
Miguel João Gonçalves Areias

On Applying Linear Tabling

to Logic Programs

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Setembro de 2010

Miguel João Gonçalves Areias

On Applying Linear Tabling

to Logic Programs

Dissertação submetida à Faculdade de Ciências da
Universidade do Porto como parte dos requisitos para a obtenção do grau de

Mestre em Ciência de Computadores

Orientador: Ricardo Jorge Gomes Lopes da Rocha

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Setembro de 2010

2

Dedicated to

Rita, my Parents and Bubba

3

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Ricardo Rocha,

whose encouragement, guidance and support shaped this research. His guidance

helped me, all the time, during the research and writing of the thesis. I could not

have imagined having a better advisor and mentor for my MSc study.

Besides my advisor, I would like to acknowledge Prof. Lúıs Lopes, Prof. Vı́ctor

Santos Costa, Prof. Inês Dutra and Prof. Fernando Silva, for their encouragement

and insightful comments made during my Msc course.

To all my fellow colleagues from the STAMPA project, João Santos, João Raimundo,

José Vieira and Flávio Cruz for their support and excellent work environment. Wish

you all the best for your professional and personal future.

To Jorge Torres, Śılvio Almeida and all friends, Professors and assistances from the

DCC-FCUP for creating a very good environment to study Computer Science.

Finally, I would like to thank my family and friends for all the support during the last

years, specially to Rita Pires and to my parents, João Areias and Margarida Areias

that believed, trusted and supported me even more than I could ever imagine. A peace

of each one of you is present in this work. Thank you all.

September 2010

Miguel Areias

4

Abstract

Logic programming languages, such as Prolog, are derived from Horn Clause Logic

and provide a well understood resolution based inference mechanism. Although Prolog

is a popular and successful language, its potential is limited by the SLD resolution

method on which it is based. SLD resolution was proven to be inefficient when

dealing with infinite loops and redundant subcomputations. Tabled evaluation is

a recognized and powerful technique that overcomes those limitations on traditional

Prolog systems based on SLD resolution. We can distinguish two main categories

of tabling mechanisms: suspension-based tabling and linear-based tabling. While

suspension-based mechanisms are considered to obtain better results in general, they

have more memory space requirements and are more complex and hard to implement

than linear tabling mechanisms.

The work presented on this thesis was focused on making a deep study about linear

tabling, in order to understand how different linear tabling strategies can affect the

evaluation flow of tabled programs and improve its overall performance. Arguably,

the SLDT and DRA strategies are the two most successful extensions to standard

linear tabled evaluation. In this work, we propose a new strategy, named DRS, and

we present a framework, on top of the Yap system, that supports the combination

of all these three linear tabling strategies. Our implementation shares the underlying

execution environment and most of the data structures used to implement tabling

in the YapTab engine, which is the actual suspension-based tabling mechanism of

the Yap Prolog system. All these common features allows us to make a first and

fair comparison between the linear tabling strategies, used solely or combined with

the other, and YapTab’s suspension-based mechanism, in order to better understand

the advantages and weaknesses of each feature. The obtained results confirmed that

suspension-based mechanisms have, in general, better performance than linear tabling

and that the difference between both mechanisms can be highly reduced by using the

correct combination of linear tabling strategies.

5

6

Resumo

As linguagens de Programação em Lógica que derivam da lógica de Horn, tal como o

Prolog, têm mecanismos de resolução baseados em inferência que são bastante conheci-

dos. Embora o Prolog seja uma linguagem com bastante sucesso, o seu potencial é lim-

itado pelo seu mecanismo de resolução, que é baseado na resolução SLD. O mecanismo

de resolução SLD foi provado ser bastante ineficiente quando avalia programas lógicos

que têm ciclos infinitos ou sub-computações redundantes. A tabulação é uma técnica

de implementação bastante reconhecida e poderosa que permite ultrapassar essas

limitações em sistemas de Prolog que são baseados na resolução SLD. Actualmente,

a técnica de tabulação pode ser dividida em dois grandes mecanismos: por suspensão

das pilhas de execução e por execução linear. Os mecanismos por suspensão das

pilhas de execução são considerados terem melhores resultados, no entanto eles têm

mais requisitos em termos de memória e são mais complexos de implementar do que

os mecanismos lineares.

O trabalho apresentado nesta tese pretende fazer um estudo aprofundado sobre os

mecanismos de tabulação linear, de forma a perceber como as diferentes estratégias

de tabulação afectam o fluxo de avaliação de um programa lógico e melhoram a per-

formance geral do sistema. As estratégias SLDT e DRA são duas das mais conhecidas

e bem sucedidas estratégias implementadas em sistemas de tabulação linear. Neste

trabalho, propomos uma nova estratégia, que foi denominada de DRS, e apresentamos

uma plataforma integrada, que suporta a combinação das três estratégias. A nossa

implementação partilha o ambiente de execução e a maioria das estructuras de dados

usadas pela máquina de execução do YapTab, que é o actual mecanismo de tabulação

baseado em suspensão de pilhas do sistema Yap Prolog. A combinação de todas

as estratégias e mecanismos na nossa plataforma permitiu-nos fazer uma primeira

comparação justa entre todas as estratégias lineares, usadas sozinhas ou combinadas,

e o mecanismo original do YapTab, de forma a perceber as vantagens e desvantagens de

cada um. Os resultados obtidos, confirmam que os mecanismos baseados em suspensão

7

têm, no geral, melhores resultados do que os mecanismos lineares, sendo que a diferença

entre os resultados de ambos os sistemas pode ser em grande parte reduzida através

da combinação correcta das melhores estratégias lineares.

8

Contents

Abstract 5

Resumo 7

List of Tables 15

List of Figures 19

1 Introduction 21

1.1 Thesis Purpose . 23

1.2 Thesis Outline . 24

2 Logic Programming and Tabling 27

2.1 Logic Programming . 27

2.2 The Prolog Language . 29

2.3 The Warren’s Abstract Machine . 32

2.4 Tabling on Prolog Systems . 36

2.4.1 General Idea . 38

2.4.2 Table Space . 40

2.4.3 Suspended Tabling vs Linear Tabling 41

2.4.4 Batched Scheduling vs Local Scheduling 43

9

2.4.5 An Example of a Tabled Evaluation 44

2.5 Chapter Summary . 46

3 Linear Tabling Strategies 47

3.1 Standard Linear Tabling . 47

3.2 Eliminating Repeated Generator Calls 51

3.3 Dynamic Reordering of Alternatives . 53

3.4 Dynamic Reordering of Solutions . 56

3.5 Dynamic Reordering of Execution . 58

3.6 Chapter Summary . 60

4 Implementation Details 61

4.1 Compilation of Tabled Predicates . 61

4.2 Generator and Consumer Nodes . 63

4.3 Subgoal Frames . 64

4.3.1 Looping Structures . 67

4.3.2 DRE Support . 69

4.3.3 Subgoal Frame Chains . 70

4.4 Tabling Instructions . 75

4.4.1 Tabling Instructions . 75

4.4.2 Fix-Point Check Operation . 82

4.5 Chapter Summary . 85

5 Batched Scheduling 87

5.1 Key Ideas . 87

5.2 Implementation Details . 90

5.3 Support for the DRE Optimization . 94

10

5.4 Chapter Summary . 96

6 Performance Analysis 97

6.1 Benchmarks . 97

6.2 Local Scheduling Results . 100

6.3 Batched Scheduling Results . 106

6.4 Comparison with YapTab . 111

6.5 Chapter Summary . 114

7 Conclusions and Future Work 115

7.1 Conclusions . 115

7.2 Future Work . 117

7.3 Final Remark . 118

A Path Tests 119

A.1 Local Scheduling . 119

A.2 Batched Scheduling . 123

B OpenRuleBench Tests 127

B.1 Local Scheduling . 127

B.2 Batched Scheduling . 130

B.3 Comparison with YapTab . 133

References 134

11

12

List of Tables

6.1 Running time ratios for local scheduling comparing standard linear

tabling against the several optimizations using the path problem (values

higher than 1.00 mean that the optimization is better) 101

6.2 Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the path problem for the Grid configu-

ration with depth 40 . 103

6.3 Running time ratios for local scheduling comparing standard linear

tabling against the several optimizations using the Warren tests (values

higher than 1.00 mean that the optimization is better) 104

6.4 Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the Warren tests 105

6.5 Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the path problem (values

higher than 1.00 mean that the optimization is better) 108

6.6 Statistics for batched scheduling comparing standard linear tabling against

the several optimizations using the path problem for the Grid configu-

ration with depth 40 . 109

6.7 Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the Warren tests (values

higher than 1.00 mean that the optimization is better) 110

6.8 Statistics for batched scheduling comparing standard linear tabling against

the several optimizations using the Warren tests 111

13

6.9 Running time ratios for local and batched scheduling comparing stan-

dard linear tabling against YapTab and the best linear optimization

using the path problem . 113

6.10 Running time ratios for local and batched scheduling comparing stan-

dard linear tabling against YapTab and the best linear optimization

using the Warren tests . 114

A.1 Running time ratios for local scheduling comparing standard linear

tabling against the several optimizations using the double definition of

the path problem (values higher than 1.00 mean that the optimization

is better) . 120

A.2 Running time ratios for local scheduling comparing standard linear

tabling against the several optimizations using the right definition of

the path problem (values higher than 1.00 mean that the optimization

is better) . 121

A.3 Running time ratios for local scheduling comparing standard linear

tabling against the several optimizations using the left definition of

the path problem (values higher than 1.00 mean that the optimization

is better) . 122

A.4 Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the double definition of

the path problem (values higher than 1.00 mean that the optimization

is better) . 123

A.5 Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the right definition of

the path problem (values higher than 1.00 mean that the optimization

is better) . 124

A.6 Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the left definition of the

path problem (values higher than 1.00 mean that the optimization is

better) . 125

14

B.1 Running time ratios for local scheduling comparing standard linear

tabling against the several optimizations using the transitive closure

with no query bindings (free-free version) OpenRuleBench problem

(values higher than 1.00 mean that the optimization is better) 127

B.2 Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query

bindings (free-free version) OpenRuleBench problem for Non-Cycle edges128

B.3 Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query

bindings (free-free version) OpenRuleBench problem for Cycle edges . . 129

B.4 Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the transitive closure

with no query bindings (free-free version) OpenRuleBench problem

(values higher than 1.00 mean that the optimization is better) 130

B.5 Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query

bindings (free-free version) OpenRuleBench problem for Non-Cycle edges131

B.6 Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query

bindings (free-free version) OpenRuleBench problem for Cycle edges . . 132

B.7 Running time ratios for local and batched scheduling comparing stan-

dard linear tabling against YapTab and the best linear optimization

using the transitive closure with no query bindings (free-free version)

OpenRuleBench problem for Non-Cycle and Cycle edges 133

15

16

List of Figures

2.1 Depth-first search with backtracking in Prolog 30

2.2 Correspondence between concepts used in Prolog and in imperative

programming languages . 31

2.3 WAM’s registers . 34

2.4 WAM’s memory organization and registers 34

2.5 Evaluation of path1 with edge1 . 37

2.6 Evaluation of (a) path1 with edge2 and (b) path1 with both edge functions 38

2.7 Generic tabled transformation for the path1 program 40

2.8 Grounding examples for a path/3 predicate 41

2.9 Using tries to represent the table space organization of a path/3 predicate 42

2.10 Evaluation of path1 program using linear tabling with local scheduling . 45

3.1 A standard linear tabled evaluation of the FTS program 48

3.2 Local stack configuration for the evaluation of Fig. 3.1 50

3.3 Evaluation of the FTS program using the ERGC optimization 52

3.4 Local stack configuration for the evaluation of Fig. 3.3 53

3.5 State transition graph for DRA evaluation 53

3.6 Evaluation of the FTS program using the combination of DRA with

ERGC . 55

17

3.7 Evaluation of the FTS program using the combination of DRS, DRA

and ERGC . 57

3.8 Evaluation of the FTS program using the combination of DRE, DRS,

DRA and ERGC . 59

3.9 Local stack configuration for the evaluation of Fig. 3.8 60

4.1 Structure of (a) generator and (b) consumer choice points in linear tabling 64

4.2 Table space organization for the FTS program 65

4.3 Basic structure of a subgoal frame . 66

4.4 A looping structure with three groups of buckets with five cells each . . 67

4.5 Using a looping structure to store alternative clauses 68

4.6 Using a looping structure to store alternative answers 69

4.7 Subgoal frame support for DRE optimization 71

4.8 Subgoal calls sequence for the example in Fig. 3.6 73

4.9 Leader detection and dependency propagation for the example in Fig. 3.6 74

4.10 Pseudo-code for the tabled new answer() operation 75

4.11 Pseudo-code for the tabled call() operation 77

4.12 Pseudo-code for the propagate dependencies() procedure 78

4.13 Pseudo-code for the init subgoal frame() procedure 79

4.14 Pseudo-code for the store generator node() procedure 80

4.15 Pseudo-code for the tabled retry() operation 81

4.16 Pseudo-code for the tabled trust() operation 81

4.17 Pseudo-code for the tabled fix-point check() operation 83

4.18 Pseudo-code for the evaluate next alternative() procedure 84

4.19 Pseudo-code for the free looping structures() procedure 86

5.1 Propagation of answers on a tabled evaluation using batched scheduling 89

18

5.2 Pseudo-code for the tabled new answer() operation with support for

batched scheduling . 90

5.3 Pseudo-code for the tabled call() operation with support for batched

scheduling . 92

5.4 Pseudo-code for the tabled fix-point check() operation with sup-

port for batched scheduling . 93

5.5 The DRE optimization with support for batched scheduling 95

6.1 The six versions of the path/2 predicate 98

6.2 Edge configurations for path definitions 99

6.3 An example of the Warren tests with depth 6 99

19

20

Chapter 1

Introduction

The main goal of a programming language is to enable the communication between

humans and machines in order to define problems and their general means to obtain

solutions. The first programing languages were machine languages. To communicate,

the programmer had to learn the psychology of the machine and to express problems in

machine-oriented terms. Higher-level languages, developed from machine languages,

through the provision of facilities for the expression of problems in terms closer

to their original conceptualization. It is believed that higher-level languages are

particularly helpful in developing succinct and correct programs that are easy to write

and understand. Logic programming languages, together with functional programming

languages, form a major class of languages, called declarative languages, and because

they are based on the predicate calculus, they have a strong mathematical base. Ar-

guably, Prolog is the most popular and powerful logic programming language. Prolog

gained its popularity mostly because of the success of the sophisticated compilation

technique and abstract machine known as the WAM (Warren’s Abstract Machine),

presented by David H.D. Warren in 1983 [36].

A Prolog program is a set of clauses (logical sentences) written in a subset of first-order

logic called Horn clause logic, that can be interpreted as if-statements. A predicate is

a set of clauses that defines a relation, i.e., all the clauses have the same name and

arity (number of arguments). Predicates are often referred by the pair name/arity.

The operational semantics of Prolog is given by SLD resolution, an evaluation strategy

particularly simple that matches current stack based machines particularly well, but

that suffers from fundamental limitations, such as in dealing with recursion and

redundant sub-computations. Tabling is a recognized and powerful implementation

21

22 CHAPTER 1. INTRODUCTION

technique that overcomes the limitations of traditional Prolog systems in dealing

with redundant sub-computations and recursion and that can considerably reduce

the search space, avoid looping and have better termination properties than SLD

resolution [5].

Tabling consists of storing intermediate answers for subgoals so that they can be reused

when a repeated subgoal appears during the resolution process. Tabling has become

a popular and successful technique thanks to the ground-breaking work in the XSB

Prolog system and in particular in the SLG-WAM engine [29], the most successful

engine of XSB. The success of SLG-WAM led to several alternative implementations

that differ in the execution rule, in the data-structures used to implement tabling,

and in the changes to the underlying Prolog engine. Implementations of tabling are

now widely available in systems like Yap Prolog, B-Prolog, ALS-Prolog, Mercury and

more recently Ciao Prolog. In these implementations, we can distinguish two main

categories of tabling mechanisms: suspension-based tabling and linear tabling.

Suspension-based tabling mechanisms need to preserve the computation state of sus-

pended tabled subgoals in order to ensure that all answers are correctly computed. A

tabled evaluation can be seen as a sequence of sub-computations that suspend and later

resume. The SLG-WAM [29] and the YapTab model [28] preserve the environment of

a suspended computation by freezing the stacks. The Mercury implementation [32]

and two alternative XSB-based models, the CAT [9] and the CHAT [10] models, copy

the execution stacks to separate storage. Two more recent approaches, implemented

in Yap [27] and Ciao Prolog [6], feature a higher-level implementation of suspension-

based tabling. They apply source level transformations to a tabled program and then

use external tabling primitives to provide direct control over the search strategy. In

these proposals, suspension is implemented by leaving a continuation call [23] for

the current computation in the table entry corresponding to the repeated call being

suspended.

On the other hand, linear tabling mechanisms use iterative computations of tabled

subgoals to compute fix-points. The main idea of linear tabling is to maintain a single

execution tree where tabled subgoals always extend the current computation without

requiring suspension and resumption of sub-computations. Two different linear tabling

proposals are the SLDT strategy of Zhou et al. [39], as originally implemented in B-

Prolog, and the DRA technique of Guo and Gupta [12], as originally implemented

in ALS-Prolog. The key idea of the SLDT strategy is to let repeated calls execute

from the backtracking point of the former call. The repeated call is then repeatedly

re-executed, until all the available answers and clauses have been exhausted, that

1.1. THESIS PURPOSE 23

is, until a fix-point is reached. The DRA technique is based on dynamic reordering

of alternatives with repeated calls. This technique tables not only the answers to

tabled subgoals, but also the alternatives leading to repeated calls. It then uses those

alternatives to repeatedly recompute them until reaching a fix-point.

There are two major scheduling strategies that can be used for both tabling mech-

anisms: local scheduling and batched scheduling [11]. The local scheduling strategy

allows a cluster of subgoals to return answers only after the fix-point has been reached.

The batched scheduling strategy schedules the program clauses in a depth-first manner

as does the WAM. It favors forward execution first, backtracking next, and consuming

answers or completion in last.

1.1 Thesis Purpose

With this thesis, we intended to create a common framework to support both linear-

based and suspension-based tabling mechanisms for the local and batched scheduling

strategies, in order to analyze the advantages and weaknesses of each mechanism.

Our framework shares the underlying execution environment and most of the data

structures already available to implement suspension-based tabling in Yap, known as

the YapTab engine [28]. In particular, we took advantage of YapTab’s efficient table

space data structures based on tries [22], which we used with minimal modifications.

Accordingly, our goal was to extend the current YapTab engine with new structures

and instructions that would allow the efficient implementation of linear tabling mech-

anisms. We begin the implementation, with the conceptual design of a standard

linear tabling system, and only afterwards we proceed with support for optimizations.

For that, we studied the optimizations already implemented on other linear tabling

systems, in order to select the ones to be implemented on our system and, as con-

sequence, we also propose a new strategy for the local scheduling strategy, which we

called Dynamic Reordering of Solutions (DRS).

Arguably, the SLDT [39] and DRA [12] strategies are the two most successful ex-

tensions to standard linear tabling evaluation. In our work, we present a new and

efficient implementation of both strategies. The innovation will be to consider that

both strategies schedule the re-evaluation of tabled calls in a similar manner to the

suspension-based strategies of YapTab [3].

As the SLDT, DRA and DRS strategies optimize different aspects of the evaluation,

24 CHAPTER 1. INTRODUCTION

they are, in principle, orthogonal to each other and thus it should be possible to

combine both in the same system. However, to the best of our knowledge, no single

Prolog system supports all strategies simultaneously. Our intention is then to have

a linear tabling framework that supports simultaneously all these optimizations, in

order to allow us to make a first and fair comparison between these different linear

tabling strategies and, therefore, better understand the advantages and weaknesses of

each, when used solely or combined with the others.

In order to better understand the results of the linear tabling mechanism and its

optimizations, we also created a engine’s component to gather statistical information

during the evaluation. This small component is only enabled when we are interested

in taking statistical information, thus it will not affect the performance of the system

during a normal evaluation.

1.2 Thesis Outline

This thesis is structured into seven chapters that reflect the work developed. Next,

follows a summary of the main ideas presented and discussed in each chapter.

Chapter 1: Introduction. The current chapter.

Chapter 2: Logic Programming and Tabling. Introduces the basic concepts of

Logic Programming and the Prolog language. The focus is them given to tabling

techniques applied to Prolog systems.

Chapter 3: Linear Tabling Strategies. Describes the key concepts behind stan-

dard linear tabled evaluation and its optimizations when using the local schedul-

ing strategy. The first section of this chapter presents a general evaluation that

uses the standard linear approach and the remaining sections present how that

evaluation changes accordingly to the different optimizations implemented on

the linear tabling system.

Chapter 4: Implementation Details. This chapter describes the main low-level

details involved in the implementation of the standard linear tabling engine and

its optimizations for the local scheduling strategy. It also describes, how the

different structures implemented on the system interact with each other.

Chapter 5: Batched Scheduling. Presents all the changes and low-level details

necessary to extend the system to support the batched scheduling strategy.

1.2. THESIS OUTLINE 25

Chapter 6: Performance Analysis. Analyzes the advantages and weaknesses of

each optimization implemented on the linear tabling system, when used solely

or combined with each other. It presents running time results and internal

statistics taken during the evaluation of a set of benchmark tests. The chapter

concludes with a comparison between our linear tabling system and YapTab’s

original suspension-based mechanism.

Chapter 7: Conclusions. Discusses the research and contributions made to the

state-of-the-art linear tabling systems and suggests directions for future work.

In order to lighten the results presented on chapter 6 and make it more reader friendly,

some details about the full results obtained were moved to the appendixes A and B.

In chapter 6, the reader can find more details about this situation.

26 CHAPTER 1. INTRODUCTION

Chapter 2

Logic Programming and Tabling

In order to make this thesis as most self-contained as possible, this chapter introduces

the basic concepts related with Logic Programming and the Prolog language. Since

tabling is the center topic of this thesis, focus will then be given to the state-of-the-art

tabling techniques for Prolog systems.

2.1 Logic Programming

Logic Programming roots were started mostly with Robinson in 1965, when he began

the research for an automated theorem proving tool, on his work about the Resolution

Principle [25]. The resolution principle is based on the induction principle “if the

implication A ⇒ B is true, then to prove B, it is sufficient to prove A”. The

expression Logic Programming was introduced afterwards by Kowalski, to designate

the use of logic as the theoretical base for computer programming languages [14].

