
Ricardo Rocha

Department of Computer Science

Faculty of Sciences

Operating Systems 2017/2018 Part VIII – Memory Management

Faculty of Sciences

University of Porto

Slides based on the book

‘Operating System Concepts, 9th Edition,

Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Wiley’

Chapter 8

Operating Systems 2017/2018 Part VIII – Memory Management

Background

� Memory (or main memory) consists of a large array of bytes each with

its own address

� The memory unit sees only a stream of memory addresses and it does not
know how they are generated or what they are for

� Memory and registers are the only storage CPU can access directly

Programs must be brought from disk into memory to be run

DCC-FCUP # 1

� Programs must be brought from disk into memory to be run

� CPU then fetches instructions from memory according to the program counter

� These instructions may cause additional loading/storing from/to specific

memory addresses

Operating Systems 2017/2018 Part VIII – Memory Management

Basic Hardware

� Most CPUs can decode instructions and perform simple operations on

registers at the rate of one or more operations per CPU clock tick

� Memory is accessed via a memory bus which may take several cycles
of the CPU clock tick

� Causes the CPU to stall when it does not have the data required to complete
the instruction that it is executing

DCC-FCUP # 2

the instruction that it is executing

� This situation is intolerable because of the frequency of memory accesses

� Cache sits between memory and CPU registers

� Typically built into the CPU chip and automatically managed by the hardware
in order to speed up memory access without any operating system control

Operating Systems 2017/2018 Part VIII – Memory Management

Memory Space

� Uniprogramming

� Applications always runs at same place in physical memory

� Applications can access any physical address

� No memory protection required since only one application at a time

� Multiprogramming

DCC-FCUP # 3

� Multiprogramming

� Applications can run in different physical memory locations (use linker/loader
to adjust addresses while program loaded into memory)

� Applications may not access all physical addresses (memory usually divided
into two partitions: (i) operating system, usually in low memory together with

the interrupt vector; (ii) user processes, usually in high memory)

� Memory protection required to prevent address overlap between processes

Operating Systems 2017/2018 Part VIII – Memory Management

Memory Protection

� Memory protection is required to ensure correct operation

� Protect operating system processes from access by user processes

� Protect user processes from one another

� Memory protection must be provided by the hardware

� Usually, the operating system does not intervene between the CPU and its

DCC-FCUP # 4

� Usually, the operating system does not intervene between the CPU and its

memory accesses because of the resulting performance penalty

� We need to ensure that each process has a separate memory space

� Separate per-process memory space protects the processes from each other

and is fundamental to having multiple processes loaded in memory for
concurrent execution

� To separate memory spaces, we need the ability to determine the range of
legal addresses that the process may access

Operating Systems 2017/2018 Part VIII – Memory Management

Base and Limit Registers

� A pair of registers define the address
space of a process:

� The base register holds the smallest
legal physical memory address

� The limit register specifies the size of

the range

DCC-FCUP # 5

� During context switch, OS uploads

base/limit registers from PCB

� User not allowed to change base/limit

registers

� Without this protection, bugs in any

program can cause other programs or

even the operating system to crash

Operating Systems 2017/2018 Part VIII – Memory Management

Hardware Address Protection

� Memory protection is accomplished by the CPU hardware by comparing

every address generated in user mode with the base/limit registers

� Any attempt by a process executing in user mode to access operating system
memory or other processes’ memory results in a trap to the operating system

� This prevents a user process from (accidentally or deliberately) modifying the

code or data structures of either the operating system or other processes

DCC-FCUP # 6

Operating Systems 2017/2018 Part VIII – Memory Management

Logical x Physical Address Space

� The concept of a logical address space that is bound to a separate

physical address space is central to proper memory management

� Logical address – address generated by the CPU

� Physical address – address seen by the memory unit

� The set of all logical addresses generated by a program is the logical
address space and the set of all physical addresses corresponding to

DCC-FCUP # 7

address space and the set of all physical addresses corresponding to

these logical addresses is the physical address space

� At compile time and load time, the address-binding scheme generates the

same logical and physical addresses

� At execution time, the address-binding scheme results in different logical

and physical addresses

Operating Systems 2017/2018 Part VIII – Memory Management

Memory Management Unit (MMU)

