of an independent and-parallel system and examine the problems enountered ineah.An independent and-parallel exeution an be divided into three phases [Conery and Kibler 1983℄:i. Ordering Phase: deals with detetion of dependenies among goals.ii. Forward Exeution Phase: deals with the steps needed to selet the next subgoal for exeution and initiateits exeution.iii. Bakward Exeution Phase: deals with steps to be taken when a goal fails, i.e., the operation of bak-traking.4.1.1 Ordering PhaseThe ordering phase in independent and-parallel system is onerned with deteting data dependenies betweensubgoals. One it is determined that two (or more) subgoals do not have any data dependenies they an beexeuted in parallel. If an and-parallel exeution is initiated without aring for data dependenies, then itmay lead to wasteful omputation. Consider the following rules:solves(X) :- produer(X), onsumer(X).and the goal?- solves(Z).Suppose X is an \output argument" for produer and \input argument" for onsumer, i.e., there is a data de-pendeny between the two subgoals. Suppose we initiate their exeution in parallel and assume that produerprodues the binding X = a while onsumer onurrently searhes for values of X. The goal onsumer mightgenerate a number of bindings for X after a great deal of omputation, very few of whih math with a.There are two plaes here where wasteful omputation takes plae. Firstly, onsumer omputes bindings forX whih will eventually be disarded, hene these omputations are wasted. If onsumer had known that theonly permissible value of X is a, its searh spae would have been narrowed. Seondly, every time onsumerprodues a binding for X the binding value has to be uni�ed with the binding value produed by produer todetermine that they are idential. This uni�ation, termed bak-uni�ation [Wise 1986℄, an introdue someextra overhead.Data dependenies annot always be deteted at ompile time, beause in many ases they arise only duringprogram exeution. Consider the lause: - 31 -



p(X, Y) :- r(X), s(Y).It may appear that the goals r and s are independent in the lause for p and hene an be exeuted in parallel.However, it is possible that the variables X and Y may get aliased at runtime, making them dependent on eahother. For instane, if the query was ?- p(Z,Z), both X and Y would get aliased to eah other via Z.The example above learly shows that syntati data dependeny heks are not suÆient for exploitingindependent and-parallelism. We have to hek for independene of subgoals at runtime. However, the ostinurred in inorporating heks at runtime will slow down program exeution.A number of approahes have been proposed for deteting data dependenies. They range from purely ompile-time tehniques to purely runtime ones. There is a trade-o� between the amount of and-parallelism exploitedand data dependeny analysis overhead inurred at runtime|purely ompile time tehniques may miss manyinstanes of independent and-parallelism but inur very little run-time overhead, while purely run time teh-niques may apture maximal independent and-parallelism at the expense of ostly overhead. Data dependen-ies annot always be deteted entirely at ompile time, although ompile-time analysis tools an unover asigni�ant number of them. The various approahes are briey desribed below:i. Input Output Modes: One way to overome the data dependeny problem is to require the user to speifythe `mode' of the variables, i.e., whether an argument of a prediate is an input variable or an outputvariable. Input variables of a subgoal are known to beome bound before the subgoal starts and outputvariables are variables that will be bound by the subgoal during its exeution.Modes have also been introdued in the ommitted hoie languages [Tik 1995; Shapiro 1987℄ to atuallyontrol the and-parallel exeution (but leading to an operational semantis di�erent from Prolog's one).ii. Stati Data Dependeny Analysis: In this tehnique the goal and the program lauses are globally analyzedat ompile time, assuming a worst ases for subgoal dependenies [Chang, Despain, DeGroot 1985℄. Noheks are done at runtime. Sine the analysis is done at ompile-time, assuming a worst ase senario, alot of parallelism may be lost. The advantage is, of ourse, that no overhead is inurred at run-time.iii. Run-time Dependeny Graphs: Another approah is to generate the dependeny graph at runtime. Thisinvolves examining bindings of relevant variables every time a subgoal �nishes exeuting. This approah hasbeen adopted, e.g., by Conery in his AND/OR model [Conery and Kibler 1981; 1983; Conery 1987a℄. Thisapproah has prohibitive runtime ost, sine variables may be bound to large strutures with embeddedvariables. The advantage of this sheme is that maximal independent and-parallelism ould be potentiallyexploited (but after paying a signi�ant ost at runtime). A simpli�ed version of this idea has also beenused in the APEX system [Lin and Kumar 1988℄. In this model a token-passing sheme is adopted: a tokenexists for eah variable and is made available to the leftmost subgoal aessing the variable. A subgoal isexeutable as soon as it owns the tokens for eah variable in its binding environment.iv. A fourth approah, whih is midway between (ii) and (iii), enapsulates the dependeny information inthe ode generated by the ompiler|in the form of soure ode annotations|along with the addition ofsome extra onditions (tests) on the variables. In this way simple runtime heks an be done to hekfor dependeny. This tehnique was �rst devised by DeGroot and is alled Restrited (or Fork/Join)And-Parallelism (RAP) [DeGroot 1984℄, and was formalized and enhaned by Hermenegildo and Nasr[Hermenegildo and Nasr 1986℄. Although it does not apture all the instanes of independent and-parallelismpresent in the program, it does manage to exploit a substantial part of it.The typial format used to desribe the annotations produed to identify instanes of independent and-parallelism is the following: ( onditions ) goal1 & : : : & goaln )where `&' indiates a parallel onjuntion|i.e., subgoals that an be solved onurrently (while the \," ismaintained to represent sequential onjuntion, i.e., to indiate that the subgoals should be solved sequen-tially). This form of annotation is disussed in detail in Setion 4.3.Approah (i) di�ers from the rest in that the programmer has to expliitly speify the dependenies, usingannotations. Approah (iv) is a nie ompromise between (ii), where extensive ompile time analysis isdone to get sub-optimal parallelism, and (iii), where a ostly runtime analysis is needed to get maximal- 32 -



parallelism. Moreover reent researh has shown that these annotations an be generated via ompile-timeanalysis [Muthukumar and Hermenegildo 1989a; 1991; Jaobs and Langen 1989; Hermenegildo and Green1991℄ based on abstrat interpretation [Cousot and Cousot 1977; 1992℄.4.1.2 Forward Exeution PhaseThe forward exeution phase follows the ordering phase. It selets independent goals that an be exeuted inindependent and-parallel, and initiates their exeution. The exeution ontinues like normal sequential Prologexeution until either failure ours, in whih ase the bakward exeution phase is entered, or a solution isfound. It is also possible that the ordering phase might be entered again during forward exeution; for examplein the ase of Conery's sheme when a non-ground term is generated. Implementation of the forward exeutionphase is relatively straightforward; the only major problem is the eÆient determination of the goals that areready for independent and-parallel exeution. Di�erent models have adopted di�erent approahes to taklethis issue, and they are desribed in the suessive subsetions.Various works have pointed out the importane of good sheduling strategies. Work by Hermenegildo et al.[Hermenegildo 1987℄ provided ideas on using more sophistiated sheduling tehniques aimed at guaranteeinga orret math between the logial organization of the omputation and its physial distribution on thestaks|with the aim of simplifying baktraking. Related researh on sheduling for independent and-parallelsystems has been proposed by Dutra [Dutra 1994℄. In [Pontelli and Gupta 1995a℄ a methodology is desribedwhih adapts sheduling mehanisms developed for or-parallel systems to the ase of independent and-parallelsystem. In the same way in whih or-parallel system tries to shedule �rst work that is more likely to sueed,and-parallel systems will gain from sheduling �rst work that is more likely to fail. The advantage of doingthis omes from the fat that most IAP systems supports intelligent forms of baktraking over and-parallelalls, whih allow to quikly propagate failure of a subgoal to the whole parallel all. Thus, if a parallel alldoes not have solutions, the sooner we �nd a failing subgoal, the sooner baktraking an be started. Someexperimental results have been provided in [Pontelli and Gupta 1995a℄ to support this perspetive. This notionis also lose to the �rst-fail priniple widely used in onstraint logi programming [Van Hentenryk 1989b℄.4.1.3 Bakward Exeution PhaseThe need for a bakward exeution phase arises from the non-deterministi nature of logi programming|aprogram's exeution involves hoosing at eah resolution step one of multiple andidate lauses, and this hoiemay potentially lead to distint solutions.The bakward exeution phase ensues when failure ours, or more solutions to the top-level query aresought after one is reported. The subgoal to whih exeution should baktrak is determined, the mahinestate is restored, and forward exeution of the seleted subgoal is initiated.In presene of IAP, baktraking beomes onsiderably more omplex, espeially if the system strives toexplore the searh spae in the same order as in a sequential Prolog exeution; in partiular� IAP leads to the loss of orrespondene between logial organization of the omputation and its physiallayout; this means that logially ontiguous subgoals (i.e., subgoals whih are one after the other in theresolvent) may be physially loated in non-ontiguous parts of the stak, or in staks of di�erent workers.In addition, the order of subgoals in the staks may not orrespond to their baktraking order.This is illustrated in the example in Figure 11. Worker 1 starts with the �rst parallel all, making b and available for remote exeution and loally starting the exeution of a. Worker 2 immediately starts andompletes the exeution of b. In the meantime, Worker 1 opens a new parallel all, loally exeuting d andmaking e available to other workers. At this point, Worker 2 may hoose to exeute e, and then . The �nalplaement of subgoals in the staks of the two workers is illustrated on the right of Figure 11. As we ansee, the physial order of the subgoals in the stak of Worker 2 does not math the logial order. This willlearly reate an hazard during baktraking, sine Prolog semantis require to explore �rst the alternativesof b before those of e, while the omputation of b is trapped on the stak below that of e.� baktraking may need to ontinue to the (logially) preeding subgoal, whih may still be exeuting at thetime baktraking takes plae.These problems are ompliated by the fat that independent and-parallel subgoals may have nested indepen-dent and-parallel subgoals urrently exeuting whih have to be terminated or baktraked over.- 33 -
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Fig. 11. Lak of Correspondene between Physial and Logial ComputationConsiderably di�erent approahes have been adopted in the literature to handle the bakward exeutionphase. The simplest approah, as adopted in models like Epilog, ROPM, AO-WAM [Wise 1986; Ramkumarand Kal�e 1989℄, is based on removing the need for atual baktraking over and-parallel goals through theuse of parallelism and solutions reuse. E.g., as shown in Figure 12, two threads of exeution are assignedto the distint subgoals, and they will be used to generate (via loal standard baktraking) all solutions toa and b. The bakward exeution phase is then replaed by a relatively simpler ross produt operation.Although intuitively simple, this approah su�ers from major drawbaks, inluding the extreme omplexityof rereating Prolog semantis|i.e., the orret order of exeution of order-sensitive prediates as well as theorret repetition of side-e�et prediates as imposed in the reomputation-oriented Prolog semantis. In thisontext, by reomputation-oriented semantis we indiate the fat that a subgoal is ompletely reomputed foreah alternative of the subgoals on its left; e.g., in a goal suh as ?- p,q, the goal q is ompletely reomputedfor eah solution of p.
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Parallel ExecutionFig. 12. Solution ReuseIn the ontext of independent and-parallel systems based on reomputation (suh as those proposed byDeGroot [DeGroot 1987℄, Hermenegildo [Hermenegildo 1986a℄, Kumar and Lin [Lin and Kumar 1988℄, andPontelli and Gupta [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄), di�erent baktraking algorithmshave been proposed. In the past, baktraking algorithms have been proposed whih later turned out to beinomplete [Woo and Choe 1986℄.The most popular orret baktraking algorithm for IAP has been presented by Hermenegildo and Nasr[Hermenegildo and Nasr 1986℄ and eÆiently developed in &-Prolog [Hermenegildo and Green 1991℄ and&ACE/ACE [Pontelli and Gupta 1998℄. A relatively similar algorithm has also been used in APEX [Lin andKumar 1988℄ and the algorithm has been extended to handle dependent and-parallelism as well [Shen 1992a℄.Let us onsider the following query:?- b1, b2, (q1 & q2 & q3), a1, a2and let us onsider the possible ases that an arise whenever one of the subgoals in the query fails.(1) if either a2 or b2 fails, then standard baktraking is used and baktraking is ontinued, respetively, ina1 or b1 (see Case 1 in Figure 13);(2) if a1 fails (outside baktraking) then baktraking should ontinue inside the parallel all, in the subgoalq3 (see Case 2 in Figure 13). The fat that a1 was exeuting implies that the whole parallel all (and in- 34 -



partiular q3) was ompleted. In this ase the major onern is to identify the loation of the omputationq3, whih may lie in a di�erent part of the stak (not neessarily immediately below a1) or in the stakof a di�erent worker. If q3 does not o�er alternative solutions, then, as in standard Prolog, baktrakingshould propagate to q2 and eventually to q1. Eah one of these subgoals may lie in a di�erent part of thestak or in the stak of a di�erent worker. If none of the subgoals returns any alternative solution, thenultimately baktraking should be ontinued in the sequential part of the omputation whih preedes theparallel all (b2). If qi sueeds and produes a new solution, then some parallelism an be reovered byallowing parallel reomputation of the subgoals qj for j > i.(3) if qi (i 2 f1; 2; 3g) fails (inside baktraking) during its exeution, then� the subgoals qj (j > i) should be removed;� as soon as the omputation of qi�1 is ompleted, baktraking should move to it and searh for newalternatives.This is illustrated in Case 3 of Figure 13. In pratie all these steps an be avoided relying on the fat thatthe parallel subgoals are independent|thus failure of one of the subgoals annot be ured by baktrakingon any of the other parallel subgoals. Hermenegildo suggested a form of semi-intelligent baktraking, inwhih the failure of either one of the qi auses the failure of the whole parallel onjuntion and baktrakingto b2.To see why independent and-parallel systems should support this form of semi-intelligent baktraking onsiderthe goal:?- a, b, , d.Suppose b and  are independent subgoals and an be exeuted in independent and-parallel. Suppose thatboth b and  are non-determinate and have a number of solutions. Consider what happens if  fails. Innormal sequential exeution we would baktrak to b and try another solution for it. However, sine b and do not have any data dependenies, retrying b is not going to bind any variables whih would help  tosueed. So if  fails, we should baktrak and retry a. This kind of baktraking, based on the knowledge ofdata dependene, is alled intelligent baktraking [Cox 1984℄. As should be obvious, knowledge about datadependenies is needed for both intelligent baktraking as well as independent and-parallel exeution. Thus,if an independent and-parallel system performs data dependeny analysis for parallel exeution, it should takefurther advantage of it for intelligently baktraking as well. Note that the intelligent baktraking ahievedmay be limited, sine, in the example above, a may not be able to ure failure of . Exeution modelsfor independent and-parallelism that exploit limited intelligent baktraking [Hermenegildo and Nasr 1986;Pontelli and Gupta 1998℄ as well as those that employ fully intelligent baktraking [Lin 1988; Codognet andCodognet 1989; Winsborough 1987℄ have been proposed and implemented. In partiular, the work Codognetand Codognet [Codognet and Codognet 1989℄ shows how to use a Dynami Conit Graph (a uni�ation graphreording for eah binding the literal responsible for it), designed to support sequential intelligent baktraking[Codognet, Codognet, Fil�e 1988℄ to support both forward and bakward and-parallel exeution.A further distintion has been made in the literature [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄,regarding how outside baktraking is arried out:� private baktraking: eah worker is allowed to baktrak only on the omputations lying in their ownstaks. Thus, if baktraking has to be propagated to a subgoal lying in the stak of another worker P ,then a spei� message has be sent to P , and P will (typially asynhronously) arry out the baktrakingativity;� publi baktraking: eah worker is allowed to baktrak on any omputation, independently from where itresides|it an also baktrak on omputations lying on the stak of a di�erent workers.Private baktraking has been adopted in various systems [Hermenegildo and Green 1991; Shen 1992a℄. Ithas the advantage of allowing eah worker to have omplete ontrol of the parts of omputation whih havebeen loally exeuted; in partiular, it failitates the task of performing garbage olletion as well as loaloptimizations. On the other hand, baktraking beomes an asynhronous ativity, sine a worker may not beready to immediately serve a baktraking request oming from another worker. A proper management of this- 35 -
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Fig. 13. Baktraking on And-parallel Callsmessage passing ativities (e.g., to avoid the risk of deadloks) makes the implementation very omplex [Shen1992b; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄. Furthermore, experiments performed in the &ACEsystem [Pontelli and Gupta 1998℄ demonstrated that publi baktraking is onsiderably more eÆient thanprivate baktraking|by allowing synhronous baktraking, without delays in the propagation of failures.At the implementation level, publi baktraking is also simpler|just requiring mutual exlusion in the aessof ertain memory areas. The disadvantage of publi baktraking is the oasional inability of immediatelyreovering memory during baktraking|sine in general we annot allow one worker to reover memorybelonging to a di�erent worker.4.2 Support for Full PrologLike in the ase of or-parallel systems, some researhers have favored supporting Prolog's sequential semantisin independent and-parallel systems [Muthukumar and Hermenegildo 1989b; DeGroot 1987; Chang and Chiang1989℄. This imposes some onstraints on how baktraking as well as forward exeution take plae. Essentially,the approah that has been taken is that if two independent goals are being exeuted in parallel, both of whihlead to an order-sensitive prediate, then the order-sensitive prediate in the right goal an only be performedafter the last order-sensitive prediate in the goal to the left has been exeuted. Given that this property isundeidable in general, it is typially approximated by suspending the side e�et until the branh in whihit appears is the leftmost in the omputation tree|i.e., all the branhes on the left have ompleted. It alsomeans that intelligent baktraking has to be sari�ed, beause onsidering again the previous example, if fails and we baktrak diretly into a, without baktraking into b �rst, then we may miss exeuting one ormore extra-logial prediate (e.g., input/output operations) that would be exeuted had we baktraked intob. Limited intelligent baktraking an be maintained and applied to the subgoals lying on the right of thefailing one.The issue of speulative omputation also arises in independent and-parallel systems. Given two independentgoals a(X), b(Y) that are being exeuted in and-parallel, if a eventually fails, then work put in for solving bwill go wasted (in sequential Prolog the goal b will not ever get exeuted). Therefore, not too many resoures(workers) should be invested on goals to the right. One again, it should be stressed, the design of thework-sheduler is very important for a parallel logi programming system.4.3 Independent And-parallel Exeution ModelsIn this setion we briey desribe some of the methods that have been proposed for realizing an independentand-parallel system. These are:(1) Conery's abstrat parallel implementation [Conery and Kibler 1981; 1983℄;(2) And-Parallel Exeution (APEX) Model of Lin and Kumar [Lin and Kumar 1988℄; and,- 36 -



