Operating Systems 2017/2018 API File 1/0 & Pipes

Ricardo Rocha
Department of Computer Science
Faculty of Sciences

University of Porto

For more information please consult
‘Advanced Programming in the UNIX® Environment, 3rd Edition,
W. Richard Stevens and Stephen A. Rago, Addison Wesley’
Sections 3.1-3.8, 3.12 and 15.2

Operating Systems 2017/2018 API File I/O & Pipes

File Descriptors

B When opening or creating a file, the kernel returns a file descriptor to the
process at hand

e When reading or writing from/to a file, we identify the file by using the
corresponding file descriptor obtained previously

m At the kernel level, a file descriptor is a non-negative integer
e File descriptors range from 0 through OPEN_MAX (typically 63)

® By convention, UNIX shells associate the:
e Standard input with file descriptor 0 (STDIN_FILENO)
e Standard output with file descriptor 1 (STDOUT_FILENO)
e Standard error with file descriptor 2 (STDERR_FILENO)

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Opening a File

#include <fcntl.h>

int open(char *pathname, int flags);

int open(char *pathname, int flags, mode_t mode);

// * opens an existing file or creates a new one (if creating
// a new file, the mode argument is used to specify the

// access permission bits for the new file)

// * returns a file descriptor if successful, -1 on error

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

File Open Flags

m At least one of the following constants must be specified:
e O RDONLY for reading only access
e O_WRONLY for writing only access
e O_RDWR for reading and writing access

m Other optional flags are:
e O_CREAT for creating the file if it doesn't exist
e O _EXCL for generating an error if the file already exists (used with O_CREAT)
e O _APPEND for appending to the end of file on each write
e O_TRUNC for truncating the file length to zero after successfully opened it

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes
File Create Mode

® When using the O _CREAT flag, we must specify the mode argument:
e S IRUSR user (file owner) has read permission
e S IWUSR user has write permission
e S IXUSR user has execution permission
e S IRWXU user has read, write and execute permission
e S IRGRP group has read permission
e S IWGRP group has write permission
e S IXGRP group has execution permission
e S IRWXG group has read, write and execute permission
e S IROTH others have read permission
e S IWOTH others have write permission
e S IXOTH others have execution permission
e S IRWXO others have read, write and execute permission

DCC-FCUP #4

Operating Systems 2017/2018 API File I/O & Pipes

Closing a File

#include <unistd.h>

int close(int fd);

// * closes an open file, returns 0 if successful, -1 on error
// * by default, all pending open files are closed

// automatically by the kernel when a process terminates

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes
Setting Current File Offset

#include <unistd.h>

off_t 1seek(int fd, off_t offset, int whence);

// * explicitly sets the current offset for a file and returns
// the new file offset if successful, -1 on error

// * every open file has an associated current file offset

// (number of bytes from the beginning of the file) from

// where read/write operations should take effect

// * the new current offset depends on the whence argument:

// SEEK_SET: set offset from the beginning of the file

// SEEK_CUR: add offset (positive/negative) to current value
// SEEK_END: add offset (positive/negative) to file’s size

DCC-FCUP #6

Operating Systems 2017/2018 API File I/O & Pipes

Reading From a File

#include <unistd.h>

ssize_t read(int fd, void *buffer, size_t nbytes);

// * attempts to read from an open file starting from its

// current offset and, if successful, the current file

// offset is incremented by the number of bytes actually

// read

// * if the end of file is reached before the requested number
// of bytes has been read, reads/returns only what is

// available and, the next time we call it, returns O

// * returns the number of bytes actually read, 0 if end of
// file, -1 on error

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Writing To a File

#include <unistd.h>

ssize_t write(int fd, void *buffer, size_t nbytes);

// * attempts to write to an open file starting from 1its

// current offset and, if successful, the current file

// offset is incremented by the number of bytes actually
// written

// * if the O_APPEND option was specified when the file was
// opened, the file's offset is set to the current end of
// file before each write operation

// * returns the number of bytes written if successful, -1 on
// error (a common error is either filling up the disk or
// exceeding the file size 1imit for the process)

DCC-FCUP #8

Operating Systems 2017/2018 API File I/O & Pipes

Writing To a File: Example

int main O {
int fd;
char buf[] = "abcdefghij";
if ((fd = open("file_hole.txt", O_RDWR | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR)) < 0)