Kowalski showed how SLD-resolution (Selected Linear Deduction) treats implications

as deduction procedures. Kowalski and Kuehner argued that SLD-resolution was the

best inference system for first order logic, because it fills the following criteria [15]:

• Admits few redundant deductions and limits those which are irrelevant to a

proof;

• Admits simple proofs ;

• Determines a search space which is amenable to a variety of methods for heuristic

search.

27

28 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

The completeness of SLD-resolution ensures that, by applying the SLD-resolution to

a theory (or computer program) and a query, is it possible to use the theory to search

for all solutions that satisfy the query [7, 2, 17].

Logic Programming is based on predicate calculus. An algorithm is seen as a set of

two disjoint elements: logic and control. The logic component corresponds to the

definition of the problem to be solved, while the control component, defines how the

solution can be reached. The programmer needs only to specify the logic component

of the algorithm, which is the problem to be solved, and leave the control of execution

to the Logic Programming system.

According to Kalrsson [13], Logic Programming has the following major features:

• Variables are logical variables which can be instantiated only once;

• Variables are untyped until instantiated;

• Variables are instantiated via unification, a pattern matching operation finding

the most general common instance of two data objects;

• At unification failure the execution backtracks and tries to find another way to

satisfy the original query.

Common literature, also recognizes that Logic Programming has the following advan-

tages [4]:

• Simple declarative semantics. A logic program is simply a collection of

predicate logic clauses.

• Simple procedural semantics. A logic program can be read as a collection of

recursive procedures. Clauses are tried in the order they are written and goals

within a clause are executed from left to right.

• High expressive power. Logic programs can be seen as executable specifica-

tions that despite their simple procedural semantics allow for designing complex

and efficient algorithms.

• Inherent non-determinism. Since in general several clauses can match a goal,

problems involving search are easily programmed in these kind of languages.

2.2. THE PROLOG LANGUAGE 29

These advantages lead to a more flexible programming style, in the sense that programs

are more easy to understand, transform and/or expand.

The basic data structures for logic programs are called terms. Terms can be constants,

variables or functors (functional terms). A functor can be identified by name and arity

(number of arguments). For example, f/n denotes the functional term f(t1, ..., tn),

where t1 to tn are themselves terms and called the arguments of f. Constants can

be considered functors with arity zero.

A literal is similar to a term, except that literals form individual goals to which a

truth value can be assigned.

A substitution (or unification) is a finite set (possibly empty) of pairs with the form

X = t, where X is a variable and t is a term, and there can be only one pair with X

on the left side of the equality.

A logic program is a finite set of clauses. Each clause has the logic form:

∀ ~X(A⇐ B1 ∧B2 ∧ ... ∧Bn)

where, A is called the head, B1 ∧B2 ∧ ...∧Bn is called the body, individual Bi’s are

called goals and ~X denotes the vector of variables present on the clause. If n = 0,

the clause is called a fact.

A computation of a logic program corresponds to logically deduct goals from the

substitution of a given query with program clauses. Queries, have the following logic

form:

∀ ~X(⇐ B1 ∧B2 ∧ ... ∧Bn)

where ~X denotes the vector of variables present on the query.

2.2 The Prolog Language

The Prolog language, which is one of the most popular Logic Programming languages,

has its origins in a software tool implemented by Colmerauer in 1972 at the Université

de Aix-Marseille, that was named PROgramation en LOGic [8].

Prolog is based on Horn clauses, which are defined as,

30 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

∀n ≥ 1(c(X) : −g1(Y), ..., gn(Z).)

for clauses with head and body, and

c(X).

for fact clauses. The symbol :- represents the implication⇐, the comma (,) represents

the conjunction symbol ∧. The X, Y and Z, represent the set (possibly empty) of

terms of each goal.

There are several Prolog implementations and models of execution. Pure and sequen-

tial Prolog’s execution consists in traversing a search tree in a depth-first left-to-right

form, as shown in the example of Figure 2.1.

starting point

Figure 2.1: Depth-first search with backtracking in Prolog

Non leaf nodes of the search tree represent stages of computation (choice points) where

alternative branches (clauses) can be explored, to satisfy program’s query, while leaf

nodes represent solution or fail nodes. When the computation reaches a non leaf

node and can not advance any further, Prolog starts the backtracking mechanism,

which consists in restoring the computation up to the previous node and schedule

an alternative unexplored branch. A programmer can optimize the default search

procedure by pruning the search tree through the use of the cut operator (!). Cut

allows programs to use less memory and to be faster, because it reduces the allocation

of backtracking nodes and the search space [35].

Some major characteristics of Prolog systems can be resumed as follows:

• It is a system oriented for symbolic processing.

2.2. THE PROLOG LANGUAGE 31

• Presents a declarative semantic inherent to logic.

• Supports iterative and recursive programs.

• Represents programs and data with the same formalism.

• Allows different answers for the same query.

When comparing performance with imperative languages, Prolog’s execution can be

seem as a natural generalization of the execution of imperative languages. The Prolog

language can be summarized as:

Prolog = imperative language + unification + backtracking

As in imperative languages, the execution flow is left to right within a clause. The

goals in the body of a clause are called like procedures. When a goal is called, the

program clauses which match with it, are chosen in the top-bottom textual order.

Figure 2.2 resumes the relation between concepts used in Prolog and in imperative

programming languages.

 Prolog Imperative Programming Languages

set of clauses program

predicate
procedure definition
nondeterministic case statement

clause
one branch of nondeterministic case statement
if statement
series of procedure calls

goal invocation procedure call

unification
parameter passing
assigment
dynamic memory allocation

backtracking
conditional branching
iteration
continuation passing

logical variable pointer manipulation

recursion iteration

Figure 2.2: Correspondence between concepts used in Prolog and in imperative

programming languages

32 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

In general, Prolog’s performance is lower than imperative languages, due to the extra

control and structures required by Logic Programming, but the trade-offs are good

enough for a logical and efficient programming style to be possible [19].

2.3 The Warren’s Abstract Machine

Most of the currently available Prolog systems are based on a sophisticated compilation

technique and abstract machine known as the WAM (Warren’s Abstract Machine).

The WAM was originally proposed by David H. D. Warren [36, 37] and its compiler

correctness was later formally verified by Pusch in the work [20].

The tutorial book on the WAM [1], describes the WAM as a sequence of engines

that incrementally support the different functionalities of a pure Prolog system. This

division in incremental engines, benefits the presentation and comprehension of all

the small tasks involved in the complex problem which is the implementation of a

Prolog system. The minimal engine is the abstract machine M0, which is only capable

of determining whether a goal unifies with a given term. The abstract machine M1

extends M0, by allowing programs with more than one fact and with at most one

fact per predicate name. The machine M2, which is the next stage, is capable of

compiling Prolog with conjunction rules (that is, with the form a0 : −a1, ..., an). The

machine M3, allows disjunctive definitions (more that one rule for each predicate), by

adding the backtracking mechanism. Finally, the complete Prolog system is reached,

by adding support for cuts, constants, lists and anonymous variables. Different Prolog

systems employ also various design optimizations, such as swapping final instructions

and/or avoiding the allocation of environments in special cases. The main goal behind

all these optimizations is to reduce the computation’s execution time and/or use as

less memory as possible.

At the implementation level, the WAM is defined by a set of data structures, a set of

registers and a set of low-level instructions.

Regarding the memory organization of the WAM, it is divided in seven logical data

structures: two stacks for data objects (the global and the local stacks), one stack

to support the interaction between the unification and the backtracking mechanisms

(the trail), one stack to support unification (the PDL), one stack for the code area,

one stack for the table of symbols and one array to store argument and temporary

registers.

2.3. THE WARREN’S ABSTRACT MACHINE 33

• Global stack or heap. It is an array of data cells used to represent compound

data terms, such as lists and structures.

• Local stack. It holds environments and choice points. Environments (also

known as local frames) store the variables that are local to a clause and the

continuation pointer. Choice points are used to store the current state of the

computation. This means that, whenever a predicate starts execution, a choice

point is allocated, with information of execution’s state up to that moment,

and with information about unexploited alternatives to be explored via the

backtracking mechanism.

• Trail. It is used to store the addresses of the variables which must be unbound

when backtracking occurs.

• Push-Down List (PDL). This stack is used by the unification process when

handling nested compound terms.

• Code area. This area contains the WAM compiled code of the programs loaded.

• Symbol table. Used to store information about the symbols, such as atoms or

structures. An example is the mapping between the internal representation of a

term and it’s printing name.

• Register’s array. Used to store the arguments of the calls made during the

evaluation and temporary registers.

The registers used to control WAM’s flow of execution are described in Fig. 2.3. The

purpose of most registers is straightforward, but some can be not so obvious. For

example, the HB register caches the value of H stored in the most recent choice point.

The S register is used during unification of compound terms (terms with arguments)

and points to the argument being unified. The arguments are accessed one by one

by successively incrementing this pointer. Some instructions have different behaviors

during read and write mode unification, and the mode flag is used to distinguish

between both situations.

Figure 2.4 shows the correspondence between registers and stacks. It also shows the

information stored by choice points, environments and data terms. The choice points

store all key registers needed to restore the computation and launch the alternative

program clauses, the backtracking registers used to put the computation on the

previous stage and the arguments of the present call. The environments store the

34 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

P
CP
E
B
A
TR
H
HB
S
Mode
A1,A2,...
Y1,Y2,...

Program counter
Continuation Pointer (top of return stack)
current Environment pointer (in local stack)
most recent Backtrack point (in local stack)
top of local stack (max between E and B)
top of TRail
top of Heap
Heap Backtrack point (in heap)
Structure pointer (in heap)
Mode flag (read or write)
Argument registers
temporary registers

Figure 2.3: WAM’s registers

current active choice point and the permanent variables, i.e., the variables that appear

in more than a body subgoal, for the current alternative clause.

Tn
...
T2
T1
F/ND

a
t
a

T
e
r
m

HB

S

H

global
stack
(heap)

C
h
o
i
c
e

P
o
i
n
t

E
n
v
i
r
o
n
m
e
n
t

B

E A

local
stack

TR

trail

PDL

push-down
list

P

code area
and

symbol table

H’
TR’
BP
B’
BCP
BCE
A1
...
An

CE
CP
Y1
Y2
...
Yn

CP

register’s array

.
.
.

An/Xn

An-1/Xn-1

A2/X2

A1/X1

Figure 2.4: WAM’s memory organization and registers

Regarding the low-level instruction set of the WAM, it can be divided into four major

groups. The most relevant instructions per group to be noticed are:

2.3. THE WARREN’S ABSTRACT MACHINE 35

• Choice point instructions. They allow the allocation/deallocation of choice

points and the recovery of the computation state stored on those choice points.

– try me else L: creates a choice point and sets L (label) as the next alter-

native for the choice point.

– retry me else L: recovers the computation’s state stored on the top most

choice point and updates the next alternative for the choice point to be L.

– trust me: recovers the computation’s state stored on the top most choice

point and removes the top-most choice point from the local stack.

– try L: creates a choice point, sets the next instruction as the next alterna-

tive for the choice point and moves the execution to L.

– retry L: recovers the computation’s state stored on the top most choice

point, updates the next alternative for the choice point to be the next

instruction and moves the execution to L.

– trust L: recovers the computation’s state stored on the top most choice

point, removes the top-most choice point from the local stack and moves

the execution to L.

• Control instructions. Used to allocate/remove environments and manage the

call/return sequence of subgoals.

– allocate/deallocate: used to create and remove environments, respec-

tively.

– call pred,N : calls the predicate pred and trims the current environment

size to N (N represents the number of permanent variables that should be

kept).

• Unification instructions. These instructions implement specialized versions

of the unification algorithm according to the position and type of the arguments.

– The get instructions are used for head unification with registers.

– The unify instructions are used for head unification with structure argu-

ments.

– The put and set instructions are used for loading argument registers just

before a call.

• Indexing instructions. These type of instructions accelerate the process of

determining which clauses unify with a given predicate. Depending on the first

36 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

argument of the call, they jump to specialized code that can directly index the

unifying clauses.

– The switch on term instruction is used to jump to specialized code ac-

cordingly to the type of term (being a variable, a constant, a list or a

structure).

– The switch on constant instruction indexes the clauses which match with

a constant term.

– The switch on structure instruction indexes the clauses which match

with a structure term.

2.4 Tabling on Prolog Systems

The Prolog language is based on the combination of the SLD-resolution mechanism

with linear top-down exploration of clauses defined in a program. This combination

can be incomplete for certain types of programs. The cause of this incompleteness is

the presence of recursive predicates during the evaluation of a program, because they

can lead to the infinite exploration of the same search space.

One well-known logic program which can lead to this behavior is the path problem.

Consider for example that, the predicate edge/2 defines the transition function of a

graph. The function edge1, defines a direct acyclic graph with three nodes and the

function edge2, defines a direct cyclic graph with two nodes. The functions path1 and

path2 are two equivalent forms of defining a generic path inside a graph.

edge1 =

{
edge(1, 2).

edge(2, 3).

edge2 =

{
edge(1, 2).

edge(2, 1).

path1 =

{
path(X, Z) : −edge(X, Y), path(Y, Z).

path(X, Z) : −edge(X, Z).

path2 =

{
path(X, Z) : −path(X, Y), edge(Y, Z).

path(X, Z) : −edge(X, Z).

Consider now that we would like to use both definitions of path, to evaluate on a

standard Prolog system, all the nodes we can reach on both graphs, starting from

2.4. TABLING ON PROLOG SYSTEMS 37

node 1. We will use then, the query goal path(1, Z) against path1 and path2. Both

path definitions are logically correct and equivalent, so it would be expectable to get

successful evaluations and equal solutions, when the evaluating ends. The solution set

of edge1 graph is {Z = 2,Z = 3} and the solution set of edge2 graph is {Z = 1,Z = 2}.

Figure 2.5 shows the evaluation tree of path1 with graph edge1. The Prolog system uses

the first clause from the path definition that matches the call and in the continuation

calls the subgoal path(2, Z). Then, it uses again the first matching clause and calls the

subgoal path(3, Z). This predicate don’t have any matching clause, so the computation

fails. This means, that the computation backtracks to the previous unexploited clause

and the evaluation reaches to the answer Z = 3. Then, the Prolog system backtracks

again to the previous unexploited clause, that matches subgoal path(1, Z) and the

evaluation reaches to the answer Z = 2. As there aren’t any unexploited clauses, all

the answers were found and the Prolog system finishes the evaluation. The result of

the evaluation was correct, because it matched the solution set.

?- path(1,Z).

edge(1,2),path(2,Z).

Z=3
(answer found)

edge(2,3),path(3,Z).

fail

edge(1,2).

edge(2,3). Z=2
(answer found)

Figure 2.5: Evaluation of path1 with edge1

Figure 2.6(a) shows the evaluation tree of path1 with edge2. The Prolog system uses

the first matching clause for the subgoal path(1, Z), the evaluation reaches to the

subgoal path(2, Z), which calls again the subgoal path(1, Z). This recursive call to

path(1, Z), defines a positive loop, but the Prolog system can not detect it, so the

Prolog system will start another evaluation of path(1, Z). This leads to the infinite

repetition of the same sub-computation, so the Prolog system will not find any solution.

Figure 2.6(b) shows the evaluation tree of path2 with edge1 and edge2. For both

graphs, the Prolog system starts again, by using the first clause which matches the

call path(1, Z), but it leads to predicate path(1, Y), which is a repeated call (also

38 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

known as a variant)1 to path(1, Z). Again, a positive loop is found, so the Prolog

system will not find any solution for this problem.

?- path(1,Z).

edge(1,2),path(2,Z).

positive
loop

edge(2,1),path(1,Z).

?- path(1,Z).

path(1,Y).

positive
loop

(a) (b)

Figure 2.6: Evaluation of (a) path1 with edge2 and (b) path1 with both edge functions

Therefore, we have seen that, when a Prolog system does not find positive loops during

the evaluation, it returns the correct solutions, but when it finds a positive loop, it

evaluates the same sub-computation infinitely without reaching to any solution.

This raises two major problems for standard Prolog systems. The first is that theory

ensures that the evaluation of Horn Clauses is complete, but the declarative advantage

of logic programs became dependent on the programmer’s capability of designing his

programs with clauses in the correct order. The second is that Prolog systems can not

be used in important applications, such as Deductive Databases.

The operational incompleteness of Prolog is a well known problem and several proposes

to improve Prolog’s declarativeness exist. Next we will discuss one of such proposals,

generically known as tabling (also known as tabulation or memoing) [18].

2.4.1 General Idea

The key idea of tabling is to use an auxiliary data space, the table space, to keep

track of the subgoal calls in evaluation and store, for each subgoal, the set of answers

which are found during program’s evaluation. Whenever a subgoal has a repeated call,

the subgoal is resolved by consuming answers from table space instead of executing

the program clauses. In the meantime, as new answers are found, they are added to

their tables and later returned to all repeated calls. By using answer resolution in

1Variant calls of a subgoal are calls which differ only on variable renaming.

2.4. TABLING ON PROLOG SYSTEMS 39

this manner instead of program resolution as usual, tabling based systems can avoid

looping and reduce the search space of programs [5].

The OLDT was one of the first approaches used to supply the incompleteness of

standard Prolog systems. It was presented by Tamaki and Sato, and combines the use

of OLD resolution with a tabling technique [34]. The SLG resolution [5], implemented

after OLDT, is another tabling mechanism that has been gaining popularity, since its

implementation on the XSB Prolog system [24, 30].

The XSB design uses an adapted version of the standard WAM, called SLG-WAM [29],

that extends SLD-resolution with new tabling related structures. The SLG-WAM

defines nodes in a different way from the WAM. Nodes are defined as generators if they

correspond to first calls of tabled subgoals, consumers if they correspond to repeated

calls to tabled subgoals, and interior if they correspond to non-tabled subgoals.

Concerning the compilation of tabled logic programs, when a tabled program is loaded

in a Prolog system supporting tabling, the parsing phase will search for table p/n

declarations. These declarations indicate that calls to predicate p/n are to be executed

using tabled evaluation. Thus, these predicates are compiled with specific tabling

instructions that will allow the tabling component of the system to have extra control

over the program’s flow of execution. The most important tabling instructions are:

• Tabled Subgoal Call (tsc). Checks if a call is the first call for a subgoal.

If so, it allocates a generator node and adds a new entry to the table space.

If the subgoal is already in the table space, this means that it is not the first

call, so this instruction allocates a consumer node and resolves the subgoal by

consuming the available answers.

• Tabled New Answer (tna). Checks if an answer found for a particular

subgoal is new or repeated. If the answer is new, it is inserted in the table space

and the evaluation proceeds accordingly with the scheduling strategy (this will

be discussed in more detail next). Otherwise, if the answer is repeated, the

operation fails.

• Tabled Fix-point Check (tfc). Determines whether a fix-point was reached.

When this is the case, the subgoal is marked as completed, otherwise it will be

scheduled for another re-evaluation. A fix-point is reached when no unexploited

answers are available for consumers and generators can not produce any new

answers.

40 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

The Tabled Subgoal Call instructions are an extension of the original WAM choice

point instructions, while the Tabled New Answer and Tabled Fix-point Check

instructions were created exclusively for tabling support. Using this terminology,

Fig. 2.7 shows the generic transformation of the original path1 program into a program

using tabled evaluation.

path(X,Z):-edge(X,Y),path(Y,Z).
path(X,Z):-edge(X,Z).

 path(X,Z):-tsc(tpath(X,Z)).
 tpath(X,Z):-edge(X,Y),path(Y,Z),tna(path(X,Z)).
 tpath(X,Z):-edge(X,Z),tna(path(X,Z)).
 tpath(X,Z):-tfc(path(X,Z)).

:-table path/2.

Figure 2.7: Generic tabled transformation for the path1 program

After transformation, the path/2 predicate remains only on one clause, this clause

will work as an entry point to the new auxiliary predicate (tpath/2) representing the

transformed predicate. This new predicate holds three clauses, the first two are the

extension of the original path/2 clauses with the tna instruction (this will allow the

detection of all answers found on each clause) and the third clause is used to execute

the tfc instruction.

2.4.2 Table Space

The table space is a key component of a tabling engine. The overall performance of

a tabling system can be directly affected, if the basic operations that manipulate the

table space are not implemented efficiently. Typically, the table space can be accessed

to look up for tabled subgoals (and tabled answers) and to consume answers present

on each tabled subgoal. Currently there are two major implementations: the B-Prolog

system uses hash tables [39] and the YapTab and XSB Prolog systems, use tries [26]

based on the proposal made by I. V. Ramakrishnan et al. [21, 22]. The hash tables

are expected to be slower than tries for complex terms, since tries provide a complete

2.4. TABLING ON PROLOG SYSTEMS 41

discrimination of terms, permitting the lookup and possibly insertion to be performed

in a single pass through a term [39].

Lets now analyze in more detail, how the tabling engine interacts with the table space.

When a tabled call is made, the first operation is to ground the call. This grounding

of the call makes it possible to distinguish between first calls and repeated calls to the

same predicate. Figure 2.8 shows some grounding examples for a path/3 predicate.

The non-variable terms present on the predicate remain unchanged, but the variables

are abstracted and numbered by order of appearance.

Original Tabled Call Grounded Tabled Call

path(X,Y,Z) path(VAR0,VAR1,VAR2)

path(a,X,Y) path(a,VAR0,VAR1)

path(X,X,X) path(VAR0,VAR0,VAR0)

path(f(X),Y,X) path(f(VAR0),VAR1,VAR0)

path(a,b,c) path(a,b,c)

Figure 2.8: Grounding examples for a path/3 predicate

Then, the next step is to integrate the grounded call on the table space. The inte-

gration depends on whether the call is made via the tsc instruction or via the tna

instruction. For the tsc instruction, the tabling engine performs a search over the calls

already in table space in order to check if the call is already there. If it is a first call

then a new entry is created. Otherwise, it is a repeated call, so the call is scheduled for

answer consumption. For the tna instruction, the tabling engine searches the answers

in the table space for the corresponding tabled call and if it is a new answer, it is

added to table space. Using YapTab’s organization based on tries, Fig. 2.9 shows the

table space organization for a path/3 predicate.

The table space is organized in two level of tries. The top level (subgoal trie structure)

is used to store the subgoal calls. The lower level (answer trie structures) is used to

store the answers for each subgoal call.

2.4.3 Suspended Tabling vs Linear Tabling

The implementation of tabling engines on Prolog systems is actually based in two

major paradigms: suspension-based tabling and linear-based tabling.

