
Ricardo Rocha

Department of Computer Science

Faculty of Sciences

Operating Systems 2017/2018 Part V – Threads

Faculty of Sciences

University of Porto

Slides based on the book

‘Operating System Concepts, 9th Edition,

Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Wiley’

Chapter 3

Operating Systems 2017/2018 Part V – Threads

Thread Concept

� So far, we saw that a process is a running program with a single thread
of execution, meaning that it can perform only one task at a time

� Modern operating systems have extended the process concept to allow a

process to have multiple threads of execution and thus to perform
more than one task at a time

� Most modern applications can be seen as a set of multiple tasks

DCC-FCUP # 1

� Most modern applications can be seen as a set of multiple tasks

� The processing of independent tasks or asynchronous events can be
interleaved by assigning a separate thread to handle each task or event type

Operating Systems 2017/2018 Part V – Threads

Single and Multithreaded Processes

� Single-threaded is the traditional approach of a single thread of execution

per process, in which the concept of a thread is not recognized

� Multithreading refers to the ability of an OS to support multiple
concurrent paths of execution within a single process

DCC-FCUP # 2

Operating Systems 2017/2018 Part V – Threads

Main Benefits

� There are 4 main benefits of multithreaded programming:

� Performance – in general it is significantly more time consuming to create
and manage processes than threads, thread creation is cheaper than process
creation and thread switching has lower overhead than context switching

� Resource Sharing – threads share by default the memory (same address
space) and the resources of the process they belong to, while multiple

processes have to use complex operating system mechanisms to share

DCC-FCUP # 3

processes have to use complex operating system mechanisms to share
memory or other resources

� Responsiveness – multithreading an interactive application may allow a

program to continue running even if part of it is blocked or is performing a
lengthy operation, especially important for user interfaces

� Parallelism – a single-threaded process can run on only one processor,
regardless how many are available in a multiprocessor architecture, where
threads may be running in parallel on different processing processors/cores

Operating Systems 2017/2018 Part V – Threads

Performance Implications

� If there is an application that should be implemented as a set of related

units of execution, it is far more efficient to do so as a collection of threads

rather than a collection of separate processes:

� It takes far less time to create a new thread in an existing process than to
create a brand-new process

� It takes less time to terminate a thread than a process

DCC-FCUP # 4

� It takes less time to switch between two threads within the same process
than to switch between processes

� It is more efficient to communicate between threads than between
processes since communication between processes usually requires the
intervention of the kernel

Operating Systems 2017/2018 Part V – Threads

Thread Execution Context

� Everything within a process is sharable among all the threads
belonging to the process:

� Text of the executable program

� Program’s data, heap and stacks

� Operating system resources, such as open files and signals

DCC-FCUP # 5

� A thread consists of the information necessary to represent an execution
context within a process, which includes:

� Thread ID (TID)

� Scheduling priority and policy

� Set of registers, including the program counter

� Stack

� Thread-specific data (similar to static data, but unique to each thread)

Operating Systems 2017/2018 Part V – Threads

Thread Control Block (TCB)

� The information related to thread execution is stored out of the PCB in

thread control blocks (TCBs)

� Each thread has its own TCB, which includes all thread-specific execution
information plus a pointer to the corresponding PCB

� PCB keeps the remaining (non-execution related) management information

about the containing process plus a pointer to the list of associated TCBs

DCC-FCUP # 6

Operating Systems 2017/2018 Part V – Threads

Thread States

� As for processes, the key states for a thread are:

� Running, instructions are being executed

� Waiting/Blocked, the thread is waiting for some event to occur

� Ready, the thread is waiting to be assigned to a processor

� There are four basic thread operations that can change the thread state:

DCC-FCUP # 7

� There are four basic thread operations that can change the thread state:

� Spawn – when a new thread is spawned (the thread is provided with its own
register context and stack space and placed on the ready queue)

� Block – when a thread needs to wait for some event to occur (the thread
saves its register context and stack pointers)

� Unblock – when the event for which a thread is blocked occurs (the thread is
moved to the ready queue)

� Finish – when a thread completes execution (the thread’s register context

and stack space are deallocated)

Operating Systems 2017/2018 Part V – Threads

Transition Among States

DCC-FCUP # 8

Operating Systems 2017/2018 Part V – Threads

Thread Context Switch

� Scheduling queues now point to TCBs and context switch now requires

saving the context of the current thread to its TCB and loading the

saved context for the new thread from its TCB

DCC-FCUP # 9

� Context switch between two threads in the same process:

� No need to change the memory address-space

� Context switch between two threads in different processes:

� Must change memory address-space, sometimes invalidating cache or
generating page faults

Operating Systems 2017/2018 Part V – Threads

Thread Libraries

� A thread library provides a API for creating and managing threads

� User-level library (user threads) – management is done by a user-level
threads library and without kernel support. All code and data structures for the
library exist in user space, thus invoking a function in the library results in a

local function call in user space and not in a system call to the kernel

� Kernel-level library (kernel threads) – supported and managed directly by

the operating system. All code and data structures for the library exist in

DCC-FCUP # 10

the operating system. All code and data structures for the library exist in
kernel space, thus invoking a function in the library results in a system call to
the kernel

