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IntroductionIntroduction

Warren’s Abstract Machine (WAM) was specified in 1983 by David H. D. Warren.

This course consists of a gradual reconstruction of the WAM through several

intermediate abstract machine designs:

Language L
0
: Unification

One predicate defined by one fact.

Language L : Unification
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Language L
1
: Unification

Several predicates each defined by one fact.

Language L
2
: Flat Resolution (Prolog without backtracking)

Several predicates each defined by one rule.

Language L
3
: Pure Prolog (Prolog with backtracking)

Several predicates each defined by several rules.

Optimizations
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First Order TermsFirst Order Terms

A variable denoted by a capitalized identifier:

X, X1, Y, Constant, ...

A constant denoted by an identifier starting with a lower-case letter:

a, b, variable, cONSTANT, ...

A structure of the form f(t1,...,tn) where f is a symbol called a functor (denoted like a

constant) and the t ’s are first-order terms:
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constant) and the ti’s are first-order terms:

f(X), p(Z, h(Z,W), f(W)), ...

f/n denotes the functor with symbol f and arity n.

A constant c is a special case of a structure with functor c/0.
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Language Language LLLLLLLL
00000000

Syntax

Two syntactic entities

a program term p

a query term ?- q

where p/q are non-variable first-order terms (the scope of variables is limited to a

program/query term).
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program/query term).

Semantics

Computation of the Most General Unifier (MGU) of program p and query ?- q:

Either execution fails if p and q do not unify (in L
0

failure aborts all further work).

Or it succeeds with a binding of the variables in q obtained by unifying it with p.
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Heap Data Cells: Heap Data Cells

M
0

uses a global storage area called HEAP (an array of data cells) to represent terms:

variable cell <REF,k> where k is a store address (an index into HEAP).

An unbound variable at address k is <REF,k>.

structure cell <STR,k> where k is the address of a functor cell.

A structure f(t1,...,tn) takes n+2 heap cells. The first cell of f(t1,...,tn) is <STR,k>,
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1 n 1 n

where k is the address of a (possibly non-contiguous) functor cell containing f/n.

functor cell f/n (untagged) where f is a functor symbol and n is its arity.

A functor cell is always immediately followed by n contiguous cells, i.e., if

HEAP[k]=f/n then HEAP[k+1] refers to t1, ..., and HEAP[k+n] refers to tn.
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Representation of Terms: Representation of Terms

Representation of p(Z, h(Z,W), f(W)) starting at heap address 7.

0 STR 1

1 h/2

2 REF 2

3 REF 3

4 STR 5
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4 STR 5

5 f/1

6 REF 3

7 STR 8

8 p/3

9 REF 2

10 STR 1

11 STR 5
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Variable Registers: Variable Registers

Variables X1, X2, ... are used to store temporarily heap data cells as terms are built.

They are allocated to a term, one for each subterms.

Variable registers are allocated according to least available index.

Register X1 is always allocated to the outermost term.

The same register is allocated to all the occurrences of a given variable.
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The variable registers allocated to term p(Z, h(Z,W), f(W)) are:

X1 = p(X2,X3,X4)

X2 = Z

X3 = h(X2,X5)

X4 = f(X5)

X5 = W
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Flattened Form: Flattened Form

A term is equivalent to a conjunctive set of register assignments of the form:

Xi = Var

Xi = f(Xi1,...,Xin)

The register assignments of the form Xi = Var are meaningless.

The flattened form of a query term is the ordered sequence of register assignments

of the form Xi = f(Xi ,...,Xi ) so that a variable register is assigned before it is used
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of the form Xi = f(Xi1,...,Xin) so that a variable register is assigned before it is used

as an argument in a subterm.

The flattened form of query term ?- p(Z, h(Z,W), f(W)) is:

X3 = h(X2,X5), X4 = f(X5), X1 = p(X2,X3,X4)
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Tokenized Form: Tokenized Form

For each flattened term Xi = f(Xi1,...,Xin), its tokenized form is the sequence of

tokens Xi = f/n, Xi1, ..., Xin.

The tokenized form of query term ?- p(Z, h(Z,W), f(W)) is a stream of 9 tokens: 

X3 = h/2, X2, X5, X4 = f/1, X5, X1 = p/3, X2, X3, X4
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There are three kinds of tokens to process: 

A register associated with a structure functor

X3 = h/2, X2, X5, X4 = f/1, X5, X1 = p/3, X2, X3, X4

A first-seen register in the stream

X3 = h/2, X2, X5, X4 = f/1, X5, X1 = p/3, X2, X3, X4

An already-seen register in the stream

X3 = h/2, X2, X5, X4 = f/1, X5, X1 = p/3, X2, X3, X4
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Compiling Queries: Compiling Queries

A query term ?- q is translated into a sequence of instructions designed to build an

exemplar of q on the heap from q’s textual form. Respectively, each of the three

kinds of tokens indicates a different action:

put_structure f/n,Xi

push a new STR (and adjoining functor) cell onto the heap and copy that cell into the

allocated register address.
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allocated register address.

set_variable Xi

push a new REF cell onto the heap containing its own address, and copy it into the given

register.

set_value Xi

push a new cell onto the heap and copy into it the register’s value.
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Query Instructions: Query Instructions

Tokenized form of query term ?- p(Z, h(Z,W), f(W)):

X3 = h/2, X2, X5, X4 = f/1, X5, X1 = p/3, X2, X3, X4

Compiled code for query term ?- p(Z, h(Z,W), f(W)):

put_structure h/2,X3 % X3 = h

set_variable X2 %       (X2,

set_variable X5 %           X5)
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set_variable X5 %           X5)

put_structure f/1,X4 % X4 = f

set_value X5 %       (X5)

put_structure p/3,X1 % X1 = p

set_value X2 %       (X2,

set_value X3 %           X3,

set_value X4 %              X4)
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Query Instructions: Query Instructions

M
0

uses a global heap register H to keep the address of the next free cell in the HEAP.

put_structure f/n,Xi

HEAP[H] = <STR,H+1>

HEAP[H+1] = f/n

X[i] = HEAP[H]

H = H+2
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H = H+2

set_variable Xi

HEAP[H] = <REF,H>

X[i] = HEAP[H]

H = H+1

set_value Xi

HEAP[H] = X[i]

H = H+1
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Query Instructions: Query Instructions

X3 0 STR 1 put_structure h/2,X3

1 h/2

X2 2 REF 2 set_variable X2

X5 3 REF 3 set_variable X5

X4 4 STR 5 put_structure f/1,X4

Heap representation for query term ?- p(Z, h(Z,W), f(W)).

Ricardo Rocha DCC-FCUP 13

X4 4 STR 5 put_structure f/1,X4

5 f/1

6 REF 3 set_value X5

X1 7 STR 8 put_structure p/3,X1

8 p/3

9 REF 2 set_value X2

10 STR 1 set_value X3

11 STR 5 set_value X4



Implementação de Linguagens 2017/2018 Warren’s Abstract Machine

Abstract Machine Abstract Machine MMMMMMMM
00000000
: Compiling Programs: Compiling Programs

Compiling a program term p assumes that a query term ?- q has built a term on the

heap and set register X1 to contain its address.