42 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

path/3

Subgoal Call
 path(VAR0,VAR0,VAR0)

Subgoal Call
 path(VAR0,VAR1,VAR2)

Subgoal Call
 path(a,VAR0,VAR1)

Subgoal Call
 path(a,b,c)

Answer Trie
Structure

Answer Trie
Structure

Answer Trie
Structure

Answer Trie
Structure

VAR0 a f

VAR0 VAR1

VAR0 VAR2

VAR0 b

VAR1 c

VAR0

VAR1

Subgoal Call
 path(f(VAR0),VAR1,VAR0)

Answer Trie
Structure

VAR0

Figure 2.9: Using tries to represent the table space organization of a path/3 predicate

Suspension-based tabling mechanisms keep the execution stacks, of the sub-computa-

tions corresponding to consumer nodes, in order to resume them as new answers

are found for the tabled subgoals involved on those sub-computations. Since this

mechanism avoids the evaluation steps required to put the computation on the same

state where those sub-computations were suspended (as it can directly restore the

suspended stacks), it has the advantage of reducing the execution time of a program.

There are however two major drawbacks for this mechanism. The first, is that it is

considered to be hard to implement. The second is on the memory side, as it requires

extra usage of memory on stacks. In fact, as memory resources are finite, it is possible

to have programs with intensive usage of memory, that cannot be computed because

of the extra burden caused by the additional resources needed to keep all the sub-

computations on the stacks. Since the first implementation of a suspension based

mechanism [29], different approaches were found to reduce memory overheads. The

Mercury implementation [32] and two alternative XSB-based models, the CAT [9]

and the CHAT [10] models, copy the execution stacks to a separate storage place.

Two more recent approaches, implemented in Yap [27] and Ciao Prolog [6], feature

a higher-level implementation of suspension-based tabling. They apply source level

transformations to a tabled program and then use external tabling primitives to

provide direct control over the search strategy.

On the other hand, the linear tabling mechanisms use iterative computations of tabled

subgoals to compute fix-points. The basic idea of linear tabling is to maintain a single

execution tree where tabled subgoals always extend the current computation without

2.4. TABLING ON PROLOG SYSTEMS 43

requiring suspension and resumption of sub-computations. Two different optimization

proposals are the SLDT strategy of Zhou et al. [39], as originally implemented in B-

Prolog, and the DRA technique of Guo and Gupta [12], as originally implemented

in ALS-Prolog. The key idea of the SLDT strategy is to let repeated calls execute

from the backtracking point of the former call. The repeated call is then repeatedly

re-executed, until all the available answers and clauses have been exhausted, that is,

until a fix-point is reached. Current versions of B-Prolog implement an optimized

variant of this strategy which tries to avoid re-evaluation of looping subgoals [38].

The DRA technique is based on dynamic reordering of alternatives with repeated

calls. This technique tables not only the answers to tabled subgoals, but also the

alternatives leading to repeated calls (looping alternatives). It then uses the looping

alternatives to repeatedly recompute them until reaching a fix-point. We will discuss

these optimizations in more detail in the following chapters.

2.4.4 Batched Scheduling vs Local Scheduling

The decision about the evaluation flow is determined by the scheduling strategy.

Different strategies may have a significant impact on performance, and may lead to

a different ordering of solutions to the query goal. Arguably, the two most successful

tabling scheduling strategies are batched scheduling and local scheduling [11].

Batched scheduling schedules the program clauses in a depth-first manner as does the

WAM. It favors forward execution first, backtracking next, and consuming answers or

completion last. It thus tries to delay the need to move around the search tree by

batching the return of answers. When new answers are found for a particular tabled

subgoal, they are added to the table space and the execution continues. For some

situations, this results in creating dependencies to older subgoals, therefore enlarging

the current SCC (Strongly Connected Component) [29] and delaying the completion

point to an older generator node.

On the other hand, the local scheduling strategy allows a cluster of subgoals to return

answers only after the fix-point has been reached [11]. In other words, only one SCC

is evaluated at each time. Whenever a new answer is found, it is added to the table

space and the computation fails to the top most choice point, which is the one that

is being evaluated. Tabled subgoals inside an SCC only propagate their answers to

outside the SCC, after their completion, which occurs when SCC’s fix-point is found.

Local scheduling causes a sooner completion of subgoals, which creates less complex

44 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

dependencies between them. We will discuss both strategies in more detail next.

2.4.5 An Example of a Tabled Evaluation

In order to completely understand how the tabling mechanism changes the evaluation

flow of a program in order to overcame the problem of recursive calls to the same

subgoal, we next show on Fig. 2.10, the tabled evaluation of the path1 program with

the edge1 transition function, using linear tabling with local scheduling. The figure is

divided into three different areas:

• The tabled program. It shows the transformed program of Fig. 2.7 in con-

junction with a graph defined by two edge/2 facts. The c1, c2, c3, c4, c5 and

c6 labels represent the six program clauses.

• The table space. It shows all the subgoal calls and answers found during the

evaluation. The additional field state is used to distinguish between the three

possible situations a subgoal can be during evaluation: when the subgoal has to

explore the program clauses (ready), when it has to consume answers from table

space (evaluating) and when it is completely evaluated (complete).

• The evaluation tree. It details all the computational steps of the program’s

evaluation. Black oval boxes represent generator choice points and white oval

boxes represent consumer choice points. The numbers on the left side of two

dots, indicate the current computational step.

Lets analyze the most important computational steps of the example. The evaluation

starts with the query call path(1,Z). Since this is the first appearance of subgoal

path(1,Z), the tsc instruction allocates a new generator choice point, adds an entry

for this subgoal to the table space and sets the subgoal’s state to evaluating (step 1).

The evaluation proceeds as a standard Prolog system, which means using a depth-first

left-most strategy. So, it proceeds with the exploration of the first matching clause,

which is c2. Step 2 explores the non-tabled predicate edge/2 and the evaluation

reaches to the subgoal call path(2,Z). As this is the first appearance of the subgoal

path(2,Z), a new generator choice point is allocated and a new entry is added to the

table space (step 3). On step 5, the evaluation reaches to a repeated call of subgoal

path(1,Z). In this situation, the tsc instruction marks path(2,Z) as depending on

path(1,Z) and allocates a new consumer node. But as path(1,Z) does not have any

2.4. TABLING ON PROLOG SYSTEMS 45

1: path(1,Z)

Call Solutions

 path(X,Z):-tsc(tpath(X,Z)). (c1)
 tpath(X,Z):-edge(X,Y),path(Y,Z),tna(path(X,Z)). (c2)
 tpath(X,Z):-edge(X,Z),tna(path(X,Z)). (c3)
 tpath(X,Z):-tfc(path(X,Z)). (c4)
 edge(1,2). (c5)
 edge(2,1). (c6)

State

1:tsc(tpath(1,Z))

2: edge(1,Y),path(Y,Z),tna(path(1,Z))

 1: evaluating
56: complete

c2

3: path(2,Z),tna(path(1,Z))

c5

3: path(2,Z)

 3: evaluating
16: ready
18: evaluating
36: ready
56: complete

3:tsc(tpath(2,Z))

4: edge(2,Y),path(Y,Z),tna(path(2,Z))

c2

5: path(1,Z),tna(path(2,Z))

c6

7: edge(2,Z),tna(path(2,Z))

c3

8: tna(path(2,1))
(new answer)

c6

 8: Z=1
23: Z=2

10: tfc(path(2,Z))
c4

Z=1

11:tna(path(1,1))
(new answer)

11: Z=1
14: Z=2

13: edge(1,Z),tna(path(1,Z))

c3

14: tna(path(1,2))
(new answer)

c5

16,36,56: tfc(path(1,Z))
c4

17: edge(1,Y),path(Y,Z),tna(path(1,Z))

c2

18: path(2,Z),tna(path(1,Z))

c5

Z=1

29:tna(path(1,1))
(repeated answer)

18:tsc(tpath(2,Z))

19: edge(2,Y),path(Y,Z),tna(path(2,Z))

c2

20: path(1,Z),tna(path(2,Z))

c6

25: edge(2,Z),tna(path(2,Z))

(repeated answer)

c3

26: tna(path(2,1))

c6

28: tfc(path(2,Z))
c4

6: fail
(no answers)

21: tna(path(2,1))
(repeated answer)

Z=1 Z=2

23: tna(path(2,2))
(new answer)

33: edge(1,Z),tna(path(1,Z))

(repeated answer)

c3

34: tna(path(1,2))

c5

37-55:...

31:tna(path(1,2))
(repeated answer)

Z=2

9: fail
(local scheduling)

12: fail
(local scheduling)

15: fail
(local scheduling)

22: fail 24: fail
(local scheduling)

27: fail

30: fail 32: fail

35: fail

Figure 2.10: Evaluation of path1 program using linear tabling with local scheduling

answer on the table space, the computation fails (step 6). As the top most choice point

is a consumer node, the backtracking mechanism pops off the choice point and marks

46 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

the second matching clause of the subgoal path(2,Z) for exploration. The clause c3 is

explored and the tna instruction adds the first answer (Z=1) to the table entry of the

subgoal path(2,Z) (step 8). Since the evaluation is using local scheduling, the tna

instruction fails (step 9) and the computation jumps to the fix-point check instruction

(step 10). The tfc instruction checks if path(2,Z) depends on any other subgoal,

and as this is the case, it converts the generator choice point into a consumer choice

point and starts consuming the available answers on the table space for path(2,Z).

The answer Z=1 is thus propagated to subgoal path(1,Z) and the tna instruction

inserts it in the table entry for path(1,Z) (step 11) and fails again for the same

reason (step 12). The second matching clause for path(1,Z) is explored on step 13

and the answer Z=2 is found. The tna instruction fails again (step 15), so evaluation

checks for a fix-point (step 16). Since subgoal path(2,Z) depends on path(1,Z), the

subgoal path(1,Z) is the leader of the SCC. This means that subgoal path(1,Z) is

responsible for completing the SCC or scheduling it for a new re-evaluation. As new

answers were found during the current round, the tfc instruction marks the SCC

for a new re-evaluation and sets the state of subgoal path(2,Z) as ready. On step

18 the state of path(2,Z) moves again to evaluating and on step 23, the answer

Z=2 is found and added to table space of subgoal path(2,Z). On step 36, the SCC is

re-scheduled for another re-evaluation. This last round does not find any new answer,

so the subgoal path(1,Z) completes the SCC by marking both subgoals as complete.

The evaluation of path1 program is thus completed at step 56. All the branches of the

search space were completely explored and consequently all the answers were found.

2.5 Chapter Summary

This chapter introduced several important concepts about Logic Programming and

the implementation of Prolog systems. It discussed some well-known and important

limitations of Prolog systems in order to motivate for the appearance of tabling

mechanisms. Focus was then given to tabled evaluations, using different scheduling

policies and paradigms which will be described on the next chapters in more detail.

Chapter 3

Linear Tabling Strategies

This chapter describes the key ideas behind standard linear tabled evaluation and its

optimizations. The first section introduces the standard approach of linear tabling

and the next sections present four different optimizations, that can be used alone

or combined with each other, to reduce the search space of the standard approach.

The first optimization tries to reduce the total number of choice points during the

evaluation, the second and third try to reduce the total number of branches to be ex-

plored (alternatives and answers respectively) and the last optimization, concentrates

on dynamically reordering the evaluation. As the focus of the chapter is to describe

the key ideas behind these strategies, all the low-level details will be left aside for the

next chapter.

3.1 Standard Linear Tabling

The standard linear tabling mechanism uses a naive approach to evaluate tabled logic

programs. Every time a new answer is found during the last round of an evaluation

over the current SCC, the complete search space of the SCC is schedule for a new

round of re-evaluation. Figure 3.1 presents how standard linear tabling works through

an example.

The example corresponds to the evaluation of a logic program, which we called FTS

(Find the Three Solutions), that we will use during this chapter to introduce our

optimizations. The objective of the FTS program is to get all the solutions for the

query call a(X). The solution set of the program is {X = 1, X = 2, X = 3}. The

47

48 CHAPTER 3. LINEAR TABLING STRATEGIES

program was specifically designed to create a small SCC with the necessary conditions

to apply the optimizations which will be presented on the next sections. First, lets

analyze its evaluation, using standard linear tabling with local scheduling strategy.

c4

c5

c3

28,73,118: fix-point check

9: fix-point check

1: a(X)

2: b(X)

 5: X=1
 7: X=3
 35: X=2
118: complete

Call Solutions

1: a(X)

 22: X=1
 24: X=3
 26: X=2
118: complete

26: X=2
(new ans)

2: b(X)

5: X=1
(new ans)

3: a(X)

52: b(X)

c3

71: X=2
(repeated answer)

c1

74-117: ...

c1

14: b(X)

22: X=1
(new ans)

:-table a/1,b/1.
a(X):-b(X),X is 3,a(Y). (c1)
a(X):-b(X). (c2)
a(2). (c3)
b(X):-a(X). (c4)
b(1). (c5)
b(3). (c6)

4: fail
(no ans)

6: fail
(loc sch)

23: fail
(loc sch)

27: fail
(loc sch)

72: fail

7: X=3
(new ans)

8: fail
(loc sch)

24: X=3
(new ans)

25: fail
(loc sch)

c4

c5

21: fix-point check14: b(X)

17: X=1
(rep ans)

15: a(X) 19: X=3
(rep ans)

2: b(X),X is 3,a(Y)

18: fail

20: fail

X=1 X=3

10: fail
(X diff 3)

11: X is 3,a(Y)

12: a(Y)

c4

c5

41: fix-point check29: b(X)

37: X=1
(rep ans)

30: a(X)

39: X=3
(rep ans)

31: X=1
(rep ans)

32: fail

33: X=3
(rep ans)

34: fail 38: fail

40: fail

35: X=2
(new ans)

36: fail
(loc sch)

29: b(X),X is 3,a(Y)

X=1 X=3

42: fail
(X diff 3)

43: X is 3,a(Y)

44: a(Y)

45: Y=1
(rep ans)

46: fail

47: Y=3
(rep ans)

48: fail 50: fail

49: Y=2
(rep ans)

51: fail
(X diff 3)

X=2

c6 c6

c6

13: fail
(no ans)

c2

16: fail
(no ans)

65: X=1
(rep ans)

66: fail

67: X=3
(rep ans)

68: fail 70: fail

69: X=2
(rep ans)

c4

c5

64: fix-point check52: b(X)

60: X=1
(rep ans)

53: a(X)

62: X=3
(rep ans)

54: X=1
(rep ans)

55: fail

56: X=3
(rep ans)

57: fail 61: fail

63: fail

58: X=2
(rep ans)

59: fail

c6

X is 3

X is 3

c2

Figure 3.1: A standard linear tabled evaluation of the FTS program

3.1. STANDARD LINEAR TABLING 49

We start the evaluation of the FTS program, by inserting a new entry in the table

space representing the generator call a(X) (step 1). Generator calls are depicted by

black oval boxes. Then, the subgoal a(X) is resolved against its first matching clause

(c1), calling the subgoal b(X) in the continuation. As this is a first call to b(X), a new

entry is inserted in the table space representing b(X) and we proceed as shown in the

left below tree (step 2). The subgoal b(X) is also resolved against its first matching

clause (c4), calling again a(X) in the continuation (step 3). Since a(X) is a repeated

call, we allocate a consumer node and try to consume answers from the table space.

Consumer calls are depicted by white oval boxes. But at this stage no answers are

available, so execution fails (step 4).

We then try the second matching clause (c5) for the subgoal b(X), the answer X = 1

is found and added to table space of subgoal b(X) (step 5). Next, as we are following a

local scheduling strategy, the execution fails [11]. With local scheduling, new answers

are only returned to the calling environment when all program clauses were explored.

The execution thus fails back to node 2 and we start exploring the third matching

clause (c6) for subgoal b(X). The answer X = 3 is found and added to table space

(step 7), and since we are following a local scheduling strategy, we fail again (step 8).

As there aren’t any more matching clauses for the subgoal b(X), we check for a fix-

point (step 9), but the subgoal b(X) is not a leader call because it has a dependency

(consumer node 3) to the older subgoal a(X). Remember that an SCC reaches a fix-

point when no new answers are found for the leader subgoal, during the last round of

evaluation.

Next, we propagate the answers of b(X) to the context of the previous call, so the

answers X = 1 and X = 3 are propagated to node 2. The first answer, X = 1, does

not match the test X is 3, so the computation fails (step 10). But for the second

answer, the test X is 3 succeeds, so the computation advances and calls the subgoal

a(Y), which is a variant call of subgoal a(X) (step 12). We allocate a new consumer

node in order to consume the answers on the table space of a(X), but at this stage

no answers are still available, so the execution fails (step 13) to node 1. We then try

to explore the second matching clause (c2) for the subgoal a(X) which calls again the

subgoal b(X) (step 14). A new generator choice point is allocated for subgoal b(X) and

we schedule again the three matching clauses c4, c5 and c6, but no new answers are

found (steps 15 to 21). We start then, propagating the answers of subgoal b(X) to the

previous call and answers X = 1 and X = 3 are found and added to the table space

of subgoal a(X) (steps 22 to 25). Since we are following local scheduling, we fail the

computation to node 1 and start exploring the third matching clause (c3) of subgoal

50 CHAPTER 3. LINEAR TABLING STRATEGIES

a(X). This leads to the new answer X = 2, which is also added to the table space

of a(X), and the computation fails. Since c3 is the last matching clause for subgoal

a(X), we check if a fix-point for the SCC was reached (step 28), but as new answers

were found for subgoals a(X) and b(X), we schedule the SCC for a new re-evaluation.

On the new round, we repeat the same sequence as in steps 2 to 27 (now steps 29 to 72).

The difference is that now subgoal a(X) has three answers in its table space. However,

only a new answer X = 2 is found for subgoal b(X) and added to its table space at

step 35. All the remaining answers found during the current round are repeated. On

step 73 we check again for a fix-point, but due to the answer found on step 35, it

was not reached yet, so we schedule the SCC for a new re-evaluation. This round

of evaluation does not find any new answer (steps 74 to 117) for both subgoals, so

we have finally achieved a fix-point. We complete the SCC, by marking the subgoals

a(X) and b(X) as complete and the program’s evaluation is finished (step 118). All

the answers inside the solution’s set were successfully found.

Figure 3.2 shows snapshots of the local stack during the evaluation of the example in

Fig. 3.1. For example, Fig. 3.2(a) shows the local stack configuration at the end of the

first three steps. The first calls to subgoals a(X) and b(X) have a generator choice

point allocated on the local stack and the second call to subgoal b(X) has a consumer

choice point.

(a) At step 3

Generator
1.a(X)

Generator
2.b(X)

Consumer
3.a(X)

(b) At step 9 (c) At step 15 (d) At step 21 (e) At step 30 (f) At step 41

Generator
1.a(X)

Generator
1.a(X)

Generator
14.b(X)

Consumer
15.a(X)

Generator
1.a(X)

Generator
1.a(X)

Generator
29.b(X)

Consumer
30.a(X)

Generator
1.a(X)

(g) At step 53

Generator
1.a(X)

Generator
52.b(X)

Consumer
53.a(X)

Figure 3.2: Local stack configuration for the evaluation of Fig. 3.1

If we analyze the general behavior of the local stack during the evaluation of the

FTS program, we can observe that it presents a sinusoidal aspect. The maximum is

achieved when we have two generator choice points and one consumer choice point

allocated at the same time (Fig. 3.2(a), (c), (e) and (g)), and the minimum is achieved

when we only have one generator choice point (Fig. 3.2(b), (d) and (f)). The next

section presents an optimization to the standard linear tabling that tries to reduce the

number of times that this maximum is achieved.

3.2. ELIMINATING REPEATED GENERATOR CALLS 51

3.2 Eliminating Repeated Generator Calls

We next describe the first of four optimizations implemented on top of the standard

linear engine. The main principle of this first optimization is to reduce the search

space exploration by executing only once the same sub-computation inside each SCC

round of evaluation. Analyzing the sinusoidal aspect of Fig. 3.2, if we center our

attention to what happens to subgoal b(X), we can observe that first calls to it inside

the SCC are detailed on Fig. 3.2(a) and (e), and that repeated calls are detailed on

Fig. 3.2(c) and (g). Now matching the computations on Fig. 3.1 which correspond

to first calls against the repeated calls to subgoal b(X), it is possible to observe that

repeated calls always lead to the same computation of the first calls. This means that,

executing program clauses which match with repeated calls, most of the times, won’t

lead to further developments on the table space for the subgoals at hand. Thus, we

have generalized this observation and created the optimization Eliminating Repeated

Generator Calls (ERGC). The objective of this optimization is to avoid redundant

computations, by scheduling the re-evaluation of non-leader tabled calls, in such a

way that the number of allocated choice points is reduced to a minimum, i.e., in each

evaluation round only the first calls to tabled subgoals allocate generator choice points

to execute alternatives. All the remaining calls allocate consumer choice points [3].

Figure 3.3 shows a new evaluation of the FTS program, using the ERGC optimization.

