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Why Go Parallel?

The scenario
If our best sequential algorithm can solve a given problem in N time units
using 1 processing unit, could the same problem be solved in 1 time unit

with a parallel algorithm using N processing units at the same time?
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Why Go Parallel?

Major reasons to explore parallelism:
Reduce the execution time needed to solve a problem
Be able to solve larger and more complex problems

Other important reasons:
Computing resources became a commodity and are frequently
under-utilized
Overcome memory limitations when the solution to some problems
require more memory then one could find in just one computer
Overcome the physical limitations in chip density and production
costs of faster sequential computers
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Simulation: the Third Pillar of Science

Traditional scientific and engineering paradigm:
Do theory or paper design
Perform experiments or build systems

Limitations of the traditional paradigm:
Too difficult/expensive (e.g. build large wind tunnels)
Too slow (e.g. wait for climate or galactic evolution)
Too dangerous (e.g. weapons, drug design, climate experimentation)

Computational science paradigm:
Based on known physical laws and efficient numerical methods, use
high-performance computer systems to simulate the phenomenon
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Grand Challenge Problems

Traditionally, the driving force for parallel computing has been the
simulation of fundamental problems in science and engineering, with a
strong scientific and economic impact, known as Grand Challenge
Problems (GCPs). Typically, GCPs simulate phenomena that cannot be
measured by experimentation:

Global climate modeling
Earthquake and structural modeling
Astrophysical modeling (e.g. planetary orbits)
Financial and economic modeling (e.g. stock market)
Computational biology (e.g. genomics, drug design)
Computational chemistry (e.g. nuclear reactions)
Computational fluid dynamics (e.g. airplane design)
Computational electronics (e.g. hardware model checking)
...
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New Data-Intensive Applications

Currently, large volumes of data data are produced and their processing
and analysis also require high performance computing:

Data mining
Web search
Networked video
Video games and virtual reality
Computer aided medical diagnosis
Sensor data streams
Telescope scanning the skies
Micro-arrays generating gene expression data
...
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Free Lunch is Over (Herb Sutter, 2005)

Chip density still increasing
∼ 2 times every 2 years, but:

Production is very
costly
Clock speeds hit the
wall
Heat dissipation and
cooling problems
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Free Lunch is Over (Herb Sutter, 2005)

The manufacturer’s solution was to start having multiple cores on the
same chip and go for parallel computing.

This approach was not completely new, since chips already integrated
many Instruction-Level Parallelism (ILP) techniques:

Super pipelining
Superscalar execution
Out-of-order execution
Branch prediction
Speculative execution
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Sequential Computing

Sequential computing occurs when a problem is solved by executing one
flow of instructions in one processing unit.
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Parallel Computing

Parallel computing occurs when a problem is decomposed in multiple parts
that can be solved concurrently. Each part is still solved by executing one
flow of instructions in one processing unit but, as a whole, the problem
can be solved by executing multiple flows simultaneously using several
processing units.
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Concurrency or Potential Parallelism

A program exhibits concurrency (or potential parallelism) when it includes
tasks (contiguous parts of the program) that can be executed in any
order without changing the expected result.
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Parallelism

Parallelism is exploited when the concurrent tasks of a program are
executed simultaneously in more than one processing unit:

Smaller tasks simplify possible arrangements for execution
Proportion of sequential tasks to start and terminate execution should
be small as compared to the concurrent tasks
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Implicit Parallelism

Parallelism is exploited implicitly when it is the compiler and the runtime
system that:

Automatically detect potential parallelism in the program
Assign the tasks for parallel execution
Control and synchronize execution

Advantages and disadvantages:
(+) Frees the programmer from the details of parallel execution
(+) More general and flexible solution
(–) Very hard to achieve an efficient solution for specific problems
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Explicit Parallelism

Parallelism is exploited explicitly when it is left to the programmer to:
Annotate the tasks for parallel execution
Assign tasks to the processing units
Control the execution and the synchronization points

Advantages and disadvantages:
(+) Experienced programmers achieve very efficient solutions for
specific problems
(–) Programmers are responsible for all details of execution
(–) Programmers must have deep knowledge of the computer
architecture to achieve maximum performance
(–) Efficient solutions tend to be less/not portable between different
computer architectures
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Parallel Computational Resources