� The hardware device that at run time maps logical to physical
addresses is called the memory-management unit (or MMU)

� Many different methods to accomplish such mapping are possible

� To start, consider the following mapping scheme:

� The base register is now called a relocation register

DCC-FCUP # 8

� The value in the relocation register is added to every address generated by a

user process at the time the address is sent to memory

� The user program generates only logical addresses (in the range 0 to

Max) and never sees the real physical addresses (in the range B to

B+Max for a base value B)

� Execution time address-binding occurs when reference is made to location in

memory

Operating Systems 2017/2018 Part VIII – Memory Management

MMU Using a Relocation Register

DCC-FCUP # 9

Operating Systems 2017/2018 Part VIII – Memory Management

Memory Protection Revisited

� Relocation and limit registers can be used to prevent a process from

accessing memory it does not own

� Limit register contains the range of logical addresses (each logical address
must be less than the limit register)

� Relocation register contains the value of the smallest physical address

DCC-FCUP # 10

Operating Systems 2017/2018 Part VIII – Memory Management

Swapping

� What if not all processes fit in memory?

� Use an extreme form of context switch where some of the processes in
memory are temporarily swapped out of memory to a backing store

� Makes it possible for the total physical address space of all processes to

exceed the real physical memory of the system

� Backing store – commonly a fast disk large enough to accommodate

DCC-FCUP # 11

� Backing store – commonly a fast disk large enough to accommodate

copies of all memory images for all users

� A ready queue maintains the ready-to-run processes which have memory

images on the backing store

� Dispatcher – checks whether a process scheduled to run is in memory

� If it is not, and if there is no free memory region, the dispatcher swaps out a
process currently in memory and swaps in the desired process

� Context-switch time in such a swapping system is fairly high

Operating Systems 2017/2018 Part VIII – Memory Management

Swapping

� Major part of swap time is transfer time (we must swap both out and in)

� Total transfer time is directly proportional to the amount of memory swapped

DCC-FCUP # 12

Operating Systems 2017/2018 Part VIII – Memory Management

Swapping

� Does a swapped out process need to swap back in to the same physical

addresses?

� No, if using dynamic allocation to change the relocation register

� Can a process waiting for a pending I/O operation be swapped out?

� Yes, if we use double buffering and execute I/O operations only into kernel
buffers (transfers between kernels buffers and process memory buffers then

DCC-FCUP # 13

buffers (transfers between kernels buffers and process memory buffers then

occur only when the process is swapped back in)

� Modified versions of swapping are found on many systems (e.g., UNIX,

Linux, and Windows)

� In one common variation, swapping is normally disabled but will start if the

amount of free memory is extremely low

� Another interesting variation involves swapping only portions of processes –
rather than entire processes – to decrease swap time

Operating Systems 2017/2018 Part VIII – Memory Management

Contiguous Memory Allocation

� Contiguous memory allocation is one early method where each process
is contained in a single contiguous section of memory

� A simple scheme is to divide memory into several fixed-sized partitions

� Each partition contains exactly one process

� The degree of multiprogramming is bound by the number of partitions

DCC-FCUP # 14

� A generalization is the variable-partition scheme

� Each partition still contains exactly one process but it is sized to the process’

needs

� The kernel keeps a table indicating which parts of memory are occupied and

which are available (memory holes)

Operating Systems 2017/2018 Part VIII – Memory Management

Variable-Partition Scheme

� A possible algorithm for the variable-partition scheme is:

� When a process arrives, it is allocated memory from a hole large enough to
accommodate it (holes of various size can exist throughout memory)

� When a process exits, it frees its partition and adjacent free partitions are

combined in to larger holes

� Memory is allocated until no available hole is large enough to hold a process –

the kernel can then wait until a large enough block is available, or it can skip

DCC-FCUP # 15

the kernel can then wait until a large enough block is available, or it can skip
down the input queue to see whether some other process can be satisfied