Code for p consists of:

Following the term structure already present in X1 as long as it matches the term

structure of p.

When an unbound REF cell is encountered, then it is bound to a new term that is built on
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When an unbound REF cell is encountered, then it is bound to a new term that is built on

the heap as an exemplar of the corresponding subterm in p.

Variable binding creates reference chains. Dereferencing is performed by a deref()

procedure which, when applied to a store address, follows a possible reference chain

until it reaches either an unbound REF cell or a non-REF cell, returning the cell address.

The code for an L
0

program then uses two modes:

A READ mode in which data on the heap is matched against.

A WRITE mode in which a term is built on the heap exactly as is a query term.
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Compiling Programs: Compiling Programs

Variable registers X1, X2, ... are allocated as before. But now the flattened form

follows a top down order because query data from the heap are assumed available.

The variable registers allocated to program term p(f(X), h(Y,f(a)),Y) are:

X1 = p(X2,X3,X4)

X2 = f(X5)
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X2 = f(X5)

X3 = h(X4,X6)

X4 = Y

X5 = X

X6 = f(X7)

X7 = a

The flattened form of program term p(f(X), h(Y,f(a)),Y) is:

X1 = p(X2,X3,X4), X2 = f(X5), X3 = h(X4,X6), X6 = f(X7), X7 = a
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Program Instructions: Program Instructions

Each flattened term Xi = f(Xi1,...,Xin) is tokenized as before as Xi = f/n, Xi1, ..., Xin.

The tokenized form of program term p(f(X), h(Y,f(a)),Y) is a stream of 12 tokens:

X1 = p/3, X2, X3, X4, X2 = f/1, X5, X3 = h/2, X4, X6, X6 = f/1, X7, X7 = a/0
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Again, there are three kinds of tokens to process:

A register associated with a structure functor – instruction get_structure f/n,Xi

X1 = p/3, X2, X3, X4, X2 = f/1, X5, X3 = h/2, X4, X6, X6 = f/1, X7, X7 = a/0

A first-seen register in the stream – instruction unify_variable Xi

X1 = p/3, X2, X3, X4, X2 = f/1, X5, X3 = h/2, X4, X6, X6 = f/1, X7, X7 = a/0

An already-seen register in the stream – instruction unify_value Xi

X1 = p/3, X2, X3, X4, X2 = f/1, X5, X3 = h/2, X4, X6, X6 = f/1, X7, X7 = a/0
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Program Instructions: Program Instructions

Tokenized form of program term p(f(X), h(Y,f(a)),Y):

X1 = p/3, X2, X3, X4, X2 = f/1, X5, X3 = h/2, X4, X6, X6 = f/1, X7, X7 = a/0

Compiled code for program term p(f(X), h(Y,f(a)),Y):

get_structure p/3,X1 % X1 = p 

unify_variable X2 %       (X2, 

unify_variable X3 %           X3, 

unify_variable X4 %              X4)
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unify_variable X4 %              X4)

get_structure f/1,X2 % X2 = f 

unify_variable X5 %       (X5)

get_structure h/2,X3 % X3 = h

unify_value X4 %       (X4, 

unify_variable X6 %           X6)

get_structure f/1,X6 % X6 = f 

unify_variable X7 %       (X7)

get_structure a/0,X7 % X7 = a
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Read/Write Mode: Read/Write Mode

M
0

uses a global subterm register S to keep the heap address of the next subterm to

be matched in READ mode.

Mode is set by instruction get_structure f/n,Xi:

if deref(Xi) returns a REF cell (unbound variable), then push a new STR cell pointing to

f/n onto the heap, bind the REF cell to it and set mode to WRITE.

if deref(Xi) returns an STR cell pointing to f/n, then set register S to the heap address
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if deref(Xi) returns an STR cell pointing to f/n, then set register S to the heap address

following that functor cell’s and set mode to READ.

Otherwise, the program fails.
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Program Instructions: Program Instructions

get_structure f/n,Xi

addr = deref(X[i])

case STORE[addr] of

<REF,_>: HEAP[H] = <STR,H+1>

HEAP[H+1] = f/n

bind(addr,H)
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bind(addr,H)

H = H+2

mode = WRITE

<STR,a>: if (HEAP[a] = f/n) then

S = a+1

mode = READ

else

fail()

other: fail()
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Variable Binding: Variable Binding

The bind() procedure is performed on two store addresses, at least one of which is

an unbound REF cell.

It binds the unbound REF cell to the other cell, i.e., it changes the data field of the

unbound REF cell to contain the address of the other cell.

If both addresses are unbound REF cells, then the binding direction is chosen arbitrarily.
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Read/Write Mode: Read/Write Mode

The unify instructions then depend on whether a term is to be matched from the

heap (READ mode) or to be built on the heap (WRITE mode).

For matching, they seek to recognize data from the heap as those of the term at

corresponding positions, proceeding if successful and failing otherwise.

For building, they work exactly like the set query instructions.

unify_variable Xi
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In READ mode, sets Xi to the contents of the heap at address S.

In WRITE mode, a new unbound REF cell is pushed onto the heap and copied into Xi.

In both modes, S is then incremented by one.

unify_value Xi

In READ mode, the value of Xi must be unified with the heap term at address S.

In WRITE mode, a new cell is pushed onto the heap and set to the value of register Xi.

Again, in both modes, S is then incremented by one.
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Program Instructions: Program Instructions

unify_variable Xi

case mode of

READ: X[i] = HEAP[S]

WRITE: HEAP[H] = <REF,H>

X[i] = HEAP[H]

H = H+1
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H = H+1

S = S+1

unify_value Xi

case mode of

READ: unify(X[i],S)

WRITE: HEAP[H] = X[i]

H = H+1

S = S+1
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Unify Procedure: Unify Procedure

unify(address a1, address a2)

push(a1,PDL)

push(a2,PDL)

while not_empty(PDL) do

d1 = deref(pop(PDL))

d2 = deref(pop(PDL))

if (d1 != d2) then 

<t1,v1> = STORE[d1]

<t2,v2> = STORE[d2]

Ricardo Rocha DCC-FCUP 23

<t2,v2> = STORE[d2]

if (t1 = REF or t2 = REF) then

bind(d1,d2)

else // t1 = STR and t2 = STR

f1/n1 = STORE[v1]

f2/n2 = STORE[v2]

if (f1 = f2 and n1 = n2) then 

for i = 1 to n1 do 

push(v1+i,PDL)

push(v2+i,PDL) 

else fail()
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Abstract Machine Abstract Machine MMMMMMMM
00000000
: Summary: Summary

Global storage areas

HEAP: to represent terms

Global registers

Xi: variable registers

H: heap register

S: subterm register

Query instructions
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Query instructions

put_structure f/n,Xi

set_variable Xi

set_value Xi

Program instructions

get_structure f/n,Xi

unify_variable Xi

unify_value Xi
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Language Language LLLLLLLL
11111111

Syntax

Similar to L
0
, but now a program may be a set of first-order atoms p1, …, pn each

defining at most one fact per predicate name.