For this evaluation, for each round of evaluation over the SCC, we will use generator

nodes only on the first calls of each subgoal. So we begin the evaluation, as expected,

by allocating a generator node for the subgoal a(X) (step 1). Next, we start evaluating

the first matching clause of the subgoal a(X), which leads to the first call to the

subgoal b(X) (step 2). We then proceed as for the standard evaluation until reaching

the second matching clause of subgoal a(X) (step 14). At this step, we have a repeated

call to subgoal b(X), so we will allocate a consumer choice point instead of a generator

choice point. Since we do not explore the program clauses at this step, we start

consuming the available answers on the table space of b(X). This leads to finding

answers X = 1 and X = 3 for subgoal a(X), sooner than with the standard evaluation

(the current evaluation finds these answers on steps 15 and 17, while the previous

evaluation found them on steps 22 and 24, respectively). We proceed then, as for

the standard evaluation until step 45. At this step, we have a new repeated call to

subgoal b(X) (the first call to b(X) on the current round was made at step 22), so

we allocate again another consumer choice point and start consuming the answers on

the table space of the subgoal b(X) instead of executing the program clauses. Finally,

52 CHAPTER 3. LINEAR TABLING STRATEGIES

we conclude the evaluation of the FTS program on step 87, which is earlier than the

previous standard evaluation which was only concluded on step 118.

c4

c5

c3

21,54,87: fix-point check

9: fix-point check

1: a(X)

2: b(X)

 5: X=1
 7: X=3
 28: X=2
 87: complete

Call Solutions

1: a(X)

 15: X=1
 17: X=3
 19: X=2
 87: complete

19: X=2
(new ans)

2: b(X)

5: X=1
(new ans)

3: a(X)

45: b(X)

c3

52: X=2
(repeated answer)

c1

55-86: ...

c1

14: b(X)

15: X=1
(new ans)

:-table a/1,b/1.
a(X):-b(X),X is 3,a(Y). (c1)
a(X):-b(X). (c2)
a(2). (c3)
b(X):-a(X). (c4)
b(1). (c5)
b(3). (c6)

4: fail
(no ans)

6: fail
(loc sch)

16: fail
(loc sch)

20: fail
(loc sch)

53: fail

7: X=3
(new ans)

8: fail
(loc sch)

17: X=3
(new ans)

18: fail
(loc sch)

2: b(X),X is 3,a(Y)

X=1 X=3

10: fail
(X diff 3)

11: X is 3,a(Y)

12: a(Y)

c4

c5

34: fix-point check22: b(X)

30: X=1
(rep ans)

23: a(X)

32: X=3
(rep ans)

24: X=1
(rep ans)

25: fail

26: X=3
(rep ans)

27: fail 31: fail

33: fail

28: X=2
(new ans)

29: fail
(loc sch)

22: b(X),X is 3,a(Y)

X=1 X=3

35: fail
(X diff 3)

36: X is 3,a(Y)

37: a(Y)

38: Y=1
(rep ans)

39: fail

40: Y=3
(rep ans)

41: fail 43: fail

42: Y=2
(rep ans)

44: fail
(X diff 3)

X=2

c6
c6

13: fail
(no ans)

c2 46: X=1
(rep ans)

47: fail

48: X=3
(rep ans)

49: fail 51: fail

50: X=2
(rep ans)

X is 3

X is 3

c2

Figure 3.3: Evaluation of the FTS program using the ERGC optimization

The advantages of this optimization are obvious. It has reduced the total number of

evaluation steps in 29 steps and as Fig. 3.4 shows, it has reduced also the usage of the

local stack.

Figure 3.4 presents again the sinusoidal aspect observed in Fig. 3.2. The maximum

number of choice points still corresponds to two generator choice points and one

consumer choice point, but was achieved less times. Moreover, Fig. 3.4(c) and (g),

which correspond to the repeated calls to subgoal b(X), show less expansion of the local

3.3. DYNAMIC REORDERING OF ALTERNATIVES 53

(a) At step 3

Generator
1.a(X)

Generator
2.b(X)

Consumer
3.a(X)

(b) At step 9 (c) At step 14 (d) At step 18 (e) At step 23 (f) At step 34

Generator
1.a(X)

Generator
1.a(X)

Consumer
14.b(X)

Generator
1.a(X)

Generator
1.a(X)

Generator
22.b(X)

Consumer
23.a(X)

Generator
1.a(X)

(g) At step 45

Generator
1.a(X)

Consumer
45.b(X)

Figure 3.4: Local stack configuration for the evaluation of Fig. 3.3

stack. Consequently, during each round of evaluation over the SCC, the maximum

number of choice points is achieved only once, instead of two times as with the standard

evaluation.

3.3 Dynamic Reordering of Alternatives

The DRA linear tabling mechanism as originally proposed by Guo and Gupta [12] is

based on the dynamic reordering of alternatives with repeated calls for incorporating

tabling into an existing logic programming system. The DRA technique not only

memorizes the answers for the tabled subgoal calls, but also the alternatives leading

to repeated calls, the looping alternatives. It then uses the looping alternatives to

repeatedly recompute them until a fix-point is reached. During evaluation, a tabled

call can be in one of three possible states: normal, looping or complete. Figure 3.5

shows the state transition graph for DRA evaluation.

Finding
all looping
alternatives

Finding
fix-point

Looping
state

Complete
state

Normal
state

Figure 3.5: State transition graph for DRA evaluation

Consider a tabled subgoal call C. Initially, C enters in normal state where it is

allowed to explore the matching clauses as in a standard evaluation. In this state,

while exploring the matching clauses, the model checks for looping alternatives. If a

repeated (or variant) call is found, then the current clause for the first call to C will

be memorized as a looping alternative. Essentially, the alternative corresponding to

54 CHAPTER 3. LINEAR TABLING STRATEGIES

this call will be reordered and placed at the end of the alternative list for the call. As

in a tabled evaluation, repeated calls are not re-evaluated against the program clauses

because they can potentially lead to infinite loops, the repeated call to C is thus

resolved by consuming the answers already available for the call in the table space.

Next, after exploring all the matching clauses, C goes into the looping state. From this

point on, it keeps trying the looping alternatives repeatedly until reaching a fix-point.

If no new answers are found during one cycle of trying the looping alternatives, then

the evaluation has reached a fix-point and C is completely evaluated. However, if C

is inside an SCC, then completion is only performed at the leader call, as discussed

previously.

Figure 3.6 shows the evaluation sequence of the FTS program, using the DRA opti-

mization combined with the ERGC optimization presented on the previous section.

The figure has a new field in the table space called Loop Alt, which is used to store

the looping alternatives of each subgoal.

As DRA uses the first round of evaluation over the SCC to detect the looping alter-

natives, we evaluate the first round in a similar manner to the evaluation of Fig. 3.3.

The difference is that at step 3, when we detect the first looping call, we add the

current alternative in evaluation for each subgoal to the respective table space. This

means that at step 3, we store the clause c1 on the table space of subgoal a(X) and

the clause c4 on the table space of subgoal b(X). We then proceed with the evaluation

up to step 14, where we detect another looping call, this time to subgoal b(X) and the

clause c2 is stored as a looping alternative for the subgoal a(X). At step 21, we finish

the first round of evaluation over the SCC and schedule the SCC for a new round.

In this new round, we will only evaluate the looping alternatives, this means that

the remaining alternatives won’t be evaluated. So, we start the second round by

evaluating the clause c1 for a(X) which leads to the first call of subgoal b(X) (step

22). The subgoal b(X) only has one looping alternative (clause c4), so we evaluate it

and in consequence we achieve the solution X = 2, which is added to the table space

of subgoal b(X). As we are following local scheduling, the evaluation then fails to node

22 and at this stage, we avoid executing the program clauses c5 and c6, since they

were not marked as looping, so at step 30 we check for a fix-point. Later, at step 40,

when the evaluation fails to node 1, we execute the second looping alternative, clause

c2, and at step 47, when the evaluation fails again to node 1, we avoid executing the

program clause c3, since it is not marked as looping and we check for a new fix-point

(step 48). Since the fix-point was not reached, we schedule the SCC for a new re-

evaluation round. We conclude the evaluation of the FTS program on step 75, which

3.3. DYNAMIC REORDERING OF ALTERNATIVES 55

is earlier than the previous evaluation of Fig. 3.3 which was concluded on 87 steps.

c4

c5

c3

21,48,75: fix-point check

9: fix-point check

1: a(X)

19: X=2
(new ans)

2: b(X)

5: X=1
(new ans)

3: a(X)

41: b(X)

c1

49-74: ...

c1

14: b(X)

15: X=1
(new ans)

:-table a/1,b/1.
a(X):-b(X),X is 3,a(Y). (c1)
a(X):-b(X). (c2)
a(2). (c3)
b(X):-a(X). (c4)
b(1). (c5)
b(3). (c6)

4: fail
(no ans)

6: fail
(loc sch)

16: fail
(loc sch)

20: fail
(loc sch)

7: X=3
(new ans)

8: fail
(loc sch)

17: X=3
(new ans)

18: fail
(loc sch)

2: b(X),X is 3,a(Y)

X=1 X=3

10: fail
(X diff 3)

11: X is 3,a(Y)

12: a(Y)

c4

30: fix-point check22: b(X)

23: a(X)

24: X=1
(rep ans)

25: fail

26: X=3
(rep ans)

27: fail

28: X=2
(new ans)

29: fail
(loc sch)

22: b(X),X is 3,a(Y)

X=1 X=3

31: fail
(X diff 3)

32: X is 3,a(Y)

33: a(Y)

34: Y=1
(rep ans)

35: fail

36: Y=3
(rep ans)

37: fail 39: fail

38: Y=2
(rep ans)

40: fail
(X diff 3)

X=2

c6

13: fail
(no ans)

c2 42: X=1
(rep ans)

43: fail

44: X=3
(rep ans)

45: fail 47: fail

46: X=2
(rep ans)

X is 3

X is 3

c2

1: a(X)

2: b(X)

 5: X=1
 7: X=3
 28: X=2
 75: complete

Call Solutions

 15: X=1
 17: X=3
 19: X=2
 75: complete

Loop Alt

 3: c1
 14: c2

 3: c4

Figure 3.6: Evaluation of the FTS program using the combination of DRA with ERGC

In summary, for the FTS program with the DRA and ERGC optimizations, the search

space of the first round is similar to the evaluations described previously, but the

search space of the next two rounds was reduced because the clauses c3, c5 and c6

were avoided. Due to this fact, the total number of evaluation steps was reduced in

12 steps.

56 CHAPTER 3. LINEAR TABLING STRATEGIES

3.4 Dynamic Reordering of Solutions

The third optimization, is called Dynamic Reordering of Solutions (DRS), and can

be seen as a variant of the DRA optimization, because instead of reordering the

consumption of alternatives, it reorders the consumption of solutions.

The main idea of the DRS strategy is to store the solutions leading to consumer

calls, the looping solutions. When a non-leader generator call C consumes solutions

to propagate them to the context of the previous call, if a consumer call is found, the

current solution for C is memorized as a looping solution. Later, if C is scheduled

for re-evaluation, instead of trying the full set of solutions, it only tries the looping

solutions plus the new solutions found during the current round. In each round,

the new solutions leading to consumer calls are added to the previous set of looping

solutions.

Figure 3.7 shows another evaluation for the FTS program, this time using the combi-

nation of the DRS, DRA and ERGC optimizations. In order to support the storage

of looping solutions for each subgoal, the table space was extended with a new field

called Loop Sol.

On the first round of evaluation over the SCC, we start the evaluation as usual by

allocating a generator choice point for the query call a(X). At steps 5 and 7, the

solutions X = 1 and X = 3 are found and added to the table space of subgoal b(X)

and at step 10, we start propagating them to the previous call. For the solution

X = 1, the evaluation fails because X is different from 3. For the solution, X = 3, the

test X is 3 succeeds and the evaluation advances to the next goal, which originates a

consumer call to the subgoal a(Y) (step 12). At this step we thus mark the solution

X = 3 as a looping solution, by adding it to the table space of the subgoal b(X).

The first round of evaluation is then completed at step 21 and at step 22 we start a

second round. At step 28, the solution X = 2 is found for the subgoal b(X) and added

to its table space and, at step 31, we start propagating the solutions for subgoal b(X)

to the context of the previous call. We begin with the looping solutions instead of the

new solutions, because we want to avoid consuming more than once the same solution

on the same stage of the computation.1 We skip the solution X = 1, since it was not

1Suppose that during the current round, we found a new solution NS. Now consider that we
started by consuming the solution NS and that this solution leads to a consumer call, then we would
mark it as a looping solution. As after consuming all the new solutions, we consume the looping
solutions, we would consume the solution NS twice.

3.4. DYNAMIC REORDERING OF SOLUTIONS 57

c4

c5

c3

21,47,72: fix-point check

9: fix-point check

1: a(X)

19: X=2
(new ans)

2: b(X)

5: X=1
(new ans)

3: a(X)

40: b(X)

c1

48-71: ...

c1

14: b(X)

15: X=1
(new ans)

:-table a/1,b/1.
a(X):-b(X),X is 3,a(Y). (c1)
a(X):-b(X). (c2)
a(2). (c3)
b(X):-a(X). (c4)
b(1). (c5)
b(3). (c6)

4: fail
(no ans)

6: fail
(loc sch)

16: fail
(loc sch)

20: fail
(loc sch)

7: X=3
(new ans)

8: fail
(loc sch)

17: X=3
(new ans)

18: fail
(loc sch)

2: b(X),X is 3,a(Y)

X=1 X=3

10: fail
(X diff 3)

11: X is 3,a(Y)

12: a(Y)

c4

30: fix-point check22: b(X)

23: a(X)

24: X=1
(rep ans)

25: fail

26: X=3
(rep ans)

27: fail

28: X=2
(new ans)

29: fail
(loc sch)

22: b(X),X is 3,a(Y)

X=3

31: X is 3,a(Y)

32: a(Y)

33: Y=1
(rep ans)

34: fail

35: Y=3
(rep ans)

36: fail 38: fail

37: Y=2
(rep ans)

39: fail
(X diff 3)

X=2

c6

13: fail
(no ans)

c2 41: X=1
(rep ans)

42: fail

43: X=3
(rep ans)

44: fail 46: fail

45: X=2
(rep ans)

X is 3

X is 3

c2

1: a(X)

2: b(X)

 5: X=1
 7: X=3
 28: X=2
 72: complete

Call Solutions

 15: X=1
 17: X=3
 19: X=2
 72: complete

Loop Alt

 3: c1
 14: c2

 3: c4

Loop Sol

12: X=3

Figure 3.7: Evaluation of the FTS program using the combination of DRS, DRA and

ERGC

marked as a looping solution, and we start by consuming the solution X = 3, which

won’t lead to any further developments on the table space (step 31). The same occurs

when the solution X = 2 is consumed (step 39). The current round of evaluation

over the SCC is concluded on step 47 and, at the step 48, we start the third and last

round (steps 48 to 71). On this last round, the generator call of the subgoal b(X),

propagates only the looping answer X = 3 to the previous call, since no new answers

will be found. This means that the evaluation of FTS program is concluded in 72

steps, which is earlier that the previous evaluation that was concluded on 75 steps.

58 CHAPTER 3. LINEAR TABLING STRATEGIES

In summary, for the FTS program with the DRS, DRA and ERGC optimizations, the

search space of the first round is similar to the evaluation discussed previously, but the

search space of the next two rounds was slightly reduced because the answers X = 1

and X = 2 on the generator calls of the subgoal b(X) were not consumed. Due to this

fact, the total number of evaluation’s steps was reduced in 3 steps.

3.5 Dynamic Reordering of Execution

The last optimization called Dynamic Reordering of Execution (DRE), is based on the

original SLDT strategy, as proposed by Zhou et al. [39]. The key idea of the DRE

strategy is to let repeated calls to tabled subgoals execute from the backtracking clause

of the former call. A first call to a tabled subgoal is called a pioneer and repeated

calls are called followers of the pioneer. When backtracking to a pioneer or a follower,

we use the same strategy, first we explore the remaining clauses and only then we try

to consume answers. The fix-point check operation is still performed only by pioneer

calls.

Figure 3.8 shows the last evaluation of the FTS program. For this evaluation, we will

combine the DRE optimization with the DRS, DRA and ERGC optimizations. No

extra fields are added to the.

As for the previous examples, we start the evaluation with the first matching clause

(c1) for the first (pioneer) call to subgoal a(X) (step 1). The subgoal b(X) is called in

the continuation (step 2) and the subgoal a(X) is then called repeatedly (step 3). But

now, as we are using the DRE optimization, the subgoal a(X) is considered a follower

and thus it steals the backtracking clause of the former call at node 1, i.e., the second

matching clause (c2) for the subgoal a(X). We thus proceed the evaluation, as if it

was a generator call (this means that new answers can be generated for the subgoal

a(X)). We thus evaluate the clause c2 and the subgoal b(X) is called again (step 4).

Since subgoal b(X) has its pioneer call on node 2, we act as a follower and start the

evaluation of the next clause, clause c5 (step 5). The answers X = 1 and X = 3 are

found and added to the table space of subgoal b(X) (steps 5 to 8).

As we are following a local scheduling strategy, we fail and backtrack to the follower

node 4. As all matching clauses of b(X) were already evaluated, we proceed the

evaluation by propagating the answers of the subgoal b(X) to the previous call. The

answers X = 1 and X = 2 are then added to the table space of subgoal a(X) (steps

3.5. DYNAMIC REORDERING OF EXECUTION 59

c1
32,57: fix-point check

21: fix-point check

1: a(X)

33-56: ...

2: b(X)

c4

3: a(X)
4: b(X)

c2 c3

:-table a/1,b/1.
a(X):-b(X),X is 3,a(Y). (c1)
a(X):-b(X). (c2)
a(2). (c3)
b(X):-a(X). (c4)
b(1). (c5)
b(3). (c6)

1: a(X)

2: b(X)

Call Solutions

 9: X=1
 11: X=3
 13: X=2
 57: complete

Loop Alt

 3: c1
 4: c2

 3: c4

Loop Sol

 23: X=3 5: X=1
 7: X=3
 19: X=2
 57: complete

2: b(X),X is 3,a(Y)

4: b(X)3: a(X)

5: X=1
(new ans)

6: fail
(loc sch)

8: fail
(loc sch)

7: X=3
(new ans)

c5 c6

9: X=1
(new ans)

10: fail
(loc sch)

11: X=3
(new ans)

12: fail
(loc sch)

13: X=2
(new ans)

14: fail
(loc sch)

15: X=1
(rep ans)

16: fail

17: X=3
(rep ans)

18: fail

19: X=2
(new ans)

20: fail
(loc sch)

X=1 X=3

22: fail
(X diff 3)

23: X is 3,a(Y)

24: a(Y)

25: Y=1
(rep ans)

26: fail

27: Y=3
(rep ans)

28: fail 30: fail

29: Y=2
(rep ans)

31: fail
(X diff 3)

X=2

X is 3

Figure 3.8: Evaluation of the FTS program using the combination of DRE, DRS, DRA

and ERGC

9 to 12). We fail again, now to the follower node 3 and let the follower node steal the

last matching clause (c3) that matches with the subgoal a(X). The answer X = 2

is found and added to the table space of subgoal a(X) (step 13). The answers for

a(X) are then propagated to the context of subgoal b(X) (steps 15 to 20) and a new

answer X = 2 is found for b(X) at step 19. As the subgoal b(X) do not have any

further clauses to be evaluated and it is not a leader call, the fix-point check fails and

we start propagating its answers to the context of the pioneer call of subgoal a(X).

The first round of evaluation over the SCC is then concluded at step 32. At step 33,

we start a second round of evaluation, which will be the last because all the answers

60 CHAPTER 3. LINEAR TABLING STRATEGIES

were already found on the first round. This means that the evaluation of the FTS

program is concluded in 57 steps, which is again earlier that the previous evaluation

that was concluded in 72 steps. Since all the answers were found during the first round

of evaluation, the SCC was only evaluated twice. The DRE optimization privileges

the execution of program clauses instead of consuming answers from the table space.

In particular, as the FTS program has three facts (clauses c3, c5 and c6), the first

round of evaluation was in fact very productive. Due to this fact, the total number

of evaluation’s steps was reduced in 15 steps. In summary, the evaluation of the FTS

program with the combination of the DRE, DRS, DRA and ERGC optimizations, is

a good example that shows the potential of combining these different optimizations.

Figure 3.9 shows snapshots of the local stack during the evaluation of the first round

over the SCC in Fig. 3.8. Analyzing now the general behavior of the local stack, we

can observe that it is, in fact, quite different from the previous one. The sinusoidal

aspect was replaced by a normal curve and the maximum stack usage is higher than

that of the other evaluations (Fig. 3.9 (d)). It is achieved, when the local stack has

two generator choice points plus two follower choice points. This is an important

advantage, but can also be an important drawback for the DRE optimization, because

it makes it more suitable for local stack overflows.

(a) At step 1

Generator
1.a(X)

(b) At step 2 (c) At step 3 (d) At step 4 (e) At step 12 (f) At step 21

Generator
1.a(X)

Generator
1.a(X)

Follower
3.a(X)

(g) At step 32

Generator
2.b(X)

Generator
2.b(X)

Generator
1.a(X)

Follower
3.a(X)

Generator
2.b(X)

Follower
4.b(X)

Generator
1.a(X)

Follower
3.a(X)

Generator
2.b(X)

Generator
1.a(X)

Generator
2.b(X)

Generator
1.a(X)

Figure 3.9: Local stack configuration for the evaluation of Fig. 3.8

3.6 Chapter Summary

This chapter revised the most important ideas of the standard linear tabling strategy

and optimizations. It began with the description of the standard approach and then

followed with the presentation of the four optimizations implemented on top of it.

During the chapter, we also analyzed and compared the local stack behavior for the

standard evaluation and for the ERGC and DRE optimizations.

Chapter 4

Implementation Details

This chapter describes the main low-level details involved in the implementation

of the linear tabling strategies presented in the previous chapter. It describes the

organization of the data structures used to support linear tabling and how they interact

with each other, and the implementation of the operations used to extend the YapTab

system for linear tabled evaluation.

4.1 Compilation of Tabled Predicates

In chapter 2, we briefly introduced how tabling engines change the compilation of

logic programs. Here, we will move one step further and discuss in more detail the

compilation instructions used to control the evaluation’s flow of a tabled logic program.

Tabled predicates defined by several clauses are compiled using the table try me,

table retry me and table trust me WAM-like instructions in a similar manner to

the generic try me/retry me/trust me WAM sequence. The table try me instruc-

tion extends the WAM’s try me instruction to support the tabled subgoal call op-

eration. The table retry me and table trust me differ from the generic WAM

instructions in that they restore a generator choice point rather than a standard

WAM choice point. Tabled predicates defined by a single clause are compiled using the

table try single WAM-like instruction, a specialized version of the table try me

instruction for deterministic tabled calls. As an example, consider YapTab’s compiled

code for a tabled predicate t/1 defined by a single clause and for a tabled predicate

t/3 defined by several clauses.

61

62 CHAPTER 4. IMPLEMENTATION DETAILS

% predicate definitions

:- table t/1, t/3.

t(X) :- ...

t(a1,b1,c1) :- ...

t(a1,b2,c2) :- ...

t(a1,b1,c3) :- ...

t(a2,b2,c4) :- ...

% compiled code generated by YapTab for predicate t/1

t1_1: table_try_single t1_1a

t1_1a: ’WAM code for clause t(X) :- ...’

% compiled code generated by YapTab for predicate t/3

t3_1: table_try_me t3_2

t3_1a: ’WAM code for clause t(a1,b1,c1) :- ...’

t3_2: table_retry_me t3_3

t3_2a: ’WAM code for clause t(a1,b2,c2) :- ...’

t3_3: table_retry_me t3_4

t3_3a: ’WAM code for clause t(a1,b1,c3) :- ...’

t3_4: table_trust_me

t3_4a: ’WAM code for clause t(a2,b2,c4) :- ...’

As t/1 is a deterministic tabled predicate, the table try single instruction will

be executed for every call to this predicate. On the other hand, t/3 is a non-

deterministic tabled predicate, but some calls to it can be deterministic, i.e., defined by

a single matching clause. Consider, for example, the calls t(a2,X,Y) and t(X,Y,c3).