OS

process 1

process 2

process 3

OS

process 1

process 3

OS

process 1

process 3

process 6
process 4

process 5

OS

process 4

process 3

process 5

Operating Systems 2017/2018 Part VIII – Memory Management

Variable-Partition Scheme

� The problem of accommodating a process in memory given a list of free

holes is a particular instance of the general dynamic storage-allocation
problem. There are many solutions to this problem:

� First-fit: allocate the first hole that is big enough (searching can start either at
the beginning of the set of holes or at the location where the previous search
ended)

� Best-fit: allocate the smallest hole that is big enough (must search entire list

DCC-FCUP # 16

� Best-fit: allocate the smallest hole that is big enough (must search entire list
unless the list is ordered by size; produces the smallest leftover hole)

� Worst-fit: allocate the largest hole (must also search entire list; produces the
largest leftover hole)

� Simulations have shown that:

� Both first-fit and best-fit are better than worst-fit in terms of speed and storage

� First fit is generally faster than best-fit

Operating Systems 2017/2018 Part VIII – Memory Management

Internal Fragmentation

� Internal fragmentation exists when the memory allocated to a process is

slightly larger than the requested memory

� This size difference is unused memory that is internal to a partition

� Happens as a result of trying to avoid the overhead of keeping track of

small holes

DCC-FCUP # 17

� Consider a hole of 1,000 bytes and a process requesting 998 bytes, we are
left with a small hole of only 2 bytes – better ignore hole than handle it

� A general approach to avoid small holes is to break the physical memory into
fixed-sized blocks and allocate memory in units based on block size

Operating Systems 2017/2018 Part VIII – Memory Management

External Fragmentation

� External fragmentation exists when there is enough total memory space

to satisfy a request but the available space is not contiguous

� Storage is fragmented into a large number of small holes

� In the worst case, we could have a hole between every two processes

� A possible solution is to shuffle memory to compact all free memory in
one single large hole

DCC-FCUP # 18

one single large hole

� Only possible if dynamic allocation, done at execution time, and we are using

double buffering for pending I/O operations

� Can be very expensive

� Another possible solution is to use noncontiguous memory allocation
schemes

� Segmentation and paging are two of those schemes

Operating Systems 2017/2018 Part VIII – Memory Management

Programmer View of Memory

� Programmers view memory as a

collection of separate variable-sized
logical units (or segments) with no
necessary ordering among them:

� main program

� procedures, functions

DCC-FCUP # 19

� objects, methods

� local variables, global variables

� stack

� symbol table

� arrays

Operating Systems 2017/2018 Part VIII – Memory Management

Segmentation

� Segmentation is a memory management scheme that fits the programmer

view of memory

� A logical address space is a collection of segments

� Each segment is given a region of contiguous memory (has a base and a
limit) and can reside anywhere in physical memory

S1

DCC-FCUP # 20

logical address space physical memory space

S1

S4S1

S4

S2S2

S3

S3

Operating Systems 2017/2018 Part VIII – Memory Management

Segmentation

� Each segment has an identifier (number) and a length

� Logical addresses (within a segment) consist of tuples of the form:

<segment<segment<segment<segment----number, offsetnumber, offsetnumber, offsetnumber, offset----withinwithinwithinwithin----segment>segment>segment>segment>

� A segment table maps two-dimensional logical addresses into one-

DCC-FCUP # 21

� A segment table maps two-dimensional logical addresses into one-

dimensional physical addresses. Each entry includes:

� Segment base – contains the starting physical address where the segment
resides in memory

� Segment limit – specifies the length of the segment

Operating Systems 2017/2018 Part VIII – Memory Management

Segmentation

DCC-FCUP # 22

Operating Systems 2017/2018 Part VIII – Memory Management

Segmentation Architecture

� Segment table resides in PCB

� Segment table base register (STBR) points to the segment table of the current
process

� Segment table length register (STLR) indicates number of segments in use for

the current process (segment number S is legal if S < STLR)

� When a context switch occurs, the STBR and STLR registers are updated to

the info in the new process’s PCB

DCC-FCUP # 23

the info in the new process’s PCB

� Segment table entries also includes protection data, such as:

� Validation bit (legal/illegal segment)

� Read/write/execute/sharing privileges

Operating Systems 2017/2018 Part VIII – Memory Management

Segmentation Architecture

DCC-FCUP # 24

Operating Systems 2017/2018 Part VIII – Memory Management

Sharing Segments

shared

shared

data1

DCC-FCUP # 25

shared

data1

data2

data2

Operating Systems 2017/2018 Part VIII – Memory Management

Managing Segments

� When a new process is loaded into memory:

� Create a new segment table and store it in the process’s PCB

� Allocate space in physical memory for all of the process’s segments

� If there’s no space in physical memory:

� Compact memory (move segments, update bases) to make contiguous space

DCC-FCUP # 26

� Compact memory (move segments, update bases) to make contiguous space

� Swap one or more segments out to disk

� To enlarge a segment S:

� If space above segment S is free, just update the segment’s limit and use

some of that space

� Move segment S to a larger free space

� Swap the segment above S to disk

Operating Systems 2017/2018 Part VIII – Memory Management

Managing Segments

� Advantages:

� Segments do not have to be contiguous

� Segments can be swapped independently

� Segments can be shared between different processes

� Disadvantages:

DCC-FCUP # 27

� Disadvantages:

� Suffers from the general dynamic storage-allocation problem (requires a
memory allocation scheme like first-fit, best-fit, worst-fit, …)

� Suffers from external fragmentation

Operating Systems 2017/2018 Part VIII – Memory Management

Paging

� Like segmentation, paging is another memory management scheme that

permits the physical address space of a process to be noncontiguous

� Compared to segmentation, paging:

� Makes allocation and swapping easier (no variable-size memory segments)

� Avoids external fragmentation

DCC-FCUP # 28

� No compaction required

� Because of its advantages, paging in its various forms is used in most

operating systems, from mainframes to smartphones

Operating Systems 2017/2018 Part VIII – Memory Management

Paging

� The basic idea is to organize memory in fixed size (power of 2) blocks

� Divide logical memory into fixed size blocks called pages

� Divide physical memory (and backing store) into blocks of same size called
frames

� To load a process of size N pages, need to find N free frames

DCC-FCUP # 29

� Pages do not have to be loaded into a contiguous set of frames

� Need to keep track of free frames

Operating Systems 2017/2018 Part VIII – Memory Management

Paging Model of Memory

� A page table keeps track of every page in a particular process

� Each entry contains the corresponding frame in physical memory

� Translates logical to physical addresses

DCC-FCUP # 30

Operating Systems 2017/2018 Part VIII – Memory Management

Address Translation Scheme

� Every logical address is divided into two parts:

� Page number (p) – index into the page table

� Page offset (d) – displacement within the page

� The base address in the page table combined with the page offset defines

the physical memory address that is sent to the memory unit

DCC-FCUP # 31

� If the size of the logical address space is 2m and a page size is 2nbytes

(m>n), then the high-order m−n bits of a logical address designate the

page number (p), and the n low-order bits designate the page offset (d)

Operating Systems 2017/2018 Part VIII – Memory Management

Paging Hardware

� Required hardware support is slightly less than for segmentation

� No need to keep track of, and compare to, limit

DCC-FCUP # 32

Operating Systems 2017/2018 Part VIII – Memory Management

Example: 4-byte Pages and 32-byte Memory

� Logical address 2 (page 0 – offset 2)

� Page table: page 0 � frame 5

� Maps to physical address 22 = 5*4+2

� Logical address 5 (page 1 – offset 1)

� Page table: page 1 � frame 6

DCC-FCUP # 33

� Page table: page 1 � frame 6

� Maps to physical address 25 = 6*4+1

� Logical address 15 (page 3 – offset 3)

� Page table: page 3 � frame 2

� Maps to physical address 11 = 2*4+3

Operating Systems 2017/2018 Part VIII – Memory Management

Sharing Pages

ed 2

ed 1

DCC-FCUP # 34

ed 3

Operating Systems 2017/2018 Part VIII – Memory Management

Paging: Internal Fragmentation

� Should pages be as big as our previous segments?