(3) Restrited And-parallel (RAP) model, introdued by DeGroot [DeGroot 1984℄, and extended by Hermenegildoand Nasr [Hermenegildo and Nasr 1986; Hermenegildo 1986a℄ and by Gupta and Pontelli [Pontelli, Gupta,Hermenegildo 1995; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄.Conery's ModelIn this method [Conery and Kibler 1983℄ a data-ow graph is onstruted during the ordering phase makingthe produer-onsumer relationships between subgoals expliit. If a set of subgoals have an uninstantiatedvariable V in ommon, one of the subgoals is designated as the produer of the value of V and is solved �rst. Itssolution is expeted to instantiate V. When the produer has been solved, the other subgoals, the onsumers,may be sheduled for evaluation. The exeution order of the subgoals is expressed as a data-ow graph, inwhih an ar is drawn from the produer of a variable to all its onsumers.One the data-ow graph is determined, the forward exeution phase ensues. In this phase independentand-parallel exeution of subgoals whih do not have any ars inident on them in the data-ow graph isinitiated. When a subgoal is resolved away from the body of a lause (i.e., it is suessfully solved), theorresponding node and all of the ars emanating from it are removed from the data-ow graph. If a produerreates a non-ground term during exeution, the ordering algorithm must be invoked again to inrementallyredraw the data-ow graph.When exeution fails, some previously solved subgoal must be solved again to yield a di�erent solution.The bakward exeution phase piks the last parent (as de�ned by a linear ordering of subgoals, obtained bya depth �rst traversal of the data-ow graph) for the purpose of re-solving.Note that in this method data dependeny analysis for onstruting the data-ow graph has to be arriedout every time a non-ground term is generated, making its ost prohibitive.APEX ModelThe APEX (And Parallel EXeution) model has been devised by Lin and Kumar [Lin and Kumar 1988℄.In this method forward exeution is implemented via a token passing mehanism. A token is reated forevery new variable that appears during exeution of a lause. A subgoal P is a produer of a variable V if itholds the token for V. A newly reated token for a variable V is given to the leftmost subgoal P in the lausewhih ontains that variable. A subgoal beomes exeutable when it reeives tokens for all the uninstantiatedvariables in its urrent binding environment. Parallelism is exploited automatially when there are more thanone exeutable subgoals in a lause.The bakward exeution algorithm performs intelligent baktraking at the lause level. Eah subgoal Pidynamially maintains a list of subgoals (denoted as B-list(Pi)) onsisting of those subgoals in the lausewhih may be able to ure the failure of Pi, if it fails, by produing new solutions. When a subgoal Pi startsexeution, B-list(Pi) onsists of those subgoals that have ontributed to the bindings of the variables in thearguments of Pi. When Pi fails, Pj = head(B-list(Pi)) is seleted as the subgoal to baktrak to. The tailof B-list(Pi) is also passed to Pj and merged into B-list(Pj) so that if Pj is unable to ure the failure of Pi,baktraking may take plae to other subgoals in B-list(Pi).This method also has signi�ant runtime osts sine the B-lists are reated, merged and manipulated atruntime. APEX has been implemented on shared memory multiproessors for pure logi programs [Lin andKumar 1988℄.RAP ModelIn this method program lauses are ompiled into Conditional Graph Expressions (CGEs). Conditional GraphExpressions are expressions of the form(ondition ) goal1 & goal2 & : : : & goaln);meaning that, if ondition is true, goals goal1 : : : goaln should be evaluated in parallel, otherwise they shouldbe evaluated sequentially. The ondition is a onjuntion of onstraints of the type: ground(v1; : : : ; vn), whihheks whether all of the variables v1; : : : ; vn are bound to ground terms, or independent(v1; : : : ; vn), whih- 37 -



heks whether the set of variables reahable from eah of v1 : : : vn are mutually exlusive of one another. Theondition an also be the onstant true, whih means the goals an be unonditionally exeuted in parallel.The groundness and independene onditions are evaluated at runtime. A simple tehnique whih keepstrak of groundness and independene properties of variables through tags assoiated to the heap loationsis presented in [DeGroot 1984℄. The method is onservative in that it may type a term as nonground evenwhen it is ground|one reason why this method is regarded as \restrited." Another way in whih CGEs arerestritive is that they annot apture all the instanes of independent and-parallelism present in a program,beause of their parenthetial nature (the same reason why parbegin-parend expressions are less powerful thanfork-join expressions in exploiting onurreny [Peterson and Silbershatz 1986℄). Experimental evidene hasdemonstrated that among all the models the RAP model omes losest to realizing the riteria mentioned inthe previous setion. This model has been formalized and extended by Hermenegildo and Nasr, and has beeneÆiently implemented using WAM-like instrutions [Hermenegildo 1986a; Pontelli, Gupta, Hermenegildo1995℄ as the &-Prolog/CIAO system [Hermenegildo and Green 1991℄, as the &ACE/ACE system [Pontelli,Gupta, Hermenegildo 1995; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄, and as the dependent and-parallel DASWAM system [Shen 1992b; 1992a℄. The CGEs are generated at ompile time [Muthukumar andHermenegildo 1989a; 1991; Jaobs and Langen 1989℄ using the tehnique of abstrat interpretation [Cousot andCousot 1977; 1992℄. CGEs generated through this analysis at ompile-time manage to apture a substantialamount of independent and-parallelism [Muthukumar and Hermenegildo 1990℄.4.4 Experimental Systems4.4.1 The &-Prolog AND-Parallel Prolog System&-Prolog is a prototype Prolog implementation, relying on SICStus Prolog, and apable of exploitingindependent and-parallelism automatially by means of a parallelizing ompiler. Expliit parallelization ofprograms by the user is also supported through the &-Prolog language extensions, and more omplex forms ofand-parallelism (i.e., not just independent and-parallelism) an also be expressed. The same language is usedto make the result of the automati parallelization visible to the user if so desired. The parallelizing ompilerhas been integrated into the Prolog run-time environment in the standard way so that a familiar user interfaewith on-line interpreter and ompiler is provided. Normally, users are unaware (exept for the inrease inperformane) of any di�erene with respet to a onventional Prolog system. Compiler swithes (implementedas \prolog ags") determine whether or not user ode will be parallelized and through whih type of analysis.If the user hooses to parallelize some of the ode the ompiler still helps by heking the supplied annotationsfor orretness, and providing the results of global analysis to aid in the dependeny analysis task.&-Prolog was originally designed for shared memory systems and it has been implemented on a number ofshared memory multiproessors, inluding Sequent Balane, Sequent Symmetry, and Sun Galaxy systems. The&-Prolog system omprises a parallelizing ompiler aimed at unovering the parallelism in the program and anexeution model/run-time system aimed at exploiting suh parallelism. There is also an on-line visualizationsystem (based on the X-windows standard) whih provides a graphial representation of the parallel exeutionand has proven itself quite useful in debugging and performane tuning [Carro et al. 1993℄. The �rst versionof the &-Prolog system was developed ollaboratively between The University of Texas and MCC. Newerversions have been developed at the Tehnial University of Madrid (UPM).&-Prolog Parallelizing Compiler: Input ode is proessed by several ompiler modules as follows: TheAnnotator, or \parallelizer", performs a (loal) dependeny analysis on the input ode. It reeives informationfrom the Side-E�et Analyzer on whether or not eah non-builtin prediate and lause of the given programis pure, or ontains or alls a side-e�et. This information is used to orretly sequene suh side-e�ets[Muthukumar and Hermenegildo 1989b℄. If the appropriate option is seleted, the annotator gets informationabout the possible run-time substitutions (\variable bindings") at all parts in the program as well as othertypes of information from the Global Analyzer (desribed below). Finally, it also reeives information fromthe Granularity Analyzer regarding the size of the omputation assoiated with a given goal [Debray et al.1990℄. This information is used in an additional pass aimed at introduing granularity ontrol, implementedusing dynami term size omputation tehniques [Hermenegildo and Lopez-Garia 1995℄. The annotator usesall available information to rewrite the input ode for parallel exeution. Its output to the next stage is an- 38 -



annotated &-Prolog program. Some of the tehniques and heuristis used in the annotator are desribed in[Muthukumar and Hermenegildo 1990; Codish et al. 1995; Cabeza and Hermenegildo 1994℄. A �nal pass (anextension of the SICStus ompiler) produes ode for a speialized WAM engine (alled PWAM and desribedbelow) from an already parallelized &-Prolog program.The global analysis mentioned above is performed by using the tehnique of \abstrat interpretation"[Cousot and Cousot 1992℄ to ompute safe approximations of the possible run-time substitutions at all pointsin the program. Two generations of analyzers have been implemented, namely the \MA3" and \PLAI"analyzers. \MA3" [Hermenegildo, Warren, Debray 1992℄ uses the tehnique of \abstrat ompilation" and adomain whih is urrently known as \depth-K" abstration. Its suessor, PLAI, is a generi framework basedon that of Bruynooghe [Bruynooghe 1991℄ and the speialized �xpoint algorithms desribed in [Muthukumarand Hermenegildo 1989a; Muthukuar et al. 1999; Muthukumar and Hermenegildo 1992℄. PLAI also inludesa series of abstrat domains and uni�ation algorithms spei�ally designed for traking variable dependeneinformation. Other onepts and algorithms used in the global analyzer, the rest of the &-Prolog ompiler,and the MA3 and PLAI systems are desribed in [Muthukumar and Hermengildo 1991; Hermenegildo, Warren,Debray 1992; Codish et al. 1995℄.&-Prolog Run-Time System: The &-Prolog run-time system is based on the Parallel WAM (PWAM)model [Hermenegildo and Green 1991℄, an evolution of RAP-WAM [Hermenegildo 1986b; 1986a; Tik 1991℄,itself an extension of the Warren Abstrat Mahine (WAM) [Warren 1983℄. The atual implementation hasbeen performed by extending the SICStus-Prolog abstrat mahine.The philosophy behind the PWAM design is to ahieve similar eÆieny to a standard WAM for sequentialode while minimizing the overhead of running parallel ode. Eah PWAM is similar to a standard WAM.The instrution set inludes all WAM instrutions (the behavior of some WAM instrutions has to be modi�edto meet the needs of the PWAM|e.g., the instrutions assoiated to the management of hoie points) andseveral additional instrutions related to parallel exeution. The storage model inludes a omplete set ofWAM registers and data areas, alled a stak set, with the addition of a goal stak and two new types of stakframes: parall frames and markers. While the PWAM uses onventional environment sharing for sequentialgoals|i.e., an environment is reated for eah lause exeuted, whih maintains the data loal to the lause|ituses a ombination of goal staking and environment sharing for parallel goals: for eah parallel goal, a goaldesriptor is reated and stored in the goal stak, but their assoiated storage is in shared environments inthe stak. The goal desriptor ontains a pointer to the environment for the goal, a pointer to the ode of thesubgoal, and additional ontrol information. Goals whih are ready to be exeuted in parallel are pushed onto the goal stak. The goals are then available to be exeuted on any PWAM (inluding the PWAM whihpushed them).Parall frames are used for oordinating and synhronizing the parallel exeution of the goals inside aparallel all, both during forward exeution and during baktraking. A parall frame is reated as soon as aCGE (with a satis�able ondition part) is enountered. The CGE ontains, between the other things, a slotfor eah subgoal present in the parallel all; these slots will be used to keep trak of the status of the exeutionof the orresponding parallel subgoal.Markers are used to delimit stak setions (horizontal uts through the stak set of a given abstrat mahine,orresponding to the exeution of di�erent parallel goals) and they implement the storage reovery mehanismsduring baktraking of parallel goals in a similar manner to hoie-points for sequential goals [Hermenegildo1987; Shen and Hermenegildo 1993℄. As illustrated in Figure 14, whenever a PWAM selets a parallel subgoalfor exeution, it reates an input marker in its ontrol stak. The marker denotes the beginning of a newsubgoal. Similarly, as soon as the exeution of a parallel subgoal is ompleted, an end marker is reated onthe stak. As shown in the �gure, the input marker of a subgoal ontains a pointer to the end marker of thesubgoal on its left; this is needed to allow baktraking to propagate from parallel subgoal to parallel subgoalin the orret (i.e., Prolog) order.Figure 14 illustrates the di�erent phases in the forward exeution of a CGE. As soon as the CGE isenountered, a parall frame is reated by Worker 1. Sine the parallel all ontains three subgoals, Worker1 will keep one for loal exeution (p1) while the others will be made available to the other workers. Thisis aomplished by reating two new entries (one for p2 and one for p3) in the goal stak. Idle workers willdetet the presene of new work and will extrat subgoals from remote goal staks. In the example, Worker 2- 39 -



takes p2 while Worker 3 takes p3. Eah idle worker will start the new exeution by reating an input markerto denote the beginning of a new subgoal. Upon ompletion of eah subgoal, the workers will reate endmarkers. The last worker ompleting a subgoal (in the �gure we have identi�ed Worker 2 as the last one toomplete), will reate the appropriate links between markers and proeed with the (sequential) exeution ofthe ontinuation (p4).In pratie, the stak is divided into a separate ontrol stak (for hoie point and markers) and a separateloal stak (for environments, inluding parall frames), for reasons of loality and loking. A goal stak ismaintained by eah worker and ontains the subgoals whih are available for remote exeution.
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Fig. 14. Computation's Organization in PWAMThe &-Prolog run-time system arhiteture omprises a ring of stak sets, a olletion of agents, and ashared ode area. The agents (Unix proesses) run programs from the ode area on the stak sets. All agentsare idential (there is no \master" agent). In general, the system starts alloating only one stak set. Otherstak sets are reated dynamially as needed upon appearane of parallel goals. Also, agents are started andput to \sleep" as needed in order not to overload the system when no parallel work is available. Severalsheduling and memory management strategies have been studied for the &-Prolog system. For more detailsthe reader is referred to [Hermenegildo 1987; Hermenegildo and Green 1991; Shen and Hermenegildo 1993℄.Performane results: Experimental results for the &-Prolog system are available in the literature illustratingthe performane of both the parallelizing ompiler and the run-time system. The ost and inuene of globalanalysis in terms of redution in the number or run-time tests using the \MA3" analyzer was reported in[Hermenegildo, Warren, Debray 1992℄. MA3 is a �rst generation and-parallel analyzer, based on abstratompilation and eÆient implementation tehniques (e.g., extension tables), whih has been used to extratterm groundness and term independene information at the di�erent program points. These information arein turn used to generate onditional graph expressions, and eventually simplify their ondition part. Thenumber of CGEs generated, the ompiler overhead inurred due to the global analysis, and the result both interms of number of unonditional CGEs and of redution of the number of heks per CGE were studied forsome benhmark programs. These results suggested that, even for this �rst generation system, the overheadinurred in performing global analysis is fairly reasonable while the �gures obtained lose to what is possiblemanually. - 40 -



Early experimental results regarding the performane of the seond generation parallelizing ompiler in termsof attainable program speedups were reported in [Codish et al. 1995℄ both without global analysis and also withsharing and sharing+freeness analysis running in the PLAI framework [Jaobs and Langen 1989; Muthukumarand Hermenegildo 1989a; Muthukuar et al. 1999; Muthukumar and Hermengildo 1991℄. Speedups wereobtained using the IDRA system [Fernandez, Carro, Hermenegildo 1996℄, whih ollets traes from sequentialexeutions and uses them to simulate an ideal parallel exeution of the same program..9 A muh moreextensive study overing numerous domains and situations, a muh larger lass of programs, and the e�etsof the three annotation algorithms desribed in [Muthukumar and Hermenegildo 1990℄ (UDG/MEL/CDG),an be found in [Bueno, Garia de la Banda, Hermenegildo 1999; Garia de la Banda, Hermenegildo, Marriott1996℄. Although work still remains to be done, speially in the area of deteting non-strit independene10,results ompared enouragingly well with those obtained from studies of theoretial ideal speedups for optimalparallelizations, suh as those given in [Shen and Hermenegildo 1991℄.Finally, experimental results regarding the run-time system an be found in [Hermenegildo and Green 1991℄.Atual speedups obtained on the Sequent Balane and Symmetry systems were reported for the parallelizedprograms for di�erent numbers of workers. Various benhmarks have been tested, ranging from simple prob-lems (e.g., matrix multipliation) to very large appliations (e.g., parts of the abstrat interpreter). Partiularlygood results have been ahieved on divide and onquer programs with suÆiently large granularity. Resultswere also ompared to the performane of the sequential programs under both &-Prolog, SICStus Prolog,and Quintus Prolog. Attained performane was substantially higher than that of SICStus for a signi�antnumber of programs, even if running on only two workers. For programs showing no speedups, the sequentialspeed was preserved to within 10%. Furthermore, substantial speedups ould even be obtained with respetto ommerial systems suh as Quintus, despite the sequential speed handiap of &-Prolog due to the use ofa C-based byteode interpreter.114.4.2 The &ACE SystemThe &ACE [Pontelli, Gupta, Hermenegildo 1995; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄ systemis an independent and-parallel Prolog system developed at New Mexio State University as part of the ACEprojet. &ACE has been designed as a next-generation independent and-parallel system and is an evolutionof the PWAM design (used in &-Prolog). Like &-Prolog, &ACE relies on the exeution of Prolog programsannotated with Conditional Graph Expressions.The forward exeution phase is artiulated in the following steps. As soon as a parallel onjuntion isreahed, a parall frame is alloated in a separate stak|di�erently from &-Prolog, whih alloates parallframes on the environment stak; this allows for easier memory management12 (e.g., does not prevent the useof last-all optimization) and for appliation of various determinay-driven optimizations [Pontelli, Gupta,Tang 1995℄ and alternative sheduling mehanisms [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄. Slotsdesribing the parallel subgoals are alloated in the Heap and organized in a (dynami) linked list, thus allowingtheir dynami manipulation at run-time. Subgoals in the goal stak (as in the PWAM model) are replaed bya simple frame plaed in the goal stak and pointing to the goal frame|this has been demonstrated [Pontelli,Gupta, Hermenegildo 1995℄ to be more e�etive and exible than atual goal staking. These data struturesare desribed in Figure 15.The use of markers to identify segments of the omputation has been removed in &ACE and replaed bya novel tehnique alled stak linearization whih allows to link hoie points lying in di�erent staks in theorret logial order; this allows to limit to the minimum the hanges to the baktraking algorithm, thusmaking baktraking over and-parallel goals very eÆient. The only marker needed is the one whih indiatesthe beginning of the ontinuation of the parallel all. Novel uses of the trail stak (by trailing status ags in9Note that simulations are better than atual exeutions for evaluating the amount of ideal parallelism generated by a givenannotation, sine the e�ets of the limited numbers of proessors in atual mahines an be fatored out.10The notion of non-strit independene is desribed in Setion 5.3.3.11Performane of suh systems ranges from about the same as SICStus to to about twie the speed, depending on the program.12&ACE is built on top of the SICStus WAM, whih frequently performs on-the-y omputation of the environment registers.The presene of parall frames on the same stak reates enormous ompliations to the orret management of suh registers.- 41 -
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NextFig. 15. Parall Frames and Goals in &ACEthe subgoals slots) allows to integrate outside baktraking without any expliit hange in the baktrakingproedure.Bakward exeution represents another novelty in &ACE. Although it relies on the same general baktrak-ing sheme developed in PWAM (the point baktraking sheme desribed in Setion 4.1.3), it introdues theadditional onept of baktraking independene whih allows to take full advantage of the semi-intelligentbaktraking phase during inside baktraking. Given a subgoal of the form:?� b; (g1&g2); abaktraking independene requires that the bindings to the variables present in g1; g2 are posted either beforethe beginning of the parallel all or at its end. This allows to kill subgoals and baktrak without havingto worry about untrailing external variables. Baktraking independene is realized through ompile-timeanalysis and through the use of speial run-time representation of global variables in parallel alls [Pontelliand Gupta 1998℄.&ACE has been developed my modifying the SICStus WAM and urrently runs on Sequent Symmetryand Sun Spar multiproessors (Solaris). The use of the new memory management sheme, ombined with aplethora of optimizations [Gupta and Pontelli 1997; Pontelli, Gupta, Tang 1995; Pontelli, Gupta, Tang, Carro,Hermenegildo 1996℄, allows &ACE to be very e�etive in exploiting parallelism, even from rather �ne grainedappliations [Pontelli, Gupta, Hermenegildo 1995℄. The performane of the system is on average within 5%from the performane of the original sequential engine, thus denoting a very limited amount of overhead. Thepresene of an e�etive management of baktraking has also lead to various ases of super-linear speedups[Pontelli and Gupta 1998℄.5. DEPENDENT AND-PARALLELISMDependent And-Parallelism (DAP) generalizes independent and-parallelism by allowing the onurrent exe-ution of subgoals aessing interseting sets of variables. The \lassial" example of DAP is represented bya goal of the form ?- p(X) & q(X)13 where the two subgoals may potentially ompete in the reation of abinding for the unbound variable X.Unrestrited parallel exeution of the above query (in Prolog) is likely to produe non-deterministi behavior:the outome will depend on the order in whih the two subgoals aess X . Thus, the �rst aim of any systemexploiting dependent and-parallelism is to ensure that the operational behavior of dependent and-parallelexeution is onsistent with the intended semantis|(sequential) Prolog semantis in this ase. This amountsto� making sure that all the parallel subgoals agree on the values given to the shared variables;13As for independent and-parallelism, we will use \&" to denote parallel onjuntion, while \," will be kept to indiate sequentialonjuntions. - 42 -



