
Ricardo Rocha

Department of Computer Science

Faculty of Sciences

Operating Systems 2017/2018 Part II – Processes

Faculty of Sciences

University of Porto

Slides based on the book

‘Operating System Concepts, 9th Edition,

Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Wiley’

Chapter 3

Operating Systems 2017/2018 Part II – Processes

Process Concept

� A process is the unit of work in most systems and can be thought of as a

program in execution

� A process requires resources to accomplish its task:

� CPU time

� Memory

DCC-FCUP # 1

� Files

� I/O devices

� …

� Resources can be allocated to a process either when it is created or
while it is executing

Operating Systems 2017/2018 Part II – Processes

Process Concept
� A process has multiple parts:

� Text section, which contains the program code

� Data section, which contains global variables

� Heap, which contains memory dynamically
allocated during process runtime

� Stack, which contains temporary data (such as

DCC-FCUP # 2

� Stack, which contains temporary data (such as
function parameters, return addresses and
local variables)

� Process control block, which includes the
program counter and the CPU registers

� The text, data, heap and stack parts form the

process’s memory address-space

Operating Systems 2017/2018 Part II – Processes

Process Control Block (PCB)

� The operating system represents each process by a

process control block (also called task control

block), which contains many pieces of information

associated with the process, including:

� Process state and process identification

� Program counter, the next instruction to be executed

DCC-FCUP # 3

� CPU registers, general purpose registers, index

registers, stack pointers, etc

� Scheduling information, such as priorities, scheduling

queue pointers, etc

� Memory information, the memory allocated to the process

� Accounting information, such as CPU used, clock time elapsed since start,
time limits, etc

� I/O information, such as I/O devices allocated, list of open files, etc

Operating Systems 2017/2018 Part II – Processes

Programs x Processes

� A program is a passive entity (often called an executable file) that

contains a well-defined list of instructions

� A process is an active entity corresponding to an execution sequence of

a program

� A program becomes a process when it is loaded into memory

DCC-FCUP # 4

� A program becomes a process when it is loaded into memory

� One program can be several processes

� Two processes associated with the same program are considered two
separate execution sequences

� For instance, several users may run different copies of the mail program,

or the same user may invoke many copies of the web browser program

� Each of these is a separate process and although the text sections are
equivalent, the data, heap, and stack sections vary

Operating Systems 2017/2018 Part II – Processes

Process States

� As a process executes, it changes state accordingly to its current activity

� A process can be in one of the following states:

� New, the process is being created

� Running, instructions are being executed

� Waiting/Blocked, the process is waiting for some event to occur (such as an

DCC-FCUP # 5

� Waiting/Blocked, the process is waiting for some event to occur (such as an

I/O operation or reception of a signal)

� Ready, the process is waiting to be assigned to a processor

� Terminated, the process has finished execution

� It is important to realize that many processes may be ready or waiting, but

only one process at a time can be running on a processor

Operating Systems 2017/2018 Part II – Processes

Process States

DCC-FCUP # 6

Operating Systems 2017/2018 Part II – Processes

Transition Among States

DCC-FCUP # 7

TI: timer interrupt

I/O: I/O system call

HI: hardware interrupt

TI I/O TI HI

Operating Systems 2017/2018 Part II – Processes

Context Switch

� Context switch is the task of switching the CPU to another process

� Context switch requires saving the context of the current process to its
PCB and loading the saved context for the new process from its PCB

� Context switch time is pure overhead, because the system does no

useful work while switching

A typical context switch speed is a few milliseconds

DCC-FCUP # 8

� A typical context switch speed is a few milliseconds

� Switching speed depends on the memory speed, on the number of

registers that must be copied, and on the existence of special instructions

� The more complex the OS and the PCB, the longer the context switch

� Some machines support a special instruction that loads/stores all registers or

provide multiple sets of registers per CPU (here, a context switch simply
requires changing the pointer to the new register set)

Operating Systems 2017/2018 Part II – Processes

Context Switch

DCC-FCUP # 9

Operating Systems 2017/2018 Part II – Processes

Process Creation

� During execution, a process may create several new processes

� The creating process is called a parent process and the new processes are
called the children of that process

� Each new process may in turn create other processes, forming a tree of
processes

� Most operating systems identify processes according to a unique

DCC-FCUP # 10

� Most operating systems identify processes according to a unique
process identifier (or pid), which is typically an integer number