Language L
1

makes now a distinction between atoms (terms whose functor is a

predicate name) and terms (arguments to a predicate).
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Semantics

Execution of a query ?- q connects to the appropriate predicate definition pi, for

computing the MGU of predicate pi and query ?- q, or fails if none predicate

definition exists for the query invoked.
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Abstract Machine Abstract Machine MMMMMMMM
11111111
: Code Area: Code Area

M
1

uses a global storage area called CODE where compiled code is stored.

The code area is an array of possibly labeled instructions consisting of opcodes

followed by operands. The size of an instruction stored at address CODE[a] is

given by the expression instruction_size(a).

The standard execution order of instructions is sequential. M
1

uses a global program

register P to keep the address of the next instruction to execute. Unless failure
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register P to keep the address of the next instruction to execute. Unless failure

occurs, most machine instructions are implicitly assumed, to increment P by

instruction_size(P).
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Abstract Machine Abstract Machine MMMMMMMM
11111111
: Control Instructions: Control Instructions

Some instructions break sequential execution or connect to some other instruction at

the end of a sequence. These instructions are called control instructions as they

typically set P in a non-standard way.

call p/n

Sets P to the address in the code area of instruction labeled p/n. If the procedure p/n

is not defined, failure occurs and overall execution aborts. Labels are symbolic
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is not defined, failure occurs and overall execution aborts. Labels are symbolic

entry points into the code area used as operands of instructions for transferring

control to the code labeled accordingly. Therefore, there is no need to store a

procedure name in the heap as it denotes a key into a compiled instruction

sequence.

proceed

Indicates the end of a fact’s instruction sequence.
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Abstract Machine Abstract Machine MMMMMMMM
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: Argument Registers: Argument Registers

In M
1
, unification between fact and query terms amounts to solving, not one, but

many equations, simultaneously.

Registers X1, ..., Xn are systematically allocated to contain the roots of the n

arguments of an n-ary predicate. Then, we speak of argument registers, and we

write Ai rather than Xi when the i-th register contains the i-th argument. Where

register Xi is not used as an argument register, then it is written as usual.
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register Xi is not used as an argument register, then it is written as usual.

In M
1
, the flattened form of a query term is the ordered sequence of register

assignments of the form Ai = f(Xj1,...,Xjn), Ai = Xj or Xj = f(Xj1,...,Xjn) so that a

variable register Xj is assigned before it is used as an argument in a subterm.
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Abstract Machine Abstract Machine MMMMMMMM
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: Argument Registers: Argument Registers

CODE

a/n1:

proceed

b/n2:

?- b(…).

call b/n2 P

These instructions

put the

argument registers

These instructions
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b/n2:

proceed

c/n3:

proceed

call b/n2

A[]

A1

…

An2

P These instructions

get the

argument registers
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Abstract Machine Abstract Machine MMMMMMMM
11111111
: Argument Registers: Argument Registers

The registers allocated to term p(Z, h(Z,W), f(W)) are:

A1 = X4

A2 = h(X4,X5)

A3 = f(X5)

X4 = Z

X5 = W

Ricardo Rocha DCC-FCUP 30

X5 = W

The flattened form of query term ?- p(Z, h(Z,W), f(W)) is:

A1 = X4, A2 = h(X4,X5), A3 = f(X5)

The tokenized form of query term ?- p(Z, h(Z,W), f(W)) is:

A1 = X4, A2 = h/2, X4, X5, A3 = f/1, X5
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Abstract Machine Abstract Machine MMMMMMMM
11111111
: Argument Registers: Argument Registers

The registers allocated to term p(f(X), h(Y,f(a)), Y) are:

A1 = f(X4)

A2 = h(X5,X6)

A3 = X5

X4 = X

X5 = Y
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X5 = Y

X6 = f(X7)

X7 = a

The flattened form of program term p(f(X), h(Y,f(a)), Y) is:

A1 = f(X4), A2 = h(X5,X6), A3 = X5, X6 = f(X7), X7 = a

The tokenized form of program term p(f(X), h(Y,f(a)), Y) is:

A1 = f/1, X4, A2 = h/2, X5, X6, A3 = X5, X6 = f/1, X7, X7 = a/0
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Abstract Machine Abstract Machine MMMMMMMM
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: Argument Instructions: Argument Instructions

The argument instructions are needed in M
1

to handle variable registers that appear

in argument positions.

In a query

A first-seen variable register Xj appearing in the i-th argument position pushes a new

unbound REF cell onto the heap and copies it into Xj as well as argument register Ai.

An already-seen variable register Xj appearing in the i-th argument position copies its
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value into argument register Ai.

In a program fact

A first-seen variable register Xj appearing in the i-th argument position sets it to the

value of argument register Ai.

An already-seen variable register Xj appearing in the i-th argument position unifies it

with the value of Ai.
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Abstract Machine Abstract Machine MMMMMMMM
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: Argument Instructions: Argument Instructions

put_variable Xn,Ai

HEAP[H] = <REF,H>

X[n] = HEAP[H]

A[i] = HEAP[H]

H = H+1

put_value Xn,Ai
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put_value Xn,Ai

A[i] = X[n]

get_variable Xn,Ai

X[n] = A[i]

get_value Xn,Ai

unify(X[n],A[i])
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Abstract Machine Abstract Machine MMMMMMMM
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: Argument Instructions: Argument Instructions

Tokenized form of query term ?- p(Z, h(Z,W), f(W)):

A1 = X4, A2 = h/2, X4, X5, A3 = f/1, X5

Compiled code for query term ?- p(Z, h(Z,W), f(W)):

put_variable X4,A1 % A1 = X4

put_structure h/2,A2 % A2 = h 

set_value X4 %       (X4,

Ricardo Rocha DCC-FCUP 34

set_value X4 %       (X4,

set_variable X5 %           X5)

put_structure f/1,A3 % A3 = f

set_value X5 %       (X5) 

call p/3 % p(A1,A2,A3)
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Abstract Machine Abstract Machine MMMMMMMM
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: Argument Instructions: Argument Instructions

Tokenized form of program term p(f(X), h(Y,f(a)), Y):

A1 = f/1, X4, A2 = h/2, X5, X6, A3 = X5, X6 = f/1, X7, X7 = a/0

Compiled code for program term p(f(X), h(Y,f(a)),Y):

p/3: get_structure f/1,A1 % A1 = f

unify_variable X4 %       (X4)

get_structure h/2,A2 % A2 = h

Ricardo Rocha DCC-FCUP 35

get_structure h/2,A2 % A2 = h

unify_variable X5 %       (X5,

unify_variable X6 %           X6)

get_value X5,A3 % A3 = X5

get_structure f/1,X6 % X6 = f

unify_variable X7 %       (X7)

get_structure a/0,X7 % X7 = a

proceed %
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Abstract Machine Abstract Machine MMMMMMMM
11111111
: Summary: Summary

Global storage areas

CODE: to store compiled code

HEAP: to represent terms

Global registers

Ai: argument registers

Xi: variable registers
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Xi: variable registers

P: program register

H: heap register

S: subterm register



Implementação de Linguagens 2017/2018 Warren’s Abstract Machine

Abstract Machine Abstract Machine MMMMMMMM
11111111
: Summary: Summary

Query instructions

put_structure f/n,Xi

set_variable Xi

set_value Xi

put_structure f/n,Ai

put_variable Xn,Ai

put_value Xn,Ai
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call p/n

Program instructions

get_structure f/n,Xi

unify_variable Xi

unify_value Xi

get_structure f/n,Ai

get_variable Xn,Ai

get_value Xn,Ai

proceed
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Syntax

Similar to L
1
, but now a program is a set of predicates of the form p:- b1,…, bn

where p and the bi’s are atoms defining at most one clause per predicate name.

