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Motivation

� The goal of multiprogramming is to have some process running at all

times, thus maximizing CPU utilization

� When one process has to wait, the operating system takes that process away
from the CPU and gives the CPU to another process

� A fundamental operating system function, which is also the basis of

multiprogramming, is thus process scheduling
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multiprogramming, is thus process scheduling

� By efficiently scheduling the CPU among several processes, the operating

system can serve more tasks and make the computer more productive
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CPU-I/O Burst Cycle

� Process execution can be seem as a

cycle of CPU execution and I/O wait

times

� Process execution begins with a CPU
burst that is followed by an I/O burst,
which is followed by another CPU

burst, then another I/O burst, and so
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burst, then another I/O burst, and so
on…

� Eventually, the final CPU burst ends
with a system request to terminate
execution
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Scheduling Decisions

� Scheduling decisions may take place when a process:

� Switches from running to waiting state (as the result of a I/O request)

� Switches from waiting to ready (as the result of I/O completion)

� Switches from running to ready state (as the result of an interrupt)

� Terminates

DCC-FCUP # 3

� The scheduler selects from among the processes in the ready queue
and allocates the CPU to one of them

� When the scheduling decisions takes place only under circumstances 1 and 4,

we say that the scheduler is nonpreemptive (or cooperative)

� Otherwise, the scheduler is preemptive

� Preemptive scheduling requires special hardware such as a timer
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Preemptive Scheduling

� Preemptive scheduling can result in race conditions (i.e., the output

depends on the execution sequence of other uncontrollable events)

� While one process is updating data, it is preempted so that a second process
can run. The second process then tries to read the same data, which can be
in an inconsistent state.

� The processing of a system call may involve changing important kernel data
(for instance, I/O queues). If the process is preempted in the middle of these
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(for instance, I/O queues). If the process is preempted in the middle of these

changes and the kernel (or the device driver) needs to read or modify the
same structure, then chaos occurs.

� Because interrupts can occur at any time, these sections of code must be

guarded from concurrent accesses by several processes and for that

interrupts are disabled at entering such sections and only reenabled
at exit
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Scheduling Criteria

� Many criteria have been suggested for comparing scheduling algorithms.

Some of the most well-know are:

� CPU utilization – keep the CPU as busy as possible

� Throughput – number of processes that complete execution per time unit

� Turnaround/Completion time – amount of time required to execute a

process (interval from the time of submission to the time of completion)
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process (interval from the time of submission to the time of completion)

� Waiting time – amount of time a process has been waiting in the ready queue

� Response time – amount of time it takes from when a request was submitted
until a first response (not output) is produced (for time-sharing environments)

� Optimization criteria:

� Maximize CPU utilization and throughput

� Minimize turnaround time, waiting time and response time
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First-Come First-Served (FCFS)

� The process that requests the CPU first is allocated the CPU first

� Easily managed with a FIFO queue

� When a process enters the ready queue, it is linked onto the tail of the queue

� When the CPU is free, it is allocated to the process at the head of the ready

queue (and the process is then removed from the queue)
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� FCFS is nonpreemptive, once the CPU has been allocated to a process,

that process keeps the CPU until it either terminates or requests I/O

� The average turnaround and waiting time is often quite long

� Troublesome for time-sharing systems, where it is important that each user
get a share of the CPU at regular intervals (it would be disastrous to allow one

process to keep the CPU for an extended period)
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First-Come First-Served (FCFS)

� FCFS average waiting time

� (0 + 24 + 27) / 3 = 51 / 3 = 17
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� FCFS average waiting time

� (0 + 3 + 6) / 3 = 9 / 3 = 3
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Round Robin (RR)

� Kind of FCFS with preemption specially designed for time-sharing

systems:

� Each process gets a time quantum or time slice (small unit of CPU time)

� Timer interrupts every quantum to schedule next process, the current process
is preempted and added to the end of the ready queue (ready queue works

like a circular queue)
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� If the time quantum is Q and there are N processes in the ready queue,

then each process gets 1/N of the CPU time in chunks of at most Q time

units at once (no process waits more than (N-1)*Q time units)

� Q large ⇒ same as FCFS

� Q small ⇒ increases number of context switches, overhead can be too high
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Round Robin (RR) with Time Quantum 4
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� RR (time quantum 4) average waiting time

� (6 + 4 + 7) / 3 = 17 / 3 = 5.66
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Time Quantum x Context Switch Time
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� Context switch time should be a small fraction of the time quantum:

� The time required for a context switch is typically less than 10 microseconds

� Most modern systems have time quantum ranging from 10-100 milliseconds
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FCFS x RR

P2

[8]
P4

[24]
P1

[53]
P3

[68]