{ /* open error */ }

else {
write(fd, buf, 10); // offset now 10
1seek(fd, 80, SEEK_SET); // offset now 80
write(fd, buf, 10); // offset now 90
}

}

DCC-FCUP

Operating Systems 2017/2018

API File I/O & Pipes

Kernel Data Structures for Open Files

process table entry

fd file
flags pointer

fd 0: ' —

fd 1:

fd 2:

N

DCC-FCUP

file table entry

file status flags

current file offset

v-node pointer

file table entry

file status flags

current file offset

v-node pointer —

v-node table entry

v-node information

i-node information

current file size

v-node table entry

v-node information

e o o o o e e s o

#10

i_wnode e

Operating Systems 2017/2018 API File I/O & Pipes

Independent Processes Sharing a File

process table entry

fd file
flags p:}iln'iur
fd 0:
fd 1:
fd 2:)
fd 3 1 1. I file table entry
file status flags
current file offset
v-node pointer
\ v-node table entry
process table entry v-node information
file tableentry /L _ _ _ _ _ _
i — v data
ﬂgsgs pcfill!ﬁer file status ﬂags § -
: X i-node
Eﬂ ?i current file offset
fd 2 . i-node information
id 3 v-node pointer —+—— | |
fd 4: —— current file size |
1 vnode ———'/

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Duplicating a File Descriptor

#include <unistd.h>

int dup(int fd);
int dup2(int fd, int fd2);

/] ¥
/] ¥
/] *
//
/] ¥
//
/] *
//

duplicates an existing file descriptor

dup() uses the lowest-numbered available file descriptor
dup2() uses the file descriptor given as second argument
and if it is already open, it is first closed

both old and new file descriptors share the same current
file offset and file status flags (read/write/append/...)
returns the new file descriptor if successful,

-1 on error

DCC-FCUP

Operating Systems 2017/2018

API File I/O & Pipes

Duplicating a File Descriptor

process table entry

fd 0:
fd 1:
fd 2:
fd 3:

fd
flags

file

poimnter

—

%

DCC-FCUP

file table

file status flags

current file offset

v-node information A
q___ ~ v_data |

v-node pointer —

v-node table

Operating Systems 2017/2018 API File I/O & Pipes

Creating a Pipe

#include <unistd.h>

int pipe(int fd[2]);
// * creates a new pipe and initializes fd[2] with the pipe

//

// ¥

//

// ¥

//

// ¥

//
//

// ¥

file descriptors

fd[0] is open for reading, fd[1l] is open for writing and
the output of fd[1l] is the input for fd[O0]

pipes are the oldest and still the most commonly used
form of IPC

pipes are half duplex (i.e., data flows in only one
direction) and can be used only between processes that
have a common ancestor

returns 0 if successful, -1 on error

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Creating a Pipe

user process

fd[0] f£d[1]

ST

kernel

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Forking a Pipe

parent child
fork
fd[0] £d4d[1] £fd[0] £d[1]
- :y
kernel

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Pipe from Parent to Child

m After a fork, we can decide the pipe’s data flow direction

e For a pipe from parent to child, the parent closes the read end of the pipe
(fd[0]) and the child closes the write end (fd[1])

parent child

fd[1] £d[0]

C

kernel

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Pipe from Parent to Child: Example |

int main O {

int n, fd[2]; pid_t pid; char buf[MAXLINE];

if (pipe(fd) < 0) { /* pipe error */ }

if ((pid = fork()) < 0) { /* fork error */ }

else if (pid > 0) { // parent writes to the pipe
close(fd[0]);
write(fd[1], "hello world\n", 12);

} else { // child reads from the pipe
close(fd[1]);
n = read(fd[0], buf, MAXLINE);
write(STDOUT_FILENO, buf, n);

DCC-FCUP

Operating Systems 2017/2018 API File I/O & Pipes

Pipe from Parent to Child: Example Il

int main (O {
int n, fd[2]; pid_t pid; char buf[MAXLINE];
if (pipe(fd) < 0) { /* pipe error */ }
if ((pid = fork()) < 0) { /* fork error */ }
else if (pid > 0) { // parent writes to the pipe

} else { // child reads from the pipe by duplicating it ...

close(fd[1]);

dup2(fd[0], STDIN_FILENO); // ... to the stdin
close(fd[0]);

if (execlp("more", "more", NULL) < 0) { /* exec error */ }

DCC-FCUP