Predicates are no longer reduced only to facts but may also have bodies. A body is a

conjunctive sequence of atoms (or goals). When n = 0, the clause is called a fact

and written without the implication symbol (:-). When n > 0, the clause is called a
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and written without the implication symbol (:-). When n > 0, the clause is called a

rule, atom p is called the head of the rule and the bi’s are called the body of the rule.

Semantics

A L
2

query is now a sequence of atoms (or goals) of the form ?- q1, ..., qk.

Execution of such a query ?- q1, ..., qk. consists of repeated application of leftmost

resolution until the empty query, or failure, is obtained.
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Language Language LLLLLLLL
22222222

: Leftmost Resolution: Leftmost Resolution

Always unify the leftmost query goal with its definition’s head or fail if none exists.

If unification succeeds, replace the query goal by its definition’s body, variables in

scope bearing the binding side-effects of unification.

Therefore, executing a query in L
2

either:

Terminates with success (the result is the bindings of the variables in the query).

Terminates with failure.
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Terminates with failure.

Never terminates.
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: Compiling Goals: Compiling Goals

To compile a rule body or a query with several goals, we can concatenate M
1
’s

compiled code for each goal. However, we must take special care with:

Continuing the execution of a goal sequence.

Avoiding conflicts in the use of argument registers.

Compiled pseudo-code for clause p (…) :- p (…), …, p (…):
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Compiled pseudo-code for clause p0(…) :- p1(…), …, pn(…):

‘get arguments of p0’ % not needed for queries

‘put arguments of p1’

call p1

...

‘put arguments of pn’

call pn
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: Control Instructions: Control Instructions

After successfully returning from a call to a fact, now proceed must continue

execution back to the instruction in the goal sequence following the call.

M
2

uses a global continuation point register CP to save and restore the address of the

next instruction to follow up with upon successful return from a call and alters M
1
’s

control instructions to:

call p/n
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call p/n

CP = P + instruction_size(P)

P = @(p/n)

proceed

P = CP

As before, when the procedure p/n is not defined, execution fails.
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: Permanent Variables: Permanent Variables

Variables which occur in more than one body goal are called permanent variables as they

have to outlive the call where they first appear. All other variables in a scope that are not

permanent are called temporary variables. We write a permanent variable as Yi, and use Xi as

before for temporary variables.

To determine whether a variable is permanent or temporary in a rule, the head atom is

considered to be part of the first body goal (e.g., in the example below X is temporary).
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Problem: because the same variable registers are used by every body goal, permanent

variables run the risk of being overwritten by intervening goals. For example, in rule

p(X,Y) :- q(X,Z), r(Z,Y).

no guarantee can be made that the variables Y and Z are still in registers after executing q.

Solution: save permanent variables in an environment associated with each activation of the

call they appear in.
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: Environments: Environments

M
2

uses a global storage area called STACK to store environments and a global

environment register E to keep the address of the latest environment on STACK.

An environment is pushed onto STACK upon a non-fact entry call, and popped from

STACK upon return. Environments are used to save the permanent variables and the

continuation point.

The STACK is organized as a linked list of environment frames of the form:
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The STACK is organized as a linked list of environment frames of the form:

E CE previous environment

E+1 CP continuation point

E+2 n number of permanent variables

E+3 Y1 permanent variable 1

... ...

E+n+2 Yn permanent variable n
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: Environment Instructions: Environment Instructions

allocate N

Creates and pushes an environment frame for N permanent variables onto STACK.

deallocate

Discards the environment frame on top of STACK and sets execution to continue at the

continuation point recovered from the environment being discarded.
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Compiled pseudo-code for clause p0(…) :- p1(…), …, pn(…):

allocate N

‘get arguments of p0’ % not needed for queries

‘put arguments of p1’

call p1

...

‘put arguments of pn’

call pn

deallocate
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: Environment Instructions: Environment Instructions

allocate N

newE = E + STACK[E+2] + 3

STACK[newE] = E

STACK[newE+1] = CP

STACK[newE+2] = N

E = newE
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E = newE

P = P + instruction_size(P)

deallocate

P = STACK[E+1]

E = STACK[E]
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: Environment Instructions: Environment Instructions

The variable registers allocated to clause p(X,Y) :- q(X,Z), r(Z,Y) are:

X3 = X, Y1 = Y, Y2 = Z

Compiled code for clause p(X,Y) :- q(X,Z), r(Z,Y):

p/2: allocate 2 %

get_variable X3,A1 % A1 = X3

get_variable Y1,A2 % A2 = Y1
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get_variable Y1,A2 % A2 = Y1

put_value X3,A1 % A1 = X3

put_variable Y2,A2 % A2 = Y2

call q/2 % q(A1,A2)

put_value Y2,A1 % A1 = Y2

put_value Y1,A2 % A2 = Y1

call r/2 % r(A1,A2)

deallocate %
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: Summary: Summary

Global storage areas

CODE: to store compiled code

HEAP: to represent terms

STACK: to store environments

Global registers

Ai: argument registers
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Ai: argument registers

Xi: temporary variable registers

Yi: permanent variable registers

P: program register

CP: continuation point register

H: heap register

S: subterm register

E: environment register
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: Summary: Summary

Query instructions

put_structure f/n,Xi

set_variable Xi

set_value Xi

put_structure f/n,Ai

put_variable Xn,Ai
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put_variable Xn,Ai

put_value Xn,Ai

call p/n

allocate N

deallocate
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: Summary: Summary

Program instructions

get_structure f/n,Xi

unify_variable Xi

unify_value Xi

get_structure f/n,Ai

get_variable Xn,Ai
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get_variable Xn,Ai

get_value Xn,Ai

proceed

allocate N

deallocate
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Syntax

L
3

extends L
2

to allow disjunctive definitions of a predicate.

A predicate definition is an ordered sequence of clauses (facts and/or rules)

consisting of all and only those whose head atoms share the same predicate name.
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Semantics

L
3

queries are the same as those of L
2
. Query execution operates using top-down

leftmost resolution, an approximation of SLD resolution.

Failure of unification no longer yields irrevocable abortion of execution but

considers alternative choices by chronological backtracking; i.e., the latest choice

point at the moment of failure is reexamined first.
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: Choice Points : Choice Points 

M
3

now saves the state of computation at each procedure call offering alternatives.

We call such a state a choice point. A choice point contains all relevant information

needed for a correct state of computation to be restored to try the next alternative,

with all effects of the failed computation undone.

