
Implementação de Linguagens 2017/2018 Logic Programming and Prolog

Implementação de

Linguagens

Logic Programming and Prolog

Ricardo Rocha DCC-FCUP 1

Logic Programming and Prolog

Ricardo Rocha

DCC-FCUP, Universidade do Porto

ricroc @ dcc.fc.up.pt

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

Logic ProgrammingLogic Programming

Logic programming languages, together with functional programming languages,

form a major class of languages called declarative languages. A common

characteristic of both groups of languages is that they have a strong mathematical

basis:

Logic programming languages are based on the predicate calculus.

Functional programming languages are based on the lambda calculus.

Ricardo Rocha DCC-FCUP 2

Functional programming languages are based on the lambda calculus.

Declarative languages are considered to be very high-level languages when

compared with conventional imperative languages because, generally, they allow the

programmer to concentrate more on what the problem is, leaving much of the

details of how to solve the problem to the computer. The programmer can specify

the problem at a more application-oriented level and thus simplify the formal

reasoning about it.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

Logic ProgrammingLogic Programming

Logic programming is a programming paradigm based on Horn Clause Logic, a

subset of First Order Logic. Logic programming is a simple theorem prover that

given a theory (or program) and a query, uses the theory to search for alternative

ways to satisfy the query:

Variables are logical variables which can be instantiated only once.

Variables are untyped until instantiated.

Ricardo Rocha DCC-FCUP 3

Variables are untyped until instantiated.

Variables are instantiated via unification, a pattern matching operation finding the most

general common instance of two data objects.

At unification failure the execution backtracks and tries to find another way to satisfy

the original query.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

Logic ProgrammingLogic Programming

Logic programming is often mentioned to include the following major advantages:

Simple declarative semantics: a logic program is simply a collection of predicate logic

clauses.

Simple procedural semantics: a logic program can be read as a collection of recursive

procedures.

High expressive power: logic programs can be seen as executable specifications that

Ricardo Rocha DCC-FCUP 4

High expressive power: logic programs can be seen as executable specifications that

despite their simple procedural semantics allow for designing complex and efficient

algorithms.

Inherent non-determinism: since in general several clauses can match a goal, problems

involving search are easily programmed in these kind of languages.

These advantages lead to compact code that is easy to understand, program and

transform. Furthermore, they make logic programming languages very attractive for

the exploitation of implicit parallelism.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

Logic ProgramsLogic Programs

A logic program consists of a collection of Horn clauses. Using Prolog's notation,

each clause may be a rule of the form

A :- B1, ..., Bn.

where A is the head of the rule and the B1, ..., Bn are the body subgoals, or it may

be a fact and simply written as

A.

Ricardo Rocha DCC-FCUP 5

A.

Rules represent the logical implication

B1 ∧ ... ∧ Bn → A

while facts assert A as true.

A separate type of clauses is that where the head goal is false. These type of clauses

are called queries and, in Prolog, they are written as

:- B1, ..., Bn.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

Logic ProgramsLogic Programs

A subgoal is a predicate applied to a number of terms

p(t1, ..., tn)

where p is the predicate name, and the t1, ..., tn are the terms used as arguments.

A term can be either a:

Variable

Ricardo Rocha DCC-FCUP 6

Atom

Compound term

Compound terms have the form f(u1, ..., um) where f is a functor and the u1, ..., um

are themselves terms.

Terms in a program represent world objects while predicates represent relationships

among those objects. Variables represent unspecified terms while atoms represent

symbolic constants.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

Logic ProgramsLogic Programs

Information from a logic program is retrieved through query execution. The

execution of a query Q against a logic program P, leads to consecutive assignments

of terms to the variables of Q till a substitution θ satisfied by P is found.

Answers (or solutions) for Q are retrieved by reporting for each variable X in Q the

corresponding assignment θ(X). When a variable X is assigned a term T, then X is

said to be bound and T is called the binding of X. A variable can be bound to

Ricardo Rocha DCC-FCUP 7

said to be bound and T is called the binding of X. A variable can be bound to

another different variable or to a non-variable term.