� No, can lead to lots of internal fragmentation

� Calculating internal fragmentation (example)

� Page size: 2,048 bytes

� Process size: 72,766 bytes = 35 pages + 1,086 bytes = 36 frames

DCC-FCUP # 35

� Process size: 72,766 bytes = 35 pages + 1,086 bytes = 36 frames

� Internal fragmentation: 2,048 – 1,086 = 962 bytes

� Worst case fragmentation

� N pages + 1 byte = N+1 frames

� Internal fragmentation: almost an entire frame

� On average fragmentation

� One-half page per process

Operating Systems 2017/2018 Part VIII – Memory Management

Paging: Page Size

� So, are small page sizes desirable?

� No, since each page table entry takes memory to track (this overhead is
reduced as the size of the pages increases)

� Also, disk I/O is more efficient when the amount of data being transferred is

larger

� Typically, today, pages are between 4 KB and 8 KB in size

DCC-FCUP # 36

� Typically, today, pages are between 4 KB and 8 KB in size

� Some systems support even larger page sizes

� Some other support multiple page sizes (e.g., Solaris uses page sizes of 8 KB
and 4 MB)

� Researchers are now developing support for variable on-the-fly page size

Operating Systems 2017/2018 Part VIII – Memory Management

Page Table Implementation

� Modern computers allow the page table to be very large

� Consider a 32 bit logical address space, if page size is 4KB (212) the page
table could have up to 220 (approximately 1 million) page entries, each maybe
4 bytes (22) long for a total memory for the page table of 4MB (222)

� The use of fast registers to implement the page table is not feasible, thus

the page table is also kept in the process’ logical memory

DCC-FCUP # 37

the page table is also kept in the process’ logical memory

� Page table base register (PTBR) points to the page table

� Page table length register (PTLR) indicates size of the page table

Operating Systems 2017/2018 Part VIII – Memory Management

Page Table Implementation

� Problem I: memory required to store the page table costs a lot

� Don’t want to allocate the page table contiguously in main memory

� Solution: hierarchical paging

� Problem II: every memory reference requires two (or more) memory

accesses

DCC-FCUP # 38

� One access for the page table entry and another for the actual physical

address

� Solution: translation look-aside buffer (TLB)

Operating Systems 2017/2018 Part VIII – Memory Management

Hierarchical Paging

� Break up the page table into a tree of page tables scheme in which each
page table is itself also paged

� Pros: only need to allocate as many page table entries as we need

� Size is proportional to usage, don’t need every 2nd-level tables for sparse
address spaces

Even when exist, if not in use, 2nd-level tables can reside on disk

DCC-FCUP # 39

� Even when exist, if not in use, 2nd-level tables can reside on disk

� Cons: every memory reference requires an extra memory access per

page table level

� Seems very expensive!

Operating Systems 2017/2018 Part VIII – Memory Management

Two-Level Page Table Scheme

PTBR

DCC-FCUP # 40

Operating Systems 2017/2018 Part VIII – Memory Management

Two-Level Page Table Scheme

� Consider again a 32-bit logical address space and a page size of 4 KB

� A logical address is divided into a page number consisting of 20 bits and a
page offset consisting of 12 bits

� Since the page table is paged, the page number is further divided into a

� 10-bit page offset (210 entries * 22 entry size (32 bits) = page size of 4 KB)

DCC-FCUP # 41

� 10-bit page number

� Thus, a logical address is as follows:

� p1 is an index into the outer page table

� p2 is the displacement within the page of the inner page table

Operating Systems 2017/2018 Part VIII – Memory Management

Address Translation Scheme

PTBR

DCC-FCUP # 42

Operating Systems 2017/2018 Part VIII – Memory Management

64-bit Logical Address Space

� For a 64-bit logical address space, a two-level paging scheme might be

no longer appropriate

� If the page size is 4KB (212), the page table consists of up to 252 entries

� A two-level paging scheme with 210 inner pages of 4-byte (22) entries, requires
an outer page table with 242 entries (244 bytes in size)

DCC-FCUP # 43

� One solution is to add a 2nd outer page table

� But the 2nd outer page table is still 234 bytes in size

� And possibly 4 memory access to get to one physical memory location!!!