� guaranteeing that the order in whih the bindings are performed does not lead to any violation of theobservable behavior of the program (Prolog semantis).It is possible to show that the problem of determining the orret moment in time when a binding an beperformed without violating Prolog semantis is in general undeidable. The di�erent models designed tosupport DAP di�er in the approah taken to solve this problem, i.e., they di�er in how they onservativelyapproximate suh undeidable property.The question then arises whether dependent and-parallelism is fruitful at all. Beause typially in a querysuh as above, p will produe a binding for X while q will proess (or onsume) it. If this order betweenprodution of binding and its onsumption is to be preserved, q will be suspended until exeution of p is over.However, this is not always the ase, and exeution of p and q an be overlapped in ertain situations:(1) q may �rst perform signi�ant amount of omputation before it needs the binding of X ; this omputationan be overlapped with omputation of p, beause it doesn't depend on X ;(2) p may �rst partially instantiate X . In suh a ase q an start working with the partially instantiatedvalue, while p is busy omputing the rest of the binding for X .In the rest of this setion we will use the following terminology. Unbound variables whih are aessible bydi�erent parallel subgoals are alled shared (or dependent) variables. The SLD omputation tree generatedby Prolog enfores an ordering between the subgoals whih appear in the tree. We will say that a subgoal Ais on the left of B if the subgoal A appears on the left of B in the SLD tree generated by Prolog.The sope for exploitation of dependent and-parallelism strongly depends on the semantis of the logilanguage onsidered. E.g., DAP exeution of pure Prolog|where no order-sensitive prediates appear|makesimplementation simple and reates the potential for high speedups. Similarly, the semantis of languages likeParlog and other ommitted-hoie languages is designed to provide a relatively onvenient management ofspeialized forms of DAP (stream parallelism), simplifying the detetion of dependenies. In the ontextof this paper we will fous on the DAP exeution of Prolog programs|thus, the ultimate goal of the DAPexeution models, as far as this paper is onerned, is to speedup exeution of the programs through parallelismreproduing the same observable behavior as in a sequential Prolog exeution.5.1 IssuesSupporting DAP requires takling a number of issues. These inlude:(1) detetion of parallelism: determination of whih subgoals should be onsidered for DAP exeution.(2) management of DAP goals: ativation and management of parallel subgoals;(3) management of shared variables: validation and ontrol of shared variables to guarantee Prolog semantis;(4) baktraking: management of non-determinism in presene of DAP exeutions.In the rest of this setion we will deal with all these issues exept for issue 2: management of subgoals doesnot present any new hallenge w.r.t. the management of parallel subgoals in the ontext of independentand-parallelism.5.2 Detetion of ParallelismAnnotating a program for fruitful DAP exeution resembles in some aspets automati parallelization forIAP [Cabeza and Hermenegildo 1994; Muthukuar et al. 1999℄. This should ome as no surprise: DAPis nothing else than a �ner grain instane of the general priniple of independene, applied to the level ofvariable bindings. Relatively little work is present in the literature for deteting and analyzing fruitful DAP.The �rst work on this spei� problem is that by Giaobazzi [Giaobazzi and Rii 1990℄, whih attempts abottom-up abstrat interpretation to identify pipelined omputations. Some similarities are also shared withthe various studies on partitioning tehniques for delarative onurrent languages [Traub 1989℄, that aim toidentify partitioning of the program omponents into sequential threads, and the work on management ofparallel tasks in ommitted-hoie languages [Ueda and Morita 1993℄.Automati and semi-automati detetion of potential valid soures of DAP in logi programs has been di-retly takled in [Pontelli, Gupta, Pulvirenti, Ferro 1997℄. This proposal generates ode annotations whih are- 43 -



extensions of the CGE format (similar to those originally introdued by Shen [Shen 1992a℄)|they additionallyidentify and make expliit the variables that are shared between the goals in the parallel onjuntion. Giventhe goals : : : G1; : : : ; Gn : : :, in whih the subgoals G1; : : : ; Gn are to be exeuted in DAP, the general strutureof an extended CGE is the following: : : : ; $mark([X1; : : : ; Xm℄);(hCondi =) $and goal(�1; G�11 ) & : : :& $and goal(�n; G�nn )); : : :where:� X1; : : : ; Xm are the shared variables for subgoals G1; : : : ; Gn, i.e., all those variables for whih di�erentsubgoals may attempt oniting bindings;� if Xj1 ; : : : ; Xjkj � fX1; : : : ; Xmg are the shared variables present in the subgoal Gj , then �j is a renamingsubstitution for the variables Xji (1 � i � kj)|i.e., a substitution whih replae eah Xji with a brand newvariable. This allows eah subgoal in the onjuntion to have a fresh and independent aess to eah sharedvariable.In this framework the mapping is desribed as a sequene of pairs [Xji ; Xnew(j)i ℄, where Xnew(j)i is the newvariable introdued to replae variable Xji .� Cond is a ondition, that will be evaluated at runtime (e.g., for heking groundness, independene, om-paring dynamially omputed grain-sizes to thresholds).A DAP annotated version of the reursive lause in the program for naive reverse will look as follows:nrev([X|Xs℄, Y) :- $mark([Z℄),( $and_goal([[Z,Z1℄℄,nrev(Xs, Z1)) &$and_goal([[Z,Z2℄℄,append(Z2, [X℄, Y)) ).The $mark/1 is a simple diretive to the ompiler to identify shared variables. The shared variables aregiven di�erent names in eah of the parallel goals. The shared variable Z is aessed through the variable Z1in nrev and through the variable Z2 in the append subgoal. The use of new names for the shared variablesallows the reation of separate aess paths to the shared variables, whih in turn failitates more advanedrun-time shemes to guarantee the orret semantis (suh as the Filtered Binding Model presented later inthis Setion).The proess of annotating a program for exploitation of dependent and-parallelism desribed in [Pontelli,Gupta, Pulvirenti, Ferro 1997℄ operates through suessive re�nements:(1) identi�ation of lauses having a struture ompatible with the exploitation of DAP|i.e., they ontain atleast one group of onseutive non-builtin prediates. Eah maximal group of ontiguous and non-builtingoals is alled a partition.(2) use of sharing and freeness [Cabeza and Hermenegildo 1994; Muthukuar et al. 1999℄ information (deter-mined via abstrat interpretation) to identify the set of shared variables for eah partition;(3) re�nement of the partition to improve DAP behavior through the following transformations:� ollapsing of onseutive subgoals;� splitting of partitions in subpartitions;� removal of subgoals lying at the beginning or end of a partition.The transformations are driven by the following priniples:� parallel subgoals should display a suÆiently large grain size to overome the parallelization overhead;� dependent subgoals within a partition should demonstrate a good degree of overlapping in their exeu-tions.The �rst aspet an be dealt with through the use of ost analysis [Debray et al. 1997b; Tik and Zhong1993℄, while the seond one is dealt with in [Pontelli, Gupta, Pulvirenti, Ferro 1997℄ through the use ofinstantiation analysis, based on the estimation of the size of the omputation whih preedes the bindingof shared variables. - 44 -



Further improvements have been devised in [Pontelli, Gupta, Pulvirenti, Ferro 1997℄ through the use of sharingand freeness to detet at ompile-time subgoals that will de�nitely bind dependent variables|i.e., automatidetetion of de�nite produers.5.3 Management of Variables5.3.1 IntrodutionThe management of shared variables in a dependent and-parallel exeution requires solving two key issues.The �rst issue is related to the need of guaranteeing mutual exlusion during the reation of a binding for ashared variable. The seond, and more important, issue is onerned with the proess of binding validation,i.e., guaranteeing that the outome of the omputation respets sequential observable Prolog semantis. Thesetwo issues are disussed in the next two subsetions.5.3.2 Mutual ExlusionThe majority of the shemes proposed to handle DAP rely on a single representation of eah sharedvariable|i.e., all the threads of omputation aess the same memory area whih represents the shared vari-able. Considering that we are working in a Prolog-like model, at any time at most one of these threads willbe allowed to atually bind the variable. Nevertheless, the onstrution of a binding for a variable is not anatomi operation|unless the value assigned to the variable is atomi. Furthermore, in the usual WAM, theassignment of a value an be realized through the use of get instrutions, whih are haraterized by the fatthat they proeed top-down in the onstrution of the term. This means that �rst the unbound variable is as-signed a template of the term to be onstruted|e.g., through a get struture instrution|and suessivelythe subterms of the binding are onstruted. This makes the binding of the variable a non-atomi operation.For example, if the two subgoals exeuting in parallel are p(X) and q(X), whih are respetively de�ned bythe following lauses:p(X) :- X = f(b,), .....q(X) :- X = f(Y,Z), (var(Y) -> ... ; ...).The WAM ode for the lause for p will ontain a sequene of instrutions of the typeget_struture f, A1unify_onstant bunify_onstant ...An arbitrary interleaving between the omputations (at the level of WAM instrutions) an lead q to aessthe binding for X immediately after the get struture but before the suessive unify onstant|leading qto wrongfully sueed in the var(Y) test. Clearly, as long as we allow onsumers to have ontinuous aessto the bindings produed by the produer, we need to introdue some mehanisms apable of guaranteeingatomiity of any binding to shared variables.The problem has been disussed in various works. In the ontext of the JAM implementation of Parlog[Crammond 1992℄ the idea is to have the ompiler generate a di�erent order of instrutions for what onernsthe onstrution of omplex terms: the pointer to a struture is not written until the whole struture has beenompletely onstruted. This approah requires a radial hange in the ompiler. Furthermore, the use of thisapproah requires a speial ation at the end of the uni�ation, in order to make the struture \publi"|andthis overhead will be enountered in general for every struture built, independently from whether this will beassigned to a dependent variable or not.Another solution has been proposed in Andorra-I [Santos Costa, Warren, Yang 1996℄; in this system, termswhih need to be mathed with a ompound term (i.e., using the get struture instrution in the WAM) areloked|i.e., a mutual exlusion mehanism is assoiated to it|and a speial instrution (last) is added bythe ompiler at the end of the term onstrution to release the lok|i.e., terminate the ritial setion.Another approah, adopted in the DASWAM system [Shen 1992b℄, onsists of modifying the unify and getinstrutions in suh a way that they always overwrite the suessive loation on the heap with a speial value.Every aess to term will inspet suh suessive loation to verify whether the binding has been ompletedor not. No expliit loks or other mutual exlusion mehanisms are required. On the other hand:- 45 -



� while reading the binding for a dependent variable, every loation aessed needs to be heked for validity;� an additional operation (pushing an invalid status on the suessive free loation) is performed during eahoperation involved in the onstrution of a dependent binding.� a hek needs to be performed during eah operation whih onstruts a term, in order to understandwhether the term has been assigned to a dependent variable or not|or, alternatively, the operation ofpushing the invalid status is performed indisriminately during the onstrution of any term, even if it willnot be assigned to a dependent variable.A novel solution [Pontelli 1997℄, whih does not su�er from most of the drawbaks previously desribed, is tohave the ompiler generate a di�erent sequene of instrutions to fae this kind of situations. The get strutureand get list instrutions are modi�ed, by adding a third argument:get struture hfuntori hregisteri hjump labeliwhere the hjump labeli is simply an address in the program ode. Whenever the dereferening of thehregisteri leads to an unbound shared variable, instead of entering write mode (as in standard WAM behav-ior), the abstrat mahine performs a jump to the indiated address (hjump labeli). The address ontains asequene of instrutions whih performs the onstrution of the binding in a bottom-up fashion|whih allowsfor the orret atomi exeution.5.3.3 Binding ValidationA large number of shemes have been proposed to handle bindings to dependent variables suh that Prologsemantis is respeted. We an lassify the di�erent approahes aording to two orthogonal riteria [Pontelliand Gupta 1997b; 1997a℄:� Validation time: the existing proposals either� remove inonsistenies on binding shared variables only one a onit appears and threatens Prologsemantis (urative shemes)� prevent inonsistenies by appropriately delaying and ordering shared variable bindings (preventive shemes)� Validation resolution: the existing proposals either� perform the validation ativity at the level of the parallel subgoals (goal-level validation)� perform the validation ativity at the level of the individual shared variable (binding-level validation)Curative Approahes: Curative approahes rely on validation of the bindings to shared variables after theyare performed.Performed at the goal level (see Figure 16), implies that eah and-parallel subgoal develops its omputationon loal opies of the environments, introduing an additional \merging" step at the end of the parallel all|toverify onsisteny of the values produed by the di�erent omputations for the shared variables. This approah,adopted mainly in some of the older proess-based models, like Epilog [Wise 1986℄ and ROPM [Ramkumarand Kal�e 1992℄, has the advantage of being extremely simple, but it su�ers some serious drawbaks:(1) it produes highly speulative omputations (due to the lak of ommuniation between parallel subgoals);(2) it may produe parallel omputations that terminates in a time longer than the orresponding sequentialones;(3) it makes extremely diÆult to enfore Prolog semantis.Performed at the binding level (see Figure 17), validation does not preempt bindings from taking plae (i.e.,any goal an bind a shared variable), but speial rollbak ations are needed whenever a violation of programsemantis is deteted. The two most signi�ant proposals where this strategy is adopted are those madeby Tebra [Tebra 1987℄ and by Drakos [Drakos 1989℄. They an be both identi�ed as instanes of a generalsheme, named Optimisti Parallelism. In optimisti parallelism, validation of bindings is performed not atbinding time (i.e., the time when the shared variable is bound to a value), but only when a onit ours(i.e., when a produer attempts to bind a shared variable that had already been bound earlier by a onsumergoal.) In ase of a onit, the lower priority binding (made by the onsumer), has to be undone, and theonsumer goal rolled bak to the point where it �rst aessed the shared variable. These model have various- 46 -
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Roll-backFig. 17. Binding Level Curative Approahdrawbaks, ranging from their highly speulative nature to the limitations of some of the mehanisms adopted(e.g., labeling shemes to reord binding priorities), and to the high osts of rolling bak omputations.Preventive Approahes: Preventive approahes are haraterized by the fat that bindings to sharedvariables are prevented unless they are guaranteed to not threaten Prolog semantis.Performed at the goal level, preventive shemes delay the exeution of the whole subgoal until its exeutionwill not a�et Prolog semantis. Various models have embraed this solution:� Non-Strit Independent And-Parallelism (NSI): [Cabeza and Hermenegildo 1994℄ allows to extend the sopeof independent and-parallelism to subgoals that have variables in ommon, as long as at most one subgoalan bind eah shared variable, and the binding will not a�et the omputation of the remaining subgoals.� The Basi Andorra Model [Haridi 1990; Warren 1988; Santos Costa, Warren, Yang 1991a℄, Parallel NU-Prolog [Naish 1988℄, Pandora [Bahgat 1993℄, and P-Prolog [Yang 1987℄ are all haraterized by the fat thatparallel exeution is allowed between dependent subgoals only if there is guarantee that there exists at mostone single mathing lause. In the Basi Andorra Model, goals an be exeuted ahead of their turn (\turn"in the sense of Prolog's depth �rst searh) in parallel if they are determinate, i.e., if at most one lausemathes the goal (the determinate phase). These determinate goals an be dependent on eah other. If nodeterminate goal an be found for exeution, a branh point is reated for the leftmost goal in the goal list(non-determinate phase) and parallel exeution of determinate goals along eah alternative of the branhpoint ontinues. Dependent and-parallelism is obtained by having determinate goals exeute in parallel. Thedi�erent alternatives to a goal may be exeuted in or-parallel. Exeuting determinate goals (on whih othergoals may be dependent) eagerly also provides a oroutining e�et whih leads to the narrowing of the searhspae of logi programs. A similar approah has been adopted in Pandora [Bahgat 1993℄, whih representsa ombination of the Basi Andorra Model and the Parlog ommitted-hoie approah to exeution [Clarkand Gregory 1986℄; Pandora introdues non-determinism to an otherwise ommitted hoie language. InPandora, lauses are lassi�ed as either don't-are or don't-know. Like the Basi Andorra Model, exeutionalternates between the and-parallel phase and the deadlok phase. In the and-parallel phase, all goals in aparallel onjuntion are redued onurrently. A goal for a don't-are lause may suspend on input mathingif its arguments are insuÆiently instantiated as in normal Parlog exeution. A goal for a don't-know lauseis redued if it is determinate, like in the Basi Andorra Model. When none of the don't-are goals anproeed further and there are no determinate don't-know goals, the deadlok phase is ativated (Parlogwould have aborted the exeution in suh a ase) that hooses one of the alternatives for a don't-know goaland proeeds. If this alternative were to fail, baktraking would take plae and another alternative will betried (potentially, the multiple alternatives ould be tried in or-parallel).Performed at the binding level, preventive shemes allow a greater degree of parallelism to be exploited.The large majority of suh shemes rely on enforing a stronger notion of semantis (Strong Prolog Semantis):- 47 -



