
Ricardo Rocha

Department of Computer Science

Faculty of Sciences

Operating Systems 2017/2018 Part IV – Process Synchronization

Faculty of Sciences

University of Porto

Slides based on the book

‘Operating System Concepts, 9th Edition,

Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Wiley’

Chapters 5 and 7

Operating Systems 2017/2018 Part IV – Process Synchronization

Background
� A cooperating process is one that can affect or be affected by other

processes executing in the system

� Cooperating processes can either directly share a logical address space or be

allowed to share data through files or messages

� Concurrent access to shared data may result in data inconsistency

� One process may be interrupted at any point in its instruction stream, partially

DCC-FCUP # 1

� One process may be interrupted at any point in its instruction stream, partially

completing its execution

� Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes

Operating Systems 2017/2018 Part IV – Process Synchronization

Critical Sections and Race Conditions

� A critical section is a piece of code that accesses a shared resource

� Code changing common variables, updating a table, writing a file, …

� When one process is executing in a critical section, no other process may

be executing in the same critical section, that is, no two processes may
be executing in the same critical sections at the same time

DCC-FCUP # 2

� This requires that the processes be synchronized in some way

� A race condition occurs when several processes are allowed to access

and manipulate a shared resource and the outcome depends on the
particular order in which the access takes place, most times leading to

a surprising and undesirable result

Operating Systems 2017/2018 Part IV – Process Synchronization

Atomic Operations

� To handle concurrency, we need to know what are the underlying atomic
operations

� Atomic operations are indivisible, i.e., they cannot be stopped in the middle
of the execution and they cannot be modified by someone else in the middle
of the execution

� Atomic operations are a fundamental building block since without them

DCC-FCUP # 3

� Atomic operations are a fundamental building block since without them

there is no way to support concurrency

� On most machines, memory references and assignments of words (i.e.
loads and stores) are atomic operations

Operating Systems 2017/2018 Part IV – Process Synchronization

Too Much Milk Problem

� Consider the following constraints for the problem:

� When needed, someone buys milk

� Never more than one person buys milk

Time Person A Person B

15:00 Look in fridge, out of milk

DCC-FCUP # 4

15:00 Look in fridge, out of milk

15:05 Leave for store

15:10 Arrive to store Look in fridge, out of milk

15:15 Buy milk Leave for store

15:20 Arrive home, put milk away Arrive to store

15:25 Buy milk

15:30 Arrive home, too much milk!

Operating Systems 2017/2018 Part IV – Process Synchronization

Lock Concept

� Problem can be fixed by using a lock around the critical region:

lock(fridge)lock(fridge)lock(fridge)lock(fridge);;;;
ifififif (no(no(no(no milk)milk)milk)milk)

buybuybuybuy milkmilkmilkmilk;;;;
unlock(fridge)unlock(fridge)unlock(fridge)unlock(fridge);;;;

DCC-FCUP # 5

� Locks prevents someone from doing something

� Lock before entering critical section and before accessing shared data

� Unlock when leaving and after accessing shared data

� Wait if locked (somehow synchronization involves waiting)

� What about solutions without locks, is it possible to solve the milk problem

by using only atomic load and store operations as building blocks?

Operating Systems 2017/2018 Part IV – Process Synchronization

� Use a note to avoid buying too much milk

� Leave a note before leave for store (kind of lock)

� Remove note after arrive home (kind of unlock)

� Don’t buy milk if note exists

ifififif (no(no(no(no milk)milk)milk)milk) {{{{

Too Much Milk Problem: Solution #1

DCC-FCUP # 6

ifififif (no(no(no(no note)note)note)note) {{{{
leaveleaveleaveleave notenotenotenote;;;;
buybuybuybuy milkmilkmilkmilk;;;;
removeremoveremoveremove notenotenotenote;;;;

}}}}
}}}}

� Problem: still too much milk occasionally!

Operating Systems 2017/2018 Part IV – Process Synchronization

Too Much Milk Problem: Solution #1
PPPP1111 PPPP2222

ifififif (no(no(no(no milkmilkmilkmilk)))) {{{{
ifififif (no(no(no(no note)note)note)note) {{{{

ifififif (no(no(no(no milkmilkmilkmilk)))) {{{{
ifififif (no(no(no(no note)note)note)note) {{{{

leaveleaveleaveleave notenotenotenote;;;;
buybuybuybuy milkmilkmilkmilk

DCC-FCUP # 7

buybuybuybuy milkmilkmilkmilk
............

leaveleaveleaveleave notenotenotenote;;;;
buybuybuybuy milkmilkmilkmilk
............

� Problem: P1 can get context switched after checking for milk and for note

but before leaving note

Operating Systems 2017/2018 Part IV – Process Synchronization

Too Much Milk Problem: Solution #2

� How about labeled notes?

� Leave labeled note before checking

leaveleaveleaveleave notenotenotenote NiNiNiNi;;;;
ifififif (no(no(no(no notenotenotenote NjNjNjNj)))) {{{{

ifififif (no(no(no(no milk)milk)milk)milk)
buybuybuybuy milkmilkmilkmilk;;;;

DCC-FCUP # 8

buybuybuybuy milkmilkmilkmilk;;;;
}}}}
removeremoveremoveremove notenotenotenote NiNiNiNi;;;;

� Problem: possible for neither process to buy milk!

Operating Systems 2017/2018 Part IV – Process Synchronization

Too Much Milk Problem: Solution #2
PPPP1111 PPPP2222

leaveleaveleaveleave notenotenotenote NNNN1111;;;;
leaveleaveleaveleave notenotenotenote NNNN2222;;;;
ifififif (no(no(no(no notenotenotenote NNNN1111)))) {{{{

ifififif (no(no(no(no milkmilkmilkmilk))))
buybuybuybuy milkmilkmilkmilk;;;;

}}}}

DCC-FCUP # 9

}}}}
ifififif (no(no(no(no notenotenotenote NNNN2222)))) {{{{

ifififif (no(no(no(no milkmilkmilkmilk))))
buybuybuybuy milkmilkmilkmilk;;;;

}}}}
............

� Problem: P1 can get context switched after leaving note but before

checking P2’s note

Operating Systems 2017/2018 Part IV – Process Synchronization

Too Much Milk Problem: Solution #3

� Another labeled note solution:
PPPP1111 PPPP2222

leaveleaveleaveleave notenotenotenote NNNN1111;;;; leaveleaveleaveleave notenotenotenote NNNN2222;;;;
whilewhilewhilewhile (note(note(note(note NNNN2222)))) {{{{ //////// XXXX ifififif (no(no(no(no notenotenotenote NNNN1111)))) {{{{ //////// YYYY

dodododo nothingnothingnothingnothing;;;; ifififif (no(no(no(no milk)milk)milk)milk)
}}}} buybuybuybuy milkmilkmilkmilk;;;;
ifififif (no(no(no(no milkmilkmilkmilk)))) }}}}

DCC-FCUP # 10

ifififif (no(no(no(no milkmilkmilkmilk)))) }}}}
buybuybuybuy milkmilkmilkmilk;;;; removeremoveremoveremove notenotenotenote NNNN2222;;;;

removeremoveremoveremove notenotenotenote NNNN1111;;;;

� Both programs guarantee that either it is safe to buy or the other will buy

� At moment X, if no note N2 exists, it is safe for P1 to buy, otherwise wait to
find out what will happen

� At moment Y, if no note N1 exists, it is safe for P2 to buy, otherwise P1 is
either buying or waiting for P2 to quit

Operating Systems 2017/2018 Part IV – Process Synchronization

Too Much Milk Problem: Solution #3

� Problem: solution works but it is unsatisfactory!