0 8 32 85 153

Best FCFS

Worst FCFS
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0 8 56
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Average 
Waiting

Time

Quantum AverageP4P3P2P1

FCFS x RR

6257852284Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

57¼5685880Q = 8

61¼68851082Q = 10

61¼58852082Q = 5
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Average
Completion

Time

104½11215328125Q = 20
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121¾14568153121Worst FCFS

69½32153885Best FCFS

83½121014568Worst FCFS

95½8015316133Q = 8

99½9215318135Q = 10

99½8215328135Q = 5
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Shortest-Job-First (SJF)

� Associate each process with the length of its next CPU burst and use

these lengths to schedule the process with the shortest CPU burst

� If the next CPU bursts of two processes are the same, FCFS scheduling is
used to break the tie

� Also called shortest-time-to-completion-first (STCF) but a more appropriate

name would be shortest-next-CPU-burst since scheduling depends on the
length of the next CPU burst of a process, rather than its total length
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length of the next CPU burst of a process, rather than its total length

� SJF is optimal because it always gives the minimum average waiting

time for a given set of processes

� Moving a short process before a long one decreases the waiting time of the
short process more than it increases the waiting time of the long process

� The difficulty is knowing the length of the next CPU burst
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Shortest-Job-First (SJF)
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� SJF average waiting time

� (0 + 3 + 9 + 16) / 4 = 28 / 4 = 7

� FCFS average waiting time

� (0 + 6 + 14 + 21) / 4 = 41 / 4 = 10.25
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Predicting Next CPU Burst Length

� We may not know the length of the next CPU burst, but we may be able to

predict its value using the length of the previous CPU bursts

� Generally predicted as an exponential average of the measured lengths

of previous CPU bursts with the formula:
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Predicting Next CPU Burst Length
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Shortest-Remaining-Time-First (SRTF)

� SJF scheduling can be either nonpreemptive or preemptive

� Preemptive SJF is usually called SRFT scheduling

� The choice of being preemptive or not occurs when a new process arrives

at the ready queue and the next CPU burst of the newly arrived process

may be shorter than what is left of the currently executing process
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� SJF (nonpreemptive) scheduling will allow the currently running process to
finish its CPU burst

� SRTF (preemptive) scheduling will preempt the currently executing process
and schedule the newly arrived process
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Shortest-Remaining-Time-First (SRTF)
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� SRTF (preemptive) average waiting time

� [(17-8-0) + (5-4-1) + (26-9-2) + (10-5-3)] / 4 = 26 / 4 = 6.5

� SJF (nonpreemptive) average waiting time

� [0 + (8-1) + (12-3) + (17-2)] / 4 = 31 / 4 = 7.75
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RR x SRTF

� Consider three processes:

� Processes A and B: CPU-bound, each run for a hour

� Process C: I/O-bound, loop 1ms CPU, 9ms disk I/O

� If only one at a time:

� Processes A or B use 100% of the CPU
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� Processes A or B use 100% of the CPU

� Process C uses 10% of the CPU (90% accessing the disk)

C

I/O I/O I/O

A and B
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RR x SRTF

CABAB… C

C’s 
I/O

C’s 
I/O

CA BC

RR 100ms time slice Disk usage:
9/201 ~ 4.5%

DCC-FCUP # 20

C’s 
I/O

C’s 
I/O

RR 1ms time slice Disk usage: ~90%
but lots of

context switches ����

Disk usage: 90%
and few context switches ☺☺☺☺C’s 

I/O

AC

C’s 
I/O

AA

SRTF

C C
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Priority Scheduling

� Priority scheduling associates a priority number with each process and

the CPU is allocated to the process with the highest priority

� Equal-priority processes are scheduled in FCFS order

� SJF and SRTF can be seen as priority algorithms

� Priority scheduling can be either:
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� Preemptive, preempts the CPU if the priority of the newly arrived process is

higher than the priority of the currently running process

� Nonpreemptive, allows the currently running process to finish its CPU burst

� A major problem is indefinite blocking or starvation

� Low priority processes may never execute and wait indefinitely

� A common solution is aging, which involves gradually increasing the

priority of processes that wait in the system for a long time
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Priority Scheduling
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� Priority scheduling average waiting time

� (0 + 1 + 6 + 16 + 18) / 5 = 41 / 5 = 8.2
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FCFS x RR x SJF & SRTF: Pros and Cons

� FCFS

(+) Simple

(–) Short jobs get stuck behind long ones

� RR

(+) Better for short jobs
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(+) Better for short jobs

(–) Context switching time adds up for long jobs

� SJF & SRTF

(+) Optimal average waiting time

(+) Big effect on short jobs

(–) Hard to predict future

(–) Starvation
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FCFS X RR x SJF: One Last Example