Operating Systems 2017/2018 Part VIII – Memory Management

64-bit Physical Address Space

� For a 64-bit physical address space, inner pages consist of 8-byte (23)

size entries

� If the page size is 4KB (212), inner pages are represented by a 9-bit page
offset (29 entries * 23 entry size (64 bits) = page size of 4 KB)

� In practice, far fewer than 64 bits are used for address representation in

current modern architectures

DCC-FCUP # 44

current modern architectures

� For example, the x86-64 architecture implements a 48-bit address space

using four levels of paging hierarchy

Operating Systems 2017/2018 Part VIII – Memory Management

TLB: Translation Look-aside Buffer

� The page table memory access problem is solved by the use of a special

small fast-lookup hardware cache called translation look-aside buffer

� TLBs are typically small (between 64 to 1,024 entries in size)

� Each entry in the TLB consists of a key and a value

� Given an item to the TLB, the item is compared with all keys simultaneously
and if the item is found, the corresponding value field is returned

DCC-FCUP # 45

and if the item is found, the corresponding value field is returned

� TLB lookup is part of the instruction pipeline, adding no performance penalty

� A TLB contains only a few page table entries

� If the page number is found (TLB hit), its frame number is immediately

available and is used to access memory

� If the page number is not found (TLB miss), a memory reference to the page

table must be made and the page and frame number are then added to the
TLB for faster access next time

Operating Systems 2017/2018 Part VIII – Memory Management

Paging with TLB

DCC-FCUP # 46

Operating Systems 2017/2018 Part VIII – Memory Management

Effective Access Time (EAT)

� EAT = (Hit Ratio x Hit Time) + (Miss Ratio x Miss Time)

� Consider the following scenario:

� Hit Ratio = 80%

� TLB access time = 20 ns

� Memory access time = 100 ns

DCC-FCUP # 47

� Memory access time = 100 ns

� EAT = 0.8 * (20 + 100) + 0.2 * (20 + 100 + 100) = 96 + 44 = 140 ns

� Consider a more realistic scenario:

� Hit Ratio = 98%

� TLB access time = 20 ns

� Memory access time = 100 ns

� EAT = 0.98 * (20 + 100) + 0.02 * (20 + 100 + 100) = 117.6 + 4.4 = 122 ns

Operating Systems 2017/2018 Part VIII – Memory Management

Paging and Segmentation

� We can also combine paging and segmentation in two levels of mapping

� Process is view as a set of variable-size logical segments

� Each segment is then divided into fixed-size pages

� Logical addresses consist of tuples of the form:

<segment<segment<segment<segment----numbernumbernumbernumber,,,, pagepagepagepage----withinwithinwithinwithin----segment,segment,segment,segment, offsetoffsetoffsetoffset----withinwithinwithinwithin----page>page>page>page>

DCC-FCUP # 48

<segment<segment<segment<segment----numbernumbernumbernumber,,,, pagepagepagepage----withinwithinwithinwithin----segment,segment,segment,segment, offsetoffsetoffsetoffset----withinwithinwithinwithin----page>page>page>page>

� Implementation

� One segment table per process plus one page table per segment

� Avoids external fragmentation

� Sharing can happen at both levels

� Share a complete segment by having same base in two segment tables

� Share a frame by having same frame reference in two page tables

Operating Systems 2017/2018 Part VIII – Memory Management

Paging and Segmentation

Logical Address

STBR

Seg# Page# Offset Frame# Offset

DCC-FCUP # 49

Physical
Address

Main MemoryProgram Segmentation Paging

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Segmentation

1111 1111

Logical memory view

1100 0000

1111 1111

stack

Physical memory view

stack
1111 0000

STBR

DCC-FCUP # 50

code

data

0000 0000

0100 0000

1000 0000

#seg offset
0001 0000

0101 0000

0111 0000#seg base limit

11 1111 0000 1 0000

10 0111 0000 1 1000

01 0101 0000 10 0000

00 0001 0000 10 0000 code

data

0011 0000

1000 1000heap
heap

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Segmentation
Logical memory view