bindings to shared variables are performed in the same order as in a sequential Prolog exeution. The mostrelevant shemes are:� Committed-Choie languages: we will only deal briey with the notion of ommitted-hoie languages inthis paper, sine they implement a semantis whih is radially di�erent from Prolog. Committed-hoielanguages [Tik 1995℄ disallow (to a large extent) non-determinism by requiring the omputation to ommitto the lause seleted for resolution. Committed-hoie languages support dependent and-parallel exeutionand handle shared variables via a preventive sheme based on the notion of produer and onsumers.Produer and onsumers are either expliitly identi�ed at the soure level (e.g., via mode delarations) orimpliitly through strit rules on binding of variables that are external to a lause.� DDAS-based shemes: these shemes o�er a diret implementation of strong Prolog semantis through thenotion of produer and onsumer of shared variables. At eah point of the exeution only one subgoal isallowed to bind eah shared variable (produer), and this orresponds to the leftmost ative subgoal whihhas aess to suh variable. All remaining subgoals are restrited to read-only aesses to the shared variable(onsumers); eah attempt by a onsumer of binding an unbound shared variable will lead to the suspensionof the subgoal. Eah suspended onsumer will be resumed as soon as the shared variable is instantiated.Consumers may also beome produers if they beome the leftmost ative omputations. This an happenif the designated produer terminates without binding the shared variable.Deteting produer and onsumer status is a omplex task. Di�erent tehniques have been desribed inthe literature to handle this proess. Two major implementation models have been proposed to handleproduer/onsumer detetion, DASWAM and the Filtered-Binding Model, whih are desribed at the endof this setion. An alternative implementation model based on Attributed Variables [Le Huitouze 1990℄ hasbeen proposed in [Hermenegildo, Cabeza, Carro 1995℄: eah dependent variable X is split into multipleinstanes, one for eah subgoal belonging to the parallel all. Expliit proedures are introdued to handleuni�ation and transfer bindings to the di�erent instanes of eah shared variable. The idea behind thismodel is attrative, and it shares some ommonalities with the Filtered Binding model presented in Setion5.5.3.Classi�ation: As done for or-parallelism in Setion 3.4, it is possible to propose a lassi�ation of thedi�erent models for DAP based on the omplexity of the basi operations. The basi operations required tohandle forward exeution in DAP are:� task reation: reation of a parallel onjuntion� task swithing: sheduling and exeution of a new subgoal� variable aess/binding: aess and/or binding of a variableIt is possible to prove, by properly abstrating these operations as operations on dynami tree strutures, thatat least one of them requires a time omplexity whih is stritly worse than 
(1) [Pontelli, Ranjan, Gupta 1997;Ranjan,Pontelli,Gupta,Longpre 2000℄. Interestingly enough, this result eases to hold if we disallow aliasing ofshared variables during the parallel omputation|intuitively, aliasing of shared unbound variables may reatelong hains of shared variables bound to eah other, and the hain has to be maintained (and traversed) todetermine exatly whether a binding for the variable is allowed or not. A similar restrition is atually presentin the DASWAM system, to simplify the implementation of the variables management sheme. Nevertheless,the Filtered-binding Model is the only model proposed that sueeds in ahieving onstant time omplexityin all the key operations in absene of shared variables aliasing.The lassi�ation of the di�erent models aording to the omplexity of the three key operations is illustratedin Figure 18. Unrestrited DAP means DAP with possible aliasing of unbound shared variables.5.4 BaktrakingMaintaining Prolog semantis during parallel exeution also means supporting non-deterministi omputa-tions, i.e., omputations that an potentially produe multiple solutions. In many approahes DAP has beenrestrited to only those ases where p and q are deterministi [Bevemyr et al. 1993; Shapiro 1987; SantosCosta, Warren, Yang 1991a℄. This is largely due to the omplexity of dealing with distributed baktraking.- 48 -
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Fig. 18. Classi�ation of DAP modelsNevertheless, it has been shown [Shen 1992b℄ that imposing this kind of restrition on DAP exeution mayseverely limit the amount of parallelism exploited. The goal is to exploit DAP even in non-deterministi goals.Baktraking in the ontext of DAP is more omplex than in the ase of independent and-parallelism.While outside baktraking remains unhanged, inside baktraking|i.e., baktraking within subgoals whihare part of a parallel all|loses its \independent" nature, whih guaranteed the semi-intelligent baktrakingdesribed earlier. Two major issues emerge. First of all, failure of a subgoal within a parallel onjuntion doesnot lead to the failure of the whole onjuntion, but requires killing the subgoals on the right and baktrakingto be propagated to the subgoal immediately to the left|an asynhronous ativity, sine the subgoal on theleft may be still running;In addition, baktraking within a parallel subgoal may also a�et the exeution of other parallel subgoals.In a parallel onjution like p(X) & q(X), baktraking within p(X) whih leads to a modi�ation of the valueof X will require rolling bak the exeution of q(X) as well, sine q(X) may have onsumed the value of X whihhas just been untrailed.Implementations of this sheme have been proposed in [Shen 1992b; 1992a; Pontelli and Gupta 1997a℄;optimizations of this sheme have also been desribed in [Shen 1994℄.5.5 Experimental SystemsIn this setion we present some representative systems whih support dependent and-parallelism. Some othersystems whih use dependent and-parallelism in onjuntion with other forms of parallelism (e.g., ROPM) willbe desribed in Setion 6. In this setion we do not disuss Committed-hoie language|their sequential andparallel exeution model have been desribed in detail in other surveys (e.g., [Tik 1995℄).5.5.1 Andorra-IThe Andorra-I system is an implementation of the Basi Andorra Model. Andorra-I exploits determinatedependent and-parallelism together with or-parallelism. Implementation of or-parallelism is very similar tothat in Aurora and is based on Binding Arrays [Warren 1984; 1987a℄. Due to its similarity to Aurora as faras or-parallelism is onerned, Andorra-I is able to use the shedulers that have been built for Aurora. The- 49 -



urrent version of Andorra-I is ompiled [Yang et al. 1993℄ and is a desendent of the earlier interpretedversion [Santos Costa, Warren, Yang 1991a℄.As a result of exploitation of determinate dependent and-parallelism and the aompanying oroutining,not only Andorra-I an exploit parallelism from logi programs it an also redue the number of inferenesperformed to ompute a solution. As mentioned earlier, this is beause exeution in the Basi Andorra Modelis divided into two phases|determinate and non-determinate|exeution of non-determinate phase is begunonly after all \fored hoies"|i.e., hoies for whih only one alternative is left|have been made in thedeterminate phase, i.e., after all determinate goals in the urrent goal list, irrespetive of their order in thislist, have been solved. Any goal that is non-determinate (that is, has more than one potentially mathinglauses) will be suspended in the determinate phase. Solving determinate goals early onstrains the searhspae muh more than if one used the standard sequential Prolog exeution order (for example, for the 8-queen's program the searh spae is redued by 44%, for the zebra puzzle by 70%, et.). Note that exeutionof a determinate goal to the right may bind variables whih in turn may make non-determinate goals to theirleft determinate. The Andorra-I ompiler performs an elaborate determinay analysis of the program andgenerates ode so that the determinate status of a goal is determined as early as possible at runtime [SantosCosta, Warren, Yang 1996; 1991b℄.The Andorra-I system supports full Prolog, in that exeution an be performed in suh a way that sequentialProlog semantis is preserved [Santos Costa, Warren, Yang 1996; 1991b℄. This is ahieved by analysing theprogram at ompile-time and preventing early (i.e., out of turn) exeution of those determinate goals thatmay ontain extralogial prediates. These goals will be exeuted only after all goals to the left of them havebeen ompletely solved.14The Andorra-I system speeds-up exeution in two ways: (i) by reduing the number of inferenes performedat run-time; and, (ii) by exploiting dependent and-parallelism and or-parallelism from the program. Very goodspeed-ups have been obtained by Andorra-I for a variety of benhmark programs. The Andorra-I engine [SantosCosta, Warren, Yang 1991; Yang et al. 1993℄ ombines the implementation tehniques used in implementingParlog, namely the JAM system [Crammond 1992℄, and the Aurora system [Lusk et al. 1990℄. The Andorra-Isystem had to overome many problems before an eÆient implementation of its engine ould be realized.Chief among them was a baktrakable representation of the goal list. Sine goals are solved out of order, theyshould be inserted bak in the goal list if baktraking were to take plae; reall that there is no baktrakingin Parlog so this was not a problem in JAM. The Andorra-I system was the �rst one to employ the notion ofteams of workers, where available workers are divided into teams, and eah team shares all the data strutures(exept the queue of ready-to-run goals). Or-parallelism is exploited at the level of teams (i.e., eah teambehaves like a single Aurora worker). Determinate dependent and-parallelism is exploited by workers within ateam, i.e., workers within a team will o-operatively solve a goal along the or-branh that the team has pikedup. There are separate shedulers for or-parallel work and dependent and-parallel work, and overall workbalaning is ahieved by a top-sheduler (reon�gurer) [Dutra 1994; 1996℄. The notion of teams of workerswas also adopted by the ACE [Gupta, Pontelli, Hermenegildo, Santos Costa 1994℄ and the PBA [Gupta andSantos Costa 1992; Gupta, Santos Costa, Pontelli 1994; Gupta, Hermenegildo, and Santos Costa 1993℄ modelsthat ombine or-parallelism with independent and-parallelism while preserving sequential Prolog semantis.A parallel system inorporating the Basi Andorra Model has also been implemented by Palmer and Naish[Palmer and Naish 1991℄.5.5.2 DASWAMDASWAM [Shen 1992a; 1992b℄ is an implementation model for the DDAS exeution sheme desribed inSetion 5.3.3. DASWAM has been designed as an extension of the PWAM model used for independent and-parallelism. Memory management is analogous to PWAM|and relies on the use of parall frames to representparallel onjuntions, and on the use of markers to delimit segments of staks assoiated with the exeutionof a given subgoal.Shared variables are represented as a new type of tagged ell and eah shared variable is uniquely represented|thus all workers aess the same representation of the shared variable. Produer and onsumer status is deter-14In spite of this, there are ases where Andorra-I and Prolog leads to di�erent behavior; in partiular, there are non-terminatingProlog programs whih will terminate in Andorra-I and vie versa.- 50 -



mined via a searh operation, performed at the time of variable binding. Eah dependent variable identi�esthe parall frame whih introdued the variable (home parall); a traversal of the hain of nested parallel allsis needed to determine whether the binding attempt lies in the leftmost ative subgoal. The knowledge of thesubgoal is also needed to reate the neessary suspension reord|where information regardinga suspendedonsumer is reorded. The proess is illustrated in Figure 19. Eah dependent ell maintains pointers tothe parall frame whih introdued that dependent variable. Additionally, the parall frames are linked toeah other to rereate the nesting relation of the parallel onjuntions. This arrangement implies a omplex-ity whih is linear in the size of the omputation tree in order to determine produer/onsumer status andsubgoals on whih to suspend [Shen 1992b; 1992a℄.

Previous Parcall

Previous Parcall

Previous Parcall

Previous Slot

Previous Slot

Previous Slot

Creation Parcall Frame

Creation Slot

Dependent Cell

Current Parcall FrameFig. 19. DASWAM Implementation5.5.3 ACEThe Filtered Binding Model is an instane of the lass of models whih use binding-level validation and arepreventive. The spei� approah assumes a program statially annotated to identify the promising souresof parallelism. Eah subgoal maintains an independent aess path to the shared variable. The idea of theFiltered Binding model is to diretly enode in the aess path itself the information (the �lter or view) thatallows a subgoal to disriminate between produer and onsumer aesses. The di�erent aess paths arereated via speialized WAM instrutions, whih are introdued via the $mark prediate introdued by theparallelizing ompiler (see Setion 5.2).Figure 20 presents an intuitive shema of this idea. Eah subgoal has a loal path to aess the shared objet(in this ase a heap loation alloated to hold the value of the shared variable) and the path ontains a �lter.In the �gure the �lter is linked to information stored in the subgoal desriptor|this ommon information willbe used to verify when the subgoal is a viable produer (i.e., it is the leftmost ative subgoal in the parallelall).Every aess to a shared variable by a subgoal will go through the �lter orresponding to that subgoal,whih will allow it to determine the \type" of the aess (produer or onsumer).By properly organizing the uni�ation proess, as long as there is guarantee that no aliasing between sharedvariables ours (unless they are both produer aesses), it an be proved that at any time a variable aesswill require traversal of at most one �lter|whih means onstant-time validation of any aess. The setupof a parallel all and the detetion of the ontinuation also do not require any non onstant-time operation(the ost is always bounded by the number of dependent variables deteted by the ompiler in that parallel- 51 -
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Fig. 20. The Filtered Binding Modelall15). An additional step is required when a subgoal terminates: if it is a produer goal, then on terminationit should transfer the produer status to the next ative subgoal in the parallel all by hanging its �lter. Thisis also a onstant-time operation, as the next goal to the right an be found by looking at the desriptor ofthe parallel all.Thus, the Filtered Binding model is a model that exploits restrited DAP and performs all operations inonstant-time. The restrition is that unbound shared variables are not allowed to be bound to eah other(unless the goal doing the aliasing is a produer for both). If this restrition is relaxed then a non-onstantoverhead will be produed in the variable aess operation|in suh a ase a non-onstant time overhead isunavoidable. The urrent implementation, realized in the ACE system [Gupta, Pontelli, Hermenegildo, SantosCosta 1994; Pontelli, Gupta, Hermenegildo 1995℄, represents �lters as a word in the subgoal desriptor, andpaths as a pair of words, one pointing to the atual variable and one pointing to the �lter. Loal paths relatedto shared variables introdued in the same parallel all share the same �lter. Consumer aesses suspend inpresene of unbound variables. Variable suspensions have been implemented using the traditional suspensionlists [Crammond 1992℄.The implementation of the Filtered Binding Model in the ACE system [Pontelli and Gupta 1997a℄ supportsboth busy-waiting and goal suspension (e.g. release of suspended omputation). The two methods are alter-nated during exeution depending on the granularity of the omputation and on the amount of time the goalhas been suspended.6. COMBINING OR-PARALLELISM AND AND-PARALLELISM6.1 IssuesAs one an gather, parallel systems that exploit only one form of parallelism from logi programs have beeneÆiently implemented and reahed a mature stage. A number of prototypes have been implemented andsuessfully applied to the development and parallelization of very large real-life appliations (see also Setion10). Publi domain parallel logi programming systems are available (e.g., CIAO [Hermenegildo 1994℄, whihinludes &-Prolog, YapOr [Santos Costa, Damas, Reis, Azevedo 1999℄, KLIC [Chikayama et al. 1994℄). For15We are also working under the assumption that the ompiler marks goals for DAP exeution onservatively, i.e., during exeutionif a shared variable X is bound to a struture ontaining an unbound variable Y before the parallel onjuntion orresponding toX is reahed then both X and Y are marked as shared. Otherwise, for orretness, the struture X is bound to will have to betraversed to �nd all unbound variables ourring in it and mark them as shared.- 52 -



some time, a number of ommerial strength parallel Prolog systems have also appeared on the market,inluding SICStus Prolog, whih inludes the or-parallel MUSE system, and ECLiPSe, whih inludes an or-parallel version of ElipSys. In spite of the fat that these ommerial strength Prolog systems have progressivelydropped their support for parallelism (this is mostly due to ommerial reasons|the high ost of maintainingthe parallel exeution mehanisms), these systems demonstrate that we possess the tehnology for developinge�etive and eÆient Prolog systems exploiting a single form of parallelism.Although, very general models for parallel exeution of logi programs have been proposed, e.g., the Ex-tended Andorra Model (EAM) (desribed later in this setion), they have not yet been eÆiently realized. Aompromise approah that many researhers have been pursuing, long before the EAM was oneived, is thatof ombining tehniques that have been e�etive in single-parallelism systems to obtain eÆient systems thatexploit more than one soure of parallelism in logi programs16. The implementation of the Basi AndorraModel [Haridi 1990; Warren 1988℄, namely, Andorra-I [Santos Costa, Warren, Yang 1991℄ an be viewed inthat way sine it ombines (determinate) dependent and-parallelism, implemented using tehniques from JAM[Crammond 1992℄, with or-parallelism, implemented using Binding Arrays tehnique [Lusk et al. 1990; Warren1987a℄. Likewise, the PEPSys model [Westphal, Robert, Chassin, Syre 1987; Baron et al. 1988℄, the AO-WAM[Gupta and Jayaraman 1993a℄, ROPM [Kal�e 1985; Ramkumar and Kal�e 1989; Kal�e and Ramkumar 1992℄,ACE [Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Gupta, Hermenegildo, and Santos Costa 1993℄, thePBA models [Gupta and Santos Costa 1992; Gupta, Santos Costa, Pontelli 1994; Gupta, Hermenegildo, andSantos Costa 1993℄, SBA [Correia et al. 1997℄, FIRE [Shen 1997℄, and the COWL models [Santos Costa 1999℄have attempted to ombine independent and-parallelism with or-parallelism; these models di�er with eahother in the environment representation tehnique they use for supporting or-parallelism and in the avorof and-parallelism they support. One should also note that, in fat, Conery's model desribed earlier is anand-or parallel model [Conery 1987a℄ sine solutions to goals may be found in or-parallel. Models ombiningindependent and-parallelism, or-parallelism and (determinate) dependent and-parallelism have also been pro-posed [Gupta, Santos Costa, Yang, Hermenegildo 1991℄. The abstrat exeution models that these systemsemploy (inluding those that only exploit a single soure of parallelism) an be viewed as subsets of the EAMwith some restritions imposed, although this is not how they were oneived. In subsequent subsetions, wereview these various systems that have been proposed for ombining more than one soure of parallelism.The problems faed in implementing ombined and- and or-parallel system are unfortunately not only thesum of problems faed in implementing and-parallelism and or-parallelism individually. In the ombined systemthe problems faed in one may worsen those faed in the other, espeially those regarding ontrol of exeution,representation of environment, and memory management. This should ome as no surprise. The issues whihare involved in handling and-parallelism and or-parallelism impose requirements that are antithetial to eahother on the resulting exeution model. For example, or-parallelism fouses on improving the separationbetween the parallel omputations, by assigning separate environments to the individual omputing agents;and-parallelism relies on the ability of di�erent omputing agents to ooperate and share environments toonstrut a single solution to the problem.An issue that ombined systems also have to fae is whether they should support sequential Prolog semantis.The alternatives to supporting Prolog semantis are: (i) onsider only pure Prolog programs for parallelexeution; this was the approah taken by many early proposals, e.g., AO-WAM [Gupta and Jayaraman1993a℄ and ROPM [Kal�e 1985℄; or, (ii) devise a new language that will allow extra-logial features but ina ontrolled way, e.g., PEPSys [Ratli�e and Syre 1987; Westphal, Robert, Chassin, Syre 1987; Chassinde Kergommeaux and Robert 1990℄. The disadvantage with both these approahes is that existing Prologprograms annot be immediately parallelized. Various approahes have been proposed that allow support forProlog's sequential semantis even during parallel exeution [Santos Costa 1999; Correia et al. 1997; Castroet al. 1998; Ranjan, Pontelli, Gupta 2000; Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Gupta, SantosCosta, Pontelli 1994; Santos Costa, Warren, Yang 1991b℄.Another issue that arises in systems that exploit independent and-parallelism is whether to reompute solutionsof independent goals, or to reuse them. For example, onsider the following program for �nding \ousins at16Simulations have shown that indeed better speed-ups will be ahieved if more than one soure of parallelism are exploited [Shen1992b; Shen and Hermenegildo 1991℄. - 53 -