Putting it simply, we can define parallel computing as the use of multiple
computational resources to reduce the execution time required to solve a
given problem. Most common parallel resources include:

Multiprocessors (now also multicore processors) – one machine
with multiple processors/cores
Multicomputers – an arbitrary number of dedicated interconnected
machines
Clusters of multiprocessors and/or multicore processors – a
combination of the above

R. Rocha and F. Silva (DCC-FCUP) Foundations Parallel Computing 17/18 15 / 60



Flynn’s Taxonomy (1966)

Flynn proposed a taxonomy to classify computer architectures that
analyzes two independent dimensions available in the architecture:

Number of concurrent instructions
Number of concurrent data streams
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SISD - Single Instruction Single Data

Corresponds to sequential architectures (no parallelism is possible):
Only one instruction is processed at a time
Only one data stream is processed at a time

Examples: PCs, workstations and servers with one processor
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SIMD - Single Instruction Multiple Data

Parallel architecture specifically designed for problems characterized by
high regularity in the data (e.g. image processing):

All processing units execute the same instruction at each time
Each processing unit operates on a different data stream

Examples: array processors and graphics processing units (GPUs)
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MISD - Multiple Instruction Single Data

Uncommon parallel architecture where each processing unit performs a
function on the same data stream (e.g. signal processing):

Each processing unit executes different instructions at each time
The processing units operate on the same data stream, trying to
agree on the result (common for control) or by operating in a pipeline
fashion

Examples: fault tolerance computers and systolic arrays
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MIMD - Multiple Instruction Multiple Data

The most common parallel architecture:
Each processing unit executes different instructions at each time
Each processing unit can operate on a different data stream

Examples: multiprocessors, multicore processors, multicomputers and
clusters of multiprocessors and/or multicore processors
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Multiprocessors

A multiprocessor or a shared memory machine is a parallel computer in
which all processors share the same physical memory:

Processors execute independently but share a global address space
Any modification on a memory position by a processor is equally
viewed by all other processors

Bus congestion imposes limits to scalability
Including a cache between each processor and memory helps
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Classes of Multiprocessors

Uniform Memory Access (UMA)
Equal access time to all memory
Cache coherency implemented in hardware (write invalidate protocol)

Non-Uniform Memory Access (NUMA)
Different access times to different memory regions
Cache coherency implemented in hardware (directory-based protocol)
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Write Invalidate Protocol

Before writing a value to memory, all existent copies in a processor cache
are invalidated. Later, when a processor tries to access an invalidated
value, a cache miss occurs and the value is reread from memory.
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Directory-Based Protocol

A directory data structure holds state information about each
processor’s memory blocks. Blocks can be marked as:

Uncached – not in any cache
Shared – in one or more caches and the copy in memory is up-to-date
Exclusive – only in one cache and the copy in memory is obsolete
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Multiprocessors

Advantages and disadvantages:
(+) Simpler programming model as there is a global view of memory
(+) Data sharing among concurrent tasks is simple, uniform and fast
(–) Requires synchronization mechanisms to modify shared data
(–) Not scalable, increasing the number of processors, increases bus
congestion to access memory, thus making cache coherency
mechanisms impractical
(–) High cost, specially due to very expensive bus and caches

Some of these disadvantages are being now overcome with new designs
and by bringing the multiprocessor into the chip (the multicore processor).
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Recent Multiprocessors - Multicore processors

Multicore emphasizes shared memory parallelism:
Multicore processors are now the norm, reached mainstream desktops,
game consoles, tablets and smartphones
Supercomputers nowadays are clusters of multicore processors
(number of cores exceeding 100,000 units)
Leads to hybrid models of parallel programming
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Multicomputers

A multicomputer or distributed memory machine is a parallel machine
where each processor has its own local memory that is not directly
accessible by other processors:

No shared memory and no global address space
Each processor has its own address space
Modifications on a memory position by a processor are not visible by
other processors
Data sharing or synchronization takes place by exchanging messages
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Multicomputers

Advantages and disadvantages:
(+) High scalability on processors and memory (no cache coherency
mechanisms required)
(+) Reduced cost, in fact they can be built using off-the-shelf
components (Beowulf cluster)
(–) Communication and synchronization via message exchange only
(–) Remote data access is very costly in performance
(–) Harder to program, as the programmer has to control explicitly
communication. Moreover, it can be difficult to convert/adapt data
structures for shared memory to be used in distributed memory
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Top500 Supercomputers List (www.top500.org)

List for June 2015 (list updated twice a year)
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Parallel Programming

We looked at different types of parallel architectures, but the main
question is how can we develop software that takes advantage of their full
computing capacity?