A choice point is created by the first alternative of a predicate defined by more than

one alternative (if a predicate contains only one clause, there is no need to create a
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one alternative (if a predicate contains only one clause, there is no need to create a

choice point). Then, it is updated (with the alternative to try next) by intermediate

(but non ultimate) alternatives. Finally, it is discarded by the last alternative.

M
3

manages choice points as frames in a stack (just like environments). To

distinguish the two stacks, we call the environment stack the AND-Stack and the

choice point stack the OR-Stack.
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: Choice Points: Choice Points

M
3

uses a global backtrack register B to keep the address of the latest choice point.

Upon failure, computation is resumed from the state recovered from the choice

point indicated by B. If the choice point offers no more alternatives, it is popped off

the OR-stack by resetting B to its predecessor if one exists. Otherwise, the

computation fails terminally and execution aborts.
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: Environment Protection: Environment Protection

Problem: in M
2
, it is safe to deallocate an environment frame at the end of a rule.

However, in M
3

this is no longer true: failure may force reconsidering a choice point

from a computation in the middle of a rule whose environment has been

deallocated.

Example: consider the following program and the query ?- a:
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Example: consider the following program and the query ?- a:

a:- b(X), c(X).

b(X):- e(X).

c(1).

e(X):- f(X).

e(X):- g(X).

f(2).

g(1).
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: Environment Protection: Environment Protection

And-Stack Or-Stack
?- a.

?- b(X), c(X).

Environment for a

E Environment for a –
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?- e(X), c(X).

?- f(X), c(X).

Environment for a

E Environment for b –

Environment for a

Environment for b

E Environment for e B Choice point for e
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: Environment Protection: Environment Protection

And-Stack Or-Stack
?- e(X), c(X).

?- f(X), c(X).

Environment for a

Environment for b

E Environment for e B Choice point for e
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?- f(X), c(X).

?- c(2).

X=2

fail

E Environment for a

Environment for b

Environment for e B Choice point for e

E Environment for a B Choice point for e
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: Environment Protection: Environment Protection

The choice point indicated by B shows an alternative clause for e, but at this point

b’s environment has been lost. M
3

must prevent unrecoverable deallocation of

environment frames that chronologically precede any existing choice point.

Solution: every choice point must protect from deallocation all environment frames

existing before its creation. To do that M
3

uses the same stack for both

environments and choice points:
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environments and choice points:

As long as a choice point is active, it forces allocation of further environments on top of

it, avoiding overwriting the (even explicitly deallocated) older environments.

Safe resurrection of a deallocated protected environment is automatic when coming back

to an alternative from the choice point.

Protection lasts just as long as it is needed: as soon as the choice point disappears, all

explicitly deallocated environments may be safely overwritten.
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: Environment Protection: Environment Protection

STACK
?- a.

?- b(X), c(X).

Environment for a

E Environment for a
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?- e(X), c(X).

?- f(X), c(X).

E Environment for b

Environment for a

Environment for b

B Choice point for e

E Environment for e
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: Environment Protection: Environment Protection

STACK

Environment for a

Environment for b

B Choice point for e

E Environment for e

?- e(X), c(X).

?- f(X), c(X).
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?- f(X), c(X).

?- c(2).

X=2

fail

E Environment for a

Environment for b

B Choice point for e

Environment for e

E Environment for a

Environment for b

B Choice point for e
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: Environment Protection: Environment Protection

Now, M
3

can safely recover the state from the choice point for e indicated by B, in

which the saved environment to restore is that of b, the one current at the time of

this choice point’s creation.

Environment for a

E Environment for b

fail
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?- e(X), c(X).

E Environment for b

Choice point for e

?- g(X), c(X).

Environment for a

Environment for b

E Environment for e
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: Undoing Bindings: Undoing Bindings

Binding effects must be undone when reconsidering a choice point.

M
3

uses a global storage area called TRAIL to record all variables which need to be

reset to unbound upon backtracking, a global trail register TR to keep the address of

the next free cell in the TRAIL and a global heap backtrack register HB to keep the

value of H at the time of the latest choice point’s creation.

Only conditional bindings need to be trailed. A conditional binding is one affecting
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Only conditional bindings need to be trailed. A conditional binding is one affecting

a variable existing before creation of the current choice point:

HEAP[a] is conditional iff a < HB.

STACK[a] is conditional iff a < B.
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: What’s in a Choice Point: What’s in a Choice Point

The argument registers A1, ..., An of the predicate being called.

The current environment (register E) to recover as a protected environment.

The continuation point (register CP) as the current choice will overwrite it.

The latest choice point (register B) where to backtrack in case all alternatives

offered by the current choice point fail.
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The next clause to try for this predicate in case the currently chosen one fails. This

slot is updated at each backtracking to this choice point, if more alternatives exist.

The current trail pointer (register TR) which is needed as the boundary where to

unwind the trail upon backtracking.

The current top of heap (register H) which is needed to recover (garbage) heap

space of all the structures and variables constructed during the failed attempt.
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: What’s in a Choice Point: What’s in a Choice Point

B n number of arguments

B+1 A1 argument register 1

... ...

B+n An argument register n

current environment
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B+n+1 E current environment

B+n+2 CP continuation point

B+n+3 B previous choice point

B+n+4 BP next clause to try

B+n+5 TR current trail pointer

B+n+6 H current heap pointer
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: Backtracking: Backtracking

All instructions where failure may occur (unification instructions and predicate

calls) now backtrack to the next clause to try for the current choice point, if one

exists. Otherwise, the computation fails terminally and execution aborts.

fail()

if (B != NULL)

P = STACK[B+STACK[B]+4]
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P = STACK[B+STACK[B]+4]

else

abort()
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: Environment Instructions: Environment Instructions

allocate N

if (E > B) then

newE = E + STACK[E+2] + 3

else

newE = B + STACK[B] + 7

STACK[newE] = E
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STACK[newE] = E

STACK[newE+1] = CP

STACK[newE+2] = N

E = newE

P = P + instruction_size(P)
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: Choice Point Instructions: Choice Point Instructions

M
3

uses three different instructions to deal with multiple clause predicates.

try_me_else L

For the first clause. Allocates a new choice point setting its next clause field to L

and the other fields according to the current context, and sets B to point to it.

retry_me_else L
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For intermediate (but not ultimate) clauses. Resets all the necessary information

from the current choice point and updates its next clause field to L.

trust_me

For the last clause. Resets all the necessary information from the current choice

point and then discards it by resetting B to the value of its predecessor slot.
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: Choice Point Instructions: Choice Point Instructions

For a two clause definition for a predicate p/n the pattern is:

p/n: try_me_else L

‘code for first clause’

L: trust_me

‘code for second clause’

For more than two clauses the pattern is:

p/n: try_me_else L
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p/n: try_me_else L1

‘code for first clause’

L1: retry_me_else L2

‘code for second clause’

...

Lk-1: retry_me_else Lk

‘code for penultimate clause’

Lk: trust_me

‘code for last clause’
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: Choice Point Instructions: Choice Point Instructions

Consider the following predicate defined by three clauses:

p(X,a).

p(b,X).

p(X,Y):- p(X,a), p(b,Y).