Execution of a query Q with respect to a program P proceeds by reducing the initial

conjunction of subgoals of Q to subsequent conjunctions of subgoals according to a

refutation procedure. The refutation procedure of interest here is called Selective

Linear Definite resolution or simply SLD resolution.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

SLD ResolutionSLD Resolution

Let us assume that

:- G1, ..., Gn.

is the current conjunction of subgoals.

Initially and according to a predefined selectliteral rule, a subgoal (or literal) Gi is

selected.

Ricardo Rocha DCC-FCUP 8

Assuming that Gi is the selected subgoal, then the program is searched for a clause

whose head goal unifies with Gi. If there are such clauses then, according to a

predefined selectclause rule, one is selected.

In a computer implementation, the selectliteral and selectclause rules must be specified.

Different specifications lead to different algorithms and different languages (or

semantics) can thus be obtained.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

SLD ResolutionSLD Resolution

Consider that

A :- B1, ..., Bm.

is the selected clause that unifies with Gi. The unification process has determined a

substitution θ to the variables of A and Gi such that Aθ = Giθ.

Execution proceeds by replacing Gi with the body subgoals of the selected clause

and by applying θ to the variables of the resulting conjunction of subgoals:

Ricardo Rocha DCC-FCUP 9

and by applying θ to the variables of the resulting conjunction of subgoals:

:- (G1, ..., Gi-1, B1, ..., Bm, Gi+1, ..., Gn)θ.

If the selected clause is a fact, Gi is simply removed from the conjunction of

subgoals:

:- (G1, ..., Gi-1, Gi+1, ..., Gn)θ.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

SLD ResolutionSLD Resolution

A sequence of the previous reductions is called an SLD derivation. Finite SLD

derivations may be successful or failed.

A successful SLD derivation is found whenever the conjunction of subgoals is

reduced to the true subgoal, which therefore corresponds to the determination of a

query substitution (answer) satisfied by the program.

When there are no clauses unifying with a selected subgoal, then a failed SLD

Ricardo Rocha DCC-FCUP 10

When there are no clauses unifying with a selected subgoal, then a failed SLD

derivation is found. In Prolog, failed SLD derivations are resolved through applying

a backtracking mechanism. Backtracking exploits alternative execution paths by:

Undoing all the bindings made since the preceding selected subgoal Gp.

Reducing Gp with the next available clause unifying with it.

The computation stops either when all alternatives have been exploited or when an

answer is found.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The Prolog LanguageThe Prolog Language

Prolog is the most popular logic programming language. The name Prolog was

invented in 1973 by Colmerauer and colleagues as an abbreviation for

PROgramation en LOGic to refer to a software tool designed to implement a man

machine communication system in natural language.

In 1977, David H. D. Warren made Prolog a viable language by developing the first

compiler for Prolog. This helped to attract a wider following to Prolog and made the

Ricardo Rocha DCC-FCUP 11

compiler for Prolog. This helped to attract a wider following to Prolog and made the

syntax used in this implementation the de facto Prolog standard.

In 1983, Warren proposed a new abstract machine for executing compiled Prolog

code that has come to be known as the Warren Abstract Machine, or simply

WAM. The WAM became the most popular way of implementing Prolog and

almost all current Prolog systems are based on WAM's technology.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The Prolog LanguageThe Prolog Language

The operational semantics of Prolog is based on SLD resolution. Prolog specifies

that the selectliteral rule chooses the leftmost subgoal in a query and that the

selectclause rule follows the textual order of the clauses in the program.

member(Elem, [Elem | _]).

member(Elem, [_ | Tail]) :- member(Elem, Tail).

Ricardo Rocha DCC-FCUP 12

member(Elem, [_ | Tail]) :- member(Elem, Tail).

0. member(b, [a, b]).

1. member(b, [b]).

2. yes

0. member(E, [a, b]).

1. E = a

4. member(E, []).

2. member(E, [b]).