� Really complex – hard to convince yourself that this code really works

� P1’s code is different from P2’s code – if lots of processes, code would have
to be different for each one?

� P1’s solution uses busy waiting – while waiting, it is consuming CPU time

� Is there a better way?

DCC-FCUP # 11

� Is there a better way?

Operating Systems 2017/2018 Part IV – Process Synchronization

� The goal of the critical section problem is to design a protocol that

processes can use to cooperate:

� Processes must ask permission to enter the critical section, the entry section

� The critical section may then be followed by an exit section and/or by a
remainder section (non-critical section)

Critical Section Problem

DCC-FCUP # 12

Operating Systems 2017/2018 Part IV – Process Synchronization

Critical Section Problem

� A solution to the critical section problem must satisfy 3 requirements:

� Mutual exclusion – if a process is executing in a critical section, then no
other processes can be executing in the same critical section

� Progress – if no process is executing in a critical section, then only those

processes that are not executing in a remainder section can participate in
deciding which will enter the critical section next, and this decision cannot be

postponed indefinitely

DCC-FCUP # 13

postponed indefinitely

� Bounded waiting – a bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has made

a request to enter its critical section and before that request is granted

Operating Systems 2017/2018 Part IV – Process Synchronization

//////// sharedsharedsharedshared variablesvariablesvariablesvariables

booleanbooleanbooleanboolean locklocklocklock ==== falsefalsefalsefalse;;;;

............

//////// twotwotwotwo processesprocessesprocessesprocesses PPPP0000 andandandand PPPP1111

dodododo {{{{

whilewhilewhilewhile (lock)(lock)(lock)(lock);;;;

Is This Code a Solution?

DCC-FCUP # 14

whilewhilewhilewhile (lock)(lock)(lock)(lock);;;;

locklocklocklock ==== truetruetruetrue;;;;

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

locklocklocklock ==== falsefalsefalsefalse;;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

//////// notnotnotnot aaaa solutionsolutionsolutionsolution:::: mutualmutualmutualmutual exclusionexclusionexclusionexclusion notnotnotnot preservedpreservedpreservedpreserved

Operating Systems 2017/2018 Part IV – Process Synchronization

Is This Code a Solution?
//////// sharedsharedsharedshared variablesvariablesvariablesvariables

intintintint turnturnturnturn ==== 0000;;;;

............

//////// twotwotwotwo processesprocessesprocessesprocesses PPPP0000 andandandand PPPP1111

//////// PiPiPiPi isisisis thethethethe currentcurrentcurrentcurrent processprocessprocessprocess

dodododo {{{{

DCC-FCUP # 15

dodododo {{{{

whilewhilewhilewhile (turn(turn(turn(turn !=!=!=!= i)i)i)i);;;;

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

turnturnturnturn ==== 1111 ---- iiii;;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

//////// notnotnotnot aaaa solutionsolutionsolutionsolution:::: progressprogressprogressprogress requirementrequirementrequirementrequirement notnotnotnot satisfiedsatisfiedsatisfiedsatisfied

Operating Systems 2017/2018 Part IV – Process Synchronization

Peterson’s Solution

� Classic software-based solution to the critical section problem:

� Provides a good algorithmic description of solving the problem

� Illustrates the complexities involved in designing software that addresses the
requirements of mutual exclusion, progress and bounded waiting

� Is a two process solution, but has a generalization for N processes

DCC-FCUP # 16

� Provable that:

� Mutual exclusion is preserved

� Progress requirement is satisfied

� Bounded waiting requirement is met

� Uses two shared variables:

� Variable turn indicates whose turn it is to enter the critical section

� Array flag[2] indicates if a process is ready to enter the critical section

Operating Systems 2017/2018 Part IV – Process Synchronization

Peterson’s Solution
//////// sharedsharedsharedshared variablesvariablesvariablesvariables

intintintint turnturnturnturn;;;; booleanbooleanbooleanboolean flag[flag[flag[flag[2222]]]] ==== {false,{false,{false,{false, false}false}false}false};;;;

............

//////// twotwotwotwo processesprocessesprocessesprocesses PPPP0000 andandandand PPPP1111

//////// PiPiPiPi isisisis thethethethe currentcurrentcurrentcurrent processprocessprocessprocess andandandand PjPjPjPj isisisis thethethethe otherotherotherother

dodododo {{{{

DCC-FCUP # 17

dodododo {{{{

flag[i]flag[i]flag[i]flag[i] ==== truetruetruetrue;;;;

turnturnturnturn ==== jjjj;;;;

whilewhilewhilewhile (flag[j](flag[j](flag[j](flag[j] &&&&&&&& turnturnturnturn ==== ==== j)j)j)j);;;; //////// busybusybusybusy waitingwaitingwaitingwaiting

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

flag[i]flag[i]flag[i]flag[i] ==== falsefalsefalsefalse;;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

Operating Systems 2017/2018 Part IV – Process Synchronization

Synchronization Hardware

� In uniprocessor systems, the critical section problem could be solved if we

could disable interrupts while modifying shared variables:

� Running code would execute without preemption

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

DCC-FCUP # 18

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

� Problems with the use of interrupts:

� Cannot allow users to use it explicitly (user might forgot to enable interrupts!)

� Not scalable on multiprocessor systems (disabling interrupts on all processors

requires messages, which would be too inefficient)

Operating Systems 2017/2018 Part IV – Process Synchronization

Synchronization Hardware

� Modern computer systems provide special hardware instructions that

can be used effectively and efficiently to solve the critical section problem

based on the idea of protecting critical regions via locking

� test_and_set() – atomically test memory word and set value

� compare_and_swap() – atomically swap contents of two memory words

Unlike disabling interrupts, special hardware instructions can be used on

DCC-FCUP # 19

� Unlike disabling interrupts, special hardware instructions can be used on
both uniprocessors and multiprocessors

� On uniprocessors not too hard

� On multiprocessors requires help from the cache coherence protocol

Operating Systems 2017/2018 Part IV – Process Synchronization

booleanbooleanbooleanboolean test_and_settest_and_settest_and_settest_and_set(boolean(boolean(boolean(boolean *target)*target)*target)*target) {{{{

booleanbooleanbooleanboolean temptemptemptemp ==== *target*target*target*target;;;;

*target*target*target*target ==== truetruetruetrue;;;;

returnreturnreturnreturn temptemptemptemp;;;;

}}}}

Hardware Atomic Instructions

DCC-FCUP # 20

intintintint compare_and_swapcompare_and_swapcompare_and_swapcompare_and_swap(int(int(int(int *target,*target,*target,*target, intintintint expected,expected,expected,expected, intintintint new_val)new_val)new_val)new_val) {{{{

intintintint temptemptemptemp ==== *target*target*target*target;;;;

ifififif (*target(*target(*target(*target ==== ==== expected)expected)expected)expected)

*target*target*target*target ==== new_valnew_valnew_valnew_val;;;;

returnreturnreturnreturn temptemptemptemp;;;;

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

//////// sharedsharedsharedshared variablevariablevariablevariable

booleanbooleanbooleanboolean locklocklocklock ==== falsefalsefalsefalse;;;;

............