Compiled code for clause p(X,a):

p/2: try_me_else L1 %
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p/2: try_me_else L1 %

get_variable X3,A1 % A1 = X3

get_structure a/0,A2 % A2 = a

proceed %

Compiled code for clause p(b,X):

L1: retry_me_else L2 %

get_structure b/0,A1 % A1 = b

get_variable X3,A2 % A2 = X3

proceed %
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: Choice Point Instructions: Choice Point Instructions

Compiled code for clause p(X,Y):- p(X,a), p(b,Y):

L2: trust_me %

allocate 1 %

get_variable X3,A1 % A1 = X3

get_variable Y1,A2 % A2 = Y1

put_value X3,A1 % A1 = X3
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put_value X3,A1 % A1 = X3

put_structure a/0,A2 % A2 = a

call p/2 % p(A1,A2)

put_structure b/0,A1 % A1 = b

put_value Y1,A2 % A2 = Y1

call p/2 % p(A1,A2)

deallocate %
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: Summary: Summary

Global storage areas

CODE: to store compiled code

HEAP: to represent terms

STACK: to store environments and choice points

TRAIL: to record variables which need to be reset upon backtracking
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Global registers

Ai: argument registers

Xi: temporary variable registers

Yi: permanent variable registers

P: program register

CP: continuation point register
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CP: continuation point register

H: heap register

S: subterm register

E: environment register

B: backtrack register

HB: heap backtrack register

TR: trail register
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: Summary: Summary

Query instructions

put_structure f/n,Xi

set_variable Xi

set_value Xi

put_structure f/n,Ai

put_variable Xn,Ai
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put_variable Xn,Ai

put_value Xn,Ai

call p/n

allocate N

deallocate
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Program instructions

get_structure f/n,Xi

unify_variable Xi

unify_value Xi

get_structure f/n,Ai

get_variable Xn,Ai
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get_variable Xn,Ai

get_value Xn,Ai

proceed

allocate N

deallocate

try_me_else L

retry_me_else L

trust_me
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WAM Principle I

Heap space is to be used as sparingly as possible, as terms built on the heap turn out

to be relatively persistent.

WAM Principle II

Registers must be allocated in such a way as to avoid unnecessary data movement,

and minimize code size as well.
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and minimize code size as well.

WAM Principle III

Particular situations that occur very often, even though correctly handled by

general-case instructions, are to be accommodated by special ones if space and/or

time may be saved thanks to their specificity.
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There is actually no need to allocate a systematic STR cell before each functor cell. A

better heap representation for p(Z, h(Z,W), f(W)) is:

0 h/2

1 REF 1

2 REF 2

0 STR 1

1 h/2

2 REF 2

3 REF 3
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2 REF 2

3 f/1

4 REF 2

5 p/3

6 REF 1

7 STR 0

8 STR 3

4 STR 5

5 f/1

6 REF 3

7 STR 8

8 p/3

9 REF 2

10 STR 1

11 STR 5
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Optimizing the Design: Heap RepresentationOptimizing the Design: Heap Representation

However, all references from registers to functor cells should remain as structure

cells. For this, we need to change the put_structure instruction from:

put_structure f/n,Xi

HEAP[H] = <STR,H+1>

HEAP[H+1] = f/n

X[i] = HEAP[H]
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X[i] = HEAP[H]

H = H+2

to:

put_structure f/n,Xi

HEAP[H] = f/n

X[i] = <STR,H>

H = H+1
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Optimizing the Design: ConstantsOptimizing the Design: Constants

There are sequences of instructions that bind a register to a constant and then proceed

pushing a cell onto the heap with the register’s value:

put_structure c/0,Xi

...

set_value Xi

This sequences can be simplified into one specialized instruction:
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set_constant c

There are other sequences that bind a register and then proceed checking the presence of a

constant on the heap:

unify_variable Xi

...

get_structure c/0,Xi

This sequences can be simplified into one specialized instruction:

unify_constant c
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Optimizing the Design: ConstantsOptimizing the Design: Constants

Heap space for constants can also be saved when loading an argument register with

a constant or binding an argument register to a constant. These operations can be

simplified from those of structures to deal specifically with constants:

put_constant c,Ai

get_constant c,Ai

To represent constants, we need a new sort of data cell
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To represent constants, we need a new sort of data cell

tagged CON. For example, a heap representation

starting at address 10 for term f(b,g(a)) could be: 8 g/1

9 CON a

10 f/2

11 CON b

12 STR 8
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put_constant c,Ai

A[i] = <CON,c>

set_constant c

HEAP[H] = <CON,c>

H = H+1;

get_constant c,Ai

Ricardo Rocha DCC-FCUP 78

get_constant c,Ai

addr = deref(A[i])

case STORE[addr] of

<REF,_>: STORE[addr] = <CON,c>

trail(addr)

<CON,c’>: if (c != c’) then fail()

other: fail()
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Optimizing the Design: ConstantsOptimizing the Design: Constants

unify_constant c

case mode of

READ: addr = deref(S)

case STORE[addr] of

<REF,_>: STORE[addr] = <CON,c>

trail(addr)
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trail(addr)

<CON,c’>: if (c != c’) then fail()

other: fail()

WRITE: HEAP[H] = <CON,c>

H = H+1
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Optimizing the Design: ListsOptimizing the Design: Lists

Similarly to constants, heap space for non-empty lists can be saved when loading or binding

a register to it. To represent lists we use a new sort of data cell tagged <LIS,a> indicating

that cell a contains the heap address of the first element of a list pair.

put_list Xi

X[i] = <LIS,H>

get_list Xi

addr = deref(X[i])
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addr = deref(X[i])

case STORE[addr] of

<REF,_>: HEAP[H] = <LIS,H+1>

bind(addr,H)

H = H+1

mode = WRITE

<LIS,a>: S = a

mode = READ

other: fail()



Implementação de Linguagens 2017/2018 Warren’s Abstract Machine

Optimizing the Design: Constant/List InstructionsOptimizing the Design: Constant/List Instructions

Flattened form of query ?- p(Z, [Z,W], f(W)):

X5 = [X6 / []], A1 = X4, A2 = [X4 / X5], A3 = f(X6)

Compiled code for query ?- p(Z, [Z,W], f(W)):

put_list X5 % X5 = [

set_variable X6 %       X6|

set_constant [] %          []]

Ricardo Rocha DCC-FCUP 81

set_constant [] %          []]

put_variable X4,A1 % A1 = X4

put_list A2 % A2 = [

set_value X4 %       X4|

set_value X5 %          X5]

put_structure f/1,A3 % A3 = f

set_value X6 %       (X6)

call p/3 % p(A1,A2,A3)
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Optimizing the Design: Constant/List InstructionsOptimizing the Design: Constant/List Instructions

Flattened form of clause p(f(X), [Y,f(a)], Y):

A1 = f(X4), A2 = [X5 / X6], A3 = X5, X6 = [X7 / []], X7 = f(a)

Compiled code for clause p(f(X), [Y,f(a)], Y):

p/3: get_structure f/1,A1 % A1 = f

unify_variable X4 %       (X4)

get_list A2 % A2 = [

unify_variable X5 %       X5|
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unify_variable X5 %       X5|

unify_variable X6 %          X6]

get_value X5,A3 % A3 = X5

get_list X6 % X6 = [

unify_variable X7 %       X7|

unify_constant [] %          []]

get_structure f/1,X7 % X7 = f

unify_constant a %       (a)

proceed %
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Optimizing the Design: Anonymous VariablesOptimizing the Design: Anonymous Variables

A single-occurrence variable in a non-argument position is called an anonymous

variable. Anonymous variables need no registers and if many occur in a row as in

f(_,_,_) they can be all processed in a single instruction.

set_void N

Pushes N new unbound REF cells on the heap.

unify_void N
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unify_void N

In WRITE mode, pushes N new unbound REF cells on the heap.