the same generation" taken from [Ullman 1989℄:sg(X, X) :- person(X).sg(X, Y) :- parent(X, Xp), parent(Y, Yp), sg(Xp, Yp).In exeuting a query suh as ?- sg(fred, john) under a (typial) purely or-parallel or a purely independentand-parallel or a sequential implementation, the goal parent(john, Yp) will be reomputed for every solutionto parent(fred, Xp)17. This is learly redundant sine the two parent goals are independent of eah other.Theoretially, it would be better to ompute their solutions separately, take a rossprodut (join) of thesesolutions, and then try the goal sg(Xp, Yp) for eah of the ombinations. In general, for two independentgoals G1 and G2 with m and n solutions respetively, the ost of the omputation an be brought downfrom m � n to m + n by omputing the solutions separately and ombining them through a rossprodut|assuming the ost of omputing the rossprodut is negligible18. However, for independent goals with verysmall granularity, the gain from solution sharing may be overshadowed by the ost of omputing the ross-produt et., therefore, suh goals should either be exeuted serially, or they should be reomputed insteadof being shared [14℄. Independent goals that ontain side-e�ets and extra-logial prediates should also betreated similarly [14, 16℄. This is beause the number of times, and the order in whih, these side-e�ets willbe exeuted in the solution sharing approah will be di�erent from that in sequential Prolog exeution, alteringthe meaning of the logi program. Thus, if we were to support Prolog's sequential semantis in suh parallelsystems, independent goals will have to be reomputed. This is indeed the approah adopted by systems suhas ACE [Gupta, Pontelli, Hermenegildo, Santos Costa 1994℄ and the PBA model [Gupta, Hermenegildo, andSantos Costa 1993℄, whih are based on an abstration alled Composition-tree that represents Prolog's searhtree in a way that or-parallelism and independent and-parallelism beome expliitly apparent in the strutureof the tree itself [Gupta, Santos Costa, Pontelli 1994; Gupta, Hermenegildo, and Santos Costa 1993℄.6.2 Sheduling in And/Or-Parallel SystemsThe ombination of and- and or-parallelism o�ers additional hallenges. During and-parallel exeution, thesheduler is in harge of assigning subgoals to the workers. In presene of or-parallelism, the sheduler isin harge of assigning alternatives to the di�erent workers. When allowing both kinds of parallelism to beexploited at the same time, the system needs to deal with an additional level of sheduling, i.e., determiningwhether an idle worker should perform or-parallel work or and-parallel work. The problem has been studied indepth by Dutra [Dutra 1994; 1996℄. The solution, whih has been integrated in the Andorra-I system [SantosCosta, Warren, Yang 1991a℄, relies on organizing workers into teams, where eah team exploits or-parallelismwhile eah worker within a team exploits and-parallelism. The top-level sheduler dynamially manages thestruture of the teams, allowing migration of workers from one team to the other|used to perform load-balaning at the level of and-parallelism|as well as allowing the dynami reation of new teams|used toload-balane or-parallelism. Di�erent strategies have been ompared to deide how to reon�gure the teams.For example, in [Dutra 1994℄ two strategies are ompared:� work-based strategy: in whih task sizes are estimated at run-time and used to deide workers' alloation;� eÆieny-based strategy: in whih alloation of workers is based on their urrent eÆieny|i.e., the per-entage of time they spent doing useful omputation.The two strategies have been ompared in Andorra-I and the results have been reported in [Dutra 1994;1996℄. The omparison suggests that work-based strategies works well when the estimate of the task size issuÆiently preise; furthermore, if the grain size is small the reon�gurer tends to be alled too frequentlyand/or the sheduler auses exessive task swithes. The eÆieny-based strategies seems to sale up betterwith inreasing number of workers, reduing idle time and number of reon�gurations.6.3 Models for And/Or-ParallelismWe now briey desribe the systems that ombine more than one soures of parallelism in logi program.17Respeting Prolog semantis, a purely independent and-parallel system an avoid reomputation of independent goals but mostexisting ones do not.18This, as pratie suggests, may not always be the ase. - 54 -
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horizontal bars and their least-common-hash-window.Fig. 21. Join Cells6.3.1 The PEPSys ModelThe PEPSys model [Westphal, Robert, Chassin, Syre 1987; Baron et al. 1988; Chassin de Kergommeauxand Robert 1990℄ ombines and- and or-parallelism using a ombination of tehniques of time-stamping andhashing windows for maintaining multiple environments. In PEPSys (as already disussed in Setion 3.2),eah node in the exeution tree has a proess assoiated with it. Eah proess has its own hash-window.All the bindings of onditional variables generated by a proess are time-stamped and stored in that proess'hash-window. Any PEPSys proess an aess the staks and hash-windows of its anestor proesses. Thetime-stamp assoiated with eah binding permits it to distinguish the relevant binding from the others in theanestor proesses' staks and hash-windows.Independent and-parallel goals have to be expliitly annotated by the programmer. The model an handleonly two and-parallel subgoals at a time. If more than two subgoals are to be exeuted in and-parallel,the subgoals are nested in a right assoiative fashion. If or-parallelism is nested within and-parallelism thenand-parallel branhes an generate multiple solutions. In this ase the ross-produt (join) of the left-handand right-hand solution sets has to be formed. A proess is reated for eah ombination of solutions in theross-produt set. Eah suh proess an ommuniate with its two anestor proesses (one orresponding tothe left and-branh and other orresponding to the right and-branh) that reated the orresponding solution.Aess to the bindings of these anestor proesses is handled by join ells. A join ell ontains a pointer tothe hash-window of the left and-branh proess and to the hash-window of the right and-branh proess. Italso ontains a pointer to the hash-window that was urrent at the time of the and-parallel split (Figure 21).Looking up a variable binding from a goal after the and-parallel join works as follows: the linear hain ofhash-windows is followed in the usual way until a join ell is reahed. Now a branh beomes neessary. Firstthe right-hand proess is searhed by following the join-ell's right hand side hashed window hain. Whenthe least-ommon-hash-window is enountered ontrol bounes bak to the join-ell and the left branh issearhed.The basi sheme for forming the ross-produt, gathering the left-hand solutions and the right-hand solu-tions in solution-lists and eagerly pairing them, relies on the fat that all solutions to eah side are omputedinrementally and o-exist at the same time in memory to be paired with newly arriving solutions to the otherside. However, if all solutions to the and-parallel goal on the right have been found and baktraked over,and there are still more solutions for the and-parallel goal to the left remaining to be disovered, then theexeution of the right goal will be restarted after disovery of more solutions of the goal to the left (henePEPSys uses a ombination of goal-reuse and goal-reomputation).The PEPSys model uses time-stamping and hash windows for environment representation. This doesn'tpermit onstant time aess to onditional variables. Therefore, aess to onditional variables is expensive.However, environment reation is a onstant time operation. Also a worker does not need to update any statewhen it swithes from one node to another sine all the information is reorded with the or-tree. In PEPSys- 55 -



sharing of and-parallel solutions is not omplete beause the right hand and-parallel subgoal may have to bereomputed again and again. Although reomputing leads to eonomy of spae, its ombination with ross-produt omputation via join ells makes the ontrol algorithm very omplex. Due to this omplexity, theatual implementation of PEPSys limited the exploitation of and-parallelism to the ase of deterministi goals[Chassin de Kergommeaux 1989℄. PEPSys was later modi�ed and evolved into the ElipSys System [V�eron etal. 1993℄: the hashed windows have been replaed with Binding Arrays and it has also been extended to handleonstraints. In turn, ElipSys evolved into the parallel support for the ECLiPSe onstraint logi programmingsystem|where or-parallelism only is exploited, using a ombination of opying and reomputation [Herold1995℄.6.3.2 The ROPM ModelROPM (Redue-Or Parallel Model) [Kal�e 1991℄ was devised by Kal�e in his Ph.D. Thesis [Kal�e 1985℄. Themodel is based on a modi�ation of the And-Or tree, alled the Redue-Or Tree. There are two types of nodesin the a Redue-Or tree, the Redue-nodes and the Or-nodes. The Redue nodes are labeled with a query(i.e., a set of goals) and the or-nodes are labeled with a single literal. To prevent global heking of variablebinding onits every node in the tree has a partial solution set (PSS) assoiated with it. The PSS onsistsof a set of substitutions for variables that make the subgoal represented by the node true. Every node in thetree ontains the bindings of all variables that are either present in the node or are reahable through thisnode. The Redue-Or tree is de�ned reursively as follows [Kal�e 1991℄:1. A Redue node labeled with the top level query and with an empty PSS is a Redue-Or tree.2. A tree obtained by extending a Redue-Or tree using one of the rules below is a Redue-Or tree:� Let Q be the set of literals in the label of a Redue node R. Corresponding to any literal L in Q, one mayadd an ar from R to a new Or-node O labeled with an instane of L. The literal must be instantiated witha onsistent omposition of the substitutions from the PSS of subgoals preeding L in Q.� To any Or-node, labeled with a goal G, one may add an ar to a new REDUCE node orresponding to somelause of the program, say C, whose head uni�es with G. The body of C with appropriate substitutionsresulting from the head uni�ation beomes the label of the new Redue node (say) R. If the query is empty,i.e., the lause is a `fat', the PSS assoiated with R beomes a singleton set. The substitution that uni�esthe goal with the fat beomes the only member of the set.� Any entry from the PSS of the Redue node an be added to the PSS of its parent Or-node. A substitutionan be added to the PSS of a Redue node R representing a omposite goal Q if it is a onsistent ompositionof the substitutions, one for eah literal of Q, from the PSS's of the hildren (Or-nodes) of R.ROPM assoiates a Redue Proess with every Redue node and an Or Proess with every Or-node. Theprogram lauses in ROPM are represented as Data Join Graphs (DJGs), in whih eah ars of the graphdenotes a literal in the body of the lause (Figure 22).DJGs are a means of expressing and-parallelism and are similar in spirit to Conery's data-ow graph. Aset of variable binding tuples, alled a relation (PSS), is assoiated with eah ar and eah node of the DJG.The head of a lause is mathed with a subgoal by an Or proess. A redue proess is spawned to exeutethe body of the lause. In the redue proess, whenever a binding tuple is available in the relation of a nodek, subgoals orresponding to eah of the ars emanating from k will be started, whih leads to the reation ofnew Or proesses. When a solution for any subgoal arrives, it is inserted in orresponding ar relation. Thenode relation assoiated with a node n is a join of the ar-relations of all its inoming ars. So when a solutiontuple is inserted in an ar-relation, it is joined with all the solution tuples in the ar relations of its parallelars that originated from the same tuple in the lowest ommon anestor node of the parallel ars [Ramkumarand Kal�e 1990℄. A solution to the top level query is found, when the PSS of the root-node beomes non-empty.In ROPM multiple environments are represented by repliating them at the time of proess reation. Thuseah Redue- or Or-proess has its own opy of variable bindings (the Partial Solution Set above) whih isgiven to it at the time of spawning. Thus proess reation is an expensive operation. ROPM is proess basedmodel rather than a stak based one. As a result, there is no baktraking, and hene no memory relamation- 56 -



quicksort(L, Sorted) :- partition(L, L1, L2),
quicksort(L1, Sorted1), quicksort(L2, Sorted2),
append(Sorted1, Sorted2, Sorted).

0 1 2 3
partition(...)

quicksort(L1,...)

quicksort(L2,...)

append(....)

Fig. 22. An Example Data Join Graphthat is normally assoiated with baktraking. Computing the join is an expensive operation sine the atualbindings of variables have to be ross-produed to generate the tuple relations of the node (as opposed to usingsymboli addresses to represent solutions, as done in PEPSys [Westphal, Robert, Chassin, Syre 1987℄ and AO-WAM [Gupta and Jayaraman 1993a℄), and also sine the sets being ross-produed have many redundantelements. Muh e�ort has been invested in eliminating unneessary elements from the onstituent sets duringjoin omputation [Ramkumar and Kal�e 1990℄. However, eÆieny of the omputation of the join has beenmade more eÆient by using struture sharing. One advantage of the ROPMmodel is that if a proess swithesfrom one part of the redue-or tree to another, it doesn't need to update its state at all sine the entire stateinformation is stored in the tree.ROPM model has been implemented in the ROLOG system on a variety of platforms. ROLOG is a ompleteimplementation, whih inludes support for side e�ets [Kal�e, Padua, Sehr 1988℄. However, although ROLOGyields very good speed-ups, its absolute performane does not ompare very well with other parallel logiprogramming systems, hiey beause it is a proess based model and uses the expensive mehanism ofenvironment losing [Ramkumar and Kal�e 1989; Conery 1987b℄ for multiple environment representation.ROLOG is probably the most advaned proess-based model proposed to handle onurrent exploitationof and-parallelism and or-parallelism. Other systems based on similar models have also been proposed in theliterature, e.g., OPAL [Conery 1992℄|where exeution is governed by a set of And and Or proesses: Andproesses solve the set of goals in the body of a rule, and Or proesses oordinate the solution of a single goalwith multiple mathing lauses. And and Or proesses ommuniate solely via messages.6.3.3 The AO-WAM modelThe AO-WAM model [Gupta and Jayaraman 1993a; Gupta 1994℄ ombines or-parallelism and independentand-parallelism. Independent and-parallelism is exploited in the same way as in &-Prolog and &ACE, andsolutions to independent goals are reused (and not reomputed). To represent multiple or-parallel environmentsin the presene of independent and-parallelism, the AO-WAM extends the binding arrays tehnique [Warren1984; 1987a℄.The model works by onstruting an Extended And-Or Tree. Exeution ontinues like a standard or-parallelsystem until a CGE is enountered, at whih point a ross-produt node that keeps trak of the ontrolinformation for the and-parallel goals in the CGE is added to the or-parallel tree. New or-parallel sub-treesare started for eah independent and-parallel goal in the CGE. As solutions to goals are found, they areombined with solutions of other goals to produe their ross-produt. For every tuple in the ross-produtset, the ontinuation goal of the CGE is exeuted (i.e., its tree is onstruted and plaed as a desendent ofthe ross-produt node).As far as maintenane of multiple environments is onerned, eah worker has its own binding array. Inaddition, eah worker has a base array. Conditional variables are bound to a pair of numbers onsisting ofan o�set in the base array and a relative o�set in the binding array. Given a variable bound to the pair <i,v>, the loation binding array[base array[i℄ + v℄ will ontain the binding for that variable. For eah- 57 -



and-parallel goal in a CGE, a di�erent base-array index is used. Thus the binding array ontains a numberof smaller binding arrays, one for eah and-parallel goal, that are aessible through the base array. Whena worker produes a solution for an and-parallel goal and omputes its orresponding ross-produt tuples,then before it an ontinue exeution with the ontinuation goal of the CGE, it has to load all the onditionalbindings made by other goals in the CGE that are present in the seleted tuple (See Figure 23). Also, onswithing nodes, a worker must update its binding array and base array with the help of the trail, like inAurora.6.3.4 The ACE ModelACE (And/Or-parallel Copying-based Exeution of logi programs) [Gupta, Pontelli, Hermenegildo, San-tos Costa 1994; Pontelli and Gupta 1997b℄ is another model that has been proposed for exploiting or- andindependent and-parallelism simultaneously. ACE19 employs stak-opying developed for MUSE to representmultiple environments. And-parallelism is exploited via CGEs. ACE employs goal reomputation and thusan support sequential Prolog semantis. ACE an be onsidered as subsuming &-Prolog/&ACE and MUSE.The implementation an be envisaged as multiple opies of &-Prolog [Hermenegildo and Green 1991℄ run-ning in parallel with eah other, where eah opy orresponds to a di�erent solution to the top-level query(analogous to the view of MUSE as multiple sequential Prologs running in or-parallel). When there is onlyand-parallelism or or-parallelism, ACE behaves exatly like &-Prolog and MUSE respetively. When there isor-parallelism and independent and-parallelism present together, both are simultaneously exploited.Multiple environments are maintained by stak-opying as in MUSE. In ACE, available workers are dividedinto teams like Andorra-I, where di�erent teams exeute in or-parallel with eah other while di�erent workerswithin a team exeute in independent and-parallel with eah other. A team exeutes the top level query inand-parallel like &-Prolog until a hoiepoint is reated, at whih point other teams may steal the untriedalternatives from this hoiepoint. Before doing so, the stealing team has to opy the appropriate staksfrom the team from whih the alternative was piked. When the hoiepoint from whih the alternative ispiked is not in the sope of any CGE, all the operations are very similar to those in MUSE. However, thesituation is slightly more omplex when an alternative from a hoiepoint in the sope of a CGE is stolen bya team. To illustrate this, onsider the ase where a team selets an untried alternative from a hoie pointreated during exeution of a goal gi inside the CGE (true ) g1& : : :&gn). This team will opy all the staksegments in the branh from the root to the CGE inluding the parall frame20. It will also have to opy thestak segments orresponding to the goals g1 : : : gi�1 (i.e., goals to the left). The stak segments up to theCGE need to be opied beause eah di�erent alternative within gi might produe a di�erent binding for avariable, X, de�ned in an anestor goal of the CGE. The stak segments orresponding to goals g1 throughgi�1 have to be opied beause exeution of the goals following the CGE might bind a variable de�ned inone of the goals g1 : : : gi�1 di�erently. The stak segments of the goal gi from the CGE up to the hoiepointfrom where the alternative was taken also need to be opied (note that beause of this, an alternative anbe piked up for or-parallel proessing from a hoiepoint that is in the sope of the CGE only if goals tothe left, i.e., g1 : : : gi�1, have �nished). The exeution of the alternative in gi is begun, and when it �nishes,the goals gi+1 : : : gn are started again so that their solutions an be reomputed. Beause of reomputationof independent goals ACE an support sequential Prolog semantis [Gupta, Hermenegildo, and Santos Costa1993; Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Gupta and Santos Costa 1992a℄.This is also illustrated in Figure 24. The four frames represent four teams working on the omputation.The seond team reomputes the goal b, while the third and fourth teams takes the seond alternative of brespetively from the �rst and seond team.6.3.5 The COWL ModelsThe atual development of an or-parallel system based on stak-opying requires a very areful design ofthe memory management mehanisms. As mentioned in Setion 3.5.2 whenever a opy operation takes plae,we would like to transfer data strutures between agents without the need to perform any pointer-reloation19Note that the ACE platform has been used to experiment with both ombined and/or-parallelism as well as dependent and-parallelism, as illustrated in Setion 5.5.3.20The parall frame [Hermenegildo 1986a℄ reords the ontrol information for the CGE and its independent and-parallel goals.- 58 -
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Fig. 24. Exeution in ACEoperation. In systems like MUSE and ACE, this has been ahieved by using memory mapping tehniqueswhih allow the di�erent workers to map their staks at the same virtual addresses. This tehnique workswell for purely or-parallel systems, but tends to break down when or-parallelism is paired with onurrentexploitation of independent and-parallelism. Stak-opying takes advantage of the fat that the data to betransferred are oupying ontiguous memory loations. In a team-based system organization, we need totransfer data strutures whih have been reated by di�erent team members; suh data strutures are likelyto be not ontiguous in memory, thus requiring a omplex searh proess to determine the relevant areas tobe opied. Furthermore, possible onits may arise during opying if parts of the address spae of a teamhave been used for di�erent purposes in di�erent teams.A simple solution to these issues have been reently proposed by V. Santos Costa in the Copy-On-Writefor Logi Programs (COWL) methods [Santos Costa 1999℄. In COWL, eah team oupy a di�erent segmentof the overall address spae (thus, avoiding onits between members of di�erent teams during opying),alled team workspae. Whenever opying is required, one team simply opies the other team's spae into itsown. Copying is performed using operating system support for opy-on-write|two workers share the samedata until one of the tries to write on them; at that point a opy of the data is made and the two workers gotheir separate ways with private opies of suh data. Copying only at \write" time makes opies of data areas(partiularly read-only opies) very inexpensive. Thus, in COWL, when opying is required, the destinationteam releases its own memory mapping and maps (as opy-on-write) the soure team's spae. Thus, atualdata are not opied immediately, but they are automatially transferred by the operating system wheneverthey are needed. The basi COWL sheme (also known as �COWL) has been also extended to optimizethe opying by avoiding wasting omputation loally performed in the team and reusable after the opyingoperation (i.e., avoid one team to opy data strutures from its own workspae), leading to a seond model,alled �COWL.6.3.6 Paged Binding Array based ModelACE an be seen as ombining &-Prolog with MUSE, while preserving Prolog semantis. In a similarvein, one an ombine &-Prolog with Aurora while preserving Prolog semantis. However, as in the ase ofAO-WAM, the binding array tehnique has to be extended to aommodate independent and-parallelism. ThePaged Binding Array (PBA) based model does this by dividing the binding array into pages and maintaininga Page Table with a binding array. Like ACE, available workers are divided into teams, where di�erent teamswork in or-parallel with eah other, while di�erent workers within a team work in independent and-parallel.Di�erent and-parallel omputations within an or-parallel omputation share the same binding array (thus the- 60 -
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computation  are shown in dark in the fig.Fig. 25. The Paged Binding Arraypaged binding array and the page table is ommon to all workers in a team), however, eah one of them willuse a di�erent page, requesting a new page when it runs out of spae in the urrent one. Like AO-WAM,onditional variables are bound to a pair of numbers where the �rst element of the pair indiates the pagenumber in the binding array, and the seond element indiates the o�set within this page.The PBA based model also employs reomputation of independent goals, and therefore an support Prologsemantis [Gupta, Hermenegildo, and Santos Costa 1993; Gupta and Santos Costa 1992a℄. Thus, when a teamsteals an alternative from a goal inside a CGE, then it updates its binding array and page table so that theomputation state that exists at the orresponding hoiepoint is reeted in the stealing team. The teamthen restarts the exeution of that alternative, and of all the goals to the right of the goal in the CGE thatled to that alternative. In ases, where the alternative stolen is from a hoiepoint outside the sope of anyCGE, the operations involved are very similar to those in Aurora.The Paged Binding Array is a very versatile data struture and an also be used for implementing other formsof and-or parallelism [Gupta, Santos Costa, Pontelli 1994℄.So far we have only onsidered models that ombine or- and independent and-parallelism. There are modelsthat ombine independent and-parallelism and dependent and-parallelism suh as DDAS [Shen 1992a℄, de-sribed earlier, as well as models that ombine or-parallelism and dependent and-parallelism suh as Andorra-I[Santos Costa, Warren, Yang 1991a℄. Other ombined independent and- and -or parallel models have also beenproposed [Biswas et al. 1988; Gupta, Santos Costa, Yang, Hermenegildo 1991℄.6.3.7 The Priniple of OrthogonalityOne of the overall goals that has been largely ignored in the design of and-or parallel logi programmingsystems is the priniple of orthogonality [Correia et al. 1997℄. In an orthogonal design, or-parallel exeutionshould be unaware of and-parallel exeution and vie-versa. Thus, orthogonality allows the separate design ofthe data strutures and exeution mehanisms for or-parallelism and and-parallelism. Ahieving this goal is avery ambitious: orthogonality implies that� eah worker should be able to baktrak to a shared hoie point and be aware only of or-parallelism;� whenever a worker enters the publi part of the or-tree, the other workers working in the team should beable to ontinue una�eted their and-parallel omputations.Most existing proposals for ombined and/or-parallelism do not meet the priniple of orthogonality. Let usonsider for example the PBA model and let us onsider the omputation as shown in Figure 26.- 61 -