stack

Physical memory view

stack

base: 0111 0000

offset: 00 1100

#seg: 10

physical address: 0111 1100

Logical address: 1000 1100

DCC-FCUP # 51

code

data

1000 1100
0111 1100

#seg base limit

11 1111 0000 1 0000

10 0111 0000 1 1000

01 0101 0000 10 0000

00 0001 0000 10 0000 code

data

#seg base limit

11 1111 0000 1 0000

10 0111 0000 1 1000

01 0101 0000 10 0000

00 0001 0000 10 0000

physical address: 0111 1100

heap
heap

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Segmentation
Logical memory view

1001 1000

stack

Physical memory view

stack

free

used
1011 0000

No room to grow!!
Buffer overflow error

or
resize segment and

move segments
around to make room.

What happens if
heap grows to

1011 0000?

DCC-FCUP # 52

code

data

1000 0000

1001 1000

0111 0000#seg base limit

11 1111 0000 1 0000

10 0111 0000 1 1000

01 0101 0000 10 0000

00 0001 0000 10 0000 code

data

1000 1000

free

free

used

heap
heap

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Paging

1111 1111

Logical memory view

1100 0000

1111 1111

stack

Physical memory view

stack
1111 0000

11111 null

11110 null
11101 null

11100 null

11011 null
11010 null

11001 11111
11000 11110

10111 null

10110 null
10101 null

10100 null
10011 null

Page Table

PTBR

DCC-FCUP # 53

heap

code

data

0000 0000

0100 0000

1000 0000

#page offset
0001 0000

0101 0000

0111 0000

code

data

heap

0011 0000

1000 1000

10011 null

10010 10000

10001 01111
10000 01110

01111 null
01110 null

01101 null

01100 null
01011 01101

01010 01100
01001 01011

01000 01010

00111 null
00110 null

00101 null
00100 null

00011 00101

00010 00100
00001 00011

00000 00010

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Paging
Logical memory view

stack

Physical memory view

stack

11111 null

11110 null
11101 null

11100 null

11011 null
11010 null

11001 11111
11000 11110

10111 null

10110 null
10101 null

10100 null
10011 null

Page Table

offset: 100

#frame: 01111
offset: 100

#page: 10001

DCC-FCUP # 54

heap

code

data

1000 1100

0111 1100

code

data

heap

10011 null

10010 10000

10001 01111
10000 01110

01111 null
01110 null

01101 null

01100 null
01011 01101

01010 01100
01001 01011

01000 01010

00111 null
00110 null

00101 null
00100 null

00011 00101

00010 00100
00001 00011

00000 00010

offset: 100

Operating Systems 2017/2018 Part VIII – Memory Management

11111 null

11110 null
11101 null

11100 null

11011 null
11010 null

11001 11111
11000 11110

10111 null

10110 null
10101 null

10100 null
10011 null

10101 11010

10100 11001
10011 11000

heap

Recap: Paging
Logical memory view

1101 1111

stack

Physical memory view

stack

1100 0000

Page Table

1001 1000

What happens if
heap grows to

1011 0000?

1011 0000

Allocate new
pages where

room!

DCC-FCUP # 55

10011 null

10010 10000

10001 01111
10000 01110

01111 null
01110 null

01101 null

01100 null
01011 01101

01010 01100
01001 01011

01000 01010

00111 null
00110 null

00101 null
00100 null

00011 00101

00010 00100
00001 00011

00000 00010

10011 11000

heap

code

data

1000 0000

0111 0000

code

data

heap
1000 1000

1001 1000

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Two-Level Paging

1111 1111

Logical memory view

1100 0000

1111 1111

stack

Physical memory view

stack
1111 0000

111 null
110
101 null

11 null
10 null
01 11111
00 11110

11 null
10 10000
01 01111

Page Tables
(level 2)

Page Table
(level 1)