In READ mode, skips the next N heap cells starting at address S.

A single-occurrence variable in an argument position can be simply ignored.
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Optimizing the Design: Anonymous VariablesOptimizing the Design: Anonymous Variables

set_void N

for i = H to H+n-1 do

HEAP[i] = <REF,i>

H = H+n

unify_void N

case mode of
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case mode of

READ: S = S+n

WRITE: for i = H to H+n-1 do

HEAP[i] = <REF,i>

H = H+n
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Optimizing the Design: Anonymous VariablesOptimizing the Design: Anonymous Variables

Flattened form of clause p(_, g(X), f(_,Y,_)):

A2 = g(_), A3 = f(_,_,_)

Compiled code for clause p(_, g(X), f(_,Y,_)):

p/3: get_structure g/1,A2 % A2 = g

unify_void 1 %        (_)

get_structure f/3,A3 % A3 = f
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get_structure f/3,A3 % A3 = f

unify_void 3 %       (_,_,_)

proceed %
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Optimizing the Design: Better Register AllocationOptimizing the Design: Better Register Allocation

Some sequences of register instructions are vacuous operations and can be eliminated:

get_variable Xi,Ai

...

put_value Xi,Ai

Clever register allocation can also be used to allow peep-hole optimizations. Consider, for

example, the code for clause conc([], L, L):
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conc/3: get_constant [],A1 % A1 = []

get_variable X4,A2 % A2 = X4

get_value X4,A3 % A3 = X4

proceed %

It is silly to use an extra register X4 to unify A2 with A3:

conc/3: get_constant [],A1 % A1 = []

get_value A2,A3 % A3 = A2

proceed %
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Optimizing the Design: Register AllocationOptimizing the Design: Register Allocation

The variable registers allocated to clause p(X,Y) :- q(X,Z), r(Z,Y) are:

X3 = X, Y1 = Y, Y2 = Z

Compiled code for clause p(X,Y) :- q(X,Z), r(Z,Y):

p/2: allocate 2 %

get_variable X3,A1 % A1 = X3

get_variable Y1,A2 % A2 = Y1

Ricardo Rocha DCC-FCUP 87

get_variable Y1,A2 % A2 = Y1

put_value X3,A1 % A1 = X3

put_variable Y2,A2 % A2 = Y2

call q/2 % q(A1,A2)

put_value Y2,A1 % A1 = Y2

put_value Y1,A2 % A2 = Y1

call r/2 % r(A1,A2)

deallocate %
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Optimizing the Design: Better Register AllocationOptimizing the Design: Better Register Allocation

A better variable register allocation for clause p(X,Y) :- q(X,Z), r(Z,Y) is:

Y1 = Y, Y2 = Z

Better compiled code for clause p(X,Y) :- q(X,Z), r(Z,Y):

p/2: allocate 2 %

get_variable Y1,A2 % A2 = Y1

put_variable Y2,A2 % A2 = Y2
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put_variable Y2,A2 % A2 = Y2

call q/2 % q(A1,A2)

put_value Y2,A1 % A1 = Y2

put_value Y1,A2 % A2 = Y1

call r/2 % r(A1,A2)

deallocate %
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Optimizing the Design: Last Call OptimizationOptimizing the Design: Last Call Optimization

Idea: permanent variables are no longer needed after the put instructions

preceding the last call instruction in the body. The current environment can thus

be discarded before the last call in a rule’s body.

Solution: swap the call/deallocate sequence that always conclude a rule’s

compiled code into a deallocate/call sequence.
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Optimizing the Design: Last Call OptimizationOptimizing the Design: Last Call Optimization

Caution I: as deallocate is no longer the last instruction, it must reset CP rather

than P. For this, we need to change the deallocate instruction from:

deallocate

P = STACK[E+1]

E = STACK[E]

to
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to

deallocate

CP = STACK[E+1]

E = STACK[E]

P = P + instruction_size(P)
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Optimizing the Design: Last Call OptimizationOptimizing the Design: Last Call Optimization

Caution II: but now when call is the last instruction, it must not set CP but only

P. So, as we cannot modify call, since it is correct when not last:

call p/n

CP = P + instruction_size(P)

P = @(p/n)

we use a new instruction for last calls:
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we use a new instruction for last calls:

execute p/n

P = @(p/n)
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Optimizing the Design: Last Call OptimizationOptimizing the Design: Last Call Optimization

Compiled code for clause p(X,Y) :- q(X,Z), r(Z,Y) with last call optimization:

p/2: allocate 2 %

get_variable Y1,A2 % A2 = Y1

put_variable Y2,A2 % A2 = Y2

call q/2 % q(A1,A2)

put_value Y2,A1 % A1 = Y2
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put_value Y2,A1 % A1 = Y2

put_value Y1,A2 % A2 = Y1

deallocate %

execute r/2 % r(A1,A2)
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Optimizing the Design: Chain RulesOptimizing the Design: Chain Rules

Applying last call optimization to a chain rule of the form p(. . .) :- q(. . .) results in:

p/n: allocate N

‘get arguments of p/n’

‘put arguments of q/m’

deallocate

execute q/m
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execute q/m

As all variables in a chain rule are necessarily temporary, with last call optimization

the allocate/deallocate instructions became useless and can be eliminated:

p/n: ‘get arguments of p/n’

‘put arguments of q/m’

execute q/m
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Optimizing the Design: IndexingOptimizing the Design: Indexing

To seed up clause selection, the WAM uses the first argument as an indexing key.

However, a clause whose head has a variable key creates a search bottleneck. The clauses

defining a predicate p/n are thus partitioned in subsequences S1, …, Sm such that each Si is:

A single clause with a variable key.

A maximal subsequence of contiguous clauses whose keys are not variables.

These subsequences are then compiled using the usual choice point instructions:
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These subsequences are then compiled using the usual choice point instructions:

p/n: try_me_else S2

‘code for subsequence S1’

S2: retry_me_else S3

‘code for subsequence S2’

...