//////// mutualmutualmutualmutual exclusionexclusionexclusionexclusion

dodododo {{{{

whilewhilewhilewhile (test_and_set(&lock))(test_and_set(&lock))(test_and_set(&lock))(test_and_set(&lock));;;;

Mutual Exclusion with test_and_set()

DCC-FCUP # 21

whilewhilewhilewhile (test_and_set(&lock))(test_and_set(&lock))(test_and_set(&lock))(test_and_set(&lock));;;;

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

locklocklocklock ==== falsefalsefalsefalse;;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

//////// still,still,still,still, boundedboundedboundedbounded waitingwaitingwaitingwaiting requirementrequirementrequirementrequirement notnotnotnot satisfiedsatisfiedsatisfiedsatisfied

Operating Systems 2017/2018 Part IV – Process Synchronization

Mutual Exclusion with compare_and_swap()
//////// sharedsharedsharedshared variablevariablevariablevariable

intintintint locklocklocklock ==== 0000;;;;

............

//////// mutualmutualmutualmutual exclusionexclusionexclusionexclusion

dodododo {{{{

whilewhilewhilewhile (compare_and_swap(&lock,(compare_and_swap(&lock,(compare_and_swap(&lock,(compare_and_swap(&lock, 0000,,,, 1111))))))));;;;

DCC-FCUP # 22

whilewhilewhilewhile (compare_and_swap(&lock,(compare_and_swap(&lock,(compare_and_swap(&lock,(compare_and_swap(&lock, 0000,,,, 1111))))))));;;;

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

locklocklocklock ==== 0000;;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

//////// still,still,still,still, boundedboundedboundedbounded waitingwaitingwaitingwaiting requirementrequirementrequirementrequirement notnotnotnot satisfiedsatisfiedsatisfiedsatisfied

Operating Systems 2017/2018 Part IV – Process Synchronization

//////// sharedsharedsharedshared variablesvariablesvariablesvariables

booleanbooleanbooleanboolean locklocklocklock ==== false,false,false,false, waiting[N]waiting[N]waiting[N]waiting[N] ==== {false,{false,{false,{false,,,,, false}false}false}false};;;;

........

dodododo {{{{

waiting[i]waiting[i]waiting[i]waiting[i] ==== truetruetruetrue;;;; keykeykeykey ==== truetruetruetrue;;;;

whilewhilewhilewhile (waiting[i](waiting[i](waiting[i](waiting[i] &&&&&&&& key)key)key)key) keykeykeykey ==== test_and_set(&lock)test_and_set(&lock)test_and_set(&lock)test_and_set(&lock);;;;

Bounded Waiting with test_and_set()

DCC-FCUP # 23

whilewhilewhilewhile (waiting[i](waiting[i](waiting[i](waiting[i] &&&&&&&& key)key)key)key) keykeykeykey ==== test_and_set(&lock)test_and_set(&lock)test_and_set(&lock)test_and_set(&lock);;;;

waiting[i]waiting[i]waiting[i]waiting[i] ==== falsefalsefalsefalse;;;;

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

jjjj ==== (i(i(i(i ++++ 1111)))) %%%% nnnn;;;;

whilewhilewhilewhile ((j((j((j((j !=!=!=!= i)i)i)i) &&&&&&&& waiting[j]waiting[j]waiting[j]waiting[j] ==== ==== false)false)false)false) jjjj ==== (j(j(j(j ++++ 1111)))) %%%% nnnn;;;;

ifififif (j(j(j(j ==== ==== i)i)i)i) locklocklocklock ==== falsefalsefalsefalse elseelseelseelse waiting[j]waiting[j]waiting[j]waiting[j] ==== falsefalsefalsefalse;;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

Operating Systems 2017/2018 Part IV – Process Synchronization

Mutex Locks

� Previous solutions are generally hidden from programmers

� OS designers build software tools to solve the critical section problem

� Simplest tool is the mutex lock (short for mutual exclusion)

� Mutexs can protect critical regions and prevent race conditions

� Boolean variable indicates if the lock is available or not

DCC-FCUP # 24

� Boolean variable indicates if the lock is available or not

� A init_lock() function initializes the lock, a acquire_lock() function acquires
the lock and a release_lock() function releases the lock

� Calls to acquire_lock() and release_lock() must be atomic and, thus, they are
often implemented via hardware atomic instructions

Operating Systems 2017/2018 Part IV – Process Synchronization

Mutex Locks
init_lock(mutex)init_lock(mutex)init_lock(mutex)init_lock(mutex);;;;

............

dodododo {{{{

acquire_lock(mutex)acquire_lock(mutex)acquire_lock(mutex)acquire_lock(mutex);;;; //////// busybusybusybusy waitingwaitingwaitingwaiting

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

release_lock(mutex)release_lock(mutex)release_lock(mutex)release_lock(mutex);;;;

DCC-FCUP # 25

release_lock(mutex)release_lock(mutex)release_lock(mutex)release_lock(mutex);;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

#define#define#define#define init_lockinit_lockinit_lockinit_lock(M)(M)(M)(M) {{{{ MMMM ==== falsefalsefalsefalse;;;; }}}}

#define#define#define#define acquire_lockacquire_lockacquire_lockacquire_lock(M)(M)(M)(M) {{{{ whilewhilewhilewhile (test_and_set(&M))(test_and_set(&M))(test_and_set(&M))(test_and_set(&M));;;; }}}}

#define#define#define#define release_lockrelease_lockrelease_lockrelease_lock(M)(M)(M)(M) {{{{ MMMM ==== falsefalsefalsefalse;;;; }}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Mutex Locks
init_lock(mutex)init_lock(mutex)init_lock(mutex)init_lock(mutex);;;;

............

dodododo {{{{

acquire_lock(mutex)acquire_lock(mutex)acquire_lock(mutex)acquire_lock(mutex);;;; //////// busybusybusybusy waitingwaitingwaitingwaiting

//////// criticalcriticalcriticalcritical sectionsectionsectionsection

release_lock(mutex)release_lock(mutex)release_lock(mutex)release_lock(mutex);;;;

DCC-FCUP # 26

release_lock(mutex)release_lock(mutex)release_lock(mutex)release_lock(mutex);;;;

//////// nonnonnonnon----criticalcriticalcriticalcritical sectionsectionsectionsection

}}}} whilewhilewhilewhile (true)(true)(true)(true);;;;

#define#define#define#define init_lockinit_lockinit_lockinit_lock(M)(M)(M)(M) {{{{ MMMM ==== 0000;;;; }}}}

#define#define#define#define acquire_lockacquire_lockacquire_lockacquire_lock(M)(M)(M)(M) {{{{ whilewhilewhilewhile (compare_and_swap(&M,(compare_and_swap(&M,(compare_and_swap(&M,(compare_and_swap(&M, 0000,,,, 1111))))))));;;; }}}}

#define#define#define#define release_lockrelease_lockrelease_lockrelease_lock(M)(M)(M)(M) {{{{ MMMM ==== 0000;;;; }}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Busy Waiting

� When the mutex lock solution requires busy waiting, it is called spinlock
because it spins while waiting for the lock to become available

� Busy waiting wastes CPU time that some other process might be using

� Usually, spinlocks do not satisfy the bounded waiting requirement

� Case of previous approaches using test_and_set() and compare_and_swap()

DCC-FCUP # 27

� Can be advantageous if locks are to be held for short periods of time

� Often employed on multiprocessor systems where one process performs its
critical section on one processor, while the others spin on another processors

� No context switch is required when waiting on a spinlock

� Can be a problem for multiprogramming systems

� If the process holding the lock is waiting to run, no other process can access

the lock and thus it can be useless to give CPU time to such processes

Operating Systems 2017/2018 Part IV – Process Synchronization

Handling Busy Waiting Time

� Can we build mutex locks without busy waiting?