These two calls are deterministic as each of them matches with a single t/3 clause,

respectively, the 4th and 3rd clause.

YapTab uses the demand-driven indexing mechanism of Yap [31] to dynamically

generate table try single instructions for this kind of deterministic calls. The idea

behind it is to generate flexible multi-argument indexing of Prolog clauses during

program execution based on actual demand. This feature is implemented for static

code, dynamic code and the internal database. All indexing code is generated on

demand for all and only for the indices required. This is done by building an indexing

tree using similar building blocks to the WAM but it generates indices based on the

instantiation of the current goal, and expands indices given different instantiations for

the same goal. This powerful optimization allows YapTab to execute some calls to

4.2. GENERATOR AND CONSUMER NODES 63

non-deterministic tabled predicates like deterministic tabled predicates. This happens

when Yap’s indexing scheme finds that for a particular call to a non-deterministic

tabled predicate, there is only a single clause that matches the call. Next we show an

example illustrating the indexed code generated for a non-deterministic call and for

two deterministic calls to the previous t/3 tabled predicate.

% indexed code generated by YapTab for call t(a1,X,Y)

table_try t3_1a

table_retry t3_2a

table_trust t3_3a

% indexed code generated by YapTab for call t(a2,X,Y)

table_try_single t3_4a

% indexed code generated by YapTab for call t(X,Y,c3)

table_try_single t3_3a

The call t(a1,X,Y) is non-deterministic as it matches the 1st, 2nd and 3rd clauses of

t/3, so a table try/table retry/table trust sequence is generated. The other two

calls, t(a2,X,Y) and t(X,Y,c3), are both deterministic as they only match a single

t/3 clause, so a table try single instruction can be generated.

4.2 Generator and Consumer Nodes

We begin now the presentation of the data structures organization used by YapTab

for linear tabling support and the main operations used to manipulate them. As

explained previously, tabled nodes are divided into generator or consumer nodes, which

correspond respectively to first or repeated calls of a subgoal. The abstract notion of

a node is implemented at the engine level as a choice point. Figure 4.1 shows how

generator and consumer choice points are implemented in linear tabling.

A generator node is implemented as a standard WAM choice point extended with some

extra fields. It’s format is depicted in Fig. 4.1(a) and is divided in three sections.

The top section contains the usual WAM fields needed to restore the computation

on backtracking plus the cp sg fr field, which is a pointer to the associated subgoal

frame (we discuss subgoal frames on the next subsection). The middle section contains

64 CHAPTER 4. IMPLEMENTATION DETAILS

cp_sg_fr Subgoal frame

cp_last_ans Last consumed answer on trie

cp_ap Answer resolution instruction

(a)

cp_ap

cp_tr

cp_h

cp_cp

Next unexploited clause

Top of trail

Top of global stack

Success continuation PC

cp_env Current environment

An Argument register n

A1 Argument register 1

Number of substitution vars

Substitution variable m

Substitution variable 1

.
.
.
.

m

Sm

S1

.
.
.
.

cp_b Failure continuation CP

Number of substitution vars

Substitution variable m

Substitution variable 1

.
.
.
.

m

Sm

S1

.
.
.
.

(b)

... ...

cp_tr

cp_h

cp_cp

Top of trail

Top of global stack

Success continuation PC

cp_env Current environment

cp_b Failure continuation CP

Figure 4.1: Structure of (a) generator and (b) consumer choice points in linear tabling

the argument registers of the subgoal, as usual, and the bottom section contains the

substitution factor [22], i.e., the set of free variables which exist in the terms of the

argument registers. The substitution factor is an optimization that allows the new

answer operation to store in the table space only the substitutions for the free variables

in the subgoal call.

A consumer node (Fig. 4.1(b)) is similar to a generator node, except that the argument

registers disappear and the cp sg fr pointer is swapped by a cp last ans pointer,

which points directly to the corresponding answer trie structure. Another difference is

the fact that the cp ap points to a specific table instruction, that controls how answers

are consumed from the table space, instead of pointing to the next unexploited clause

as for the generators.

4.3 Subgoal Frames

To implement the table space, YapTab uses tries which is regarded as a very efficient

way to implement the table space [22]. Tries are trees in which common prefixes are

represented only once. Tries provide complete discrimination for terms and permit

4.3. SUBGOAL FRAMES 65

lookup and insertion to be done in a single pass. Figure 4.2 details the table space

organization for the FTS program, which was presented on the previous chapter.

subgoal trie

table entry
for a/1

VAR0

subgoal frame
for a(VAR0)

1 2

answer trie

Table Space

3

table entry
for b/1

subgoal frame
for b(VAR0)

1 2

answer trie

3

subgoal trie

VAR0

Figure 4.2: Table space organization for the FTS program

YapTab implements tables using two levels of tries: one for the subgoal calls and the

other for the computed answers. A tabled predicate accesses the table space through

a specific table entry data structure. Each different subgoal call is represented as a

unique path in the subgoal trie and each different answer is represented as a unique

path in the answer trie.

The subgoal frames not only connect the subgoal with the answers, but they are also

a key data structure in the control flow of a tabled computation. Lets start analyzing

the basic structure of a subgoal frame used by the standard approach for linear tabling.

As we can observe in Fig. 4.3, it includes the following eight fields:

• The SgFr dfn field is the depth first number of the subgoal and it is used to

detect interdependencies between subgoals. A global variable CURR FREE DFN,

with an initial value of zero, is used to set each different subgoal call with an

unique number.

• The SgFr is leader field is a boolean that defines the leadership of subgoals

inside an SCC.

66 CHAPTER 4. IMPLEMENTATION DETAILS

• The SgFr gen cp field is a back pointer to the corresponding generator choice

point.

• The SgFr state field is used to distinguish between three types of possible calls

that can happen to a subgoal during evaluation: the first time it is called (ready),

the follower times (evaluating) and when it has been completely evaluated

(complete).

• The SgFr new answers field is a boolean that defines if new answers were

found during the current evaluation round of the SCC.

• The SgFr answer trie field points to the top answer trie node and is used to

access the answer trie structure to check for/insert new answers.

• The SgFr first answer field points to the leaf answer trie node of the first

available answer.

• The SgFr last answer field points to the leaf answer trie node of the last

available answer.

subgoal trie

table entry

answer trie

Table Space

SgFr_answer_trie

SgFr_first_answer

SgFr_state

SgFr_last_answer

SgFr_gen_cp

SgFr_dfn

SgFr_is_leader

SgFr_new_answers

subgoal frame

Figure 4.3: Basic structure of a subgoal frame

4.3. SUBGOAL FRAMES 67

4.3.1 Looping Structures

Looping structures extend the basic structure of the subgoal frames and they are used

to store pointers either to WAM code of alternative clauses or to leaf trie nodes of

alternative answers. A looping structure can be seen as groups of buckets of cells.

Each bucket has always a last cell which points to the first cell in the next bucket or

to the first cell in the first bucket, in the case of the last bucket (see Fig. 4.4). As

cells of looping structures are always pointers, the last bit of each cell, is used to mark

if the cell is a pointer to an alternative clause/answer or to the first cell in the next

bucket.

Loop_01

Loop_02

Loop_03

Loop_04

Loop_05

0

0

0

0

0

1

Loop_06

Loop_07

Loop_08

Loop_09

Loop_10

0

0

0

0

0

1

Loop_11

Loop_12

0

0

1

first

Figure 4.4: A looping structure with three groups of buckets with five cells each

Now, lets observe how the looping structures are used to store alternative clauses.

As explained before, the first round of evaluation over an SCC is used to determine

dependencies between subgoals and which alternatives lead to repeated computations.

Standard linear tabling uses the naive approach of considering that all alternatives

must be explored on each round over the SCC, so it adds all alternatives to the looping

structure. Using the example of predicate t/3 from section 4.1, Fig. 4.5 shows how a

subgoal frame is extended with a looping structure to store the t/3 clauses. Since on

the following rounds, we only want to execute the alternative’s code, the pointer stored

in each looping cell points not to the table instruction which starts the alternative,

but to its WAM code, avoiding this way the useless execution of tabled instructions.

If DRA optimization is active during evaluation, then only the alternatives leading

to repeated computations are stored in the looping structures. Control of looping

alternatives is provided by two extra fields added to the subgoal frame structure. On

each round over the SCC, SgFr stop alt marks the last alternative to be explored

and SgFr current alt marks the current alternative in evaluation.

A second possible use of the looping structures is to store looping answers when

68 CHAPTER 4. IMPLEMENTATION DETAILS

WAM code for clause t(a1,b1,c1) :- ...

 Compiled code generated by YapTab for predicate t/3

t3_1: table_try_me t3_2

t3_1a:

t3_2: table_retry_me t3_3

t3_3: table_retry_me t3_4

t3_4: table_trust_me

WAM code for clause t(a1,b2,c2) :- ...

WAM code for clause t(a1,b1,c3) :- ...

WAM code for clause t(a2,b2,c4) :- ...

t3_2a:

t3_3a:

t3_4a:

Subgoal Frame

0

0

0

0

1

SgFr_answer_trie

SgFr_first_answer

SgFr_state

SgFr_last_answer

SgFr_gen_cp

SgFr_dfn

SgFr_is_leader

SgFr_new_answers

SgFr_stop_alt

SgFr_current_alt

Figure 4.5: Using a looping structure to store alternative clauses

the DRS optimization is active. In this case, the subgoal frame structure is then

augmented with four extra fields (see Fig. 4.6):

• The SgFr new ans trie field marks the first new answer found during the cur-

rent round of evaluation, if any, and is used by the DRS optimization as the

starting position for consuming the new answers.

• The SgFr consuming ans field is marks the answer found during the current

round, which is being consumed, if any.

• The SgFr stop loop ans field marks the last looping answer to be consumed on

each round.

• The SgFr current loop ans field marks the looping answer which is being

consumed.

The figure shows a situation where we have nine answers on the answer trie structure.

The four first answers (Ans 01, Ans 02, Ans 03 and Ans 04) were found to be looping

answers on the last round of evaluation of the subgoal, so they were added to the

4.3. SUBGOAL FRAMES 69

Subgoal Frame structure

0

0

0

0

1

SgFr_answer_trie

SgFr_first_answer

SgFr_state

SgFr_last_answer

SgFr_gen_cp

SgFr_dfn

SgFr_is_leader

SgFr_new_answers

SgFr_stop_ans

SgFr_current_ans

SgFr_consuming_ans

SgFr_new_ans_trie

Answer Trie structure

Ans_01 Ans_06 Ans_07

Ans_02 Ans_05 Ans_08

Ans_03 Ans_04 Ans_09

Figure 4.6: Using a looping structure to store alternative answers

looping answers structure. The answers Ans 05 and Ans 061 are not looping answers

and we are currently consuming the answer Ans 07.

4.3.2 DRE Support

In chapter 3, we showed how the DRE optimization changes the execution flow of a

tabled evaluation, by allocating a new generator choice point even when a subgoal is

a repeated (follower) call.

At the implementation level, whenever this optimization is active, the generator

choice points are slightly changed. The cp ap field instead of pointing to the next

unexplored alternative, it points to the fix-point check instruction which is responsible

to determine if all alternatives were explored and, if not, take the next unexplored

alternative. Moreover, the subgoal frame structure is increased with two extra fields.

The first is the SgFr pioneer field that will store the generator choice point created by

1The answer Ans 06 was the first new answer found for the subgoal on the current round of
evaluation.

70 CHAPTER 4. IMPLEMENTATION DETAILS

the first call to the subgoal. Remember that first (pioneer) calls in DRE evaluation are

still where leader calls can complete all the subgoals inside an SCC. The second is the

SgFr next alt field and points to the next unexplored alternative, while the subgoal

is in the evaluating state (when a subgoal enters the looping state, the alternatives

are controlled with the looping structures fields).

Figure 4.7 uses again the compiled code of section 4.1, to illustrate how alternatives

are explored using DRE evaluation, in a situation where we are evaluating two subgoal

calls to t(X,Y,Z).

As we can observe in the figure, two choice points are allocated, each with its cp ap

field pointing to the fix-point check instruction, and the SgFr pioneer field of the

corresponding subgoal frame is made to point to the first (pioneer) choice point. If

during the evaluation, we had a third call to this subgoal, a new generator choice

point would be allocated on the local stack, and the evaluation would start from the

alternative pointed by the SgFr next alt field. Moreover, the SgFr next alt field

would be updated to the next unexplored alternative (t3 4 in the example).

4.3.3 Subgoal Frame Chains

On the previous chapter, the notions of leader and non-leader subgoals, subgoal

dependencies and the process of scheduling the re-evaluation of an SCC only when the

leader has new answers, were always presented implicitly. Here, we show the details

behind those notions. Besides that, YapTab has important operations, such as garbage

collections or local stack overflow recoveries, which need coherence between the choice

points on the local stack and the active subgoals in evaluation. This section discusses

the three different chains needed for an optimal support of all these features.

Each chain has a global variable that marks the beginning of the chain and each

subgoal frame was extended with three fields that are used to follow each chain. The

chains are described as follows:

TOP SG FR. When YapTab runs out of memory space during evaluation, it starts

operations to recover or expand its current space. During these operations, the

choice point memory addresses on the local stack are most likely to change and

thus all the pointers to these choice points, such as the SgFr gen cp and the

SgFr pioneer fields, must be updated. The TOP SG FR global variable is used to

chain all the subgoal frames that have choice points on the local stack so that the

4.3. SUBGOAL FRAMES 71

Local Stack

.

.

.

.

Fix-point_check

Subgoal Frame

SgFr_answer_trie

SgFr_first_answer

SgFr_state

SgFr_last_answer

SgFr_gen_cp

SgFr_dfn

SgFr_is_leader

SgFr_new_answers

SgFr_pioneer

SgFr_next_alt

WAM code for clause t(a1,b1,c1) :- ...

 Compiled code generated by YapTab for predicate t/3

t3_1: table_try_me t3_2

t3_1a:

t3_2: table_retry_me t3_3

t3_3: table_retry_me t3_4

t3_4: table_trust_me

WAM code for clause t(a1,b2,c2) :- ...

WAM code for clause t(a1,b1,c3) :- ...

WAM code for clause t(a2,b2,c4) :- ...

t3_2a:

t3_3a:

t3_4a:

Fix-point_check code ...

cp_sg_fr

cp_ap

cp_tr

cp_h

cp_cp

cp_env

cp_b

cp_sg_fr

cp_ap

cp_tr

cp_h

cp_cp

cp_env

cp_b

B

-

+

Figure 4.7: Subgoal frame support for DRE optimization

SgFr gen cp and SgFr pioneer fields can be correctly updated. To accomplish

that, the subgoal frame structure is then extended with a new SgFr next field.

TOP ON BRANCH. The detection of leaders of an SCC or marking the new

answers flag of them can be a very expensive operation. In a worst case scenario,

it would mean traversing all subgoal frames in evaluation, for marking a single

subgoal frame. The TOP ON BRANCH global variable always points to the youngest

subgoal frame on the current branch that is in the normal state (i.e., with

72 CHAPTER 4. IMPLEMENTATION DETAILS

SgFr state as evaluating) or that is a leader call. When the DRA or DRS

optimizations are enabled, this chain is also used to mark the subgoal frame

looping alternative clauses or answers, respectively. To implement this chain,

the subgoal frame structure is extended with a new SgFr next on branch field.

TOP ON SCC. This chain is used for the ERGC optimization. The TOP ON SCC

global variable always points to the youngest subgoal frame in evaluation in

the current SCC (i.e., all subgoal frames with SgFr state as evaluating or

loop evaluating are in the chain). It is used by the leader call to traverse

the subgoal frames in order to mark them for re-evaluation or as completed.

By other words, we use this chain to identify all the subgoal frames inside an

SCC, i.e., which were executed at least one time during the current round of

evaluation. When a leader marks an SCC for re-evaluation, it uses this chain to

set all dependent subgoals with the loop ready state, meaning that whenever

they are called again for re-evaluation, they will work again as a first call

and start exploring their looping alternatives. Their state is then changed to

loop evaluating, which means that on future calls during the current evalua-

tion round, they will again only allocate consumer nodes. To accomplish this,

the subgoal frame structure is then extended with a new SgFr next on scc field

and the SgFr state field is extended with two more states (loop ready and

loop evaluating).

To better understand how these chains work, lets consider again the evaluation il-

lustrated on Fig. 3.6 and the structure of subgoal frames presented on the previous

sections. In Fig. 4.8, we begin by recalling the evaluation sequence of subgoal calls for

the example in Fig. 3.6.

The first subgoal called is a(X), that then calls b(X) on step 2, which calls again a(Y)

on step 3. At this step, the subgoal b(X) is marked as non-leader and, at step 9, the

fix-point check operation for subgoal b(X) fails because it is not the leader of the SCC.

The evaluation then backtracks to the generator node of the subgoal a(X) (which is

still under the evaluating state) and the subgoal a(X) calls again the subgoal b(X) on

step 14. At step 21, the first round of evaluation is completed, and since new answers

were found for both subgoals, the fix-point check operation, moves both subgoals to

the looping state and schedules a second round of evaluation. The second round finds

new answers for subgoal b(X), so a third and last round of evaluation is scheduled on

step 48. Finally, at step 75, the fix-point check operation marks both subgoals, a(X)

and b(X), as complete.

4.3. SUBGOAL FRAMES 73

b(X)
2

3

a(X) a(Y)

22

14

1

9.Fix-point_check (non leader)

21.Fix-point_check (new answers found)
48.Fix-point_check (new answers found)

75.complete scc

49

23

50

b(X)

a(Y)

b(X) a(Y)

b(X)

30.Fix-point_check (non leader)

57.Fix-point_check (non leader)

Figure 4.8: Subgoal calls sequence for the example in Fig. 3.6

Figure 4.9 helps to understand how the mechanism of the chains works for this

example. It shows snapshots that illustrate in more detail what happens with the

subgoal frames fields and chains during evaluation. On step 1, the subgoal frame

a(X) is initialized. Next, on step 2, the same happens to the subgoal frame b(X), and

the SgFr next, SgFr next on branch and SgFr next on scc fields of b(X) are made

to point to a(X) (for lack of space, these fields are not illustrated in the figure).

At step 3, a(X) is called again and starts propagating dependencies. Starting from

the TOP ON BRANCH subgoal frame, it follows the chain and marks the subgoals inside

the dependency graph as non-leaders, i.e., the subgoals which have a SgFr dfn value

greater than the value of the subgoal that started the propagation of dependencies.

In this case a(X) will be kept as leader and b(X) will be marked as non-leader.

At step 5, a new answer is found for b(X) and its SgFr new answers field is updated

to TRUE. At step 9, the fix-point check operation fails for b(X) since it is not a leader,

thus the choice point of b(X) is popped off from the local stack and the TOP ON BRANCH

and TOP SG FR are updated to a(X). Moreover, the new answers information in b(X)

is passed to a(X) and the TOP ON SCC is left pointing to b(X).

At step 21, we have another fix-point check operation, but now the computation is at

the leader of the SCC. The leader thus follows the TOP ON SCC chain to mark the state

74 CHAPTER 4. IMPLEMENTATION DETAILS

SgFr_state evaluating

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers FALSE

(1)

a(X)

TOP_SG_FR

TOP_ON_BRANCH

TOP_ON_SCC

(2)

a(X)

SgFr_state evaluating

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers FALSE

TOP_SG_FR

TOP_ON_BRANCH

TOP_ON_SCC

b(X)

SgFr_state evaluating

SgFr_dfn 2

SgFr_is_leader TRUE

SgFr_new_answers FALSE

a(X)

SgFr_state evaluating

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers FALSE

TOP_SG_FR

TOP_ON_BRANCH

TOP_ON_SCC

b(X)

SgFr_state evaluating

SgFr_dfn 2

SgFr_is_leader FALSE

SgFr_new_answers FALSE

(3)

a(X)

SgFr_state evaluating

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers FALSE

TOP_SG_FR

TOP_ON_BRANCH

TOP_ON_SCC

b(X)

SgFr_state evaluating

SgFr_dfn 2

SgFr_is_leader FALSE

SgFr_new_answers TRUE

(5)

a(X)

SgFr_state evaluating

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers TRUE

TOP_SG_FR
TOP_ON_BRANCH

TOP_ON_SCC
b(X)

SgFr_state evaluating

SgFr_dfn 2

SgFr_is_leader FALSE

SgFr_new_answers FALSE

(9)

a(X)

SgFr_state loop_eval

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers FALSE

TOP_SG_FR

TOP_ON_BRANCH

TOP_ON_SCC

b(X)

SgFr_state loop_ready

SgFr_dfn 2

SgFr_is_leader FALSE

SgFr_new_answers FALSE

(21)

a(X)

SgFr_state loop_eval

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers FALSE

TOP_SG_FR

TOP_ON_BRANCH

TOP_ON_SCC
b(X)

SgFr_state loop_eval

SgFr_dfn 2

SgFr_is_leader FALSE

SgFr_new_answers TRUE

(28)

a(X)

SgFr_state loop_eval

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers TRUE

TOP_SG_FR

TOP_ON_BRANCH

TOP_ON_SCC
b(X)

SgFr_state loop_eval

SgFr_dfn 2

SgFr_is_leader FALSE

SgFr_new_answers FALSE

(30)

a(X)

SgFr_state complete

SgFr_dfn 1

SgFr_is_leader TRUE

SgFr_new_answers FALSE

b(X)

SgFr_state complete

SgFr_dfn 2

SgFr_is_leader FALSE

SgFr_new_answers FALSE

(75)

Figure 4.9: Leader detection and dependency propagation for the example in Fig. 3.6

of subgoal b(X) as loop ready. This means that the next time b(X) will appear, it

will be the first time for the new round and, thus, a new generator choice point should

be allocated. Step 28 shows the TOP ON SCC and TOP SG FR global variables, pointing

again to subgoal b(X), and the new answers flag marked again as TRUE. At step 30,

another fix-point check operation fails for b(X) and the new answers flag of a(X) is

again marked as TRUE, so the SCC is marked for another re-evaluation. Finally, at

4.4. TABLING INSTRUCTIONS 75

step 75, both subgoals are marked as complete and the evaluation is completed.

4.4 Tabling Instructions

This section introduces the pseudo-code for the main tabling instructions required to

support the integration of the linear system and its optimizations on top of YapTab.

In order to keep aside from small implementation differences which are not the focus

of this thesis, the pseudo-code that we present next for the tabling instructions and

the fix-point check operation, abstracts these small details when they are not relevant

for the discussion at hand.

