
Ricardo Rocha

Department of Computer Science

Faculty of Sciences

Operating Systems 2017/2018 Part VI – File System

Faculty of Sciences

University of Porto

Slides based on the book 

‘Operating System Concepts, 9th Edition,

Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Wiley’

Chapters 10 and 11



Operating Systems 2017/2018 Part VI – File System

File System Types

� Many file systems are in use today, and most operating systems support

more than one file system

� UNIX uses the UNIX file system (UFS) which is based on the Berkeley Fast
File System (FFS)

� The standard Linux file system is the extended file system (most common

versions being ext3 and ext4)

DCC-FCUP # 1

� Windows uses the FAT, FAT32 and NTFS file systems

� CD-ROMs are written in the ISO 9660 format

� New ones are still arriving since file system continues to be an active

research area

� GoogleFS

� Oracle ASM

� FUSE



Operating Systems 2017/2018 Part VI – File System

File System Concept

� For most users, the file system is the most visible aspect of an operating

system as it provides the mechanism for storage and access to both

data and programs of the operating system

� A file system consists of two distinct parts:

� A collection of files, each file defines a logical storage unit with related data

DCC-FCUP # 2

� A directory structure, which organizes and provides information about all the
files in the system

� The operating system abstracts the physical properties of its storage
devices to organize the directory structure and its files

� These storage devices are usually nonvolatile, so the contents are persistent
between system reboots



Operating Systems 2017/2018 Part VI – File System

File Attributes

� A file is defined by a set of attributes that vary from one operating system

to another. Typical attributes are:

� Name – for the convenience of the human users

� Type – to indicate the type of operations that can be done on the file (included
in the name as an extension, usually separated by a period)

� Location – pointer to file location on device

DCC-FCUP # 3

Location – pointer to file location on device

� Size – current file size

� Protection – controls who can do reading, writing, executing, and so on

� Time, date, and user identification – data useful for protection, security, and

usage monitoring



Operating Systems 2017/2018 Part VI – File System

Common File Types

DCC-FCUP # 4



Operating Systems 2017/2018 Part VI – File System

File Sharing and Protection

� When an operating system accommodates multiple users, it must

mediate how file sharing and file protection is done

� The system can either allow a user to access the files of other users by
default or require that a user specifically grant access to its files

� Typical access rights are:

Read – read from the file

DCC-FCUP # 5

� Read – read from the file

� Write – write or rewrite the file

� Execute – load the file into memory and execute it

� Append – write new information at the end of the file

� Delete – delete the file and free its space for possible reuse

� List – list the name and attributes of the file



Operating Systems 2017/2018 Part VI – File System

File System Organization

� A storage device can be used entirety for a file system or subdivided into

partitions. Partitioning allows for:

� Multiple file-system types to be on the same device

� Specific needs where no file system is appropriate (raw partition), such as for
swap space or databases that want to format data according to their needs

� A entity containing a file system is generally known as a volume

DCC-FCUP # 6

� A entity containing a file system is generally known as a volume

� A volume may be a whole device, a subset of a device, or multiple devices
linked together

� The information about the file system in a volume is kept in the:

� Boot control bock

� Volume control block

� Directory structure



Operating Systems 2017/2018 Part VI – File System

File System Organization

� Boot control block

� Typically the first block of a volume which contains the info needed to boot an
OS from that volume (can be empty if volume does not contain an OS)

� Also called boot block in UFS and partition boot sector in NTFS

� Volume control block

DCC-FCUP # 7

� Contains volume details, such as total number of blocks, total number of free
blocks, block size, free block pointers, …

� Also called superblock in UFS and is part of the master file table in NTFS

� Directory structure

� Used to organize the directory and files

� Part of the master file table in NTFS



Operating Systems 2017/2018 Part VI – File System

File System Organization

Volume A
Disk 2

Disk 1

DCC-FCUP # 8

Volume B

Volume C

Disk 3

Disk 1



Operating Systems 2017/2018 Part VI – File System

Directory Overview

� The directory structure can be viewed as a symbol table that translates
file names into directory entries

� The directory itself can be organized in many different ways, but must:

� Allow to insert entries, to delete entries, to search for a named entry, and to
list all the entries in the directory

Be efficient (locate a file quickly)

DCC-FCUP # 9

� Be efficient (locate a file quickly)

� Be convenient to users (e.g., allow two users to have same name for different
files or allow grouping files by some characteristic)



Operating Systems 2017/2018 Part VI – File System

Tree-Structured Directories

� Tree of arbitrary height with a unique root directory and with every file with

a unique path name

DCC-FCUP # 10



Operating Systems 2017/2018 Part VI – File System

Tree-Structured Directories

� A directory contains a set of files and/or subdirectories

� A subdirectory can be seen as a common file that is treated in a special way

� Each process has a current (or working) directory

� When a reference to a file is made, the current directory is searched

Path names can be of two types:

DCC-FCUP # 11

� Path names can be of two types:

� Absolute path name – begins at the root and follows a path down to the

specified file, giving the directory names on the path (e.g., /spell/mail/exp)

� Relative path name – defines a path starting from the current directory (e.g.,

mail/exp if the current directory is /spell)



Operating Systems 2017/2018 Part VI – File System

Acyclic-Graph Directories

� Generalization of the tree-structured directory to allow directories to share

files and subdirectories

DCC-FCUP # 12



Operating Systems 2017/2018 Part VI – File System

Acyclic-Graph Directories

� A common way to implement shared files/subdirectories is to use links
(or shortcuts)

� A link is effectively a pointer (path name) to another file or subdirectory

� A link may be implemented as an absolute or a relative path name

� When a reference to a link is made, we resolve the link by following the

pointer to locate the real file/subdirectory

DCC-FCUP # 13

pointer to locate the real file/subdirectory

� A file/subdirectory can now have multiple absolute path names

� Can be problematic when traversing the file system to accumulate statistics

on all files or to copy all files to backup storage, since we do not want to
traverse shared structures more than once



Operating Systems 2017/2018 Part VI – File System

Acyclic-Graph Directories

� How to handle the deletion of shared files/subdirectories?

� It depends if links are symbolic links or hard (nonsymbolic) links

� Deletion with symbolic links

� The deletion of a link does not affect the original file/subdirectory (only the link
is removed)

DCC-FCUP # 14

� If original file/subdirector is deleted, the existing links turn invalid and are
treated as illegal file name (links become valid if another file/subdirectory with

the same name is created)

� Deletion with hard links

� We keep a counter of the number of references to a shared file/subdirectory

� Adding/deleting a link increments/decrements the counter

� When the count reaches 0, the file/subdirectory can be deleted since no
remaining references exist



Operating Systems 2017/2018 Part VI – File System

� A serious problem with a graph structure is the creation of cycles

General Graph Directory

� Might be difficult to detect if a
file/subdirectory can be deleted

� The reference count may not

be 0 even when it is no longer
possible to refer to a

file/subdirectory

DCC-FCUP # 15

file/subdirectory

� Some garbage collection
mechanism might be needed

to determine when the last
reference has been deleted

and the disk space can be
reallocated

� Problem can be avoided if we

only allow links to files and not
to subdirectories



Operating Systems 2017/2018 Part VI – File System

Open Files

� Typically, to manage open files, operating systems use two levels of
internal tables

� System-wide open-file table – contains process-independent information for
all open files

� Per-process open-file table – contains specific info for the files that a

process has open

DCC-FCUP # 16

� Most of the operations on files involve searching for the entry associated

with the named file

� To avoid this constant searching, many operating systems require that an

open() system call be made before a file is first used

� On success, the open() system call returns an index to the per-process
open-file table – called file descriptor in UNIX systems and file handle in

Windows systems – for subsequent use



Operating Systems 2017/2018 Part VI – File System

Open Files

� The system-wide open-file table stores per open file the following info:

� File control block (FCB) which contains information about the file so that the
system does not have to read this information from disk on each operation

� File-open count to indicate how many processes have the file open – allows

removal of FCB when the last process closes the file

� The per-process open-file table stores per open file the following info:

DCC-FCUP # 17

� The per-process open-file table stores per open file the following info:

� Reference to the appropriate entry in the system-wide open-file table

� Access mode in which the file is open

� File pointer to last read/write location



Operating Systems 2017/2018 Part VI – File System

Typical File Control Block

DCC-FCUP # 18



Operating Systems 2017/2018 Part VI – File System

In-Memory File System Structures

Opening a file

DCC-FCUP # 19

Opening a file

Reading from an open file



Operating Systems 2017/2018 Part VI – File System

File System Mounting

� Just as a file must be opened before it is used, a file system must be
mounted before it can be accessed

� The directory structure may be built out of multiple volumes, which must be
mounted to make them available within the file-system name space

� Volumes can be mounted at boot time or later, either automatically or

manually

DCC-FCUP # 20

� The mount procedure is straightforward, the operating system is given the

name of a volume and the mount point – the location within the file structure
where the new file system is to be attached

� Typically, a mount point is an empty directory



Operating Systems 2017/2018 Part VI – File System

File System Mounting

DCC-FCUP # 21

Unmounted volume After mounting volume on
mount point /users



Operating Systems 2017/2018 Part VI – File System

Virtual File System

� To simplify and modularize the support for multiple types of file
systems, most modern operating systems use a virtual file system

(VFS) layer

� The file-system interface, based on the open(), read(), write() and close()

calls, rather than interacting with each specific type of file system,

interacts only with the VFS layer

DCC-FCUP # 22

interacts only with the VFS layer

� Allows the same system call interface to be used with different types of file
systems

� Separates the file system interface from the file system implementation details

� The VFS then dispatches the calls to appropriate file system implementation
routines

� The VFS is based on a unique file-representation structure, called a vnode



Operating Systems 2017/2018 Part VI – File System

Virtual File System

DCC-FCUP # 23



Operating Systems 2017/2018 Part VI – File System

Designing the File System

� The direct-access nature of disks gives us flexibility in the implementation

of files but the key design problem is how to allocate files so that disk

space is utilized effectively and files can be accessed quickly

� File access patterns:

� Sequential access – bytes read/write in order (most file accesses are of this
flavor)

DCC-FCUP # 24

flavor)

� Random access – bytes read/write without order (less frequent, but still

important – don’t want to read all bytes to get to a particular point of the file)

� Usage patterns:

� Most files are small (for example, .doc, .txt, .c, .java files)

� A few files are big (for example, executables, swap, core files, …)

� Large files use most of the disk space and bandwidth to/from disk



Operating Systems 2017/2018 Part VI – File System

Designing the File System

� File system main goals:

� Maximize sequential access performance

� Efficient random access to file

� Easy management of files (growth, truncation, …)

� Three major methods of allocating disk space are in wide use:

DCC-FCUP # 25

� Three major methods of allocating disk space are in wide use:

� Contiguous allocation

� Linked allocation

� Indexed allocation



Operating Systems 2017/2018 Part VI – File System

Contiguous Allocation

� With contiguous allocation, each file occupies a set of contiguous
blocks on disk

� Disk addresses define a linear ordering on the disk

� Only starting location (block #) and length (number of blocks) are required

� Sequential access – we only need to keep a reference R to the last block

read since the next one to read is always R+1

DCC-FCUP # 26

read since the next one to read is always R+1

� Random access – given a block N of a file that starts at block B, we can

immediately access block B+N



Operating Systems 2017/2018 Part VI – File System

Contiguous Allocation

DCC-FCUP # 27



Operating Systems 2017/2018 Part VI – File System

Contiguous Allocation

� Advantages

� The number of disk seeks required for accessing contiguously allocated files
is minimal (disk head only needs to move from one track to the next when
reaching the last sector on a track)

� Problems

� Finding free space (first-fit, best-fit, worst-fit, …)

DCC-FCUP # 28

� Finding free space (first-fit, best-fit, worst-fit, …)

� Knowing file size beforehand (might be difficult to know)

� Hard to grow files (if we allocate too little space to a file, we may not be able
to extended it later)

� External fragmentation (requires regular use of defragmentation techniques to
compact all free space into one contiguous space)



Operating Systems 2017/2018 Part VI – File System

Linked Allocation

� With linked allocation, each file is a linked list of disk blocks (blocks

may be scattered anywhere on the disk)