� Sorry, no!

� But, can we minimize busy waiting time?

� Yes, by only busy waiting to atomically check lock value!

Minimizing busy waiting time can be implemented with an associated

DCC-FCUP # 28

� Minimizing busy waiting time can be implemented with an associated
queue of waiting processes and a suspend() operation that voluntary
suspends the execution of the current process

� Two different approaches:

� For uniprocessors via disabling interrupts

� For multiprocessors via disabling interrupts plus atomic instructions

Operating Systems 2017/2018 Part IV – Process Synchronization

Uniprocessor Lock Implementation
//////// mutexmutexmutexmutex datadatadatadata structurestructurestructurestructure

typedeftypedeftypedeftypedef structstructstructstruct {{{{

intintintint valuevaluevaluevalue;;;; //////// mutex’smutex’smutex’smutex’s valuevaluevaluevalue (FREE(FREE(FREE(FREE orororor BUSY)BUSY)BUSY)BUSY)

PCBPCBPCBPCB *queue*queue*queue*queue;;;; //////// associatedassociatedassociatedassociated queuequeuequeuequeue ofofofof waitingwaitingwaitingwaiting processesprocessesprocessesprocesses

}}}} mutexmutexmutexmutex;;;;

DCC-FCUP # 29

init_lockinit_lockinit_lockinit_lock(mutex(mutex(mutex(mutex M)M)M)M) {{{{ MMMM....valuevaluevaluevalue ==== FREEFREEFREEFREE;;;;

MMMM....queuequeuequeuequeue ==== EMPTYEMPTYEMPTYEMPTY;;;; }}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Uniprocessor Lock Implementation
acquire_lockacquire_lockacquire_lockacquire_lock(mutex(mutex(mutex(mutex M)M)M)M) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

ifififif (M(M(M(M....valuevaluevaluevalue ==== ==== BUSY)BUSY)BUSY)BUSY) {{{{

//////// avoidavoidavoidavoid busybusybusybusy waitingwaitingwaitingwaiting

add_to_queue(currentadd_to_queue(currentadd_to_queue(currentadd_to_queue(current PCB,PCB,PCB,PCB, MMMM....queue)queue)queue)queue);;;;

suspend()suspend()suspend()suspend();;;;

DCC-FCUP # 30

suspend()suspend()suspend()suspend();;;;

//////// kernelkernelkernelkernel reenablesreenablesreenablesreenables interruptsinterruptsinterruptsinterrupts justjustjustjust beforebeforebeforebefore restartingrestartingrestartingrestarting herehereherehere

}}}} elseelseelseelse {{{{

MMMM....valuevaluevaluevalue ==== BUSYBUSYBUSYBUSY;;;;

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Uniprocessor Lock Implementation
release_lockrelease_lockrelease_lockrelease_lock(mutex(mutex(mutex(mutex M)M)M)M) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

ifififif (M(M(M(M....queuequeuequeuequeue !=!=!=!= EMPTY)EMPTY)EMPTY)EMPTY) {{{{

//////// leaveleaveleaveleave locklocklocklock BUSYBUSYBUSYBUSY andandandand wakeupwakeupwakeupwakeup oneoneoneone waitingwaitingwaitingwaiting processprocessprocessprocess

PCBPCBPCBPCB ==== remove_from_queue(Mremove_from_queue(Mremove_from_queue(Mremove_from_queue(M....queue)queue)queue)queue);;;;

add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB, readyreadyreadyready queue)queue)queue)queue);;;;

DCC-FCUP # 31

add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB, readyreadyreadyready queue)queue)queue)queue);;;;

}}}} elseelseelseelse {{{{

MMMM....valuevaluevaluevalue ==== FREEFREEFREEFREE;;;;

}}}}

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Multiprocessor Lock Implementation
//////// mutexmutexmutexmutex datadatadatadata structurestructurestructurestructure

typedeftypedeftypedeftypedef structstructstructstruct {{{{

booleanbooleanbooleanboolean guardguardguardguard;;;; //////// totototo guaranteeguaranteeguaranteeguarantee atomicityatomicityatomicityatomicity

intintintint valuevaluevaluevalue;;;; //////// mutex’smutex’smutex’smutex’s valuevaluevaluevalue (FREE(FREE(FREE(FREE orororor BUSY)BUSY)BUSY)BUSY)

PCBPCBPCBPCB *queue*queue*queue*queue;;;; //////// associatedassociatedassociatedassociated queuequeuequeuequeue ofofofof waitingwaitingwaitingwaiting processesprocessesprocessesprocesses

}}}} mutexmutexmutexmutex;;;;

DCC-FCUP # 32

}}}} mutexmutexmutexmutex;;;;

init_lockinit_lockinit_lockinit_lock(mutex(mutex(mutex(mutex M)M)M)M) {{{{ MMMM....guardguardguardguard ==== falsefalsefalsefalse;;;;

MMMM....valuevaluevaluevalue ==== FREEFREEFREEFREE;;;;

MMMM....queuequeuequeuequeue ==== EMPTYEMPTYEMPTYEMPTY;;;; }}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Multiprocessor Lock Implementation
acquire_lockacquire_lockacquire_lockacquire_lock(mutex(mutex(mutex(mutex M)M)M)M) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

whilewhilewhilewhile (test_and_set(&M(test_and_set(&M(test_and_set(&M(test_and_set(&M....guard))guard))guard))guard));;;; //////// shortshortshortshort busybusybusybusy waitingwaitingwaitingwaiting timetimetimetime

ifififif (M(M(M(M....valuevaluevaluevalue ==== ==== BUSY)BUSY)BUSY)BUSY) {{{{

add_to_queue(currentadd_to_queue(currentadd_to_queue(currentadd_to_queue(current PCB,PCB,PCB,PCB, MMMM....queue)queue)queue)queue);;;;

MMMM....guardguardguardguard ==== falsefalsefalsefalse;;;;

DCC-FCUP # 33

MMMM....guardguardguardguard ==== falsefalsefalsefalse;;;;

suspend()suspend()suspend()suspend();;;;

//////// kernelkernelkernelkernel reenablesreenablesreenablesreenables interruptsinterruptsinterruptsinterrupts justjustjustjust beforebeforebeforebefore restartingrestartingrestartingrestarting herehereherehere