4.4.1 Tabling Instructions

We begin with Fig. 4.10 showing the pseudo-code for the tabled new answer() in-

struction. Initially, the instruction simply inserts the given answer ANS in the answer

trie structure for the given subgoal frame SF and, if the answer is new, it updates the

SgFr new answers subgoal frame field to TRUE. If DRS mode is enable for the subgoal,

it also marks the newest answer found during the current round (remember that the

SgFr new ans trie field is used for it). Otherwise, if the answer ANS is repeated, then

the instruction simply fails. As we are considering a local scheduling strategy, in any

case the instruction fails at the end.

tabled_new_answer(answer ANS, subgoal frame SF) {

if (answer_check_insert(ANS,SF) == TRUE) { // new answer

SgFr_new_answers(SF) = TRUE

if (DRS_mode(SF) && SgFr_new_ans_trie(SF) == NULL)

SgFr_new_ans_trie(SF) = ANS

} else // repeated answer

fail()

if (local_scheduling_mode(SF))

fail()

}

Figure 4.10: Pseudo-code for the tabled new answer() operation

Figure 4.11 shows the pseudo-code for the tabled call() operation, which is used

76 CHAPTER 4. IMPLEMENTATION DETAILS

for the evaluation of the first program clause which matches the subgoal call. It

implements the table try single, table try and table try me instructions. New

calls to tabled subgoals are inserted into the table space by allocating the necessary

data structures (this is the case where the state of SF is ready). In such case, the

tabled call operation then stores a new generator node initializes the given subgoal

frame SF, which includes updating its state to evaluating, and proceeds by executing

the current alternative.

On the other hand, if the subgoal call is a repeated call, then the subgoal frame is

already in the table space, and three different situations may occur. First, if the call

is already evaluated (this is the case where the state of SF is complete), the operation

consumes the available solutions by implementing the completed table optimization

which executes compiled code directly from the answer trie structure associated with

the completed call [22].

Second, if the call is a first call in a re-evaluating round (this is the case where the

state of SF is loop ready), the operation updates the state of SF to loop evaluating,

stores a new generator node, and proceeds by re-executing the first looping alternative

or the first matching alternative, accordingly to DRA mode be enabled or disable for

the subgoal.

Third, if the call is a consumer call (this is the case where the state of SF is evaluating

or loop evaluating), the operation first marks the current branch as a non-leader

branch and, if the DRA or DRS mode are enabled, it also marks the current branch as

a looping branch. Next, if DRE mode is enabled and there are unexploited alternatives

(i.e., there is a backtracking clause for the former call), it stores a follower node and

proceeds by executing the next looping alternative or the next matching alternative,

accordingly to DRA mode be enabled or disable for the subgoal. Otherwise, it stores

a new consumer node and starts consuming the available answers.

To mark the current branch as a non-leader branch, we follow all intermediate gen-

erator calls in evaluation up to the generator call for frame SF and we mark them as

non-leader calls (note that the call at hand defines a new dependency for the current

SCC). To mark the current branch as a looping branch, we follow all intermediate

generator calls in evaluation up to the generator call for frame SF and we mark the

alternatives being evaluated or the answers being consumed by each call, respec-

tively, as looping alternatives or looping answers. To accomplish this, we have im-

plemented the propagate dependencies() procedure, which is detailed on Fig. 4.12.

This procedure replaces the mark current branch as non leader branch() and the

4.4. TABLING INSTRUCTIONS 77

tabled_call(subgoal call SC) {

SF = subgoal_check_insert(SC) // SF is the subgoal frame for SC

if (SgFr_state(SF) == ready) { // first round

store_generator_node(SF)

init_subgoal_frame(SF)

SgFr_state(SF) = evaluating

goto execute(current_alternative())

} else if (SgFr_state(SF) == loop_ready) { // re-evaluation round

SgFr_state(SF) = loop_evaluating

store_generator_node(SF)

if (DRA_mode(SF))

goto execute(first_looping_alternative())

else

goto execute(first_alternative())

} else if (SgFr_state(SF) == evaluating or // first round

SgFr_state(SF) == loop_evaluating) {//re-evaluation round

mark_current_branch_as_a_non_leader_banch(SF)

if (DRA_mode(SF) or DRS_mode(SF))

mark_current_branch_as_a_looping_branch(SF)

if (DRE_mode(SF) && has_unexploited_alternatives(SF)) {

store_follower_node(SF)

if (DRA_mode(SF) and SgFr_state(SF) == loop_evaluating)

goto execute(next_looping_alternative())

else

goto execute(next_alternative())

} else {

store_consumer_node(SF)

goto consume_all_answers(SF)

}

} else if (SgFr_state(SF) == complete) // already evaluated

goto completed_table_optimization(SF)

}

Figure 4.11: Pseudo-code for the tabled call() operation

mark current branch as a looping branch() procedures of Fig. 4.11.

78 CHAPTER 4. IMPLEMENTATION DETAILS

Initially, we use the TOP ON BRANCH chain to mark as non-leader all the subgoals inside

the dependency graph and, if the DRA or DRS optimizations are enabled, we also use

it to mark the looping alternatives or looping answers, respectively. Note that the

propagate dependencies() procedure follows the TOP ON BRANCH chain for subgoals

with a depth first number higher than the one of the subgoal which is propagating the

dependency (SF), i.e., the one leading to a cycle. If DRS mode is enable for a subgoal

and it is consuming an answer, the answer is marked as a looping answer2. Else, if

DRA mode is enable, then the current alternative is marked as a looping alternative.

At the end of the procedure, if the DRA mode is enabled, the same is done to mark

the looping alternatives for the leader subgoal.

propagate_dependencies(subgoal frame SF) {

subgoal = TOP_ON_BRANCH

while ((SgFr_dfn(subgoal) > SgFr_dfn(SF)) or

(DRS_mode(subgoal) and SgFr_consuming_ans(subgoal))) {

SgFr_is_leader(subgoal) = FALSE

if (DRS_mode(subgoal) and SgFr_consuming_ans(subgoal))

add_as_looping_answer(subgoal,SgFr_consuming_ans(subgoal))

else if (DRA_mode(subgoal))

add_as_looping_alternative(subgoal,SgFr_current_alt(subgoal))

subgoal = SgFr_next_on_branch(subgoal)

}

if (DRA_mode(subgoal)) // leader subgoal

add_as_looping_alternative(subgoal,SgFr_current_alt(subgoal))

}

Figure 4.12: Pseudo-code for the propagate dependencies() procedure

Regarding the initialization of subgoal frames mentioned on the tabled call() oper-

ation, Fig. 4.13 shows the pseudo-code for the init subgoal frame() procedure. It

starts by allocating the looping structures for the alternatives (and for the answers

if DRS mode is enabled) and a new answer trie. Then, the SgFr gen cp is made to

point to the current choice point, the SgFr dfn field is updated and the CURR FREE DFN

global variable is increased for the next new subgoal frame, the SgFr new answers field

is initialized with FALSE, meaning that it has no new answers, and the SgFr is leader

field is initialized with TRUE, meaning that all subgoals are considered by default to be

2It is safe to use the condition “DRS mode(subgoal) and SgFr consuming ans(subgoal)”,
because the leader of the SCC cannot be using the DRS optimization.

4.4. TABLING INSTRUCTIONS 79

leaders, i.e., without dependencies to other subgoals. The last part of the procedure is

used to test if DRA mode is enabled or not. If it is enabled, then the current alternative

is stored in the SgFr current alt field (to be used by the propagate dependencies()

procedure), otherwise, it is not enabled, so the current alternative is added to the

looping structure.

init_subgoal_frame(subgoal frame SF) {

allocate_looping_structures(SF)

SgFr_answer_trie(SF) = allocate_new_answer_trie()

SgFr_first_answer(SF) = SgFr_last_answer(SF) = NULL

SgFr_gen_cp(SF) = B

SgFr_dfn(SF) = CURR_FREE_DFN

CURR_FREE_DFN = CURR_FREE_DFN + 1

SgFr_new_answers(SF) = FALSE

SgFr_is_leader(SF) = TRUE

if (DRA_mode(SF))

SgFr_current_alt(SF) = current_alternative()

else

add_as_looping_alternative(SF,current_alternative())

}

Figure 4.13: Pseudo-code for the init subgoal frame() procedure

Next on Fig. 4.14, we show the pseudo-code for the store generator node() pro-

cedure. Remember that the store generator node() procedure can be called when

the subgoal’s state is ready or loop ready.

If the subgoal’s state is ready, we then verify if DRE mode is enabled. If it is the case,

we allocate a generator choice point on the local stack, update the B register to point to

the new choice point, update the cp ap field to point to the tabled fix-point check()

operation, store the current choice point register on the SgFr pioneer field and the

next alternative to be evaluated on the SgFr next alt field. If the DRE mode is not

enabled, we simply allocate a generator node on the local stack with the cp ap field

pointing to the next available alternative and update the B register to point to the new

choice point. Then, we proceed by adding the subgoal frame to the TOP ON BRANCH

chain.

On the other hand, if the subgoal’s state is loop ready, we allocate a generator choice

with the cp ap field pointing to the tabled fix-point check() operation and, if the

80 CHAPTER 4. IMPLEMENTATION DETAILS

store_generator_node(subgoal frame SF) {

if (SgFr_state(SF) == ready) {

if (DRE_mode(SF)) {

B = store_generator_choice_point()

cp_ap(B) = tabled_fix-point_check()

SgFr_pioneer(SF) = B

SgFr_next_alt(SF) = next_alternative()

} else { // DRE mode not enabled

B = store_generator_choice_point()

cp_ap(B) = next_alternative()

}

add_to_chain(SF,TOP_ON_BRANCH)

} else { // state is loop_ready

B = store_generator_choice_point()

cp_ap(B) = tabled_fix-point_check()

if (DRE_mode(SF))

SgFr_pioneer(SF) = B

}

add_to_chain(SF,TOP_SG_FR)

add_to_chain(SF,TOP_ON_SCC)

}

Figure 4.14: Pseudo-code for the store generator node() procedure

DRE mode is enabled, we store the current B register on the SgFr pioneer field. We

finish the procedure, by adding the subgoal frame to both TOP SG FR and TOP ON SCC

chains.

We conclude this subsection, by showing the pseudo-code for the remaining tabling

instructions, the table retry, table retry me, table trust and table trust me

instructions. Fig. 4.15 shows the pseudo-code for the tabled retry() operation that

abstracts the instructions table retry and table retry me. We start the operation

by restoring the current choice point (pointed by the B register), in order to put

the evaluation on the state which was previous to the subgoal call. Again, if DRE

optimization is enabled, then we also store the next alternative to be evaluated in the

SgFr next alt field, otherwise, we only restore the current choice point and replace

the backtracking alternative for the next alternative.

4.4. TABLING INSTRUCTIONS 81

tabled_retry(subgoal frame SF) {

restore_generator_choice_point(B)

if (DRE_mode(SF)

SgFr_next_alt(SF) = next_alternative()

else

cp_ap(B) = next_alternative()

if (DRA_mode(SF))

SgFr_current_alt(SF) = current_alternative()

else

add_as_looping_alternative(SF,current_alternative())

goto execute(current_alternative())

}

Figure 4.15: Pseudo-code for the tabled retry() operation

If DRA optimization is enabled, then the SgFr current alt field is updated to store

the current alternative, for the case of an eventual future dependency cycle. Otherwise,

the current alternative is added to the looping structure. At the end, the operation

proceeds by executing the current alternative.

Figure 4.16 shows the pseudo-code for the tabled trust() operation that abstracts

the instructions table trust and table trust me. These instructions represent the

last program alternative which matches with a subgoal call.

tabled_trust(subgoal frame SF) {

restore_generator_choice_point(B)

cp_ap(B) = tabled_fix-point_check()

if (DRE_mode(SF)

SgFr_next_alt(SF) = NULL

if (DRA_mode(SF))

SgFr_current_alt(SF) = current_alternative()

else

add_as_looping_alternative(SF,current_alternative())

goto execute(current_alternative())

}

Figure 4.16: Pseudo-code for the tabled trust() operation

82 CHAPTER 4. IMPLEMENTATION DETAILS

We start this operation by restoring the current choice point and by updating the

cp ap field to point to the tabled fix-point check operation. If DRE optimization

is enabled, we mark the SgFr next field as NULL. We will use this information on

the tabled fix-point check() operation to stop consuming program clauses. This

information means also that no more follower nodes will be allocated while the subgoal

is in the evaluating state. Then, we proceed with the test for inserting the current

alternative on the looping structure or not. The instruction ends by executing the

current alternative.

4.4.2 Fix-Point Check Operation

This subsection discusses in more detail the fix-point check operation. Remember

that with the DRE mode enabled or after exploring the last matching clause for

a tabled call or while the subgoal call is in a loop state, we always execute the

tabled fix-point check() operation when backtracking to a generator node. Fig-

ure 4.17 shows the pseudo-code for its implementation.

We begin the fix-point check operation by first evaluating the remaining alternatives

that match the tabled call and, only if no alternatives exit for the current round,

we execute the following code for the tabled fix-point check() operation. The

pseudo-code for the evaluate next alternative() procedure is presented next on

Fig. 4.18. Thus, if no alternatives exist, then we check if the subgoal at hand is a leader

call. If it is a leader with new answers found during the current round, we prepare

all the subgoals inside the SCC for a new round of evaluation and begin evaluating

the first looping alternative (currently pointed by the SgFr current alt field). If

the subgoal is leader but no new answers were found during the current round, then

we have reached a fix-point and thus we pop off the generator choice point from the

local stack, mark the subgoals in the current SCC as completed, remove their looping

structures and remove them from the TOP ON SCC chain. After that and because we

are still only considering the local scheduling strategy, we proceed the evaluation with

the completed table optimization. On the next chapter, when we present the batched

scheduling strategy, we will observe that the behavior of this operation at this step

will be different.

The last part of the operation is related with non leader subgoal calls. In this situation,

we pop off the generator choice point, propagate the new answers info to the current

leader of the SCC, and start consuming the available answers (due to local scheduling

4.4. TABLING INSTRUCTIONS 83

tabled_fix-point_check(subgoal frame SF) {

evaluate_next_alternative(SF)

if (SgFr_is_leader(SF)) {

if (SgFr_new_answers(SF)) { // prepare the SCC for a new round

SgFr_new_answers(SF) = FALSE

SgFr_state(SF) = loop_evaluating

subgoal = TOP_ON_SCC

while (subgoal != SF) {

SgFr_state(subgoal) = loop_ready

remove_from_chain(subgoal,TOP_ON_SCC)

subgoal = SgFr_next_on_scc(subgoal)

}

goto execute(first_looping_alternative())

} else { // leader without new answers

pop_generator_choice_point(SF)

subgoal = TOP_ON_SCC

while (subgoal != SgFr_next_on_SCC(SF)) {

SgFr_state(subgoal) = complete

free_looping_structures(subgoal)

remove_from_chain(subgoal,TOP_ON_SCC)

subgoal = SgFr_next_on_scc(subgoal)

}

goto completed_table_optimization(SF) // local scheduling

} else { // not a leader call

pop_generator_choice_point(SF)

if (SgFr_new_answers(SF)) // propagate new answers info

SgFr_new_answers(current_leader(SF)) = TRUE

SgFr_new_answers(SF) = FALSE // reset new answers info

if (DRS_mode(SF)) // local scheduling

goto consume_looping_answers_and_answers_in_current_round(SF)

else

goto consume_all_answers(SF)

}

}

Figure 4.17: Pseudo-code for the tabled fix-point check() operation

84 CHAPTER 4. IMPLEMENTATION DETAILS

strategy). If DRS mode is enabled, we will only consume the looping answers and the

answers found during the current round3, otherwise we consume all the answers.

The implementation of the evaluate next alternative() procedure is shown next

on Fig. 4.18. We begin by supporting the extra control needed by the DRE opti-

mization where we check if all the program clauses that match the tabled call were

already evaluated and, if they were not, we proceed by executing the next available

alternative. Otherwise, we check if this is the first time (cases where the state of

the subgoal is evaluating) or a former time (cases where the state of the subgoal is

loop evaluating) that the tabled fix-point check() operation is being executed

for the tabled call at hand.

evaluate_next_alternative(subgoal frame SF) {

if (DRE_mode(SF) and SgFr_next_alt(SF))

goto execute(SgFr_next_alt(SF))

if (SgFr_state(SF) == evaluating) {

if (DRE_mode(SF) and SgFr_pioneer(SF) != B) { // follower node

pop_follower_choice_point()

goto consume_all_answers(SF)

}

SgFr_state(SF) = loop_evaluating // move to a loop state

if (SgFr_is_leader(SF) == FALSE)

remove_from_chain(SF,TOP_ON_BRANCH)

SgFr_current_alt(SF) = first_looping_alternative()

SgFr_stop_alt(SF) = first_looping_alternative()

} else {

SgFr_current_alt(SF) = next_looping_alternative()

if (SgFr_current_alt(SF) != SgFr_stop_alt(SF))

goto execute(SgFr_current_alt(SF))

}

}

Figure 4.18: Pseudo-code for the evaluate next alternative() procedure

For first time situations, we check again if DRE mode is enabled and if the tabled call

is a follower call. If it is the case, we pop off the choice point from the local stack

3We begin the procedure by consuming the looping answers. Then, we add the subgoal’s frame to
the TOP ON BRANCH chain and schedule all its new answers found on the current round for evaluation.
After consuming all the answers, we remove the subgoal’s frame from the TOP ON BRANCH chain.

4.5. CHAPTER SUMMARY 85

and consume the subgoal’s answers. Otherwise, if DRE mode is not enabled or if the

call is a pioneer, we move the subgoal’s state to a looping state (loop evaluating),

remove the subgoal frame from the TOP ON BRANCH chain if it is a non-leader call4 and

update the SgFr current alt and SgFr stop alt fields to point to the first looping

alternative. For former time situations, we simply update the SgFr current alt field

to point to the next looping alternative and execute the next unexploited alternative

for the subgoal, if the current one is not the last.

We conclude the description of the tabled fix-point check() operation with the

presentation of the free looping structures() procedure through the Fig. 4.19.

This procedure is used to remove the looping structures for alternatives or/and for

answers. Notice that even when DRA is not enabled, the looping structures are used

to store alternatives and that in such cases, they store all the looping and non-looping

alternatives.

To implement this procedure, we use three abstract pointer fields. The fst bkt is

used to mark the first bucket, the curr bkt field is used to mark the bucket which

will be removed and the next bkt is used to mark the next bucket to be removed.

The next bkt field must be updated before cleaning the curr bkt bucket, otherwise

we would not be able to jump to the next bucket. So, we start by storing the first cell

of the bucket, which stores the first looping alternative, on the fst bkt and curr bkt

pointers. Then we proceed with a cycle to clean all the buckets. For each bucket, the

free bucket() procedure frees the memory space and updates the looping alternative

fields of the subgoal’s frame to NULL.

After cleaning the looping alternatives buckets, we check if DRS mode is enabled and,

if so, we use the same procedure to clean the looping answers buckets.

4.5 Chapter Summary

This chapter described the main implementation details to support linear tabling in

YapTab. We described the data structures for supporting the different linear tabling

optimizations, we discussed the leader detection algorithm and we presented the details

4As an optimization, when a non-leader call moves to the looping state, it can be removed from
the TOP ON BRANCH chain because there is no point in keeping it there. This is the reason why, if
later we execute the propagate dependencies() procedure for the call at hand, we need to follow
the subgoal frames in the TOP ON BRANCH chain up to the first subgoal frame with a smaller SgFr dfn

value, as described on the pseudo-code for the propagate dependencies() procedure on Fig. 4.12.

86 CHAPTER 4. IMPLEMENTATION DETAILS

free_looping_structures(subgoal frame SF) {

fst_bkt = get_first_cell_of_bucket(first_looping_alternative())

curr_bkt = fst_bkt

do {

next_bkt = get_first_cell_of_next_bucket(curr_bkt)

free_bucket(curr_bkt)

curr_bkt = next_bkt

} while (curr_bkt != fst_bkt)

if (DRS_mode(SF)) {

fst_bkt = get_first_cell_of_bucket(first_looping_answer())

curr_bkt = fst_bkt

do {

next_bkt = get_first_cell_of_next_bucket(curr_bkt)

free_bucket(curr_bkt)

curr_bkt = next_bkt

} while (curr_bkt != fst_bkt)

}

}

Figure 4.19: Pseudo-code for the free looping structures() procedure

involved in the execution control of the main linear tabling operations.

Chapter 5

Batched Scheduling

This chapter presents the key ideas of the batched scheduling strategy and all the

consequent changes made to the main operations already created to support the local

scheduling strategy.

5.1 Key Ideas

Batched scheduling is an alternative strategy that can be used for the evaluation of

tabled logic programs. Its importance was recognized when the SLG-WAM, which is

the tabling suspension-based mechanism of the XSB Prolog system, started using it

as the default strategy (for versions 1.5 and higher of XSB) [11].

The batched scheduling strategy takes its name because it tries to minimize the need to

move around the search tree by batching the return of answers. When new answers are

found, they are added to the table space and the evaluation continues, instead of failing

as for the local scheduling strategy. Therefore, the subgoals do not need to consume

answers after the fix-point check operation1. However, as we can observe through the

evaluation shown on Fig. 5.1, for linear tabling, the consumption of answers is still

necessary. Since the tabled new answer operation fails when repeated answers are

found in a new re-evaluation round, making each answer to be consumed only once,

this may not be sufficient to assure the completeness of an SCC. So, the consumption

of answers is still necessary before re-evaluating a tabled subgoal. Figure 5.1 shows an

1Recall that the DRS optimization is used when the non-leader generator subgoal calls are
consuming answers after the fix-point check operation. As a consequence, the application of the
DRS optimization is useless on this strategy, so it was not implemented on our system.

87

88 CHAPTER 5. BATCHED SCHEDULING

example that illustrates the propagation of answers during an evaluation with batched

scheduling. The example, which is a variant of the FTS program, has four clauses and

two tabled predicates. The goal of the program is to find all the tuples which satisfy

the top query call. The solution set of the problem is {(1, 1),(1, 2)}.

At step 1, we start evaluating the top call(X,Y) query by executing the clause c1,

which leads to the subgoal call a(X), and, at the step 2, we allocate a generator node

and start evaluating the clause c2. At step 3, the new answer X = 1 is found and

added to the table space of a(X), but now on the tabled new answer operation we

proceed with the evaluation. Next, at step 4, the test X is 1 succeeds and on the

continuation we call the subgoal b(Y) (step 5). We allocate a generator node for b(Y)

and start evaluating the clause c4, which leads to a repeated call to a(Y) (step 6).