a & b a & b

W1,1

W1,2

W2,1

W2,2

C1

C2 Fig. 26. Lak of Orthogonality in PBALet us assume the following on�guration:� workers W1,1 and W1,2 ompose the �rst team whih is operating on the parallel all on the left; workerW1,1 makes use of pages 1 and 3|page 1 used before hoie point C1 while page 3 is used after that hoiepoint|while worker W1,2 makes use of page 2.� worker W2,1 and W2,2 ompose team number 2 whih is working on the opy of the parallel all (on theright). The omputation originates from stealing one alternative from hoie point C1. In this ase, workerW2,2 makes use of both pages 2 and 3.If worker W2,1 baktraks and asks for a new alternative from the �rst team (one of the alternatives of C2),then it will need to use page 3 for installing the bindings reated by the team 1 after the hoie point C1.But for team 2 the page 3 is not available (being used by W2,2 ). Thus worker W2,2 will be \a�eted" bybaktraking of W2,1 on a shared hoie point.Various solutions are urrently under exploration to support orthogonality. Between the shemes proposed:� the Shared Paged Binding Array (SPBA) [Gupta, Santos Costa, Pontelli 1994℄ extends the PBA sheme byrequiring the use of a global and shared paged binding array;� the Sparse Binding Array [Correia et al. 1997℄ eah onditional variable is guaranteed to have a bindingarray index whih is unique in the whole omputation tree and relying on operating system tehniques tomaintain the large address spae that eah worker needs to reate (eah worker needs virtual aess to theaddress spae of eah worker in the system);� the COWL methods presented in Setion 6.3.5.A omparison between these three shemes has been presented in [Santos Costa, Roha, Silva 2000℄.6.3.8 The Extended Andorra ModelThe Extended Andorra Model [Warren 1988; Haridi and Jason 1990; Gupta and Warren 1992℄ and the AndorraKernel Language (AKL) (later renamed Agent Kernel Language) [Haridi and Jason 1990℄ ombine exploitationof or-parallelism and dependent and-parallelism. Intuitively, both models rely on the reation of opies of theonsumer goal for every alternative of the produer and vie versa (akin to omputing a join) and lettingthe omputation proeed in eah suh ombination. Note that the Extended Andorra Model (EAM) and theAndorra Kernel Language are very similar in spirit to eah other, the major di�erene being that while theEAM strives to keep the ontrol as impliit as possible, AKL gives the programmer omplete ontrol overparallel exeution through wait guards. In the desription below we use the term Extended Andorra Model ina generi sense, to inlude models suh as AKL as well.- 62 -



The Extended Andorra Model is an extension of the Basi Andorra Model. The Extended Andorra Modelgoes a step further and removes the onstraint that goals beome determinate before they an exeute aheadof their turn. However, goals whih do start omputing ahead of their turn must ompute only as far as the(multiple) bindings they produe for the uninstantiated variables in their arguments are onsistent with thoseprodued by the \outside environment." If suh goals attempt to bind a variable in the outside environment,they suspend. One a state is reahed where exeution annot proeed, then eah suspended goal whih isa produer of bindings for one (or more) of its argument variables \publishes" these bindings to the outsideenvironment. For eah binding published, a opy of the onsumer goal is made and its exeution ontinued.(This operation of \publiation" and reation of opies of the onsumer is known as a \non-determinatepromotion" step.) The produer of bindings of a variable is typially the goal where that variable ours �rst.However, if a goal produes only a single binding (i.e., it is determinate) then it doesn't need to suspend, itan publish its binding immediately, thus automatially beoming the produer for that goal irrespetive ofwhether it ontains the left most ourrene of that variable or not (as in Basi Andorra Model). An alternativeway of looking at the EAM is to view it as an extension of the Basi Andorra model where non-determinategoals are allowed to exeute loally so far as they do not inuene the omputation going on outside them.This amounts to inluding in the Basi Andorra Model the ability to exeute independent goals in parallel.There have been di�erent interpretations of the Extended Andorra Model, but the essential ideas are summa-rized below. Consider the following very simple program:p(X, Y) :- X = 2, m(Y).p(X, Y) :- X = 3, n(Y).q(X, Y) :- X = 3, t(Y).q(X, Y) :- X = 3, s(Y).r(Y) :- Y = 5.?- p(X, Y), q(X, Y), r(Y).When the top-level goal begins exeution, all three goals will be started onurrently. Note that variables X,and Y in the top-level query are onsidered to be in the environment \outside" of goals p, q, and r (this isdepited by existential quanti�ation of X and Y in �gure 27). Any attempt to bind these variables from insidethese goals will lead to the suspension of these goals. Thus, as soon as these three goals begin exeution, theyimmediately suspend sine they try to onstrain either X or Y. Of these, r is allowed to proeed and onstrainY to value 5, beause it binds Y determinately. Sine p will be rekoned the produer goal for the bindingof X, it will ontinue as well and publish its binding. The goal q will, however, suspend sine it is neitherdeterminate nor the produer of bindings of either X or Y. To resolve the suspension of q and make it ativeagain, the non-determinate promotion step will have to be performed. The non-determinate promotion stepwill math all alternatives of p with those for q, resulting in only two ombination remaining ative (the resthaving failed beause of non-mathing bindings of X). These steps are shown in �gure 27.The above is a very oarse desription of the Extended Andorra Model, a full desription of the model isbeyond the sope of this paper. More details an be found elsewhere [Warren 1988; Haridi and Jason 1990;Gupta and Warren 1992℄. The EAM is a very general model, more powerful than the Basi Model, sine it annarrow down the searh even further by loal searhing. It also exploits more parallelism sine it exploits allmajor forms of parallelism present in logi programs: or-, independent-and, and dependent-and parallelism,inluding both determinate and non-determinate dependent-and parallelism. A point to note is that the EAMdoes not distinguish between independene and dependene of onjuntive goals: it tries to exeute themin parallel whenever possible. Also note that the Extended Andorra Model subsumes both the ommittedhoie logi programming (with non-at as well as at guards) and non-deterministi logi programming|i.e.,general Prolog.The generality and the power of the Extended Andorra Model makes its eÆient implementation quite diÆult.A sequential implementation of one instane of the EAM (namely, the Andorra Kernel Language or AKL)has been implemented at Swedish Institute of Computer Siene [Janson and Montelius 1991℄. A parallelimplementation has also been undertaken by Moolenaar and Demoen [Moolenar and Demoen 1993℄. A veryeÆient parallel implementation of AKL has been proposed by Montelius in the Penny system [Montelius 1997;- 63 -
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Fig. 27. Exeution in EAMMontelius and Ali 1996℄. This implementation ombines tehniques from or-parallelism and ommitted-hoielanguages. Although AKL inludes non-determinism, it di�ers from Prolog both in syntax and semantis.However, automati translators that transform Prolog program into AKL programs have been onstruted[Bueno and Hermengildo 1992℄. The development of AKL has been disontinued, although many of the ideasexplored in the AKL projet have been reused in the development of the onurrent onstraint language Oz[Haridi, Van Roy, Brand, Shulte 1998; Popov 1997℄.More faithful models to support the exeution of the EAM have been reently desribed and are urrentlyunder implementation|e.g., the BEAM model [Lopes and Santos Costa 1999℄. The literature also ontainsproposals of extensions of Prolog that tries to more naturally integrate EAM-style of omputations. One ex-ample is represented by the Extended Dynami Dependent sheme [Gupta and Pontelli 1999℄. This model hasbeen developed as an extension of the Filtered-Binding model used in the ACE system to support dependentand-parallelism. The model extends Prolog-like dependent and-parallelism by allowing the deterministi pro-motion step of EAM. This typially allows improved termination properties, redued number of suspensionsduring parallel exeution, and simple forms of oroutining. These results an be ahieved reusing most ofthe existing (and eÆient) tehnology developed for pure dependent and-parallelism, thus avoiding dramatihanges in the language semantis and novel and omplex implementation mehanisms.7. DATA PARALLELISM VS. CONTROL PARALLELISMMost of the researh has foused on exploiting parallelism only on MIMD arhitetures, viewing or-parallelismand and-parallelism as forms of ontrol-parallelism. Intuitively, this means that parallelism is exploited byreating multiple threads of ontrol, whih are onurrently performing di�erent operations. An alternativeview has been to treat speialized forms of or- and and-parallelism as data parallelism. Data parallelism relieson the idea of maintaining a single thread of ontrol, whih onurrently operates on multiple data instanes.Similarly to what we have onsidered so far, we an talk about data or-parallelism and data and-parallelism.In both ases, the fous is on the parallelization of repetitive operations whih are simultaneously applied toa large set of data. This pattern of exeution is very frequent in logi programs, as exempli�ed by frequently- 64 -



used prediates suh as map: map([℄,[℄).map([X|Y℄,[X1|Y1℄) :-proess(X,X1),map(Y,Y1).where the omputation indiated by proess is repeated for eah element of the input list. In this ontext, dataparallelism implies that exploitation of parallelism is driven by the omputation data-ow, in ontrast withstandard and- and or-parallelism, whih relies on the parallelization of the ontrol struture of the omputation(i.e., the onstrution of the derivation tree).Exploitation of data parallelism has been shown to lead to good performane on both SIMD and MIMDarhitetures; the relatively regular format of the parallelism exploited allows simpler and more eÆientmehanisms, thus leading to redued overhead and improved eÆieny even on MIMD arhitetures.7.1 Data Or-ParallelismIn a data or-parallel system, exempli�ed by the MultiLog system [Smith 1996℄, or-parallelism of a highlyregular nature is exploited on a SIMD arhiteture. There is one ontrol thread but multiple environments.Data or-parallelism as exploited in MultiLog is useful in appliations of generate-and-test nature, where thegenerator binds a variable to di�erent values taken from a set. Consider the following program:member(X, [X|T℄).member(X, [Y|T℄) :- member(X, T).?- member(Z, [1,2,..,100℄), proess(Z).In a standard Prolog exeution the solutions to member/2 are enumerated one by one via baktraking, andeah solution is separately proessed by proess. The member goal will be identi�ed as the generator in theMultiLog system. For suh a goal, a subomputation is begun, and all solutions are olleted and turned into adisjuntion of substitutions for variable Z. The proess goal is then exeuted in data parallel for eah bindingreeived by Z. Note that the exeutions of the various proess goals di�er only in the value of the variable Z.Therefore, only one ontrol thread is needed whih operates on data that is di�erent on di�erent workers, withuni�ation being the only data parallel operation. It is also important to observe that proess/1 is exeutedone, rather than one per solution of the member/2 prediate.Multilog provides a single syntati extension w.r.t. Prolog: the disj annotation allows the ompiler toidentify the generator prediate. Thus, for a goal of the form ?- disj generate(X) Multilog will produe aomplete desription of the set of solutions (as a disjuntion of bindings for X) before proeeding with the restof the exeution.For a (restrited) set of appliations|e.g., generate and test programs|a data or-parallel system suh asMultiLog has been shown to produe good speed-ups.Tehniques, suh as the Last Alternative Optimization [Gupta and Pontelli 1999b℄, have been developedto allow traditional or-parallel systems to perform more eÆiently in presene of ertain instanes of dataor-parallelism.7.2 Data And-ParallelismThe idea of data parallel exeution an also be also naturally applied to and-parallel goals: lauses that ontainreursive alls an be unfolded and the resulting goals exeuted in data parallel. This approah, also knownas reursion parallelism, has been suessfully exploited through the notion of Reform Compilation [Millroth1990℄. Consider the following program:map([℄,[℄).map([X|Y℄,[X1|Y1℄) :- pro(X,X1), map(Y,Y1).?- map([1, 2, 3℄, Z).Unfolding this goal we obtain:Z = [X1,X2,X3|Y℄, pro(1,X1), pro(2,X2), pro(3,X3),map([℄,Y).- 65 -



Note that the three pro goals are idential exept for the data values and an be exeuted in data parallel|i.e., with a single thread of ontrol and multiple data values. Thus, the answer to the above query an beexeuted in two data parallel steps.In more general terms, given a reursively de�ned prediate pp( �X) : � �:p( �X) : � �; p( �X 0);	:if a goal p(�a) is determined to perform at least n reursive alls to p, then the seond lause an be unfoldedas: p( �X) : ��1; : : : ;�n| {z }(1) ; p(�b)|{z}(2) ;	n; : : : ;	1| {z }(3) :where �i and 	i are the instanes of goals � and 	 obtained at the ith level of reursion. This lause an beexeuted by �rst running, in parallel, the goals �1; : : : ;�n, then exeuting p(�b) (typially the base ase of thereursion), and �nally running the goals 	n; : : : ;	1 in parallel as well. In pratie the unfolded lause is notatually onstruted, instead the head uni�ation for the n levels of reursion is performed at the same timeas the size of the reursion is determined, and the body of the unfolded lause is ompiled into parallel ode.Reform Prolog [Bevemyr et al. 1993℄ is an implementation of a restrited version of the reform ompilationapproah. In partiular only prediates performing integer-reursion or list-reursion and for whih the sizeof the reursion is known at the time of the �rst all are onsidered for parallel exeution.To ahieve eÆient exeution, Reform Prolog requires the generation of deterministi bindings to the ex-ternal variables, thus relieving the system from the need to perform omplex baktraking on parallel alls.Sophistiated ompile-time analysis tools have been developed to guarantee the onditions neessary for theparallel exeution and to optimize exeution [Lindgren 1993℄. Reform Prolog has been ported on di�erentMIMD arhitetures, suh as Sequent [Bevemyr et al. 1993℄ and KSR-1 [Lindgren, Bevemyr, Millroth 1995℄.Exploitation of data and-parallelism expliitly through bounded quanti�ation has also been proposed [Bark-lund and Millroth 1992℄. In this ase, the language is extended with onstruts used to express bounded formsof universal quanti�ation (e.g., 8(X 2 S)'). Parallelism is exploited by onurrently exeuting the bodyof the quanti�ed formula (e.g., ') for the di�erent values in the domain of the quanti�ers (e.g., the di�erentvalues in the set S).Reently, various works have also attempted to reate a bridge between and-parallelism and data and-parallelism. The objetive of these works is to allow the identi�ation of instanes of data and-parallelism ingeneri and-parallel programs, and the use of speialized and more eÆient exeution mehanisms to theseases [Pontelli and Gupta 1995b; Hermenegildo and Carro 1995℄.8. PARALLEL CONSTRAINT LOGIC PROGRAMMINGAlthough the main fous of this survey is parallel exeution of Prolog programs, we would like to brieyoverview in this setion the most relevant e�orts whih have been made towards parallel exeution of ConstraintLogi Programming (CLP). This is of interest sine many of the tehniques adopted for parallel exeution ofCLP are diretly derived from those used in the parallelization of Prolog omputations.The notion of data parallelism has been also adapted to exeute Finite Domain Constraint Logi Program-ming. The two most representative examples are the parallel implementation of Chip [Van Hentenryk 1989a℄and the Firebird system [Tong and Leung 1993℄.The parallel implementation of Chip [Van Hentenryk 1989a℄ has been realized using the PEPSys or-parallelsystem. In this implementation, parallelism is exploited from the hoie-points generated by the labeling phaseintrodued during resolution of �nite domain onstraints. The results reported in [Van Hentenryk 1989a℄ areenouraging, and prove that or-parallel tehnique are quite suitable to support also CLP exeutions.Firebird [Tong and Leung 1993℄ is a data parallel extension of at GHC (a ommitted-hoie language)with �nite domain onstraints, relying on the data or-parallel exeution obtained from the parallelizationof the labeling phase of CLP. Exeution inludes non-deterministi steps, leading to the reation of parallelhoie-points, and indeterministi steps, based on the usual ommitted-hoie exeution behavior. Arguments- 66 -