}}}} elseelseelseelse {{{{

MMMM....valuevaluevaluevalue ==== BUSYBUSYBUSYBUSY;;;; MMMM....guardguardguardguard ==== falsefalsefalsefalse;;;;

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Multiprocessor Lock Implementation
release_lockrelease_lockrelease_lockrelease_lock(mutex(mutex(mutex(mutex M)M)M)M) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

whilewhilewhilewhile (test_and_set(&M(test_and_set(&M(test_and_set(&M(test_and_set(&M....guard))guard))guard))guard));;;; //////// shortshortshortshort busybusybusybusy waitingwaitingwaitingwaiting timetimetimetime

ifififif (M(M(M(M....queuequeuequeuequeue !=!=!=!= EMPTY)EMPTY)EMPTY)EMPTY) {{{{

//////// leaveleaveleaveleave locklocklocklock BUSYBUSYBUSYBUSY andandandand wakeupwakeupwakeupwakeup oneoneoneone waitingwaitingwaitingwaiting processprocessprocessprocess

PCBPCBPCBPCB ==== remove_from_queue(Mremove_from_queue(Mremove_from_queue(Mremove_from_queue(M....queue)queue)queue)queue);;;;

DCC-FCUP # 34

PCBPCBPCBPCB ==== remove_from_queue(Mremove_from_queue(Mremove_from_queue(Mremove_from_queue(M....queue)queue)queue)queue);;;;

add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB, readyreadyreadyready queue)queue)queue)queue);;;;

}}}} elseelseelseelse {{{{

MMMM....valuevaluevaluevalue ==== FREEFREEFREEFREE;;;;

}}}}

MMMM....guardguardguardguard ==== falsefalsefalsefalse;;;;

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Semaphores

� A semaphore is a synchronization tool used to control access to a given

resource consisting of a finite number of instances

� First defined by Dijkstra in late 60s

� Main synchronization primitive used in original UNIX

� Semaphores are like integers, except:

DCC-FCUP # 35

� Cannot read or write value, except to set it initially

� No negative values (when a semaphore reaches 0 all instances are being
used, meaning that, all processes that wish to use the resource will block until

the semaphore becomes greater than 0)

� Two types of semaphores exist:

� Counting semaphore which can range over an unrestricted domain

� Binary semaphore which can range only between 0 and 1 (like mutex locks)

Operating Systems 2017/2018 Part IV – Process Synchronization

Semaphores Operations

� Semaphores are accessed through two standard atomic operations:

� wait() operation waits the semaphore to become positive and then
decrements it by one

� signal() operation increments the semaphore by one

waitwaitwaitwait(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{

DCC-FCUP # 36

waitwaitwaitwait(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{

whilewhilewhilewhile (S(S(S(S ==== ==== 0000))));;;; //////// busybusybusybusy waitingwaitingwaitingwaiting

SSSS--------;;;;

}}}}

signalsignalsignalsignal(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{

S++S++S++S++;;;;

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Semaphores Implementation

� Implementation must guarantee that no two wait() and/or signal()
operations are executed on the same semaphore at the same time

� Simultaneous wait() operations cannot decrement value below zero

� Cannot miss an increment from signal() if wait() operation happens
simultaneously

� Again, two different approaches to minimize busy waiting time:

DCC-FCUP # 37

� Again, two different approaches to minimize busy waiting time:

� For uniprocessors via disabling interrupts

� For multiprocessors via disabling interrupts plus atomic instructions

Operating Systems 2017/2018 Part IV – Process Synchronization

//////// semaphoresemaphoresemaphoresemaphore datadatadatadata structurestructurestructurestructure

typedeftypedeftypedeftypedef structstructstructstruct {{{{

intintintint valuevaluevaluevalue;;;; //////// semaphore’ssemaphore’ssemaphore’ssemaphore’s valuevaluevaluevalue

PCBPCBPCBPCB *queue*queue*queue*queue;;;; //////// associatedassociatedassociatedassociated queuequeuequeuequeue ofofofof waitingwaitingwaitingwaiting processesprocessesprocessesprocesses

}}}} semaphoresemaphoresemaphoresemaphore;;;;

Uniprocessor Semaphore Implementation

DCC-FCUP # 38

init_semaphoreinit_semaphoreinit_semaphoreinit_semaphore(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{ SSSS....valuevaluevaluevalue ==== 0000;;;;

SSSS....queuequeuequeuequeue ==== EMPTYEMPTYEMPTYEMPTY;;;; }}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

waitwaitwaitwait(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

ifififif (S(S(S(S....valuevaluevaluevalue ==== ==== 0000)))) {{{{

//////// avoidavoidavoidavoid busybusybusybusy waitingwaitingwaitingwaiting

add_to_queue(currentadd_to_queue(currentadd_to_queue(currentadd_to_queue(current PCB,PCB,PCB,PCB, SSSS....queue)queue)queue)queue);;;;

suspend()suspend()suspend()suspend();;;;

Uniprocessor Semaphore Implementation

DCC-FCUP # 39

suspend()suspend()suspend()suspend();;;;

//////// kernelkernelkernelkernel reenablesreenablesreenablesreenables interruptsinterruptsinterruptsinterrupts justjustjustjust beforebeforebeforebefore restartingrestartingrestartingrestarting herehereherehere

}}}} elseelseelseelse {{{{

SSSS....valuevaluevaluevalue--------;;;;

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

signalsignalsignalsignal(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

ifififif (S(S(S(S....queuequeuequeuequeue !=!=!=!= EMPTY)EMPTY)EMPTY)EMPTY) {{{{

//////// keepkeepkeepkeep semaphore’ssemaphore’ssemaphore’ssemaphore’s valuevaluevaluevalue andandandand wakeupwakeupwakeupwakeup oneoneoneone waitingwaitingwaitingwaiting processprocessprocessprocess

PCBPCBPCBPCB ==== remove_from_queue(Sremove_from_queue(Sremove_from_queue(Sremove_from_queue(S....queue)queue)queue)queue);;;;

add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB, readyreadyreadyready queue)queue)queue)queue);;;;

Uniprocessor Semaphore Implementation

DCC-FCUP # 40

add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB, readyreadyreadyready queue)queue)queue)queue);;;;

}}}} elseelseelseelse {{{{

SSSS....value++value++value++value++;;;;

}}}}

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

//////// semaphoresemaphoresemaphoresemaphore datadatadatadata structurestructurestructurestructure

typedeftypedeftypedeftypedef structstructstructstruct {{{{

booleanbooleanbooleanboolean guardguardguardguard;;;; //////// totototo guaranteeguaranteeguaranteeguarantee atomicityatomicityatomicityatomicity

intintintint valuevaluevaluevalue;;;; //////// semaphore’ssemaphore’ssemaphore’ssemaphore’s valuevaluevaluevalue

PCBPCBPCBPCB *queue*queue*queue*queue;;;; //////// associatedassociatedassociatedassociated queuequeuequeuequeue ofofofof waitingwaitingwaitingwaiting processesprocessesprocessesprocesses

}}}} semaphoresemaphoresemaphoresemaphore;;;;