� FCFS average waiting time
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� FCFS average waiting time

� (0 + 10 + 39 + 42 + 49) / 5 = 28

� RR (time quantum 10) average waiting time

� [0 + (61-29) + 20 + 23 + (52-12)] / 5 = 115 / 5 = 23

� SJF (nonpreemptive) average waiting time

� (0 + 3 + 10 + 20 + 32) / 5 = 65 / 5 = 13
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Multilevel Queue (MLQ)

� MLQ scheduling partitions the ready queue into several separate
queues

� The processes are permanently assigned to one queue, generally based on
some property of the process, such as memory size, process priority, …

� Each queue has its own scheduling algorithm (one queue might be

scheduled using RR while other is scheduled by FCFS)
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� In addition, there must be scheduling among the queues:

� Fixed priority scheduling – each queue has absolute priority over lower-

priority queues (preemptive scheduling with possibility of starvation)

� Time slice – each queue gets a certain amount of CPU time which is then
schedule amongst its processes (for example, 80% to the queue using RR

and 20% to the queue using FCFS)



Operating Systems 2017/2018 Part III – Process Scheduling

Multilevel Queue (MLQ)
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Multilevel Feedback Queue (MLFQ)

� Both setups for MLQ (fixed priority and time slice) have low scheduling
overhead, but are inflexible

� MLFQ scheduling is more flexible as it allows processes to move
between queues

� Processes that use too much CPU time are moved to lower-priority queues
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� I/O-bound and interactive processes stay in the higher-priority queues

� Implement the concept of aging by moving a process that waits too long in

a lower-priority queue to a higher-priority queue, thus preventing starvation

� BSD UNIX derivatives, Solaris, Windows NT and subsequent Windows

operating systems use a form of MLFQ as their base scheduler
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Multilevel Feedback Queue (MLFQ)

� Consider three queues:

� Q0 – RR with time quantum 8 milliseconds

� Q1 – RR with time quantum 16 milliseconds

� Q2 – FCFS

� Possible scheduling algorithm (I):
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� Possible scheduling algorithm (I):

� New processes enter the ready queue at the tail of Q0

� A process in the head of Q0 is given a time quantum of 8ms, in the head of Q1

is given a time quantum of 16ms, and in the head of Q2 runs in an FCFS basis

� Processes in Q1 only run when Q0 is empty and processes in Q2 only run

when both Q0 and Q1 are empty, but if a queue is not run for a certain amount
of time, processes are moved to the next higher level (or topmost) queue

� A process entering a higher level queue will preempt any process running in a

lower level queue
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Multilevel Feedback Queue (MLFQ)

� Consider three queues:

� Q0 – RR with time quantum 8 milliseconds

� Q1 – RR with time quantum 16 milliseconds

� Q2 – FCFS

� Possible scheduling algorithm (II):
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� Possible scheduling algorithm (II):

� If a process completes within its time quantum, it leaves the system

� If a process uses all the time quantum, it is preempted and moved to the next

lower level queue (thus penalizing CPU-bound processes)

� If a process blocks for I/O, it leaves the current queue and when the process

becomes ready again it is inserted at the tail of the same queue

� Alternatively, once a process uses its total time quantum at a given level
(regardless of how many times it has blocked for I/O), it is preempted and

moved to the next lower level queue (thus preventing gaming the scheduler)
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MLQ x MLFQ 

� MLQ scheduling involves defining 4 parameters:

� Number of queues

� Scheduling algorithm for each queue

� Scheduling algorithm among the queues (fixed priority or time slice)

� Method to determine which queue a process will be assigned to
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� MLFQ scheduling involves defining 5 parameters:

� Number of queues

� Scheduling algorithm for each queue

� Method to determine which queue a process will initially enter

� Method to determine when to upgrade a process to a higher-priority queue

� Method to determine when to demote a process to a lower-priority queue
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MLQ x MLFQ: Pros and Cons

� MLQ

(+) Low scheduling overhead

(–) Fixed priority scheduling is unfair, inflexible and can lead to starvation

(–) Time slice can hurt the average waiting time

� MLFQ
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� MLFQ

(+) Excellent overall performance for short-running I/O bound processes and fair
enough for long-running CPU-bound processes

(+) Results approximate SRTF

(+) Avoids starvation

(–) Requires some means by which to tune/select values for all 5 parameters
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Completely Fair Scheduler (CFS)

� CFS is the scheduling algorithm adopted by the Linux kernel since

release 2.6.23

� CFS tries to divide CPU time fairly among all tasks (processes or

threads) by taking into account their priorities and CPU usage history

� CFS is based on scheduling classes where each class has a specific
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� CFS is based on scheduling classes where each class has a specific

priority range

� Scheduler picks the highest priority task from the highest priority class

� Lower-priority tasks are preempted when higher-priority tasks are ready to run

� Typically, standard Linux kernels implement two scheduling classes:

� Real-time class

� Normal (default) class
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Completely Fair Scheduler (CFS)

� The real-time class plus the normal class map into a global priority range:

� Real-time tasks are assigned static priorities within the range [0,99]

� Normal tasks have nice values and are assigned dynamic priorities within
the range [100,139] based on their nice values

� Nice values range from [-20,+19] and map to priorities [100,139] (the default
nice value is 0)
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� A lower/higher nice value means higher/lower priority (the idea is that if a task
increases its nice value, it is being nice to the other tasks in the system)
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Completely Fair Scheduler (CFS)

� Real-time tasks are scheduled by priority and before tasks in other classes

� Normal tasks are scheduled accordingly to the lowest virtual runtime
value

� CFS maintains a per task virtual runtime value which measures CPU time by
associating a decay factor based on the nice value of the task

Nice values of 0 yields a virtual runtime identical to the real runtime (if a task
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� Nice values of 0 yields a virtual runtime identical to the real runtime (if a task

runs for 100 milliseconds, its virtual runtime will also be 100 milliseconds)

� Lower-priority tasks have higher factors of decay, where higher-priority tasks

have lower factors of delay (if a task runs for 100 milliseconds, its virtual
runtime will be proportionally higher/lower than 100 milliseconds accordingly to
its lower/higher-priority)

� When a new task is created, it is assigned a virtual runtime equal to the current
minimum virtual runtime
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Completely Fair Scheduler (CFS)

� With CFS, tasks have no fixed time slices but rather run until they are
no longer the most unfairly treated task

� CFS identifies a target latency, which is an interval of time during which

every runnable task should run at least once

� Target latency has default and minimum values but can increase if the
number of active tasks in the system grows beyond a certain threshold
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number of active tasks in the system grows beyond a certain threshold

� Tasks get proportions of CPU time from the target latency value

accordingly to their relative priorities

� When a task is awakened, the difference from its virtual runtime to the

current minimum virtual runtime cannot exceed the target latency,

otherwise its virtual runtime is adjusted to such limit

� This prevents a task that has waiting too long from monopolizing the CPU
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CFS x Virtual Runtimes P P PCFS x Virtual Runtimes P P PCFS x Virtual Runtimes P P PCFS x Virtual Runtimes P P PCFS x Virtual Runtimes P P PCFS x Virtual Runtimes P P PCFS x Virtual Runtimes P P P

Completely Fair Scheduler (CFS)

� Consider the following scenario:

� A target latency of 10ms and a decay factor of 2x

� Process P0 with virtual runtime 100ms and nice value 0 (min proportion: 2ms)

� Process P1 with virtual runtime 101ms and nice value -1 (min proportion: 4ms)

� Process P2 with virtual runtime 97ms and nice value -1 (min proportion: 4ms)
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CFS x Virtual Runtimes P0 P1 P2

Initial virtual runtimes 100 101 97

Schedule P2 for 6ms 100

Schedule P0 for 2ms (I/O system call after 1ms) 101

Schedule P2 for 4ms 102

Schedule P1 for 4ms 103

CFS x Virtual Runtimes P0 P1 P2

Initial virtual runtimes 100 101 97

Schedule P2 for 6ms 100

Schedule P0 for 2ms (I/O system call after 1ms) 101

Schedule P2 for 4ms 102

Schedule P1 for 4ms 103

Schedule P2 for 4ms (hardware interrupt after 2ms) 103

CFS x Virtual Runtimes P0 P1 P2

Initial virtual runtimes 100 101 97

Schedule P2 for 6ms 100

Schedule P0 for 2ms (I/O system call after 1ms) 101

Schedule P2 for 4ms 102

Schedule P1 for 4ms 103

Schedule P2 for 4ms (hardware interrupt after 2ms) 103

Schedule P0 for 2ms 103

CFS x Virtual Runtimes P0 P1 P2

Initial virtual runtimes 100 101 97

Schedule P2 for 6ms 100

Schedule P0 for 2ms (I/O system call after 1ms) 101

Schedule P2 for 4ms 102

CFS x Virtual Runtimes P0 P1 P2

Initial virtual runtimes 100 101 97

Schedule P2 for 6ms 100

Schedule P0 for 2ms (I/O system call after 1ms) 101

CFS x Virtual Runtimes P0 P1 P2

Initial virtual runtimes 100 101 97

Schedule P2 for 6ms 100

CFS x Virtual Runtimes P0 P1 P2

Initial virtual runtimes 100 101 97