of the prediates exeuted during an indeterministi step an possibly be vetor of values|representing thepossible values of a variable|and are explored in data parallel. The overall design of Firebird resembles themodel desribed earlier for Multilog.The implementation of Firebird has been developed on a DECmpp SIMD parallel arhiteture, and hasshown onsiderable speedups for seleted benhmarks (e.g., about two orders of magnitude of speedup for then-queens benhmark using 8,192 proessors) [Tong and Leung 1995℄.A number of other proposals have appeared in the literature whih instead provide parallelization of on-straint logi programs based on the ideas of ontrol parallelism (instead of data parallelism). One of the �rstworks in this �eld is [Gregory and Yang 1992℄, in whih �nite domain onstraint solving operations are mappedto the parallel exeution mehanisms of Andorra-I.Another proposal is represented by GDCC [Terasaki et al. 1992℄, an extension of KL1 (running on the PSIarhiteture) with onstraint solving apabilities|onstruted following the  model proposed by Saraswat[Saraswat 1989℄. GDCC provides two levels in the exploitation of parallelism: (i) the gd language is anextension of the onurrent KL1 language, whih inludes ask and tell of onstraints; this language an beexeuted in parallel using the parallel support provided by KL1; (ii) gd has been interfaed to a numberof onstraint solvers (e.g., algebrai solvers for non-linear equations), whih are themselves apable of solvingonstraint in parallel.Reently, the fous have shifted on the diret parallelization of the soures of non-determinism inherentin the operational semantis of CLP. The work in [Pontelli and El-Khatib 2001℄ presents a methodology forexploring in parallel the alternative elements of a onstraint domain, while [Ruiz-Andino, Araujo, Saenz,Ruz 1999℄ revisits the tehniques used to parallelize ar-onsisteny algorithms (e.g., parallel AC3 [Samaland Henderson 1987℄ and AC4 [Nguyen and Deville 1998℄) and applies them to the spei� ase of indexialonstraints in CLP over �nite domains.9. IMPLEMENTATION AND EFFICIENCY ISSUES IN PARALLEL LPEngineering an eÆient, pratial parallel logi programming system is by no means an easy task21. Thereare numerous issues one has to onsider, some of the broad ones are disussed below:9.1 Proess-based vs. Proessor-basedBroadly speaking there are two approahes that have been taken in implementing parallel logi programmingsystems whih we loosely all the Proess-based approah and the Proessor-based approah respetively.In the proess-based approahes, prominent examples of whih are Conery's And-Or Proess Model [Conery1987a℄ and the Redue-Or Proess Model [Kal�e 1985℄, a proess is reated for every goal enountered duringexeution. These proesses ommuniate bindings and ontrol information to eah other to �nally produe asolution to the top-level query. Proess-based approahes have also been used for implementing ommittedhoie languages [Shapiro 1987℄. Proess-based approahes are suited for implementation on non-shared mem-ory MIMD proessors22, at least from a oneptual point of view, sine di�erent proesses an be mapped todi�erent proessors at runtime quite easily.In proessor-based approahes, multiple threads are reated that are exeuted in parallel to produe answersto the top level query. Typially, eah thread is a WAM-like proessor. Examples of proessor-based systemsare Aurora, MUSE, &-Prolog, Andorra-I, PEPSys, AO-WAM, DDAS, ACE, PBA, et. Proessor-basedsystems are more suited for shared memory mahines, although tehniques like stak-opying and stak-splitting show a high degree of loality in memory referene behavior and hene are suited for non-sharedmemory mahines as well [Ali 1987; Ali et al. 1992℄. As has been shown by the ACE model, MUSE's stak-opying tehnique an be applied to and-or parallel systems as well, so one an envisage implementing aproessor-based system on a non-shared memory mahine using stak-opying [Gupta, Hermenegildo, SantosCosta 1992; Gupta and Pontelli 1999a℄. Alternatively, one ould employ salable virtual shared memory21For instane, many person-years of e�orts have been spent in building some of the existing systems, suh as MUSE, Aurora,Andorra-I, ACE, and &-Prolog.22Some more proposals for distributed exeution of logi programs an be found in [Kasuk 1990℄.- 67 -



arhitetures that have been proposed [Warren and Haridi 1988℄ and built (e.g., KSR, SGI Origin, IBMNUMA-Q).A parallel logi programming system should possess the following two properties:� On a single proessor, the performane of the parallel system should be omparable to sequential logiprogramming implementations (i.e., there should not be limited slow down ompared to a sequential system).Systems suh as MUSE, ACE, Aurora and &-Prolog indeed get very lose to ahieving this goal.� The parallel system should be able to take advantage of the sequential ompilation tehnology [Warren 1983;Ait-Kai 1992; Van Roy 1990℄ that has advaned rapidly in the last two deades.Experiene has shown that proess-based system lose out on both the above ounts. Similar aounts havebeen reported also in the ontext of ommitted-hoie languages (where the notion of proess-based matheswell with the view of eah subgoal as an individual proess whih is enfored by the onurrent semantis of thelanguage)|indeed the fastest parallel implementation of ommitted-hoie languages (e.g., [Crammond 1992;Rokusawa, Nakase, Chikayama 1996℄) rely on a proessor-based implementation. In the ontext of Prolog, thepresene of baktraking makes the proess model too omplex for non-deterministi parallel logi program-ming. Further, the proess-based approah exploits parallelism at a level that is too �ne grained, resulting inhigh parallel overhead and unpromising absolute performanes (but good speed-ups beause the large paralleloverhead gets evenly distributed!). Current proessor-based systems are not only highly eÆient, they aneasily assimilate any future advanes that will be made in the sequential ompilation tehnology. However, itmust be pointed out that inreasing the granularity of proesses to ahieve better absolute performane hasbeen attempted for proess-based models with good results [Kal�e and Ramkumar 1992; Ramkumar and Kal�e1992℄.9.2 Memory ManagementMemory management, or managing the memory spae oupied by run-time data strutures suh as staks,heaps, et., is an issue that needs to be takled in any parallel system. In parallel logi programming systemsmemory management is further ompliated due to the presene of baktraking that may our on failure ofgoals.In sequential Prolog implementations, memory is eÆiently utilized beause the searh tree is onstruted ina depth-�rst order, so that at any given moment a single branh of the tree resides in the stak. The followingtwo rules always hold in a traditional sequential systems:(1) If a node n1 in the searh tree is in a branh to the right of another branh ontaining node n2, then thedata strutures orresponding to node n2 would be relaimed before those of n1 are alloated.(2) If a node n1 is the anestor of another node n2 in the searh tree, then the data strutures orrespondingto n2 would be relaimed before those of n1.As a result of these two rules, spae is always relaimed from the top of the staks during baktraking in logiprogramming systems whih perform a depth-�rst searh of the omputation tree, as Prolog does. However,in parallel logi programming systems, these rules may not hold, beause two branhes may be simultaneouslyative due to or-parallelism (making rule 1 diÆult to enfore), or two onjuntive goals may be simultaneouslyative due to and-parallelism (making rule 2 diÆult to enfore). Of ourse, in a parallel logi system, usually,eah worker has its own set of staks (the multiple staks are referred to as a atus stak sine eah stakorresponds to a part of the branh of the searh tree), so it is possible to enfore the two rules in eah stakto ensure that spae is relaimed only from the top of individual staks. If this restrition is imposed, thenwhile memory management beomes easier, some parallelism may be lost sine an idle worker may not beable to pik available work in a node beause doing so will violate this restrition. If this restrition is notimposed, then it beomes neessary to deal with the \garbage slot" problem|namely, a data struture thathas been baktraked over is trapped in the stak below a goal that is still in use|and the \trapped goal"problem|namely, an ative goal is trapped below another, and there is no spae ontiguous to this ative goalto expand it further [Hermenegildo 1987℄, whih results in the LIFO nature of staks being destroyed.- 68 -



The approah taken by many parallel systems (e.g., the ACE and DASWAM and-parallel systems and theAurora or-parallel system) is to allow trapped goals and garbage slots in the staks. Spae needed to expanda trapped goal further is alloated at the top of the stak (resulting in \stak-frames"|suh as hoie-pointsand goals desriptors|orresponding to a given goal beoming non-ontiguous). Garbage slots reated aremarked as suh, and are relaimed when everything above them has also turned into garbage. This tehniqueis employed in the Aurora, &-Prolog, and Andorra-I systems. In Aurora the garbage slot is referred to asa ghost node. If garbage slots are allowed, then the system will use up more memory, but work-shedulingbeomes simpler and proessing resoures are utilized more eÆiently.While onsiderable e�ort has been invested in the design of garbage olletion shemes for sequential Prologimplementations (e.g., [Pittomvils, Bruynooghe, Willems 1985; Appleby, Carlsson, Haridi, Sahlin 1988; Olderand Rummell 1992; Bekkers, Ridoux, Ungaro 1992℄), onsiderably more limited e�ort has been plaed onadapting these mehanisms to the ase of parallel logi programming systems. Garbage olletion is indeed aserious onern, sine parallel logi programming systems tend to onsume more memory than sequential ones(e.g., use of additional data strutures, suh as parall frames, to manage parallel exeutions). For example,results reported for the Reform Prolog system indiates that on average 15% of the exeution time is spentin garbage olletion. Some early work on parallelization of the garbage olletion proess (applied mostlyto basi opying garbage olletion methods) an be found in the ontext of parallel exeution of funtionallanguages (e.g., [Halstead 1984℄). In the ontext of parallel logi programming, two relevant e�orts are:� the proposal by Ali [Ali 1995℄, whih provides a parallel version of a opying garbage olletor, re�ned toguarantee avoidane of unneessary opying (e.g., opy the same data twie) and load balaning betweenworkers during garbage olletion;� the proposal by Bevemyr [Bevemyr 1995℄, whih extends the work by Ali into a generational opying garbageolletor (objes are divided in generations, where newer generations ontains objets more reently reated;the new generation is garbage olleted more often then the old one).Generational garbage olletion algorithms have also been proposed in the ontext of parallel implementationof ommitted-hoie languages (on PIM arhitetures) [Ozawa, Hosoi, Hattori 1990; Xu, Koike, Tanaka 1989℄.9.3 OptimizationsA system that builds an and-or tree to solve a problem with non-determinism may look trivial to implement at�rst, but experiene shows that it is quite a diÆult task. A naive parallel implementation may lead to a slowdown, or, may inur a severe overhead ompared to a orresponding sequential system. The parallelism presentin these frameworks is typially very irregular and unpreditable; for this reason, parallel implementations ofnon-deterministi languages typially rely on dynami sheduling. Thus, most of the work for partitioning andmanaging parallel tasks is performed during run-time. These duties are absent from a sequential exeutionand represent parallel overhead. Exessive parallel overhead may ause a naive parallel system to run manytimes slower on one proessor ompared to a similar sequential system.A large number of optimizations have been proposed in the literature to improve the performane of individ-ual parallel logi programming systems (e.g., [Ramkumar and Kal�e 1989; Shen 1994; Pontelli, Gupta, Tang,Carro, Hermenegildo 1996℄). Nevertheless, limited e�ort has been plaed in determining overall prinipleswhih an be used to design over-the-border optimization shemes for entire lasses of systems. A proposalin this diretion has been put forward by Gupta & Pontelli [Gupta and Pontelli 1997; Pontelli, Gupta, Tang1995℄. The proposal presents a number of general optimization priniples that an be employed by implemen-tors of parallel non-deterministi systems to keep the overhead inurred for exploiting parallelism low. Thesepriniples have been used to design a number of optimization shemes|suh as the Last Parallel Call Opti-mization [Pontelli, Gupta, Tang 1995℄ (used for independent and-parallel systems) and the Last AlternativeOptimization [Gupta and Pontelli 1999b℄ (used for or-parallel systems).Parallel exeution of a logi programming system an be viewed as the parallel traversal/onstrution of anand-or tree. Given the and-or tree for a program, its sequential exeution amounts to traversing the and-ortree in a pre-determined order. Parallel exeution is realized by having di�erent workers onurrently travers-ing di�erent parts of the and-or tree in a way onsistent with the operational semantis of the programminglanguage. By operational semantis we mean that data-ow (e.g., variables bindings) and ontrol-ow (e.g.,- 69 -



input/output operations) dependenies are respeted during parallel exeution (similar to loop parallelizationof Fortran programs, where ow dependenies have to be preserved). Parallelism allows overlapping of explo-ration of di�erent parts of the and-or tree. Nevertheless, as mentioned earlier, this does not always translateto an improvement in performane. This happens mainly beause of the following reasons:� the tree struture developed during the parallel omputation needs to be expliitly maintained, in orderto allow for proper management of non-determinism and baktraking|this requires the use of additionaldata strutures, not needed in sequential exeution. Alloation and management of these data struturesrepresent overhead during parallel omputation with respet to sequential exeution;� the tree struture of the omputation needs to be repeatedly traversed in order to searh for multiplealternatives and/or ure eventual failure of goals, and suh traversal often requires synhronization betweenthe workers. The tree struture may be traversed more than one beause of baktraking, and beauseidle workers may have to �nd nodes that have work after a failure takes plae or a solution is reported(dynami sheduling). This traversal is muh simpler in a sequential omputation, where the managementof non-determinism is redued to a linear and fast san of the branhes in a predetermined order.Based on this it is possible to identify ways of reduing these overheads.Traversal of Tree Struture: there are various ways in whih the proess of traversing the omplex strutureof a parallel omputation an be made more eÆient:(1) simpli�ation of the omputation's struture: by reduing the omplexity of the struture to be traversed itshould be possible to ahieve improvement in performane. This priniple has been rei�ed in the alreadymentioned Last Parallel Call Optimization and the Last Alternative Optimization, used to atten theomputation tree by ollapsing ontiguous nodes lying on the same branh if some simple onditions hold.(2) use of the knowledge about the omputation (e.g., determinay) in order to guide the traversal of theomputation tree: information olleted from the omputation may suggest the possibility of avoidingtraversing ertain parts of the omputation tree.This has been rei�ed in various optimizations, inluding the Determinate Proessor Optimization [Pontelli,Gupta, Tang 1995℄.Data Struture Management: sine alloating data strutures is generally an expensive operation, the aimshould be to redue the number of new data strutures reated. This an be ahieved by:(1) reusing existing data strutures whenever possible (as long as this does preserve the desired exeutionbehavior).This priniple has been implemented, for example, in the Baktraking Families Optimization [Pontelli,Gupta, Tang, Carro, Hermenegildo 1996℄.(2) avoiding alloation of unneessary strutures: most of the new data strutures introdued in a parallelomputation serve two purposes: (i) support the management of the parallel parts of the omputation;(ii) support the management of non-determinism.This priniple has been implemented in various optimizations, inluding the shallow baktraking opti-mization [Carlsson 1989℄ and the Shallow Parallelism Optimization [Pontelli, Gupta, Tang 1995℄.This suggests possible onditions under whih one an avoid reation of additional data strutures: (i) noadditional data strutures are required for parts of the omputation tree whih are potentially parallel butare atually explored by the same omputing agent (i.e., potentially parallel but pratially sequential); (ii)no additional data strutures are required for parts of the omputation that will not ontribute to the non-deterministi nature of the omputation (e.g., deterministi parts of the omputation).9.4 Work ShedulingThe Work Sheduler, or the software that mathes available work with workers, is a very important omponentof a parallel system. Parallel logi programming systems are no exeptions. If a parallel logi system is toobey Prolog semantis|inluding supporting exeution of pruning and other order-sensitive operations|thensheduling beomes even more important, beause in suh a ase, for or-parallelism, the sheduler should prefer- 70 -



goals in the left branhes of the searh tree to those in the branhes to the right, while for and-parallelismprefer goals to the left over those to right. In parallel systems that support uts, work that is not in the sopeof any ut should be preferred over work that is in the sope of a ut, beause it is likely that the ut may beexeuted ausing a large part of the work in its sope to go wasted [Ali and Karlsson 1992b; Beaumont andWarren 1993; Sindaha 1992; Beaumont 1991℄.The sheduler is also inuened by how the system manages its memory. For instane, if the restrition ofonly relaiming spae from the top of a stak is imposed and garbage slots/trapped goals are not allowed,then the sheduler has to take this into aount and at any given moment shedule only those goals that meetthese riteria.Shedulers in systems that ombine more than one form of parallelism have to �gure out how muh of theresoures should be ommitted to exploiting a partiular kind of parallelism. For example, in Andorra-I andACE systems, that divide available workers into teams, the sheduler has to determine the sizes of the teams,and deide when to migrate a worker from a team that has no work left to another that does have work, andso on [Dutra 1994; 1995℄.The fat that Aurora, quite a suessful or-parallel system, has about �ve shedulers built for it [Calderwoodand Szeredi 1989; Beaumont et al. 1991; Sindaha 1992; Butler et al. 1988℄, is a testimony to the importaneof work-sheduling for parallel logi programming systems. Design of eÆient and exible shedulers is still atopi of researh [Dutra 1991; Ueda and Montelius 1996℄.9.5 GranularityGranularity of omputation, or the average amount of work done between two alls to the sheduler by theworker, is another aspet that is important for parallel system design. It is desirable to have a large granularityof omputation, so that the sheduling overhead is a small fration of the total work done by a worker. Thegeneral idea is that if the gain obtained by exeuting a task in parallel is less than the overheads required tosupport the parallel exeution, then the task is better exeuted sequentially. Granularity issues have a diretbearing on the sheduler. It is the sheduler's responsibility to �nd work for a worker that is of large enoughsize.The Aurora and MUSE or-parallel systems, keep trak of granularity by traking the rihness of nodes, i.e.,the amount of work|measured in terms of number of untried alternatives in hoie-points|that is availablein the subtree rooted at a node. Workers will tend to pik work from nodes that have high rihness. Auroraand MUSE systems also make a distintion between private and publi part of the tree to keep granularityhigh. Essentially, work reated by another worker an only be piked up from the publi region. In theprivate region, the worker that owns that region is responsible for all the work generated, thereby keepingthe granularity high. In the private region exeution is very lose to sequential exeution, resulting in higheÆieny. Only when the publi region runs out of work, a part of the private region of some worker is madepubli. In these systems, granularity ontrol is ompletely performed at run-time.Modern systems implement granularity ontrol using a two-phase proess [Shen, Santos Costa, King 1998;Tik and Zhong 1993; Debray et al. 1990℄:(1) at ompile-time a global analysis tool performs an ativity typially alled ost estimation. Cost esti-mates are parametri formulae expressing lower or upper bounds to the time omplexity of the di�erent(potentially) parallel tasks.(2) at run-time the ost estimates are instantiated, before task's exeution, and ompared with predeterminedthresholds; parallel exeution of the task is allowed only if the ost estimate is above the threshold.For instane, the two-phase granularity ontrol has been integrated in the generation of CGEs for and-parallelism [Muthukumar and Hermenegildo 1989a; Jaobs and Langen 1989℄, by adding the threshold test inthe ondition part of the graph expression:( ost estimate(n1; : : : ; nk) > � ) goal1 & : : : & goalm)the m subgoals will be allowed in a parallel exeution only if the result of the ost estimate is above thethreshold � . The parameters of ost estimate are those goals input arguments whih diretly determine the- 71 -