At this step, we allocate a consumer node for a(Y) and consume the answer Y = 1,

leading to a first solution (X = 1, Y = 1) for the top query goal. In the continuation,

the evaluation backtracks to node 6 but as no more answers exist to be consumed, it

backtracks to node 5. Node 5 has explored all the matching clauses and because b(Y)

is not a leader call, it depends on a(Y), we backtrack again and the evaluation reaches

node 2. At this node we evaluate the second matching clause c3, and find the answer

X = 2 for the subgoal a(X) (step 9), but now the test X is 1 fails (step 10), so we

backtrack again to node 2. At this point, we perform a fix-point check operation and

decide to start a new re-evaluation round.

Suppose now that we would not consume answers at this node before starting the new

round of evaluation. Notice that, the answers X = 1 and X = 2 are already on the

table space of a(X), so the re-evaluation of clauses c2 and c3, leading to those answers,

will be blocked by the tabled new answer operation, as they are repeated answers.

This means that no new answer will be found on the new round and the evaluation of

the SCC would finish prematurely. In other words, because the subgoal b(Y) depends

on subgoal a(Y), the answer Y = 2 will not be propagated to the context of the

subgoal b(Y), and thus the solution (X = 1, Y = 2) which belong to the solution set

of the problem would not be found.

Returning to the evaluation, at the node 2, we thus start by consuming the answers

available for subgoal a(X), starting by the answer X = 1, and the evaluation reaches

again b(Y) (step 14). At this node, we start also by consuming the answers on the

table space of b(X) and only afterwards we explore the clause c4. This leads to the

consumer node 17, which this time propagates the answer Y = 2 to the subgoal b(Y)

(step 19) and the solution (X = 1, Y = 2) is found. At step 20, we fail the evaluation,

because we do not have any more answers/clauses to evaluate, and so we backtrack

5.1. KEY IDEAS 89

12: Before starting a

new round of

evaluation over the

SCC, the subgoal a(X)

must consume all its

answers, in order to

propagate them to

the calling

environment.

:-table a/1, b/1.
top_call(X,Y):- a(X), X is 1, b(Y). (c1)
a(1). (c2)
a(2). (c3)
b(Y):-a(Y). (c4)

1: top_call(X,Y)

2: a(X)

5: b(Y)

c1

1: a(X)

2: b(Y)

Call Solutions

 3: X=1
 9: X=2
 39: complete

15: The subgoal b(X)

starts by consuming

its answers.

c4

 7: Y=1
 19: Y=2
 39: complete

2: a(X), X is 1, b(Y)

3: X=1
(new ans)

c2

X=1

4: X is 1, b(Y)

9: X=2
(new ans)

11,22,25,39: fix-point check

5: b(Y)

X is 1

6: a(Y)

7: Y=1
(new ans)

8: fix-point check

10: fail
(x diff 1)

X=2

c3

X=1 X=2

13: X is 1, b(Y)

14: b(Y)

X is 1

14: b(Y)

c4

17: a(Y)

20: fix-point check

16: fail
(rep ans)

X=1

18: Y=1
(rep ans)

19: Y=2
(new ans)

21: fail
(x diff 1)

23-24: ...

26-38: ...

Figure 5.1: Propagation of answers on a tabled evaluation using batched scheduling

again to node 2. At step 21, we evaluate the answer X = 2, but the test X is 1 fails,

thus we backtrack one more time to node 2. Now we start evaluating the program

clauses c2 and c3, but it does not lead to any further developments on the table space

90 CHAPTER 5. BATCHED SCHEDULING

(steps 23 and 24). As the previous evaluations shown on chapter 3, this evaluation

finishes with a new round of evaluation over the SCC without new answers (steps 26

to 38), and at step 39, both subgoals a(X) and b(X) are marked as complete.

In summary, the key differences between local and batched scheduling are: (i) batched

scheduling does not fail when it finds a new answer as local scheduling does, and (ii)

the consumption of the answers on the table space is always made before starting a

new round of evaluation of the program clauses, instead of consuming them after the

fix-point check operation as with local scheduling.

5.2 Implementation Details

Extending our system to support batched scheduling involves making slight changes to

the structures and operations presented on the previous chapter for local scheduling.

The first operation that was changed was the tabled new answer() as shown on

Fig. 5.2.

tabled_new_answer(answer ANS, subgoal frame SF) {

if (answer_check_insert(ANS,SF) == TRUE) { // new answer

SgFr_new_answers(SF) = TRUE

if (DRS_mode(SF) && SgFr_new_ans_trie(SF) == NULL)

SgFr_new_ans_trie(SF) = ANS

} else // repeated answer

fail()

if (local_scheduling_mode(SF))

fail()

else // batched scheduling

proceed()

}

Figure 5.2: Pseudo-code for the tabled new answer() operation with support for

batched scheduling

The first part of the operation, where we check for new or repeated answers, remains

unchanged. The difference occurs on the second part, where we now check for the

scheduling strategy (local or batched). If the scheduling strategy is local, then we

continue to fail the evaluation. Otherwise, the strategy is batched, so we adjust the

5.2. IMPLEMENTATION DETAILS 91

execution’s environment and proceed with the evaluation.

The support for the consumption of answers before executing the program clauses

required two steps. The first step was to extend the subgoal’s frame structure with

a new field, which we called SgFr batched ans. This field is used as a state flag to

mark when a subgoal is or is not consuming batched answers, and when the subgoal

is consuming answers, it points to the current answer being consumed.

The second step was to support the answer consumption on non-leader and leader sub-

goals, which involved changing the tabled call() and the tabled fix-point check()

operations, respectively. Figure 5.3 shows the changes made to the tabled call()

operation. The three dots represent parts of the pseudo code which are identical to

the ones presented previously on Fig. 4.11.

For the support of the consumption of batched answers on non-leader subgoals, we

had to change the behavior of the evaluation when the subgoal is called with the

looping ready state. As before, we start by updating the state of the subgoal

to looping evaluating and by storing a generator node (this is common to both

strategies). But now, if it is in batched scheduling mode and before starting the

evaluation of the alternatives, we update the batched answer field of the subgoal to

its first answer. Then, we execute the cons all bat ans and execute() procedure

in order to consume all batched answers, and execute the alternative procedure. This

procedure, turns the generator choice point of the call at hand into a consumer choice

point, consumes all batched answers of the subgoal (starting from the first answer)

and, when no more answers are to be consumed, the procedure turns the consumer

choice point into the initial generator and starts the evaluation of the first alternative.

The other operation changed was the tabled fix-point check() operation. Fig-

ure 5.4 shows the changes made in order to add the support for consuming the

batched answers on leader subgoals. We start the procedure before, by first consuming

the available alternatives and then we check if the subgoal is leader or not. If the

subgoal is leader has new answers and is being evaluated in batched scheduling, before

executing the first looping alternative, we update again the batched answer field of the

subgoal to its first answer. Then, we execute the cons all bat ans and execute()

procedure in order to consume all batched answers and execute the first alternative

procedure. Again, this means that we temporally change the generator choice point

into a consumer, consume all batched answers and, when all answers are exhausted,

we turn the consumer into a generator and execute the first alternative. If the subgoal

is leader but do not have answers, then we complete the SCC and fail the evaluation.

92 CHAPTER 5. BATCHED SCHEDULING

tabled_call(subgoal call SC) {

SF = subgoal_check_insert(SC) // SF is the subgoal frame for SC

if (SgFr_state(SF) == ready) { // first round

. . .

} else if (SgFr_state(SF) == loop_ready) { // re-evaluation round

SgFr_state(SF) = loop_evaluating

store_generator_node(SF)

if (local_scheduling_mode(SF)){

if (DRA_mode(SF))

goto execute(first_looping_alternative())

else

goto execute(first_alternative())

} else { // batched scheduling

SgFr_batched_ans(SF) = SgFr_first_answer(SF)

if (DRA_mode(SF))

goto cons_all_bat_ans_and_execute(first_looping_alternative())

else

goto cons_all_bat_ans_and_execute(first_alternative())

}

} else if (SgFr_state(SF) == evaluating or // first round

SgFr_state(SF) == loop_evaluating) {//re-evaluation round

. . .

} else if (SgFr_state(SF) == complete) // already evaluated

. . .

}

Figure 5.3: Pseudo-code for the tabled call() operation with support for batched

scheduling

Notice that with local scheduling, at this point we would consume all the subgoal’s

answers.

On the other hand, if the subgoal is not leader, after popping off the generator choice

point from the local stack and propagating the new answers to the leader of the SCC,

with batched scheduling we simply fail the evaluation. Suppose now that new answers

were found for the subgoal, would this mean that we might lose solutions inside the

SCC? No, because the new answers have been already propagated when they were

5.2. IMPLEMENTATION DETAILS 93

tabled_fix-point_check(subgoal frame SF) {

evaluate_next_alternative(SF)

if (SgFr_is_leader(SF)) {

if (SgFr_new_answers(SF)) {

. . .

if (local_scheduling_mode(SF))

goto execute(first_looping_alternative())

else { // batched scheduling

SgFr_batched_ans(SF) = SgFr_first_answer(SF)

goto cons_all_bat_ans_and_execute(first_looping_alternative())

}

} else { // leader without new answers

. . .

if (local_scheduling_mode(SF))

goto completed_table_optimization(SF)

else // batched scheduling

fail()

} else { // not a leader call

. . .

if (local_scheduling_mode(SF))

if (DRS_mode(SF))

goto consume_looping_answers_and_answers_in_current_round(SF)

else

goto consume_all_answers(SF)

else // batched scheduling

fail()

}

}

Figure 5.4: Pseudo-code for the tabled fix-point check() operation with support

for batched scheduling

found. Moreover, since the new answers flag of the subgoal is propagated to the

leader of the SCC, the leader will mark the SCC for a new round evaluation. In this

new round, the subgoal will be called again, and so it will start by consuming all its

answers, including the new ones.

94 CHAPTER 5. BATCHED SCHEDULING

5.3 Support for the DRE Optimization

The support for DRE optimization with batched scheduling was one of the most

challenging problems that we have faced in order to support batched scheduling,

because besides controlling the batched answers on leader and non leader subgoals,

with DRE optimization, we have the extra complexity of dealing with pioneer and

follower nodes. For the same subgoal, we can have one pioneer node and several

followers nodes executing at the same time, in which some of those nodes might be

consuming batched answers and others not. As each node is independent from the

others and a follower node can have different positions on different evaluation rounds

over the SCC (making it hard to identify uniquely each node), the subgoal frame of

the subgoal can not be used to store the batched answers for the pioneer and for his

follower nodes. In reality, the solution to the problem has in fact far more simple than

the problem itself, because all the tools were already created.

Figure 5.5 shows the general picture of the solution. It is divided into three areas,

the local stack, with the B register pointing to the current choice point, the TOP SG FR

chain, with the TOP SG FR pointing to the current subgoal in use and the answer trie

structure. The figure simulates a situation where, for the same subgoal, we have one

pioneer and two followers nodes, nine answers on the answer trie structure and all the

three nodes are consuming batched answers. The pioneer is consuming the answer

Ans 09, the first follower is consuming the answer Ans 02 and the last follower (which

is the topmost) is consuming the answer Ans 06.

The solution for the consumption of batched answers was to use the SgFr batched ans

field, which controls the batched answer that is being consumed, on the subgoal frames

that were previously used to maintain the coherence between the subgoals in evaluation

and the generator choice points on the local stack. Thus, now each subgoal frame in

the TOP SG FR chain has the information about the its generator choice point, the

information about the node, if it is a pioneer or a follower and the information about

the batched answer which it is consuming, if any. This solution to the consumption

of batched answers allows each node to work independently from the others.

At each node, either being a pioneer or a follower, we always have all the necessary

information available for the evaluation of the subgoal. If we want to consume batched

answers, we use the TOP SG FR pointer, which always points to the current subgoal in

evaluation. If we want to access all the remaining information about the subgoal, then

we can go directly to the subgoal’s frame, by consulting the cp sg fr field of the top

5.3. SUPPORT FOR THE DRE OPTIMIZATION 95

TOP_SG_FR chain

SgFr_answer_trie

SgFr_first_answer

SgFr_state

SgFr_last_answer

SgFr_gen_cp

SgFr_dfn

SgFr_is_leader

SgFr_new_answers

SgFr_batched_ans

Answer Trie structure

Ans_01 Ans_06 Ans_07

Ans_02 Ans_05 Ans_08

Ans_03 Ans_04 Ans_09

.

.

.

.

cp_sg_fr

cp_ap

cp_tr

cp_h

cp_cp

cp_env

cp_b

cp_sg_fr

cp_ap

cp_tr

cp_h

cp_cp

cp_env

cp_b

B

cp_sg_fr

cp_ap

cp_tr

cp_h

cp_cp

cp_env

cp_b

Local Stack

.

.

.

.

SgFr_batched_ans

SgFr_pioneer

SgFr_pioneer

SgFr_gen_cp

SgFr_batched_ans

SgFr_pioneer

SgFr_gen_cp

-

+

Figure 5.5: The DRE optimization with support for batched scheduling

most choice point.

The support of DRE optimization is then fully integrated with batched scheduling,

without requiring major changes to the key tabling operations already implemented.

It just involved changing the structure and the initialization of the subgoal frames

to support the SgFr batched ans field on follower nodes, and changing the fix-point

check operation to get the batched answer through the TOP SG FR chain, instead of

the pioneer’s subgoal frame.

96 CHAPTER 5. BATCHED SCHEDULING

5.4 Chapter Summary

This chapter described the most important ideas and difficulties for implementing the

batched scheduling strategy on our linear tabling system. It started by presenting

the high-level approach and by describing the batching of answers scheme. Then, it

discussed the changes made to the major operations of our linear system and ended

by describing the changes required to support the DRE optimization.

Chapter 6

Performance Analysis

In this chapter, we analyze the advantages and weaknesses of each linear tabling

optimization, when used solely or combined with the others, and make a comparison

between the suspension-based and linear-based mechanisms of the YapTab system.

The environment for our experiments was an Intel(R) Core(TM)2 Quad CPU Q9550

2.83GHz with 4 GBytes of main memory and running the Linux kernel 2.6.32-24-PAE

with Yap 6.0.7. For the calculation of the running times that we present next, each

benchmark was executed three times and the results presented on this chapter are the

average of those three executions.

6.1 Benchmarks

We will use three different sets of benchmarks for performance analysis. For the first

two sets we will present an exhaustive discussion about the results obtained and for

the third set we will just include the results as an appendix without further analysis.

The first set of benchmarks is a set of six different versions of the well-known path/2

predicate, that computes the transitive closure in a graph, combined with several

different configurations of edge/2 facts. The six versions of the path predicate include

two double recursive, two right recursive and two Left recursive definitions as presented

on Fig. 6.1. Each pair has one definition with the recursive clause first and another

with the recursive clause last.

Regarding the edge facts, we used three configurations: a pyramid, a cycle and a grid

configuration (Fig. 6.2 shows an example for each configuration). We experimented

97

98 CHAPTER 6. PERFORMANCE ANALYSIS

% Double First

path(X,Z) :- path(X,Y), path(Y,Z).

path(X,Z) :- edge(X,Z).

% Double Last

path(X,Z) :- edge(X,Z).

path(X,Z) :- path(X,Y), path(Y,Z).

% Right First

path(X,Z) :- edge(X,Y), path(Y,Z).

path(X,Z) :- edge(X,Z).

% Right Last

path(X,Z) :- edge(X,Z).

path(X,Z) :- edge(X,Y), path(Y,Z).

% Left First

path(X,Z) :- path(X,Y), edge(Y,Z).

path(X,Z) :- edge(X,Z).

% Left Last

path(X,Z) :- edge(X,Z).

path(X,Z) :- path(X,Y), edge(Y,Z).

Figure 6.1: The six versions of the path/2 predicate

the pyramid and cycle configurations with depths 500, 1000 and 1500 and the grid

configuration with depths 20, 30 and 40. We also experimented the Left recursive

definition of the path/2 predicate1 with three different transition relation graphs

usually used in Model Checking applications: the i-protocol (Iproto), leader election

(Leader) and sieve specifications.

The second set of benchmarks is a small variant of the path problem, suggested by

David S. Warren as a way to stress the evaluation of a linear tabling system, that leads

to successive re-evaluations of the same SCC with the solutions being found only on

1We didn’t show results for the Right and Double recursive definitions of the path/2 predicate
because they took more than 5 hours to execute in YapTab and thus we aborted their execution.

6.1. BENCHMARKS 99

Cycle (depth 4) Grid (depth 4)Pyramid (depth 4)

Figure 6.2: Edge configurations for path definitions

leaf nodes. Figure 6.3 presents an example of the Prolog code for these benchmarks,

that we named Warren tests, with the transition graph, defined by the predicate

edge/3, with depth 6. The transition graph is defined by the function:

edge/3 =

{
edge(2k, a, 2k + 1) for 0 <= k <= (depth/2)− 1

edge(2k + 1, b, 2k + 2) for 0 <= k <= (depth/2)− 1

and we have used the depths 3000, 6000, 9000 and 12000 on the experimental tests.

:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,a,Z).

path(X,Z) :- path(X,Y), edge(Y,b,Z).

path(X,X).

% Edge depth is 6

edge(0,a,1).

edge(1,b,2).

edge(2,a,3).

edge(3,b,4).

edge(4,a,5).

edge(5,b,6).

Figure 6.3: An example of the Warren tests with depth 6

The third and last set of benchmarks were obtained from the OpenRuleBench com-

munity. We have submitted our system to all their tests [16], but on this thesis we

have only included a small part of them that are detailed on Appendix B.

100 CHAPTER 6. PERFORMANCE ANALYSIS

6.2 Local Scheduling Results

We begin the description of the experimental results for local scheduling with the

path problem. Table 6.1 shows the running time average ratios for the comparison

of standard linear tabling against the several optimizations. The values on the table

have the following meaning: a 1.00 value means that standard linear tabling has the

same running time of the corresponding optimization, a value higher than 1.00 means

that the optimization is better and lower means that it is worst than standard linear

tabling.

The table is divided into eight columns. The first column identifies the program used.

In bold text, it refers how the path/2 predicate is recursively defined, and for each

definition of the path/2 predicate follows the edge configurations Cycle, Grid and

Pyramid. In order to present an higher picture of the results, the results presented for

these configurations are the average results of the different depths for each edge type.

For example, the results presented for the Grid configuration are the average of the

depths 20, 30 and 40. On Appendix A.1 the reader can find all the detailed results.

The two Left recursive definitions of path/2 have three extra edge definitions, which

correspond to the Model Checking configurations mentioned before. The remaining

columns match the corresponding optimizations. The DRA, DRE and DRS columns

correspond to solely optimizations and the DRA+DRE, DRA+DRS, DRE+DRS and

All (DRA+DRE+DRS) correspond to the combined optimizations. On the last line

of the table, it is described the average of the results per column.

Analyzing the general picture of this first set of results, we can observe that the

All (DRA+DRE+DRS) optimization has the best results with an average result of

1.26, which represents that, on average it is about 26% faster than the standard

evaluation. The second best optimization was the DRA+DRS with 1.24. In general, all

the optimizations have positive results, but in fact some of them have more consistent

results than others. An example of this situation is the DRA and DRE optimizations.

The DRA presents more diverse results with values between 1.09 and 1.71, and good

results on the Double and Right definitions of the path/2 predicate. The DRE presents

more consistent results with values between 1.07 and 1.28, and has a lower performance

on the right definition of path/2.

In order to better understand these results, i.e., how they are affected by the different

optimizations and, if in fact, the optimizations are being used during the evaluation,

we have collected some internal statistics of the evaluation. On those statistics, we

6.2. LOCAL SCHEDULING RESULTS 101

Table 6.1: Running time ratios for local scheduling comparing standard linear tabling

against the several optimizations using the path problem (values higher than 1.00

mean that the optimization is better)

Programs DRA DRE DRS

DRA DRA DRE

+ + + All

DRE DRS DRS

Double First

Cycle 1.16 1.15 1.15 1.16 1.14 1.15 1.17

Grid 1.11 1.11 1.10 1.10 1.09 1.09 1.09

Pyramid 1.02 1.02 1.00 1.02 1.02 1.01 1.02

Double Last

Cycle 1.12 1.12 1.13 1.12 1.11 1.13 1.14

Grid 1.17 1.18 1.16 1.16 1.16 1.17 1.17

Pyramid 1.13 1.13 1.14 1.14 1.12 1.13 1.14

Right First

Cycle 1.18 1.02 1.28 1.22 1.64 1.27 1.56

Grid 1.12 1.06 1.27 1.15 1.42 1.30 1.49

Pyramid 1.71 1.08 1.10 1.72 1.72 1.08 1.74

Right Last

Cycle 1.37 1.16 1.43 1.43 1.76 1.47 1.57

Grid 1.14 1.03 1.27 1.14 1.43 1.28 1.46

Pyramid 1.53 1.07 1.07 1.58 1.62 1.03 1.56

Left First

Cycle 1.12 1.15 1.14 1.14 1.14 1.14 1.16

Grid 1.30 1.28 1.27 1.31 1.28 1.33 1.35

Pyramid 1.12 1.19 1.17 1.18 1.14 1.17 1.18

Iproto 1.09 1.08 1.09 1.10 1.10 1.15 1.13

Leader 1.09 1.09 1.06 1.04 1.05 1.13 1.10

Sieve 1.09 1.07 1.06 0.99 1.01 1.10 1.05

Left Last

Cycle 1.15 1.15 1.16 1.22 1.15 1.17 1.18

Grid 1.28 1.27 1.24 1.29 1.28 1.35 1.35

Pyramid 1.09 1.15 1.11 1.15 1.09 1.14 1.16

Iproto 1.13 1.13 1.13 1.15 1.14 1.19 1.18

Leader 1.12 1.12 1.09 1.08 1.07 1.16 1.13

Sieve 1.08 1.07 1.07 0.99 1.01 1.09 1.06

Average 1.18 1.12 1.15 1.19 1.24 1.18 1.26

102 CHAPTER 6. PERFORMANCE ANALYSIS

are interested on particular points of the evaluation where the optimizations may take

effect. In particular, we are interested on the number of tabled nodes allocated per

evaluation, on the number of answers consumed by generator nodes, the number of

alternatives evaluated and on the number of SCC evaluations. In Table 6.2, we show

statistical information for the particular evaluation of the path problem using the Grid

configuration with depth 40 in order to compare the standard evaluation against the

optimizations.