� The pid provides a unique value for each process in the system, and it can be

used as an index to access various attributes of a process within the kernel

Operating Systems 2017/2018 Part II – Processes

Parent/Children Creation Alternatives

� Resource sharing alternatives:

� Parent and children share all resources

� Children share subset of parent’s resources

� Parent and child share no resources

� Execution alternatives:

DCC-FCUP # 11

� Execution alternatives:

� Parent and children execute concurrently

� Parent waits until some or all of its children have terminated

� Address space alternatives:

� Parent and child are duplicates (child starts with parent’s program and data)

� The child process has a new program loaded into it

Operating Systems 2017/2018 Part II – Processes

What Does it Take to Create a Process?

� Assign process identifier and store new PCB

� Inexpensive

� Copy parent’s I/O state (I/O devices allocated, list of open files, etc)

� Medium expensive

Set up new memory tables for address-space

DCC-FCUP # 12

� Set up new memory tables for address-space

� More expensive

� Copy data from parent process

� Originally very expensive

� Much less expensive with copy-on-write

Operating Systems 2017/2018 Part II – Processes

Process Creation – UNIX/Linux

� In UNIX/Linux, a new process is created by the fork() system call

� The new (child) process consists of a copy of the address space of the
original (parent) process

� The return code for the fork() is zero for the child and the (nonzero)

process identifier of the child is returned to the parent

� Both processes then continue execution concurrently at the instruction after

the fork()

DCC-FCUP # 13

the fork()

� This mechanism allows the parent process to communicate easily with its
children

Operating Systems 2017/2018 Part II – Processes

Process Creation – UNIX/Linux

............ //////// parentparentparentparent codecodecodecode beforebeforebeforebefore forkforkforkfork

ifififif ((pid((pid((pid((pid ==== fork()fork()fork()fork())))) <<<< 0000)))) {{{{

............ //////// forkforkforkfork failedfailedfailedfailed

}}}} elseelseelseelse ifififif (pid(pid(pid(pid ==== ==== 0000)))) {{{{

............ //////// childchildchildchild codecodecodecode afterafterafterafter forkforkforkfork

DCC-FCUP # 14

............ //////// childchildchildchild codecodecodecode afterafterafterafter forkforkforkfork

}}}} elseelseelseelse {{{{

............ //////// parentparentparentparent codecodecodecode afterafterafterafter forkforkforkfork

}}}}

............ //////// commoncommoncommoncommon codecodecodecode afterafterafterafter forkforkforkfork

Operating Systems 2017/2018 Part II – Processes

Process Creation – UNIX/Linux

� Typically after a fork(), one of the two processes (parent or child) invokes

the exec() system call

� execl("/bin/ls","ls",NULL)execl("/bin/ls","ls",NULL)execl("/bin/ls","ls",NULL)execl("/bin/ls","ls",NULL)

� The exec() system call replaces the process’s memory space – text,
data, heap and stack parts – with a brand new program from disk
and starts executing the new program at its main function,

DCC-FCUP # 15

and starts executing the new program at its main function,
destroying the previous image of the process

� However, since no new process is created, the calling process keeps its
context (PCB)

� In this manner, parent and child are able to go in separate ways

Operating Systems 2017/2018 Part II – Processes

Process Termination

� A process terminates execution when it explicitly invokes the exit()
system call or when it executes the last instruction (in this case, exit()

is called implicitly by the return statement in main())

� All process’ resources – including physical and virtual memory, open files, and
I/O buffers – are then deallocated by the operating system

� A exit status value (typically an integer) is made available to the parent via

the wait() system call

DCC-FCUP # 16

the wait() system call

� A process may also terminate execution via its parent:

� Child has exceeded allocated resources

� Task assigned to child is no longer required

� The parent is exiting and the operating system does not allow a child to

continue if its parent terminates (cascading termination)

Operating Systems 2017/2018 Part II – Processes

Process Termination

� If a process has terminated and no parent is waiting, then the terminated

process is known as a zombie process

� Only when the parent calls wait(), the pid of the zombie process and its entry
in the process table are released

� If a parent process terminates before their children, then such children, if

any, are known as orphan processes

DCC-FCUP # 17

any, are known as orphan processes

� UNIX/Linux address orphan processes by assigning the init process as the
new parent to orphans processes