Multiprocessor Semaphore Implementation

DCC-FCUP # 41

}}}} semaphoresemaphoresemaphoresemaphore;;;;

init_semaphoreinit_semaphoreinit_semaphoreinit_semaphore(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{ SSSS....guardguardguardguard ==== falsefalsefalsefalse;;;;

SSSS....valuevaluevaluevalue ==== 0000;;;;

SSSS....queuequeuequeuequeue ==== EMPTYEMPTYEMPTYEMPTY;;;; }}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Multiprocessor Semaphore Implementation
waitwaitwaitwait(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

whilewhilewhilewhile (test_and_set(&S(test_and_set(&S(test_and_set(&S(test_and_set(&S....guard))guard))guard))guard));;;; //////// shortshortshortshort busybusybusybusy waitingwaitingwaitingwaiting timetimetimetime

ifififif (S(S(S(S....valuevaluevaluevalue ==== ==== 0000)))) {{{{

add_to_queue(currentadd_to_queue(currentadd_to_queue(currentadd_to_queue(current PCB,PCB,PCB,PCB, SSSS....queue)queue)queue)queue);;;;

SSSS....guardguardguardguard ==== falsefalsefalsefalse;;;;

DCC-FCUP # 42

SSSS....guardguardguardguard ==== falsefalsefalsefalse;;;;

suspend()suspend()suspend()suspend();;;;

//////// kernelkernelkernelkernel reenablesreenablesreenablesreenables interruptsinterruptsinterruptsinterrupts justjustjustjust beforebeforebeforebefore restartingrestartingrestartingrestarting herehereherehere

}}}} elseelseelseelse {{{{

SSSS....valuevaluevaluevalue--------;;;; SSSS....guardguardguardguard ==== falsefalsefalsefalse;;;;

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Multiprocessor Semaphore Implementation
signalsignalsignalsignal(semaphore(semaphore(semaphore(semaphore S)S)S)S) {{{{

disabledisabledisabledisable interruptsinterruptsinterruptsinterrupts;;;;

whilewhilewhilewhile (test_and_set(&S(test_and_set(&S(test_and_set(&S(test_and_set(&S....guard))guard))guard))guard));;;; //////// shortshortshortshort busybusybusybusy waitingwaitingwaitingwaiting timetimetimetime

ifififif (S(S(S(S....queuequeuequeuequeue !=!=!=!= EMPTY)EMPTY)EMPTY)EMPTY) {{{{

//////// keepkeepkeepkeep semaphore’ssemaphore’ssemaphore’ssemaphore’s valuevaluevaluevalue andandandand wakeupwakeupwakeupwakeup oneoneoneone waitingwaitingwaitingwaiting processprocessprocessprocess

PCBPCBPCBPCB ==== remove_from_queue(Sremove_from_queue(Sremove_from_queue(Sremove_from_queue(S....queue)queue)queue)queue);;;;

DCC-FCUP # 43

PCBPCBPCBPCB ==== remove_from_queue(Sremove_from_queue(Sremove_from_queue(Sremove_from_queue(S....queue)queue)queue)queue);;;;

add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB,add_to_queue(PCB, readyreadyreadyready queue)queue)queue)queue);;;;

}}}} elseelseelseelse {{{{

SSSS....value++value++value++value++;;;;

}}}}

SSSS....guardguardguardguard ==== falsefalsefalsefalse;;;;

enableenableenableenable interruptsinterruptsinterruptsinterrupts;;;;

}}}}

Operating Systems 2017/2018 Part IV – Process Synchronization

Starvation and Deadlock

� Starvation (or indefinite blocking) is a situation in which a process waits
indefinitely for an event that might never occur

� Deadlock is a situation in which a set of processes is waiting indefinitely
for an event that will never occur because that event can be caused

only by one of the waiting processes in the set

DCC-FCUP # 44

� Deadlock ⇒⇒⇒⇒ starvation but not vice versa

� Starvation can end (but doesn’t have to)

� Deadlock cannot end without external intervention

Operating Systems 2017/2018 Part IV – Process Synchronization

Deadlock

� Deadlocks occur when accessing multiple resources

� Cannot solve deadlock for each resource independently

� Deadlocks are not deterministic and won’t always happen for the same

piece of code

� Has to be exactly the right timing (or wrong timing?)

DCC-FCUP # 45

P0: wait(S);
P1: wait(Q);
P0: wait(Q);
P1: wait(S);

...

Possible deadlock

Operating Systems 2017/2018 Part IV – Process Synchronization

Classical Problems of Synchronization

� Bounded buffer problem

� Commonly used to illustrate the power of synchronization primitives

� Readers and writers problem

� Commonly used to illustrate the problem of sharing data

Dining philosophers problem

DCC-FCUP # 46

� Dining philosophers problem

� Commonly used to illustrate the class of concurrency control problems

Operating Systems 2017/2018 Part IV – Process Synchronization

Bounded Buffer Problem

� Illustrates the power of synchronization primitives:

� Producer – puts things into a shared buffer

� Consumer – takes them out

� Correctness constraints:

� Mutual exclusion constraint: only one process can manipulate the buffer

DCC-FCUP # 47

� Mutual exclusion constraint: only one process can manipulate the buffer

queue at a time

� Scheduling constraint: if buffer is full, producer must wait for consumer to

make room in buffer

� Scheduling constraint: if buffer is empty, consumer must wait for producer to

fill buffer

Operating Systems 2017/2018 Part IV – Process Synchronization

Bounded Buffer Problem: Solution

� Shared data structures:

� Variable n stores the number of buffers (each buffer can hold one item)

� Semaphore mutex provides mutual exclusion for accesses to the buffer pool

� Semaphore empty counts the number of empty buffers

� Semaphore full counts the number of full buffers

DCC-FCUP # 48

� Key idea:

� Use a separate semaphore for each constraint

� Symmetry between the producer and the consumer, we can interpret the

solution as the producer producing full buffers for the consumer or as the
consumer producing empty buffers for the producer

Operating Systems 2017/2018 Part IV – Process Synchronization

Bounded Buffer Problem: Producer

DCC-FCUP # 49

Operating Systems 2017/2018 Part IV – Process Synchronization

Bounded Buffer Problem: Consumer

DCC-FCUP # 50

Operating Systems 2017/2018 Part IV – Process Synchronization

Bounded Buffer Problem: Discussion

� Is the order of the wait() calls important?

� Yes, otherwise can cause deadlocks!

� Is the order of the signal() calls important?

� No, except that it might affect efficiency!

What if we have 2 producers or 2 consumers, do we need to change

DCC-FCUP # 51

� What if we have 2 producers or 2 consumers, do we need to change

anything?

� No, it works OK!

Operating Systems 2017/2018 Part IV – Process Synchronization

Readers and Writers Problem

� Illustrates the problem of sharing data:

� Readers – only read the shared data

� Writers – can both read and write the shared data

� Is a single lock sufficient to synchronize the access to the shared data?