� The directory contains a pointer to the first and last blocks of the file

� Each block contains pointer to next block

� Last block ends with nil pointer

DCC-FCUP # 29

� Sequential access – keep reference to last block read and follow the

pointers from block to block

� Random access – must follow N pointers until we get to the Nth block



Operating Systems 2017/2018 Part VI – File System

Linked Allocation

16

10

25

DCC-FCUP # 30

16

1 

25

-1 



Operating Systems 2017/2018 Part VI – File System

Linked Allocation

� Advantages

� Easy to grow and no need to know file size beforehand (a file can continue to
grow as long as free blocks are available)

� No external fragmentation (any free block can be used to satisfy a request,

consequently, it is never necessary to compact disk space)

� Problems

DCC-FCUP # 31

� Problems

� Less efficient sequential access support and very inefficient random access

support – each access to a block requires a disk read, and some require a
disk seek

� Requires space for pointers in data blocks (if a pointer requires 4 bytes out of

a 512-byte block, then 0.78% of the disk is wasted on pointers)

� Reliability can be a problem (a bug or disk failure might result in picking up a

wrong pointer, which could result in corrupting other parts of the file system)



Operating Systems 2017/2018 Part VI – File System

File-Allocation Table (FAT)

� FAT is an important variation of linked allocation

� Section at the beginning of each volume is set aside to contain the FAT

� Has one entry for each disk block and is indexed by block number

� Used as a linked list, the directory entry stores the first block of a file and then

each FAT’s block entry contains pointer to next block

DCC-FCUP # 32

� Advantages

� Requires no space for pointers in data blocks

� Free blocks can also be stored as a linked list

� Random access more efficient and really efficient if FAT cached in memory

� Problems

� Sequential access still less efficient even if FAT cached in memory



Operating Systems 2017/2018 Part VI – File System

File-Allocation Table (FAT)

DCC-FCUP # 33

FAT 

– 1



Operating Systems 2017/2018 Part VI – File System

Indexed Allocation

� With indexed allocation, each file has its own index block, which is an
array of disk block pointers

� The directory contains the address of the index block

� The Nth entry in the index block points to the Nth block of the file

� Sequential/random access – both require a first access to the index

block

DCC-FCUP # 34

block



Operating Systems 2017/2018 Part VI – File System

Indexed Allocation

DCC-FCUP # 35



Operating Systems 2017/2018 Part VI – File System

Indexed Allocation

� Problems

� Overhead of the index block

� If index block not enough, requires some sort of linked allocation

� This raises the question of how large the index block should be?

� On one hand, we want the index block to be as small as possible since every

DCC-FCUP # 36

� On one hand, we want the index block to be as small as possible since every

file requires an index block

� On the other hand, if the index block is too small, it will not be able to hold

enough pointers for larger files



Operating Systems 2017/2018 Part VI – File System

Indexed Allocation

� Schemes to allow for larger files:

� Linked scheme – links together several index blocks (no limit on file size)

� Multilevel index – a first-level index block points to a set of second-level
index blocks (could be continued to more levels), which in turn point to the file

blocks (limit on file size)

� UNIX inodes – combined scheme that uses some pointers as pointers to

direct blocks and the last three pointers as pointers to indirect blocks: the

DCC-FCUP # 37

direct blocks and the last three pointers as pointers to indirect blocks: the
first points to a single indirect block, the second points to a double indirect
block and the third points to a triple indirect block



Operating Systems 2017/2018 Part VI – File System

Indexed Allocation – Multilevel Index

� With 4,096 byte blocks, we

could store 1,024 four-byte
pointers in an index block

M

Directory entry

DCC-FCUP # 38

� Two levels of indexes allow
1,048,576 (1,024*1,024) data
blocks and a file size of up to

4 GB (4,096*1,048,576)

First-level
index block

Second-level
index blocks

File blocks



Operating Systems 2017/2018 Part VI – File System

Indexed Allocation – UNIX Inodes

� Under this method, the number of

blocks that can be allocated to a file

exceeds the amount of space

addressable by the 4-byte file pointers

used by most operating systems

DCC-FCUP # 39