3. E = b

5. no

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The Prolog LanguageThe Prolog Language

append([], List, List).

append([Head | Tail1], List2, [Head | Tail]) :- append(Tail1, List2, Tail).

0. append([a, b], [c, d], L).

L = [a | Tail]

Ricardo Rocha DCC-FCUP 13

2. append([], [c, d], Tail’).

1. append([b], [c, d], Tail).

3. L = [a, b, c, d] 4. no

L = [a | Tail]

Tail = [b | Tail’]

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The Prolog LanguageThe Prolog Language

append([], List, List).

append([Head | Tail1], List2, [Head | Tail]) :- append(Tail1, List2, Tail).

0. append(L1, L2, [a, b]).

L1 = [a | Tail1]

Ricardo Rocha DCC-FCUP 14

1. L1 = [] ; L2 = [a, b]

4. append(Tail1’, L2, []).

2. append(Tail1, L2, [b]).

3. L1 = [a] ; L2 = [b]

6. no

L1 = [a | Tail1]

Tail1 = [b | Tail1’]

5. L1 = [a, b] ; L2 = []

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The Prolog LanguageThe Prolog Language

reverse([], []).

reverse([Head | Tail], List) :- reverse(Tail, List1), append(List1, [Head], List).

0. reverse([a, b], L).

1. reverse([b], List1), append(List1, [a], L).

Ricardo Rocha DCC-FCUP 15

2. reverse([], List1’), append(List1’, [b], List1), append(List1, [a], L).

1. reverse([b], List1), append(List1, [a], L).

3. append([], [b], List1), append(List1, [a], L).

…

6. L = [b, a]

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The Prolog LanguageThe Prolog Language

To make Prolog a useful programming language for real world problems, some

additional features not found within first order logic were introduced. These

features include:

Meta-logical predicates: these predicates inquire the state of the computation and

manipulate terms.

Cut predicate: this predicate adds a limited form of control to the execution. It prunes

Ricardo Rocha DCC-FCUP 16

Cut predicate: this predicate adds a limited form of control to the execution. It prunes

unexploited alternatives from the computation.

Extra-logical predicates: these are predicates which have no logical meaning at all.

They perform input/output operations and manipulate the Prolog database, by adding or

removing clauses from the program being executed.

Other predicates: these include arithmetic predicates to perform arithmetic operations,

term comparison predicates to compare terms, extra control predicates to perform simple

control operations, and set predicates that give the complete set of answers for a query.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The WAMThe WAM

The WAM is a stack-based architecture with simple data structures and a low-level

instruction set. At any time, the state of a computation is obtained from the contents

of the WAM data areas, data structures and registers.

The WAM defines the following execution stacks:

Code area: stores the WAM code corresponding to the loaded programs.

Stack: stores the environment and choice point frames. Environments track the flow of

Ricardo Rocha DCC-FCUP 17

Stack: stores the environment and choice point frames. Environments track the flow of

control in a program and choice points store open alternatives. Some WAM

implementations use separate execution stacks to store environments and choice points.

Heap: sometimes also referred as global stack, it is an array of data cells used to store

variables and compound terms that cannot be stored in the stack.

Trail: organized as an array of addresses, it stores the addresses of the (stack or heap)

variables which must be reset upon backtracking.

PDL: a push down list used by the unification process.

Implementação de Linguagens 2017/2018 Logic Programming and Prolog

The WAMThe WAM

Four main groups of instructions can be enumerated in the WAM instruction set:

Choice point instructions: these instructions allow to allocate/remove choice points and

to recover the state of a computation through the data stored in choice points.

Control instructions: these instructions allow to allocate/remove environments and to

manage the call/return sequence of subgoals.

Unification instructions: these instructions implement specialized versions of the

Ricardo Rocha DCC-FCUP 18

Unification instructions: these instructions implement specialized versions of the

unification algorithm according to the position and type of the arguments.

Indexing instructions: these instructions accelerate the process of determining which

clauses unify with a given subgoal call. Depending on the first argument of the call, they

jump to specialized code that can directly index the unifying clauses.