� For writers is OK since writers must have exclusive access to shared data

DCC-FCUP # 52

� For writers is OK since writers must have exclusive access to shared data

� For readers is not since we may want multiple readers at the same time

� Useful in applications:

� Where it is easy to identify which processes only read shared data and which

processes only write shared data

� Where exists more readers than writers and the increased concurrency of

having multiple readers compensates the overhead involved in implementing
the reader–writer solution

Operating Systems 2017/2018 Part IV – Process Synchronization

Readers and Writers Problem: Variations

� Variation I – no reader is kept waiting unless a writer has already

obtained permission to use the shared data

� In other words, no reader should wait for other readers to finish simply
because a writer is waiting

� May result in starvation of the writers

� Variation II – once a writer is ready, it executes as soon as possible

DCC-FCUP # 53

� Variation II – once a writer is ready, it executes as soon as possible

� In other words, if a writer is waiting to access the shared data, no new reader
may start reading

� May result in starvation of the readers

� The solution that follows implements variation I

Operating Systems 2017/2018 Part IV – Process Synchronization

Readers and Writers Problem: Solution

� Shared data structures:

� Semaphore rw_mutex ensures mutual exclusion for writers (also used by the
first/last reader that enters/exits the critical section)

� Semaphore mutex ensures mutual exclusion when updating variable

read_count

� Variable read_count keeps track of how many processes are currently

reading the shared data

DCC-FCUP # 54

reading the shared data

� Key idea:

� If a writer is in the critical section and N readers are waiting, then only one
reader is queued on rw_mutex, the other N−1 readers are queued on mutex

� When a writer signals rw_mutex, we may resume the execution of either the
waiting readers or a waiting writer (the selection is made by the scheduler)

Operating Systems 2017/2018 Part IV – Process Synchronization

Readers and Writers Problem: Writer

DCC-FCUP # 55

Operating Systems 2017/2018 Part IV – Process Synchronization

Readers and Writers Problem: Reader

DCC-FCUP # 56

Operating Systems 2017/2018 Part IV – Process Synchronization

Dining Philosophers Problem

� Illustrates the class of concurrency control

problems:

� Simple representation of the need to allocate
several resources among several processes in a
deadlock-free and starvation-free manner

� A set of N philosophers share a table laid with N single chopsticks and

DCC-FCUP # 57

� A set of N philosophers share a table laid with N single chopsticks and

with a bowl of rice in its center

� When a philosopher thinks, he does not interact with their colleagues

� From time to time, a philosopher gets hungry and tries to pick up the two
chopsticks that are closest (one chopstick at a time)

� When a philosopher has both chopsticks, he eats from the bowl without
releasing the chopsticks

� When he finished eating, he puts down both chopsticks and starts thinking
again

Operating Systems 2017/2018 Part IV – Process Synchronization

Dining Philosophers Problem: Solution

� Shared data structures:

� Bowl of rice (data)

� Semaphore chopstick[N] representing the access to each chopstick

Key idea:

DCC-FCUP # 58

� Key idea:

� A philosopher tries to grab his chopsticks by executing wait() operations on

the appropriate semaphores

� A philosopher releases his chopsticks by executing signal() operations on the

appropriate semaphores

Operating Systems 2017/2018 Part IV – Process Synchronization

Dining Philosophers Problem

DCC-FCUP # 59

Operating Systems 2017/2018 Part IV – Process Synchronization

Dining Philosophers Problem: Discussion

� What happens if all philosophers become hungry at the same time?

� If all philosophers start by grabbing their left chopstick then, when they try to
grab their right chopstick, they will be delayed forever, leading to a deadlock

� Possible remedies to the deadlock problem:

� Allow at most four philosophers to be sitting simultaneously at the table

DCC-FCUP # 60

� Use an asymmetric solution, e.g., an odd-numbered philosopher picks up first
the left chopstick and then the right chopstick, whereas an even numbered

philosopher picks up first the right chopstick and then the left chopstick

� A satisfactory solution must also guard against the possibility of starvation

� Note that a deadlock-free solution does not necessarily eliminate starvation

Operating Systems 2017/2018 Part IV – Process Synchronization

Deadlock Characterization

� Deadlocks can arise only if the next 4 conditions hold simultaneously:

� Mutual exclusion – only one process at a time can use a resource (a
requesting process must be delayed until the resource has been released)

� Hold and wait – a process holding (at least) one resource is waiting to

acquire additional resources held by other processes

� No preemption – a resource cannot be preempted, i.e., a resource can be

released only voluntarily by the process holding it, after that process has

DCC-FCUP # 61

released only voluntarily by the process holding it, after that process has
completed its task

� Circular wait – there exists a set of waiting processes {P1, P2, …, PN} such

that P1 is waiting for a resource held by P2, P2 is waiting for a resource held by
P3, …, PN-1 is waiting for a resource held by PN, and PN is waiting for a

resource held by P1

Operating Systems 2017/2018 Part IV – Process Synchronization

Resource Allocation Graph

� Deadlocks can be described more precisely in terms of a directed graph,

called a resource allocation graph, that consists of a set of vertices V
and a set of edges E

� V is partitioned into two types:

� P = {P1, P2, …, PN}, the set of all processes in the system

DCC-FCUP # 62

� R = {R1, R2, …, RM}, the set of all resource types in the system

� E is partitioned into two types:

� Er (request edges), the set of all directed edges Pi → Rj meaning that
process Pi has requested an instance of resource type Rj and is currently
waiting for that resource

� Ea (assignment edges), the set of all directed edges Rj → Pi meaning that an
instance of resource type Rj has been allocated to process Pi

Operating Systems 2017/2018 Part IV – Process Synchronization

� The sets P, R, Er and Ea:

� P = {P1, P2, P3}

� R = {R1, R2, R3}

� Er = {P1 → R1, P2 → R3}

� Ea = {R1 → P2, R2 → P1, R2 → P2, R3 → P3}

Resource Allocation Graph: Example

DCC-FCUP # 63

� Process states:

� P1 is holding one instance of R2 and is

waiting for an instance of R1

� P2 is holding one instance of R1 and one

instance of R2 and is waiting for an instance
of R3

� P3 is holding an instance of R3

Operating Systems 2017/2018 Part IV – Process Synchronization

Resource Allocation Graph: Deadlock?

� P3 requests an instance of R2:

� Since no resource instance is currently available,
we add a request edge P3 → R2 to the graph

� Two minimal cycles now exist in the system:

� P1 → R1 → P2 → R3 → P3 → R2 → P1

DCC-FCUP # 64

� P2 → R3 → P3 → R2 → P2

� Processes P1, P2 and P3 are deadlocked

� P1 is waiting for resource R1, which is held by P2

� P2 is waiting for resource R3, which is held by P3

� P3 is waiting for either P1 or P2 to release

resource R2

Operating Systems 2017/2018 Part IV – Process Synchronization

Resource Allocation Graph: Deadlock?