time-omplexity of the parallel subgoals|as identi�ed by the global analysis phase. For example, a modi�edannotation for the reursive lause of Fibonai may look as follows:fib(N,Res) :-N1 is N-1, N2 is N-2,( N > 5 => fib(N1,R1) & fib(N2,R2) ;fib(N1,R1), fib(N2,R2)),R is R1 + R2.(under the simplisti assumption that for values of N larger than 5 it is deemed worthwhile to exploit par-allelism). The key problem in this two-phase approah is the automati derivation of those funtions whihbound the time-omplexity of given tasks.The �rst proposals in this regard are those made by Tik & Zhong [Tik and Zhong 1993℄ and by Lin,Debray, and Hermenegildo [Debray et al. 1990℄. Both the shemes are apable of deriving ost estimationwhih represent upper bounds for the time-omplexity of the seleted tasks.The use of upper-bounds is sub-optimal in the ontext of granularity ontrol|the fat that the upper boundis above a threshold does not guarantee that the atual time-omplexity of the task is going to be above thethreshold. For this reason more reent e�orts have foused on the derivation of lower-bound estimates [King,Shen, Benoy 1997; Debray et al. 1997b℄. A very e�etive implementation of some of these tehniques havebeen realized in the CASLOG system [Debray et al. 1990℄ and integrated in the CIAO logi programmingsystem [Hermenegildo 1994℄. Lower bound analysis is onsiderably more omplex than upper-bound analysis.First of all, it requires the ability of determining properties of tasks with respet to failure [Debray et al.1997a℄. If we fous on the omputation of a single solution, then for a lause C : H : �B1; : : : ; Bk one anmake use of the relation CostC(n) � rXi=1 CostBi(�i(n)) + h(n)where� n is the representation of the size of the input arguments to the lause C� �i(n) is the (lower bound) of the relative size of the input arguments to Bi� Br is the rightmost literal in C whih is guaranteed to not fail� h(n) is the lower bound of the ost of head uni�ation and tests for the lause CThe lower bound Costp for a prediate p is obtained by taking the minimum of the lower bounds for thelauses de�ning p.For the more general ase of estimation of lower bound for the omputation of all the solutions, it beomesneessary to estimate the lower bound to the number of solutions that eah literal in the lause will return.In [Debray et al. 1997b℄ the problem is redued to the omputation of the hromati polynomial of a graph.In [King, Shen, Benoy 1997℄ bottom-up abstrat interpretation tehniques are used to evaluate lower-bound inequalities (i.e., inequalities of the type dmin � tmin(l), where dmin represents the threshold to allowspawning of parallel omputations, while tmin(l) represents the lower bound to the omputation time for inputof size l) for large lasses of programs.Metris di�erent from task omplexity have been proposed to support granularity ontrol. A related e�ortis the one by Shen, Costa, and King [Shen, Santos Costa, King 1998℄, whih makes use of the amount of workperformed between major soures of overheads|alled distane metri|to measure granularity.9.6 Parallel Exeution VisualizationVisualization of exeution has been found to be of tremendous help in debugging and �ne-tuning generalparallel programs. Parallel exeution of logi programs is no exeption. In fat, in spite of the emphasis onimpliit exploitation of parallelism, speedups and exeution times an be a�eted by the user through theuse of user annotations (e.g., CGEs) and/or simple program transformations|suh as folding/unfolding ofsubgoals or modi�ation of the order of subgoals and program lauses.- 72 -



The goal of a visualization tool is to produe a visual representation of ertain observable harateristisof the parallel exeution. Eah observable harateristi is denoted by an event ; the parallel exeution is thusrepresented by a olletion of time-annotated events, typially alled a trae. Many tools have already beendeveloped to visualize parallel exeution of logi programs. The large majority of the tools developed so farare post-mortem visualization tools: they work by logging events during parallel exeution, and then usingthis trae for reating a graphial representation of the exeution.Di�erent design hoies have been onsidered in the development of the di�erent tools [Carro et al. 1993;Vaupel, Pontelli, Gupta 1997℄. The existing systems an be distinguished aording to the following riteria:� Stati vs. Dynami: stati visualization tools produe a stati representation of the observable hara-teristis of the parallel omputation; on the other hand, dynami visualization tools produe an animatedrepresentation, synhronizing the development of the representation with the time-stamps of the events inthe trae.� Global vs. Loal: global visualization tools provide a single representation whih aptures all the di�erentobservable harateristis of the parallel exeution; loal visualization tools instead allow the user to fouson spei� observable harateristis.The �rst visualization tools for parallel logi programs were developed for the Argonne Model [Lusk andDisz 1987℄ and for the ElipSys system [Dorohevsky and Xu 1991℄. The former was subsequently adoptedby the Aurora System under the name Aurora Trae. The MUSE group also developed visualization tools,alled Must, for visualizing or-parallel exeution|whih is itself based on the Aurora Trae design. All thesevisualizers for or-parallel exeution are dynami and show the dynamially growing or-parallel searh tree.Figure 28 shows a snapshot of Must|irles denote hoie points and the numbers denote the position of theworkers in the omputation tree.

Fig. 28. Snapshot of Must Fig. 29. Snapshot of VisAndOrStati representation tools have been developed for both or- and and-parallelism. Notable e�orts arerepresented by VisAndOr [Carro et al. 1993℄ and ParSee [Kusalik and Prestwih 1996℄. Both the tools areapable of representing either or- or and-parallelism|although neither of them an visualize the onurrentexploitation of the two forms of parallelism|and they are aimed at produing a stati representation of thedistribution of work between the available workers. Figure 29 shows a snapshot of VisAndOr's exeution.VisAndOr's e�ort is partiularly relevant, sine it is one of the �rst tools with suh harateristis to be- 73 -



developed, and beause it de�ned a standard in the design of trae format|adopted by various other systems[Vaupel, Pontelli, Gupta 1997; Kusalik and Prestwih 1996; Fonsea et al. 1998℄. Must and VisAndOr havebeen integrated in the ViMust system; a time-line moves on the VisAndOr representation synhronized withthe development of the omputation tree in Must [Carro et al. 1993℄.Other visualization tools have also been developed for dependent and-parallelism in the ontext of om-mitted hoie languages, for example those for visualizing KL1 and GHC exeution [Tik 1992; Aikawa et al.1992℄.Tools have also been developed for visualizing ombined and/or-parallelism, as well as to provide a betterbalane between dynami and stati representations|e.g., VACE [Vaupel, Pontelli, Gupta 1997℄, based onthe notion of C-trees [Gupta, Pontelli, Hermenegildo, Santos Costa 1994℄, and VisAll [Fonsea et al. 1998℄.Figure 30 shows a snapshot of VACE.

Fig. 30. Snapshot of VACE Fig. 31. Snapshot of VisAllA �nal note is for the VisAll system [Fonsea et al. 1998℄. VisAll provides a universal visualization toolwhih subsumes the features o�ered by most of the existing ones|inluding the ability to visualize ombinedand/or-parallel exeutions. VisAll reeives as input a trae together with the desription of the trae format|thus allowing it to proess di�erent trae formats. Figure 31 shows a snapshot of VisAll representing anand-parallel omputation.The importane of visualization tools in the development of a parallel logi programming system annotbe stressed enough. They help not only the users in debugging and �ne-tuning their programs, but alsothe system implementors who need to understand exeution behavior for �ne-tuning their agent shedulingsoftware.9.7 Compile-time SupportCompile-time support is ruial for eÆieny of parallel logi programming systems. Compile-time analysistools based on Abstrat Interpretation tehniques [Cousot and Cousot 1992℄ have been extensively used inmany parallel logi programming systems. For instane, &-Prolog, AO-WAM, ACE, and PBA all rely on shar-ing and freeness analysis for automati generation of CGEs at ompile-time [Muthukumar and Hermenegildo1989a; 1991; Jaobs and Langen 1989℄. ACE makes use of abstrat interpretation tehniques to build ex-tended CGEs for dependent and-parallelism [Pontelli, Gupta, Pulvirenti, Ferro 1997℄. The Andorra-I systemrelies on determinay analysis done at ompile-time for deteting determinay of goals at runtime [Santos- 74 -



Costa, Warren, Yang 1991b; Debray and Warren 1989℄. Compile-time analysis an hene be used for makingmany deisions, whih would have otherwise been taken at run-time, at ompile-time itself, e.g., detetionof determinay, generation of CGEs, et. Compile-time analysis has also been used for transforming Prologprograms into AKL [Haridi and Jason 1990℄ programs [Bueno and Hermengildo 1992℄, and has also been usedfor supporting Prolog semantis in parallel systems that ontain dependent and-parallelism, e.g., Andorra-I[Santos Costa, Warren, Yang 1991b℄. Compile-time analysis has also been employed to estimate granularityof goals, to help the sheduler in making better deisions as to whih goal to pik [Zhong et al. 1992; Debrayet al. 1990℄, to improve independene in and-parallel omputations [Pontelli and Gupta 1998℄, et.Compile-time analysis has a number of potential appliations in parallel logi programming, in addition tothose already mentioned: for instane, in deteting speulative and non-speulative regions at ompile-time,deteting whether a side-e�et will be ever exeuted at run-time or not, deteting produer and onsumerinstanes of variables, deteting whether a variable is onditional or not, et. Compiler support will play aruial role in future parallel logi programming systems. However, a great deal of researh is still needed inbuilding more powerful ompile-time analysis tools that an infer more properties of the program at ompile-time itself to make parallel exeution of logi program more eÆient.9.8 Arhitetural InueneAs for any parallel system, also in the ase of parallel logi programming the harateristis of the underlyingarhiteture have profound impat on the performane of the system.A number of experimental works have been onduted to estimate the inuene of di�erent arhiteturalparameters on individual parallel systems. Relevant work has been proposed by� Hermenegildo and Tik [Hermenegildo and Tik 1989; Tik 1987℄ proposed various studies estimating theperformane of and-parallel systems on shared memory mahines;� Montelius and Haridi [Montelius and Haridi 1997; Montelius 1997℄ have proposed detailed performaneanalysis of the Penny system, mostly using the SIMICS Spar proessor simulator;� Gupta and Pontelli [Gupta and Pontelli 1999a℄ have used simulation studies (based on the use of the SIMICSsimulator) to validate the laim that stak-splitting improves the loality of an or-parallel omputation basedon stak opying;� Bianhini, Costa, and Dutra [Santos Costa, Bianhini, Dutra 1997℄ have also analyzed the performane ofparallel logi programming systems (spei�ally Aurora and Andorra-I) using proessor simulators (spei�-ally a simulator of the MIPS proessor). Their extensive work has been aimed at determining the behaviorof parallel logi programming systems on parallel arhitetures (with a partiular fous on highly salablearhitetures, e.g., distributed shared memory mahines). In [Santos Costa, Bianhini, Dutra 1997℄ the sim-ulation framework adopted is presented, along with the development of a methodology for understandingahe performane. The results obtained have been used to provide onrete improvements to the imple-mentation of the Andorra-I system [Santos Costa, Bianhini, Dutra 2000℄. The impat of ahe ohereneprotools on the performane of parallel Prolog systems is studied in more detail in [Dutra, Santos Costa,Bianhini 2000; Silva, Dutra, Bianhini, Santos Costa 1999; Calegario and Dutra 1999℄.These works tend to agree on the importane of onsidering arhitetural parameters in the design of aparallel logi programming systems. For example, the results ahieved by Costa et al. for the Andorra-Isystems indiate that:� or-parallel prolog systems provide a very good loality of omputation, thus the system does not seem torequire very large ahe sizes;� small ahe bloks appear to provide better behavior, espeially in presene of or-parallelism|the experi-mental work by [Dutra, Santos Costa, Bianhini 2000℄ indiates a high-risk of false-sharing in presene ofbloks larger than 64 bytes;� in [Dutra, Santos Costa, Bianhini 2000℄ ompares the e�et of Write Invalidate vs. Write Update asahe oherene protools. The study underlines the superiority of a partiular version of the Write updatealgorithm (an hybrid method where eah node independently deides upon reeiving an update requestwhether to update the loal opy of data or simply invalidate it).- 75 -



Similar results have been reported in [Montelius and Haridi 1997℄, whih underlines the vital importane ofgood ahe behavior and avoidane of false sharing for exploitation of �ne-grain parallelism in Penny.10. APPLICATIONS AND APPLICABILITYOne an onlude from the disussion in the previous setions, a large body of researh has been developed inthe design of parallel exeution models for Prolog programs. Unfortunately, relatively modest emphasis hasbeen plaed on the study of the appliability of these tehniques to real-life problems.A relevant study in this diretion has been proposed in [Shen and Hermenegildo 1991; Shen 1992b℄. Thiswork onsidered a large pool of appliation and studied their behavior with respet to the exploitation of or-parallelism, independent and-parallelism and dependent and-parallelism. The pool of appliations onsideredinludes traditional toy benhmark programs (e.g., n-queens, matrix multipliation) as well as larger Prologappliations (e.g., Warren's WARPLAN planner, Boyer-Moore's Theorem Prover, the Chat NLP appliation).The results an be summarized as follows:� Depending on their struture, there are appliations that are very rih in either forms of parallelism|i.e.,either they o�er onsiderable or-parallelism and almost no and-parallelism or vie-versa.� Neither of the two forms of parallelism is predominant over the other.� There are a large number of appliations whih o�er moderate quantities of both forms of parallelism. Inpartiular, the real-life appliations onsidered o�ered limited amounts of both forms of parallelism. In theseases, experimental results showed that onurrent exploitation of both forms of parallelism will bene�t overexploitation of a single form of parallelism.The various implementations of parallel logi programming systems developed have been e�etively appliedto speedup exeution of various large real-life appliations. These inlude:� independent and dependent and-parallelism has been suessfully extrated from Prolog-to-WAM ompilers(e.g., the PLM ompiler) [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄;� Stati Analyzers for Prolog programs [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996; Hermenegildo andGreen 1991℄� Natural Language Proessing appliations have been very suessfully parallelized extrating both or- andand-parallelism|e.g., the Chat system [Santos Costa, Warren, Yang 1991a; Shen 1992b℄, the automatitranslator Ultra [Pontelli, Gupta, Wiebe, Farwell 1998℄, the word-disambiguation appliation Artwork [Pon-telli, Gupta, Wiebe, Farwell 1998℄.� Computational Biology appliations|e.g., the Aurora or-parallel system has been used to parallelize Prologappliations for DNA sequening [Lusk, Mudambi, Overbeek, Szeredi 1993℄.� both Aurora and ACE have been applied to provide parallel and onurrent bakbones for Internet-relatedappliations [Szeredi, Moln�ar, Sott 1996; Pontelli 2000℄.� Andorra-I has been used in the development of advaned traÆ management systems [Hasenberger 1995℄,used by British Teleom to ontrol traÆ ow on their telephony network.� Teleommuniation appliations [Crabtree 1991; Santos Costa, Warren, Yang 1991℄.� Aurora has been used to develop a number of onrete appliations. Partiularly important are thosedeveloped in the ontext of the Cubiq projet:� the EMRM system, a medial reord management system, whih supports olletion of medial informa-tion following the SOAP medial knowledge model [Szeredi and Farkas 1996℄.� The CONSULT redit rating system, whih makes use of rule-based spei�ation of redit assessmentproedures [IQSoft 1992℄.This body of experimental work indiates that the existing tehnology for parallel exeution of logi pro-grams is e�etive when applied to large and omplex real-life Prolog appliations. Further push for appliationof parallelism omes from the realm of onstraint logi programming. Preliminary work on the Chip andECLiPSe systems has demonstrated that the tehniques desribed in this paper an be easily applied to par-allelization of the relevant phases of onstraint handling. Considering that most onstraint logi programmingappliations are extremely omputation-intensive, the advantages of parallel exeution are evident.- 76 -



11. CONCLUSIONS AND FUTURE OF PARALLEL LOGIC PROGRAMMINGIn this survey artile we desribed the di�erent soures of impliit parallelism present in logi programminglanguages and the many problems enountered in exploiting them in the ontext of parallel exeution of Prologprograms. Di�erent exeution models proposed for exploiting these many kinds of parallelism were surveyed.We also disussed some eÆieny issues that arise in parallel logi programming.Parallel logi programming is a hallenging area of researh and will ontinue to be so, until the dream ofeÆiently exploiting all soures of parallelism present in logi programs in the most ost e�etive way is realized.The urrent state-of-the-art is that there are very eÆiently engineered systems that exploit only a single formof parallelism, e.g., MUSE, Aurora, Yap, and Elipsys (or-parallelism), &-Prolog and &ACE (independentand-parallelism), DASWAM and ACE (dependent and-parallelism), and many eÆient implementations ofommitted hoie languages [Shapiro 1987; Hirata et al. 1992℄. There are a fewer systems that eÆientlyexploit more than one soure of parallelism, suh as Andorra-I [Santos Costa, Warren, Yang 1991a℄, andothers that are being built [Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Correia et al. 1997; SantosCosta 1999℄. However, there are none that exploit all soures of parallelism present in logi programs. E�ortsare already under way to remedy this [Montelius 1997; Santos Costa 1999; Gupta, Santos Costa, Pontelli 1994;Pontelli and Gupta 1997b; Correia et al. 1997; Castro et al. 1998℄, and we believe that that is where the bulkof the parallel logi programming researh in the future will lie.The orthogonality priniple [Correia et al. 1997℄ and the duality priniple [Pontelli and Gupta 1995a℄ ditatethat the ideal parallel logi programming should be a \plug-and-play" system, where a basi Prolog kernelengine an be inrementally extended with di�erent modules implementing di�erent parallelization strategies,sheduling strategies, et., depending on the needs of the user (Figure 32). We hope that with enough researhe�ort this ideal will be ahieved.
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Fig. 32. Plug-and-Play Parallel Prolog SystemsFurther Researh is still needed in other aspets of parallel logi programming; for example, in �nding outhow best to support sequential Prolog semantis on parallel logi programming systems of the future; buildingbetter and smarter shedulers; �nding better memory management strategies; building ompile-time tools thatwill redue the overhead at run-time by relegating many of the operations to ompile-time; and building toolsfor visualizing parallel exeution. It should be noted that while most of these problems arise in any parallelsystem, in the ase of parallel logi programming systems they are harder to solve due to the presene ofnon-determinism and baktraking.The urrent evolutionary trend in the design of parallel omputer systems is towards building heterogeneousarhitetures that onsist of a large number of relatively small-sized shared memory mahines onnetedthrough fast interonnetion networks. Taking full advantage of the omputational power of suh arhiteturesis known to be a very diÆult problem [Bader and JaJa 1997℄. Parallel Logi programming systems onstitute- 77 -
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