� The init process periodically invokes wait(), thereby allowing the orphan’s

process identifier and process table entry to be released

Operating Systems 2017/2018 Part II – Processes

Process Termination – UNIX/Linux

� In UNIX/Linux, we can terminate a process by invoking the exit() system

call, providing an exit status as a parameter

� exit(status)exit(status)exit(status)exit(status)

� To wait for the termination of a child process and obtain its exit status, we

can invoke the wait() system call, which also returns the pid of the

terminated process so that the parent can tell which children has

DCC-FCUP # 18

terminated process so that the parent can tell which children has

terminated

� pidpidpidpid ==== wait(&status)wait(&status)wait(&status)wait(&status)

Operating Systems 2017/2018 Part II – Processes

Forking a ‘ls’ Command – UNIX/Linux

DCC-FCUP # 19

Operating Systems 2017/2018 Part II – Processes

Interprocess Communication

� Processes within a system may be independent or cooperating:

� Independent process cannot affect or be affected by others’ execution

� Cooperating process can affect or be affected by others’ execution

� Main reasons for cooperating processes:

� Information sharing, concurrent access to the same piece of information

DCC-FCUP # 20

� Information sharing, concurrent access to the same piece of information

� Modularity, break the computation in subtasks that make more sense

� Speedup, execute concurrent subtasks in parallel

� To exchange data and information, cooperating processes need support

for interprocess communication (IPC) mechanisms. There are two

fundamental IPC models:

� Message passing

� Shared memory

Operating Systems 2017/2018 Part II – Processes

IPC Models

� Message passing

� Communication via sending/receiving messages

� Works across network

� Shared memory

� Communication occurs by simply reading/writing to shared memory

DCC-FCUP # 21

� Communication occurs by simply reading/writing to shared memory

� Can lead to complex synchronization problems

� Typically, shared memory is faster than message passing

� Message passing mechanisms are typically implemented using systems calls

and thus require a time-consuming task of kernel intervention

� With shared memory, system calls are required only to establish the shared

memory regions and, after that, all accesses are treated as routine memory
accesses and no kernel intervention is required

Operating Systems 2017/2018 Part II – Processes

IPC Models

DCC-FCUP # 22

Operating Systems 2017/2018 Part II – Processes

Pipes

� Pipes were one of the first IPC mechanisms in early UNIX systems and

provide one of the simpler ways for processes to communicate

� Pipes allow communication in a standard producer–consumer style:

� The producer writes to one end of the pipe (the write-end)

� The consumer reads from the other end (the read-end)

DCC-FCUP # 23

� Pipes are unidirectional, allowing only one-way communication

� If two-way communication is required, two pipes must be used, with each pipe

sending data in a different direction

� Pipes can be constructed on the command line using the | character:

� lslslsls |||| sortsortsortsort

� catcatcatcat fichfichfichfich....txttxttxttxt |||| grepgrepgrepgrep xptoxptoxptoxpto

Operating Systems 2017/2018 Part II – Processes

Pipes – UNIX/Linux

� In UNIX/Linux, pipes are created using the

pipe() system call

� intintintint pipe(intpipe(intpipe(intpipe(int fd[fd[fd[fd[2222])])])])

� The pipe() system call creates a new pipe

and initializes fd[2] with the pipe file
descriptors:

DCC-FCUP # 24

descriptors:

� fd[0] is the read-end of the pipe

� fd[1] is the write-end of the pipe

� UNIX/Linux systems treat pipes as a

special type of file, which allows pipes to
be accessed using ordinary read() and
write() system calls

Operating Systems 2017/2018 Part II – Processes

Forking a Pipe

� A pipe cannot be accessed from outside the process that created it

� Typically, a parent process creates a pipe and uses it to communicate with a
child process that it creates via fork()

� Since a pipe is a special type of file, the child inherits the pipe from its
parent process

DCC-FCUP # 25

Operating Systems 2017/2018 Part II – Processes

� After a fork, we can decide the pipe’s data flow direction

� For a pipe from parent to child, the parent closes the read-end of the pipe
fd[0] and the child closes the write-end fd[1]

� Reading from an open pipe (i.e., at least one process has fd[1] open) blocks

while it is empty

Pipe from Parent to Child

DCC-FCUP # 26

Operating Systems 2017/2018 Part II – Processes

Pipe Communication – UNIX/Linux

DCC-FCUP # 27