Sm: trust me

‘code for subsequence Sm’
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Optimizing the Design: IndexingOptimizing the Design: Indexing

Consider the following definition for predicate call/1:

call(or(X,Y)):- call(X).

call(trace):- trace.

call(or(X,Y)):- call(Y).

call(notrace):- notrace.

call(nl):- nl.

call(X):- builtin(X).
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call(X):- builtin(X).

call(X):- extern(X).

call(call(X)):- call(X).

call(repeat).

call(repeat):- call(repeat).

call(true).

Using the first argument as an indexing key, into how many subsequences predicate call/1

can be partitioned?
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Optimizing the Design: IndexingOptimizing the Design: Indexing

Subsequence S1 for predicate call/1:

call(or(X,Y)):- call(X).

call(trace):- trace.

call(or(X,Y)):- call(Y).

call(notrace):- notrace.

call(nl):- nl.

Subsequence S2 for predicate call/1:
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Subsequence S2 for predicate call/1:

call(X):- builtin(X).

Subsequence S3 for predicate call/1:

call(X):- extern(X).

Subsequence S4 for predicate call/1:

call(call(X)):- call(X).

call(repeat).

call(repeat):- call(repeat).

call(true).
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Optimizing the Design: IndexingOptimizing the Design: Indexing

Compiled code for predicate call/1:

call/1: try_me_else S2

‘indexing code for subsequence S1’

S2: retry_me_else S3

execute builtin/1

S3: retry_me_else S4
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S3: retry_me_else S4

execute extern/1

S4: trust_me

‘indexing code for subsequence S4’
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Optimizing the Design: IndexingOptimizing the Design: Indexing

The general indexing code pattern is:

first level indexing

second level indexing

third level indexing

code of clauses in subsequence order

where the second and third levels are needed only depending on what sort of keys
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where the second and third levels are needed only depending on what sort of keys

are present in the subsequence and in what number.
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Optimizing the Design: IndexingOptimizing the Design: Indexing

Indexing code for subsequence S1:

‘first level indexing for subsequence S1’

‘second level indexing for subsequence S1’

‘third level indexing for subsequence S1’

S11: try_me_else S12

‘code for call(or(X,Y)) :- call(X).’
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‘code for call(or(X,Y)) :- call(X).’

S12: retry_me_else S13

‘code for call(trace) :- trace.’

S13: retry_me_else S14

‘code for call(or(X,Y)) :- call(Y ).’

S14: retry_me_else S15

‘code for call(notrace) :- notrace.’

S15: trust_me

‘code for call(nl) :- nl.’
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Optimizing the Design: IndexingOptimizing the Design: Indexing

First level indexing makes control jump to a (possibly void) bucket of clauses,

depending on whether deref(A1) is a:

Variable: the code bucket of a variable corresponds to full sequential search through the

subsequence (thus, it is never void).

Constant: the code bucket of a constant corresponds to second level indexing among

constants.
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constants.

Non-empty list: the code bucket of a list corresponds to third level indexing among non-

empty lists.

Structure: the code bucket of a structure corresponds to second level indexing among

structures.
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Optimizing the Design: Indexing InstructionsOptimizing the Design: Indexing Instructions

First level indexing:

switch_on_term V,C,L,S

jump to the instruction labeled V, C, L, or S, depending on whether deref(A1) is,

respectively, a variable, a constant, a non-empty list, or a structure.

Second level indexing (for N distinct symbols):

switch_on_constant N,T
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switch_on_constant N,T

T is a hash-table of the form {ci : Li}, 1 ≤ i ≤ N.

If deref (A1) = ci then jump to instruction labeled Li. Otherwise, backtrack.

switch_on_structure N,T

T is a hash-table of the formform {si : Li}, 1 ≤ i ≤ N.

if deref (A1) = si then jump to instruction labeled Li. Otherwise, backtrack.
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Optimizing the Design: Indexing InstructionsOptimizing the Design: Indexing Instructions

Third level indexing:

try L

retry L

trust L

Identical to the try_me_else/retry_me_else/trust_me sequence, except

that they jump to label L and save the next instruction in sequence as the next clause
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that they jump to label L and save the next instruction in sequence as the next clause

alternative in the choice point (except for trust, of course).
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Optimizing the Design: Indexing InstructionsOptimizing the Design: Indexing Instructions

Indexing code for subsequence S1:

switch_on_term S11,C1,fail,F1 % first level indexing

C1: switch_on_constant 3, % second level indexing

{trace: S1b, % for constants

notrace: S1d, %

nl: S1e} %

F1: switch_on_structure 1, % second level indexing

{or/2: F11} % for structures
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{or/2: F11} % for structures

F11: try S1a % third level indexing

trust S1c % for or/2

%

S11: try_me_else S12 %

S1a: get_structure or/2,A1 % A1 = or

unify_variable A1 %        (A1,

unify_void 1 %            _)

execute call/1 % call(A1)
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Optimizing the Design: Indexing InstructionsOptimizing the Design: Indexing Instructions

Indexing code for subsequence S1:

S12: retry_me_else S13 %

S1b: get_constant trace,A1 % A1 = trace

execute trace/0 % trace

S13: retry_me_else S14 % 

S1c: get_structure or/2,A1 % A1 = or

unify_void 1 %        (_,
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unify_void 1 %        (_,

unify_variable A1 %           A1)

execute call/1 % call(A1)

S14: retry_me_else S15 % 

S1d: get_constant notrace,A1 % A1 = notrace

execute notrace/0 % notrace

S15: trust_me % 

S1e: get_constant nl,A1 % A1 = nl

execute nl/0 % nl
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Optimizing the Design: Indexing InstructionsOptimizing the Design: Indexing Instructions

Indexing code for subsequence S4:

switch_on_term S41,C4,fail,F4 % first level indexing

C4: switch_on_constant 2, % second level indexing

{repeat: C41, % for constants

true: S4d} %

F4: switch_on_structure 1, % second level indexing

Ricardo Rocha DCC-FCUP 105

F4: switch_on_structure 1, % second level indexing

{call/1: S4a} % for structures

C41: try S4b % third level indexing

trust S4c % for repeat
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Optimizing the Design: Indexing InstructionsOptimizing the Design: Indexing Instructions

Indexing code for subsequence S4:

S41: try_me_else S42 %

S4a: get_structure call/1,A1 % A1 = call

unify_variable A1 %          (A1)

execute call/1 % call(A1)

S42: retry_me_else S43 %

S4b: get_constant repeat,A1 % A1 = repeat
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S4b: get_constant repeat,A1 % A1 = repeat

proceed % 

S43: retry_me_else S44 %

S4c: get_constant repeat,A1 % A1 = repeat

put_constant repeat,A1 % A1 = repeat

execute call/1 % call(A1)

S44: trust_me %

S4d: get_constant true,A1 % A1 = true

proceed %
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Optimizing the Design: SummaryOptimizing the Design: Summary

New query instructions

put_constant c,Ai

set_constant c

put_list Xi

put_list Ai

set_void N
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set_void N
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Optimizing the Design: SummaryOptimizing the Design: Summary

New program instructions

get_constant c,Ai

unify_constant c

get_list Xi

get_list Ai

unify_void N
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unify_void N

execute f/n

swith_on_term V,C,L,S

switch_on_constant N,T

switch_on_structure N,T

try L

retry L

trust L