There are many difficulties that do not exist in sequential programming:

Concurrency – which parts of the computation (tasks) can be
executed concurrently?
Communication and synchronization – how to achieve cooperation
and/or synchronization of non-independent tasks and how to gather
results of tasks?
Load balancing and scheduling – how much should we divide and
how to map efficiently tasks to processors/cores?
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Parallel Programming

The truth
Parallel programming remains a very complex task!
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Foster’s Design Methodology

It is not easy to design a parallel algorithm from scratch without some
logical methodology. It is far better to use a proven methodology that is
general enough and that can be followed easily. In 1995, Ian Foster
proposed such a methodology, which has come to be called Foster’s design
methodology. Foster’s methodology involves 4 steps:

Partitioning – the process of dividing the computation and the data
into pieces
Communication – the process of determining how tasks will
communicate with each other
Agglomeration – the process of grouping tasks into larger tasks to
improve performance or simplify programming
Mapping – the process of assigning tasks to physical processors
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Foster’s Design Methodology
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Decomposition

Decomposing a problem into smaller problems, not only helps in reducing
the complexity of the problem, but also allows for the sub-problems to be
executed in parallel. There are two main strategies to decompose a
problem:

Domain decomposition – decomposition based on the data
Functional decomposition – decomposition based on the
computation

A good decomposition scheme divides both data and computation into
smaller tasks.
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Domain Decomposition

First the data is partitioned and only after we associate the computation
to partitions. All tasks execute the same operations on different parts of
data (data parallelism).
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Functional Decomposition

First we divide the computation in tasks and only after associate data with
tasks. Different tasks may execute different operations on different data
(functional parallelism).
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Communication

The parallel execution of tasks might require:
Communication between tasks to exchange data (e.g. partial results)
Synchronization as some tasks may only be executed after some
other tasks have completed

Communication/synchronization can be a limiting factor for performance:
Implicit cost – while you communicate/synchronize, you do not
compute!
Latency – minimum time to communicate between two computing
nodes
Bandwidth – amount of data we can communicate per unit of time

Good practice: avoid communicating too many small messages!
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Communication Patterns

Global communication:
Tasks may communicate with any other task

Local communication:
Tasks just communicate with neighboring tasks (e.g. Jacobi finite
difference method)

X t+1
i,j =

4X t
i,j + X t

i−1,j + X t
i+1,j + X t

i,j−1 + X t
i,j+1

8
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Communication Patterns

Structured communication:
Communication between tasks follows a regular structure (e.g. tree)

Non-structured communication:
Communication between tasks follows an arbitrary graph

Static communication:
Communication pattern between tasks is known before execution

Dynamic communication:
Communication between tasks is only known during execution
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Communication Patterns

Synchronous communication:
Sender and receiver have to synchronize to start communicating (e.g.
rendez-vous protocol)

Asynchronous communication:
No agreement needed, sender writes messages to a buffer and
continues execution
When ready, the receiver reads the messages from the buffer
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Agglomeration

How small can tasks be for parallel execution?
Time to compute a task must be higher than the time to
communicate it
Smaller tasks, leads to more communication between them

Aggregating small tasks into larger ones might help to reduce
communication costs but, by over doing it (i.e., with too large tasks), we
might be limiting the available parallelism.
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Granularity of Tasks

Granularity measures the ratio between the time doing computation and
the time doing communication

It can be fine grain, medium grain, or coarse grain
The main question is which task size maximizes performance?
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Granularity of Tasks

Fine granularity:
Computation grouped as a big number of small tasks
Low ratio between computation and communication
(+) Simplifies efficient workload balancing
(–) Computation cost of one task may not compensate the parallel
costs (task creation, communication and synchronization costs)
(–) Difficult to improve performance

Coarse granularity:
Computation grouped as a small number of big tasks
High ratio between computation and communication
(–) Difficult to achieve efficient workload balancing
(+) Computation costs compensate the parallel costs
(+) More opportunities to improve performance
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Mapping

To achieve maximum performance, one should:
Maximize processor occupation (keep them busy computing tasks)
Minimize communication/synchronization between processors

Thus, the question is how to best assign tasks to available processors
to achieve maximum performance?