Operating Systems 2017/2018 Part V – Threads

Thread Libraries

� All contemporary operating systems – including Windows, Linux, Mac OS

X and Solaris – support kernel threads

� There are three main thread libraries:

� POSIX Pthreads, provided as either a user-level or a kernel-level library

� Windows Threads, kernel-level library available on Windows systems

DCC-FCUP # 11

� Java Threads, managed by the JVM and typically implemented using the

thread library available on the host system

� Ultimately, a relationship must exist between user threads and kernel

threads. There are 3 common ways of establishing such a relationship:

� One-to-one model

� Many-to-one model

� Many-to-many model

Operating Systems 2017/2018 Part V – Threads

One-to-One Model

� Maps each user-level thread to a kernel thread:

� Creating a user-level thread creates a kernel thread

� Competition takes place among all kernel threads in the system

� When a thread makes a blocking system call, another thread can execute

� Allows multiple threads to run in parallel on multiprocessor/multicore systems

� Since the overhead of creating kernel threads can burden the performance of

DCC-FCUP # 12

� Since the overhead of creating kernel threads can burden the performance of

the system, most implementations restrict the number of threads supported by
the model

� Examples:

� Linux

� Windows NT/XP/2000

� Solaris 9 and later

Operating Systems 2017/2018 Part V – Threads

Many-to-One Model

� Maps many user-level threads to one kernel

thread (process):

� Thread management is done by the thread
library in user space

� Competition takes place among the threads

within the process

DCC-FCUP # 13

� One thread blocking causes all to block

� Because only one thread can access the
kernel at a time, multiple threads are unable
to run in parallel on multiprocessor/multicore

systems

� Examples:

� Solaris Green Threads

� GNU Portable Threads

Operating Systems 2017/2018 Part V – Threads

Many-to-Many Model

� Multiplexes many user-level threads to a

smaller or equal number of kernel threads:

� The number of kernel threads may be specific
to either a particular application or machine

� Developers can create as many user threads,

but only the corresponding kernel threads can
run in parallel on multiprocessor/multicore

DCC-FCUP # 14

run in parallel on multiprocessor/multicore

systems

� When a thread makes a blocking system call,
the kernel can schedule another thread for

execution

� Examples:

� Solaris prior to version 9

� Windows ThreadFiber package (NT/2000)

Operating Systems 2017/2018 Part V – Threads

Thread Creation – Pthreads

� New threads can be created with the function:

intintintint pthread_createpthread_createpthread_createpthread_create((((pthread_tpthread_tpthread_tpthread_t ****tidptidptidptidp,,,, pthread_attr_tpthread_attr_tpthread_attr_tpthread_attr_t ****attrattrattrattr,,,,

voidvoidvoidvoid *(**(**(**(*start_rtnstart_rtnstart_rtnstart_rtn)()()()(voidvoidvoidvoid *),*),*),*), voidvoidvoidvoid ****argargargarg))));;;;

� The new thread starts running the start_rtn() function with the arg argument

DCC-FCUP # 15

� The new thread starts running the start_rtn() function with the arg argument

and sets tidp with the thread ID of the newly created thread

� The attr argument can be used to customize various thread attributes, setting

it to NULL creates a thread with the default attributes

� Returns 0 if successful, error number on failure

Operating Systems 2017/2018 Part V – Threads

Thread Termination – Pthreads

� We can terminate threads with the function:

voivoivoivoidddd pthread_exitpthread_exitpthread_exitpthread_exit((((voidvoidvoidvoid ****rval_ptrrval_ptrrval_ptrrval_ptr))));;;;

� Terminates thread execution with return code rval_ptr, without terminating the
entire process (the same happens when the thread returns from the start

DCC-FCUP # 16

entire process (the same happens when the thread returns from the start

routine)

� Note however that, if a thread calls exit(), then the entire process terminates

� Returns 0 if successful, error number on failure

Operating Systems 2017/2018 Part V – Threads

Thread Termination – Pthreads

� We can wait for specific threads with the function:

intintintint pthread_joinpthread_joinpthread_joinpthread_join((((pthread_tpthread_tpthread_tpthread_t tidtidtidtid,,,, voidvoidvoidvoid ********rval_ptrrval_ptrrval_ptrrval_ptr))));;;;

� Waits for a specific thread tid to terminate and blocks until the specified
thread calls pthread_exit() or returns from its start routine

DCC-FCUP # 17

thread calls pthread_exit() or returns from its start routine

� The thread return code is then made available in the rval_ptr argument

� Returns 0 if successful, error number on failure

Operating Systems 2017/2018 Part V – Threads

Thread Example – Pthreads

DCC-FCUP # 18

Operating Systems 2017/2018 Part V – Threads

Semantics of exec() and fork()

� What happens if one thread in a multithreaded process calls the exec() or

fork() system calls?

� The exec() system call works as usual and the program specified in the

call will replace the entire process – including all threads

� The fork() system call is typically implemented using two versions:

DCC-FCUP # 19

� The fork() system call is typically implemented using two versions:

� One that creates a new multithreaded process by duplicating all threads
in the calling process

� Another that creates a new single-threaded process by duplicating only

the calling thread