� Consider another resource allocation

graph with a cycle:

� P1 → R1 → P3 → R2 → P1

� Despite the cycle, there is no deadlock

� P2 may release its instance of resource

type R and that resource can then be

DCC-FCUP # 65

type R1 and that resource can then be
allocated to P1, breaking the cycle

� Alternatively, P4 may also release its
instance of resource type R2 and that
resource can then be allocated to P3,

breaking the cycle

Operating Systems 2017/2018 Part IV – Process Synchronization

Resource Allocation Graph: Summary

� If the graph contains no cycles ⇒⇒⇒⇒ no deadlock

� If the graph contains a cycle ⇒⇒⇒⇒ deadlock may exist

� If the cycle involves only resource types which have exactly a single instance,
then a deadlock has occurred

� If each resource type has several instances, then a cycle does not necessarily

imply that a deadlock has occurred

DCC-FCUP # 66

imply that a deadlock has occurred

� A cycle is thus a necessary but not a sufficient condition for the

existence of a deadlock

Operating Systems 2017/2018 Part IV – Process Synchronization

Handling Deadlocks

� To ensure that deadlocks never occur, the system can use either a

protocol to prevent or avoid deadlocks:

� Deadlock prevention methods ensure that at least one of the four necessary
conditions cannot hold by constraining how requests for resources can be
made

� Deadlock avoidance methods require that the operating system be given
additional information in advance, concerning which resources a process will

DCC-FCUP # 67

additional information in advance, concerning which resources a process will

request and use during its lifetime, in order to decide whether a resource
request can be satisfied or must be delayed

� If a system does not employ either a deadlock prevention or avoidance

method, then a deadlock situation may arise:

� Deadlock detection methods examine the state of the system to determine

whether a deadlock has occurred and provide algorithms to recover from
deadlocks

Operating Systems 2017/2018 Part IV – Process Synchronization

Handling Deadlocks

� In the absence of methods to prevent, avoid or recover from deadlocks,

we may arrive at situations in which the system is in a deadlock state and

has no way of recognizing what has happened

� Undetected deadlocks might cause the system’s performance to
deteriorate, since resources are being held by processes that cannot run and
because more and more processes, as they ask for the same resources, will

enter a deadlock state (eventually, the system will stop working and will

DCC-FCUP # 68

enter a deadlock state (eventually, the system will stop working and will
need to be restarted manually)

� Expense is one important consideration since ignoring the possibility of

deadlocks is cheaper than the other approaches

� If deadlocks occur infrequently, the extra expense of the other methods may
not seem worthwhile

� In addition, methods used to recover from other conditions may allow also to

recover from deadlock

Operating Systems 2017/2018 Part IV – Process Synchronization

Deadlock Prevention

� Preventing mutual exclusion – try to avoid non-sharable resources

(every resource is made sharable and a process never needs to wait for

any resource)

� Problem: not very realistic since some resources are intrinsically non-
sharable (for example, the access to a mutex lock cannot be shared by
several processes)

DCC-FCUP # 69

� Preventing hold and wait – guarantee that whenever a process requests

resources, it does not hold any other resources

� Require process to request all resources before it begins execution (predicting
future is hard, tend to over-estimate resources)

� Alternatively, require process to release all its resources before it can request
any additional resources

� Problem: low resource utilization and starvation is possible

Operating Systems 2017/2018 Part IV – Process Synchronization

Deadlock Prevention

� Preventing no preemption – voluntarily release resources

� If a process P fails to allocate some resources, we release all the resources
that P is currently holding and, only when P can regain the old and the new
resources that it is requesting, we restart it

� Alternatively, if a process P fails to allocate some resources, we check
whether they are allocated to some other process Q that is waiting for

additional resources and, if so, we preempt the desired resources from Q and

DCC-FCUP # 70

additional resources and, if so, we preempt the desired resources from Q and
allocate them to the requesting process P

� Problem: cannot generally be applied to resources such as mutex locks and

semaphores

� Preventing circular wait – impose a total ordering of all resource types

and require that each process requests resources in an increasing order

of enumeration

� Problem: programmers can write programs not following the ordering

Operating Systems 2017/2018 Part IV – Process Synchronization

Deadlock Avoidance

� Deadlock avoidance methods require additional a priori information,

concerning which resources a process will use during its lifetime

� Simplest and most useful method requires that each process declare the
maximum number of resources of each type that it may need

� When a process requests an available resource, we must decide if its

immediate allocation leaves the system in a safe state

DCC-FCUP # 71

immediate allocation leaves the system in a safe state

� Safe state ⇒⇒⇒⇒ no deadlock

� Unsafe state ⇒⇒⇒⇒ possibility of deadlock

Operating Systems 2017/2018 Part IV – Process Synchronization

Safe State

� A system is in safe state if there exists a safe sequence <P1, P2, …, PN>

such that, for each Pi, the resources that Pi can still request can be

satisfied by the currently available resources plus the resources held by

all the Pj (with j < i)

� Avoidance algorithms:

� If a single instance of a resource type – Resource allocation graph

DCC-FCUP # 72

� If a single instance of a resource type – Resource allocation graph

� If multiple instances of a resource type – Bankers algorithm

Operating Systems 2017/2018 Part IV – Process Synchronization

Is This a Safe State?

� Consider that P1 has made a request for a resource instance that, if

fulfilled, leads the system to the following new state:

DCC-FCUP # 73

� Is the system in a safe state?

� Yes, sequence < P1, P3, P4, P0, P2> satisfies the safety requirement!

� Hence, we can grant P1’s request

Operating Systems 2017/2018 Part IV – Process Synchronization

Deadlock Detection

� If no deadlock prevention or avoidance method exists, then a deadlock

situation may occur. In this environment, the system may:

� Periodically invoke an algorithm that examines the state of the system and
determines whether a deadlock has occurred

� Provide an algorithm to recover from the deadlock

� Invoking a deadlock detection algorithm:

DCC-FCUP # 74

� Invoking a deadlock detection algorithm:

� For every resource request, will incur in a considerable overhead

� Arbitrarily, might lead the resource graph to contain many cycles, making it

impossible to tell which of the deadlocked processes caused the deadlock

Operating Systems 2017/2018 Part IV – Process Synchronization

Is This a Deadlock?

� Consider that the system’s state is as follows:

DCC-FCUP # 75

� Is the system in a deadlock situation?

� Although we can reclaim the resources held by P0, the available resources are
not sufficient to fulfill the requests of the other processes

� Thus, a deadlock exists, consisting of processes P1, P2, P3 and P4

Operating Systems 2017/2018 Part IV – Process Synchronization

Recovery from Deadlock

� To recover from deadlocks, we can abort processes using two methods:

� Abort all deadlocked processes – the results of the partial computations
made by such processes are lost and probably will have to be recomputed

� Abort one process at a time until the deadlock cycle is eliminated –

incurs considerable overhead, since the deadlock detection algorithm must be
invoked after each process is aborted

DCC-FCUP # 76

� In which order should we choose to abort?

� Priority of the process

� How long the process has computed and how much longer to completion

� Resources the process has used

� Resources the process needs to complete

� How many processes will need to be terminated

Operating Systems 2017/2018 Part IV – Process Synchronization

Recovery from Deadlock

� Alternatively, to recover from deadlocks, we can successively preempt
some resources from processes and give them to other processes until

the deadlock cycle is broken. Three issues need to be addressed:

� Selecting a victim – try to minimize costs such as the number of resources a
deadlocked process is holding and the amount of time the process has thus
far consumed

� Rollback – return process to some safe state and restart it from that state.

DCC-FCUP # 77

� Rollback – return process to some safe state and restart it from that state.
Since, in general, it is difficult to determine what a safe state is, the simplest

solution is a total rollback (abort process and restart it from beginning)

� Starvation – same process may always be picked as victim leading to
starvation and, thus, a common solution is to include the number of rollbacks

in the cost factor