The percentage of occupation is optimal when the computation is
equally divided by the available processors, allowing them to start and
finish their tasks simultaneously
The percentage of occupation decreases when one or more processors
are idle while the others stay busy
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Load Balancing

Load balancing can be seen as a scheduling procedure that tries to
minimize the time processors are not busy:

Static scheduling – can be predetermined at compile time, normally
with regular data parallelism
Dynamic scheduling – decisions are taken during execution trying to
load balance work among the available processors
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Scheduling Decisions

Granularity of tasks influences decisions:

(figure from Kathy Yelick, CS267 lecture 24)
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Scheduling Decisions

Dependency between tasks influences decisions:

(figure from Kathy Yelick, CS267 lecture 24)
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Load Balancing Decision Tree
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Main Parallel Programming Models

Programming for shared memory
Programming using processes and/or threads
Communication via shared memory
Synchronization using mutual exclusion mechanisms (e.g. locks)
Environments and tools: shared memory segments, Pthreads and
OpenMP

Programming for distributed memory
Preferable for large-grain tasks
Communication and data sharing only via message exchange
Environments and tools: MPI

Hybrid programming models
Try to combine both models
Environments and tools: MPI/Threads and MPI/OpenMP
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Main Parallel Programming Paradigms

Despite the diversity of problems where parallel programming can be
applied, the kind of paradigms used to solve such problems can be
classified in a very small set of different approaches. The following
paradigms are the most commonly used:

Master/Slave
Single Program Multiple Data (SPMD)
Data pipelining
Divide-and-conquer
Speculative parallelism

Which paradigm should we use depends on the:
Type of parallelism, domain or functional
Type of available resources, which might influence the granularity
that can be exploited
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Master/Slave

A master process is responsible for:
Decompose the problem into tasks
Distribute the tasks to the slaves
Aggregate partial results and
produce the final result

The set of slaves follow a simpler
execution cycle:

Receive a task from the master
Compute the task
Send the task result back to the
master
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Master/Slave

Load balancing can be static or dynamic:
If static, the master can also participate in the computation
If dynamic, the slaves ask for new tasks when they have finished the
current one

Advantages and disadvantages:
(+) Reduced communication, each slave only communicates with the
master and a few number of times
(–) Centralized control can be a problem when we increase the
number of slaves (use several masters instead, each one controlling a
different set of slaves)
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Single Program Multiple Data (SPMD)

All processes execute the same program (binary), but on different parts of
data (also known as data parallelism)

Similar to Master/Slave, but here we might have communication
between tasks
Typically, the tasks have equal cost and the communication pattern is
mostly local, structured and static, which allows for good
performance and scalability
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Data Pipelining

Follows a functional decomposition of the problem where processes are
organized in a pipeline fashion (also known as data flow parallelism):

For each task, each process does a part of the computation
Each process only communicates with the next process in the pipeline
Parallelism is achieved by having multiple pipelines being executed
simultaneously
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Divide-and-Conquer

Works by recursively breaking down a problem into sub-problems of the
same type until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution to the
original problem.
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Divide-and-Conquer

The computation can be seen like a virtual tree:
The leaf nodes compute the sub-tasks
The remaining nodes are responsible to create the sub-tasks and to
aggregate the partial results

Advantages and disadvantages:
(+) Reduced communication, each node only communicates with its
children to distribute tasks and aggregate results
(+) Allows for a variety of parallelization strategies
(–) Requires dynamic load balancing to distribute sub-tasks among
processes

R. Rocha and F. Silva (DCC-FCUP) Foundations Parallel Computing 17/18 58 / 60



Speculative Parallelism

Used when data dependencies are too complex and do not fit within the
other paradigms. Parallelism is introduced by performing speculative
and/or out-of-order computations:

Some related computations are anticipated, taking an optimistic
assumption that they will be necessary
Later, if they are not necessary, they are terminated and some prior
computation state may have to be recovered

Also common in association with branch-and-bound algorithms:
A set of candidate sub-tasks is set off to be explored in parallel
The first or better solution found is used to prune the search space for
the set of candidate sub-tasks
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Programming Paradigms

The programming paradigms can also be differentiated by employing static
or dynamic strategies for decomposition and mapping:
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