PTBR

DCC-FCUP # 56

heap

code

data

0000 0000

0100 0000

1000 0000

#page1 offset
0001 0000

0101 0000

0111 0000

code

data

heap

0011 0000

1000 1000

101 null
100
011 null
010
001 null
000

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

01 01111
00 01110

#page2

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Two-Level Paging
Logical memory view

stack

Physical memory view

stack

111 null
110
101 null

11 null
10 null
01 11111
00 11110

11 null
10 10000
01 01111

Page Tables
(level 2)

Page Table
(level 1)

#page1: 100

#page2: 01

offset: 100

DCC-FCUP # 57

heap

code

data

code

data

heap
1000 1100

0111 1100

101 null
100
011 null
010
001 null
000

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

01 01111
00 01110

offset: 100

#frame: 01111

Operating Systems 2017/2018 Part VIII – Memory Management

111 null
110
101 null

111 null
110
101

11 null
10 null
01 null
00 null heap

1101 1111

1100 0000

Recap: Two-Level Paging
Logical memory view

stack

Physical memory view

stack

11 null
10 10000
01 01111

Page Tables
(level 2)

Page Table
(level 1)

1001 1000

1011 0000

What happens if
heap grows to

1011 0000?

11 null
10 null
01 11010
00 11001

11 11000
10 10000
01 01111

DCC-FCUP # 58

101 null
100
011 null
010
001 null
000

101
100
011 null
010
001 null
000

heap

code

data

1000 0000

0111 0000

code

data

heap
1000 1000

01 01111
00 01110

1001 1000

Allocate new
pages where

room!

01 01111
00 01110

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Paging and Segmentation

1111 1111

Logical memory view

1100 0000

1111 1111

stack

Physical memory view

stack
1111 0000

Page TableSTBR

001
000

Page Table

DCC-FCUP # 59

heap

code

data

0000 0000

0100 0000

1000 0000

#seg offset
0001 0000

0101 0000

0111 0000

code

data

heap

0011 0000

1000 1000010 10000
001 01111
000 01110

Page Table

#page

STBR

#seg PTBR limit

11 1 0000

10 1 1000

01 10 0000

00 10 0000

011
010
001
000

Page Table

011
010
001
000

Page Table

Operating Systems 2017/2018 Part VIII – Memory Management

001
000

Recap: Paging and Segmentation
Logical memory view

stack

Physical memory view

stack

#seg: 10

#page: 001

offset: 100

offset: 100

#frame: 01111
Page Table

Page Table

DCC-FCUP # 60

heap

code

data

code

data

heap

#seg PTBR limit

11 1 0000

10 1 1000

01 10 0000

00 10 0000

1000 1100

0111 1100

011
010
001
000

Page Table

011
010
001
000

Page Table

010 10000
001 01111
000 01110

Page Table

Operating Systems 2017/2018 Part VIII – Memory Management

heap

Recap: Paging and Segmentation
Logical memory view

stack

Physical memory view

stack

1001 1000

1011 0000

What happens if
heap grows to

1011 0000?
1101 1111

1100 0000

Allocate new
pages where

room!

Page Table

101 null
100 null

Page Table

101 11010
100 11001

Grow page

DCC-FCUP # 61

heap

code

data

code

data

heap

#seg PTBR limit

11 1 0000

10 1 1000

01 10 0000

00 10 0000

1000 0000

1001 1000
010 10000
001 01111
000 01110

Page Table
100 null
011 null
010 10000
001 01111
000 01110

100 11001
011 11000
010 10000
001 01111
000 01110

11 0000

Grow
segment

limit!

Grow page
table!

Operating Systems 2017/2018 Part VIII – Memory Management

Recap: Paging with TLB
Logical memory view

stack

Physical memory view

stack

P1 F1

P2 F2
P3 F3

P4 F4
offset: 100

#frame: 01111

TLB

DCC-FCUP # 62

heap

code

data

1000 1100

0111 1100

code

data

heap

P4 F4

P5 F5
10001 01111

P6 F6
P7 F7

P8 F8

P9 F9

offset: 100

offset: 100

#page: 10001

TLB hit!