Again, the table has eight columns. The first column is the subject of the statistic. The

“Tabled Nodes” item represents the number of tabled nodes allocated per evaluation.

In this item, we count all the generator and consumer nodes and, whenever the

DRE optimization is enabled, we also count the follower nodes. The “Answers” item

represents the number of answers that are consumed by generator nodes corresponding

to non-leader subgoals. The “Alternatives” item represents the number of alternatives

explored during the evaluation. Recall that the objective of the DRA optimization is

to reduce this value to a minimum. The last item is the “SCC Eval” and it counts

the number of evaluation rounds of all SCCs.

The remaining columns show the values gathered for each optimization. These values

represent again the comparison with standard evaluation, but now instead of analyz-

ing ratios as for the previous table, we are interested in analyzing the total values

themselves. Thus, a zero value represents evaluations where the standard evaluation

is equal to the optimization at hand, negative numbers represent evaluations where

the standard evaluation is worst than the optimization and positive numbers represent

evaluations where standard evaluation is better that the optimization. For example,

in Table 6.2 for the Right First definition of the path/2 predicate, we can observe that

whenever the DRE optimization is present, the evaluation allocates less 3,121 nodes

than the standard evaluation.

We will now turn our attention to the confrontation of the data shown on Table 6.1

with the data shown on Table 6.2, and, for that, we will focus on the right first

definition of the path/2 predicate. We will leave the considerations for the remaining

definitions of the path/2 predicate for the reader as the same analysis can be applied.

We begin the analysis by the solely used optimizations. The DRA optimization has

a running time ratio of 1.12, and as we can see on Table 6.2 it executes 33,601 less

alternatives and one less time the SCC. The DRE optimization, has a running time

ratio of 1.06, and it allocates less nodes, consumes less answers on non-leader generator

nodes, executes less alternatives (even thought the DRA and DRS are not in use) and

6.2. LOCAL SCHEDULING RESULTS 103

Table 6.2: Statistics for local scheduling comparing standard linear tabling against the

several optimizations using the path problem for the Grid configuration with depth 40

Programs DRA DRE DRS

DRA DRA DRE

+ + + All

DRE DRS DRS

Double First

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -5,120,000 0 -5,120,000 -5,120,000 -5,120,000

Alternatives -3,200 -3,200 0 -3,201 -3,200 -3,200 -3,201

SCC Eval 0 -1,601 0 -1,601 0 -1,601 -1,601

Double Last

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -5,120,000 0 -5,120,000 -5,120,000 -5,120,000

Alternatives -1,601 0 0 -1,601 -1,601 0 -1,601

SCC Eval 0 0 0 0 0 0 0

Right First

Tabled Nodes 0 -3,121 0 -3,121 0 -3,121 -3,121

Answers 0 -1,934,915 -47,456,815 -1,934,915 -47,456,815 -47,456,815 -47,456,815

Alternatives -33,601 -3,199 0 -4,001 -33,601 -3,199 -4,001

SCC Eval -1 -1 0 -2 -1 -1 -2

Right Last

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -45,521,900 0 -45,521,900 -45,521,900 -45,521,900

Alternatives -32,002 0 0 -32,002 -32,002 0 -32,002

SCC Eval -1 0 0 -1 -1 0 -1

Left First

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -2,560,000 0 -2,560,000 -2,560,000 -2,560,000

Alternatives -1 -1 0 -2 -1 -1 -2

SCC Eval 0 -1 0 -1 0 -1 -1

Left Last

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -2,560,000 0 -2,560,000 -2,560,000 -2,560,000

Alternatives -1 0 0 -1 -1 0 -1

SCC Eval 0 0 0 0 0 0 0

evaluates one less time the SCC. The DRS optimization as a running time ratio of

1.27, which is the highest so far, and it consumes far less answers than the standard

evaluation.

On the combined optimizations, the DRA+DRE optimization has a running time

ratio of 1.15, which corresponds almost to the sum of the DRA and DRE solely

optimizations. Using this optimization, the evaluation uses less nodes, answers and

104 CHAPTER 6. PERFORMANCE ANALYSIS

alternatives, and executes less times the SCC. But the number of the alternatives

explored is far more higher than the DRA used solely. This can explain why the sum

of both optimizations is 1.15 and not exactly 1.18.

The DRA+DRS optimization has a ratio of 1.42, and it seems that the benefits of both

optimizations are fully present. In particular, it shows the same number of answers and

alternatives that the respective DRS and DRA optimizations, show when used solely.

The 1.42 ratio actually exceeds the sum of both optimizations used solely, which is

1.39. This could be explained by other unmeasured factors, such as the Prolog system

spending less time on stack overflows recoveries.

The DRE+DRS optimization has a ratio of 1.30, but the sum of both optimizations

used solely is 1.33. This is a very small difference, but a closer look to the consumed

answers explains this number. In fact, the non consumed answers of the DRE optimiza-

tion used solely, are included on the non consumed answers of the DRS optimization.

So, for this particular evaluation, both optimizations are not fully orthogonal.

The All (DRA+DRE+DRS) optimization has a ratio of 1.49, which is the best of all

combinations, with a positive difference from the sum of all optimizations used solely,

which is 1.45. Even though, the number of alternatives explored is higher than the

DRA optimization used solely, but the gain obtained on the other items seems to be

sufficient to boost the overall gain of this optimization.

The second set of results are concerned with the evaluation of the tests proposed by

David S. Warren. Table 6.3 shows the running time average ratios for the comparison

of standard linear tabling against the several optimizations using depths 3000, 6000,

9000 and 12000.

Table 6.3: Running time ratios for local scheduling comparing standard linear tabling

against the several optimizations using the Warren tests (values higher than 1.00 mean

that the optimization is better)

Programs
DRA DRE DRS

DRA DRA DRE

+ + + All

Depth DRE DRS DRS

3000 1.35 0.48 1.23 0.60 1.22 0.54 0.55

6000 1.08 0.37 0.99 0.42 0.98 0.41 0.43

9000 1.11 0.39 1.02 0.46 1.00 0.43 0.45

12000 1.04 0.36 0.94 0.43 0.89 0.39 0.41

Average 1.15 0.40 1.05 0.48 1.02 0.44 0.46

6.2. LOCAL SCHEDULING RESULTS 105

Analyzing the general picture of the results, we can observe that whenever the DRE

optimization is present (used solely or combined), the ratios are lower than 1.00. This

means that, for this set of tests, this optimization clearly degrades the performance

of the system. The optimizations DRA and DRS used solely have an average ratio

of 1.15 and 1.05, respectively. The combination of both has an average ratio of 1.02,

which is lower than each optimizations used solely.

Again, in order to help us to understand these results, Table 6.4 shows internal

statistics of the evaluation of the Warren tests, comparing standard linear tabling

with the optimizations.

Table 6.4: Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the Warren tests

Programs
DRA DRE DRS

DRA DRA DRE

+ + + All

Depth DRE DRS DRS

3000

Tabled Nodes 0 3,000 0 3,000 0 3,000 3,000

Answers 0 0 -3,001 0 -3,001 -3,001 -3,001

Alternatives -1,500 4,498 0 1,498 -1,500 4,498 1,498

SCC Eval 0 -1 0 -1 0 -1 -1

6000

Tabled Nodes 0 6,000 0 6,000 0 6,000 6,000

Answers 0 0 -6,001 0 -6,001 -6,001 -6,001

Alternatives -3,000 8,998 0 2,998 -3,000 8,998 2,998

SCC Eval 0 -1 0 -1 0 -1 -1

9000

Tabled Nodes 0 9,000 0 9,000 0 9,000 9,000

Answers 0 0 -9,001 0 -9,001 -9,001 -9,001

Alternatives -4,500 13,498 0 4,498 -4,500 13,498 4,498

SCC Eval 0 -1 0 -1 0 -1 -1

12000

Tabled Nodes 0 12,000 0 12,000 0 12,000 12,000

Answers 0 0 -12,001 0 -12,001 -12,001 -12,001

Alternatives -6,000 17,998 0 5,998 -6,000 17,998 5998

SCC Eval 0 -1 0 -1 0 -1 -1

The table explains almost all the reasons for the running times ratios presented in

106 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.3, but also leaves one unanswered question, as we will observe later.

Lets analyze the results starting by the optimizations used solely. The DRA opti-

mization executes less alternatives than the standard evaluation, and the gain on each

test is half of the test’s depth. This is the reason why the test have a general good

performance.

Regarding the DRE optimization, the statistics explain why it has a very poor perfor-

mance on these tests. The number of extra nodes allocated by the DRE optimization

in comparison with standard evaluation is equal to the depth of the test. In addition,

this optimization also executes much more alternatives than the standard evaluation.

As the depth of the tests increases in 3000 units, the number of explored alternatives

increases in 4500 units. This explains why the running time ratios for the depth 3000

is 0.48 and for depth 12000 is 0.36.

The DRS optimization, presents an average running time ratio of 1.05, which is a

value closer to 1.00. The statistics show that using this optimization, the number of

non consumed answers is proportional to the test’s depth, yet this fact is not sufficient

to ensure a good performance for the optimization.

Analyzing now the combined optimizations, we can observe whenever the DRE opti-

mization is present (DRA+DRE, DRE+DRS and DRA+DRE+DRS), the number of

nodes allocated and alternatives explored, is still higher than the standard evaluation.

This explains why the running time average ratios are lower than 1.00. Regarding

the DRA+DRS optimization, the statistics leave an unanswered question, because

it shows that, using this optimization, the evaluation consumes less alternatives and

answers, but in fact the running time ratios do not show this advantage.

6.3 Batched Scheduling Results

On this section, we present the results for the same set of programs but using the

batched scheduling strategy. Since the DRS optimization was not implemented with

this strategy, no results for it were included on the following tables. The tables

with statistics do not include also the Answers item, which is mostly regarded with

consumption of answers when using the DRS optimization.

Table 6.5 shows the running time average ratios comparing standard linear tabling

against the DRA, DRE and DRA+DRE optimizations for the path problem. Again,

6.3. BATCHED SCHEDULING RESULTS 107

as for Table 6.1, the results presented here are the average results of the different

depths for each configuration. On Appendix A.2 the reader can find the full details

about the results.

The average results are 1.19, 1.03 and 1.23 for the optimizations DRA, DRE and

DRA+DRE, respectively. The DRA optimization used solely presents borderline

results on the Double First and Double Last definitions of the path/2 predicate, with

values close to 1.00. The results obtained for the Left First and Left Last are a

little better, but even so, the gain is around 10%. On the Right First and Right

Last definitions, the results are very good. The gain achieved for the Cycle and

Grid configurations was between 30% and 40% and for the Pyramid configurations

was between 80% and 105%. We can observe also that the best results on all the

definitions of the path predicate were achieved on the Pyramid configurations (on the

Left definitions, the best result is shared with the Iproto configuration).

The DRE optimization used solely presents very good results for the Double First

definition of the path/2 predicate. On the Cycle configuration it achieves a 2.04 ratio

(represents 104% of gain), on the Grid configuration it achieves a 1.80 ratio (represents

80% of gain) and on the Pyramid configuration it achieves a 2.02 ratio (represents 102%

of gain). On the remaining definitions of the path/2 predicate, the DRE optimization

present borderline results on the Double Last definition and poor results on the other

definitions.

The DRA+DRE optimization suffers from the side effects of using the DRE optimiza-

tion. For the Double First definition of the path/2 predicate it presents values of 2.05,

1.81 and 2.07, for the Cycle, Grid and Pyramid configurations, respectively. For the

Double Last definition the results shows the same pattern as for the Double First, but

with less gains over the standard evaluation. On the other hand, the results for the

remaining definitions, show poor and always worst results than the results obtained

with the DRA optimization used solely.

Again, in order to help us to understand these running time average results for the

path problem, we next present on Table 6.6 statistical data for the evaluation of the

path predicate using the Grid configuration, with depth 40.

If we focus our attention on the Double First definition, the results on the table show

that the DRA optimization used solely executes less alternatives and evaluates less

times the SCC during the evaluation, when compared with the standard evaluation.

The DRE optimization used solely allocates less 2,554,043 nodes than the standard

evaluation, consumes less alternatives than the standard evaluation, but more than

108 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.5: Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the path problem (values higher than

1.00 mean that the optimization is better)

Programs DRA DRE

DRA

+

DRE

Double First

Cycle 1.02 2.04 2.05

Grid 1.01 1.80 1.81

Pyramid 1.01 2.02 2.07

Double Last

Cycle 1.02 1.03 1.04

Grid 1.02 1.03 1.08

Pyramid 1.07 1.07 1.08

Right First

Cycle 1.30 0.95 1.23

Grid 1.40 1.00 1.30

Pyramid 2.05 0.87 1.53

Right Last

Cycle 1.34 0.94 1.21

Grid 1.35 1.02 1.32

Pyramid 1.80 0.89 1.44

Left First

Cycle 1.13 0.78 1.02

Grid 1.07 0.72 1.06

Pyramid 1.17 0.83 1.11

Iproto 1.17 0.65 1.15

Leader 1.10 0.46 1.06

Sieve 1.12 0.59 1.02

Left Last

Cycle 1.05 0.95 0.98

Grid 1.01 0.98 0.98

Pyramid 1.09 1.04 1.06

Iproto 1.09 1.05 1.07

Leader 1.02 1.02 0.97

Sieve 1.08 1.07 0.99

Average 1.19 1.03 1.23

6.3. BATCHED SCHEDULING RESULTS 109

Table 6.6: Statistics for batched scheduling comparing standard linear tabling against

the several optimizations using the path problem for the Grid configuration with

depth 40

Programs DRA DRE

DRA

+

DRE

Double First

Tabled Nodes 0 -2,554,043 -2,554,043

Alternatives -3,202 -1,600 -1,601

SCC Eval -2 -1,602 -1,602

Double Last

Tabled Nodes 0 0 0

Alternatives -1,601 0 -1,601

SCC Eval 0 0 0

Right First

Tabled Nodes 0 803 803

Alternatives -3,201 0 -81

SCC Eval -2 -1 -2

Right Last

Tabled Nodes 0 0 0

Alternatives -3,201 0 -3,201

SCC Eval -1 0 -1

Left First

Tabled Nodes 0 1 1

Alternatives -2 0 -2

SCC Eval -1 -1 -1

Left Last

Tabled Nodes 0 0 0

Alternatives -1 0 -1

SCC Eval 0 0 0

the DRA optimization used solely, and the number of evaluation rounds of the SCC is

reduced in 1,602 rounds. The results presented by the DRA+DRE optimization are

identical to the DRE optimization used solely. It allocates the same number of nodes,

evaluates the same number of rounds the SCC and the difference is that it executes

one less alternative.

110 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.7 shows the running time average ratios for the comparison of the Warren

tests using batched scheduling. As for local scheduling, we will use the depths 3000,

6000, 9000 and 12000.

Table 6.7: Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the Warren tests (values higher than

1.00 mean that the optimization is better)

Programs
DRA DRE

DRA

+

Depth DRE

3000 1.01 29.00 174.00

6000 1.01 50.57 354.00

9000 1.00 62.31 741.50

12000 1.01 74.15 810.00

Average 1.01 54.01 519.88

The average ratios of the running times are 1.01, 54.01 and 519.88 for the DRA

and DRE optimizations used solely, and the combined DRA+DRE optimization,

respectively. The DRA optimization used solely presents borderline results on all

depths.

The DRE optimization shows excellent results. For depth 3000 it has a ratio of 29.00,

for the depth 6000 a ratio of 50.57, for the depth 9000 a ratio of 62.31 and for the depth

12000 a ratio of 74.15. The ratio difference between depths 3000 and 6000 is around

20.00, and the difference between depths 6000 and 9000 and between the depths 9000

and 12000, is around 12.00. This indicates that for deeper tests we would expect an

increase the ratio in a factor of around 4.00 per 1000 depth edges.

The combination of DRA and DRE optimizations, boosts the gain on the running time

ratios. The running time ratios are 174.00, 354.00, 741.50 and 810.00, respectively for

depths 3000, 6000, 9000 and 12000. The difference between ratios is not as consistent

as for the DRE optimization used solely, but for deeper tests we would expect an

increase in a factor of about 35.00 per 1000 depth edges.

Table 6.8 shows the statistics for the evaluation of the Warren tests. The results

on Table 6.8 help us to understand why the DRE optimization, is so effective for this

particular set of tests. The DRE optimization used solely allocates less nodes, executes

less alternatives and evaluates less times the SCC. The DRA+DRE combination

slightly decreases the number of allocated nodes, executed alternatives and SCC

6.4. COMPARISON WITH YAPTAB 111

evaluations. On both optimizations, as the test’s depth increases, the differences

to the standard evaluation also increases on all items. The number of allocated nodes

and executed alternatives decreases in a factor of 1 per depth edge and the number of

evaluations of the SCC decreases in a factor of 2 rounds per 3 depth edges.

Table 6.8: Statistics for batched scheduling comparing standard linear tabling against

the several optimizations using the Warren tests

Programs
DRA DRE

DRA

+

Depth DRE

3000

Tabled Nodes 0 -2,920 -2,996

Alternatives -1,501 -2,922 -3,000

SCC Eval -1,500 -4,461 -4,499

6000

Tabled Nodes 0 -5,888 -5,996

Alternatives -3,001 -5,890 -6,000

SCC Eval -3,000 -8,945 -8,999

9000

Tabled Nodes 0 -8,862 -8,996

Alternatives -4,501 -8,864 -9,000

SCC Eval -4,500 -13,432 -13,499

12000

Tabled Nodes 0 -11,842 -11,996

Alternatives -6,001 -11,844 -12,000

SCC Eval -6,000 -17,922 -17,999

6.4 Comparison with YapTab

On this section, we compare our linear tabling system with YapTab’s suspension-based

mechanism. With this comparison, we want to analyze the advantages and weaknesses

of our linear tabling system when compared with a more sophisticated system. For

this purpose, we used the six definitions of the path/2 predicate and the Warren tests.

The reader can find also the comparison for the OpenRuleBench tests on Appendix B.

As in all previous tables, we will use again the standard linear running times as base

results for our ratios.

112 CHAPTER 6. PERFORMANCE ANALYSIS

We begin with Table 6.9, showing the running time average ratios for the comparison

of standard linear tabling with YapTab’s suspension-based mechanism and the best

linear optimization for the path problem. The table has five columns and it is divided

in two main blocks, one for local scheduling and the other for batched scheduling.

The first column is the definition of the program. The second and third columns

show the results for local scheduling and the fourth and fifth columns show the results

for batched scheduling. The second and forth columns show the ratio for the results

obtained with YapTab, and the third and fifth columns, show the ratio for the results

obtained by the best linear optimization when compared with standard linear tabling.

For local scheduling, the results show that YapTab is always faster than standard

linear tabling or its optimizations. For the Double First and Double Last definitions,

the highest difference is for the Pyramid configurations. In these configurations,

YapTab has ratios of 2.04 and 2.98, and the DRA optimization used solely, which

is the best optimization for linear tabling, has ratios of 1.02 and 1.14, respectively.

For the Right First and Right Last definitions, the biggest difference is on the Grid

configurations. YapTab has results rounding the 5.20 times faster than standard linear

tabling, while the best linear optimization DRA+DRE+DRS has results rounding

1.47. For the Left First and Left Last definitions, the biggest difference is again on

the Grid configurations. On the Iproto, Leader and Sieve configurations, YapTab

has ratios rounding 2.30 and the best linear optimization, which is DRE+DRS, has

ratios rounding 1.10. Generally speaking, for the local scheduling strategy, the gain

achieved using the optimizations, is not enough to reach the performance of YapTab’s

suspension-based mechanism. If we compare the success of the optimizations, by the

number of times it appears as the best optimization, then we can conclude that the

best is All (DRA+DRE+DRS) optimization.

On the other hand, for the batched scheduling, we can observe that for the Double

First definition of the path/2 predicate, the linear optimization DRA+DRE presents

similar ratios to YapTab. For the remaining tests, YapTab is about 2.05 times faster

than standard linear tabling, while the best linear optimization is, on average, around

1.30 times faster. Analyzing the performance of the linear optimizations, the most

successful optimization was the DRA used solely for both Left and Right definitions

of the path/2 and for the Double definitions was the DRA+DRE.

Concerning the second set of tests, Table 6.10 shows the running time average ratios for

the comparison of standard linear tabling with YapTab’s suspension-based mechanism,

and the best linear optimization using local and batched scheduling strategies.

6.4. COMPARISON WITH YAPTAB 113

Table 6.9: Running time ratios for local and batched scheduling comparing standard

linear tabling against YapTab and the best linear optimization using the path problem

Programs
Local Scheduling Batched Scheduling

YapTab Best Linear (Opt) YapTab Best Linear (Opt)

Double First

Cycle 1.96 1.17 (All) 2.04 2.05 (DRA+DRE)

Grid 1.85 1.11 (DRA) 2.07 1.81 (DRA+DRE)

Pyramid 2.04 1.02 (DRA) 2.02 2.07 (DRA+DRE)

Double Last

Cycle 1.92 1.14 (All) 2.04 1.04 (DRA+DRE)

Grid 1.93 1.18 (DRE) 2.07 1.08 (DRA+DRE)

Pyramid 2.98 1.14 (All) 2.16 1.08 (DRA+DRE)

Right First

Cycle 1.43 1.64 (DRA+DRS) 2.09 1.30 (DRA)

Grid 5.25 1.49 (All) 2.10 1.40 (DRA)

Pyramid 1.78 1.74 (All) 1.99 2.05 (DRA)

Right Last

Cycle 1.77 1.76 (DRA+DRS) 1.82 1.34 (DRA)

Grid 5.14 1.46 (All) 2.25 1.35 (DRA)

Pyramid 1.59 1.62 (DRA+DRS) 1.99 1.80 (DRA)

Left First

Cycle 1.92 1.16 (All) 2.09 1.13 (DRA)

Grid 2.80 1.35 (All) 2.14 1.07 (DRA)

Pyramid 1.99 1.19 (DRE) 2.26 1.17 (DRA)

Iproto 2.23 1.15 (DRE+DRS) 2.57 1.17 (DRA)

Leader 2.28 1.13 (DRE+DRS) 2.31 1.10 (DRA)

Sieve 2.26 1.10 (DRE+DRS) 2.34 1.12 (DRA)

Left Last

Cycle 1.99 1.22 (DRA+DRE) 1.94 1.05 (DRA)

Grid 2.48 1.35 (All) 1.89 1.01 (DRA)

Pyramid 1.96 1.16 (All) 2.23 1.09 (DRA)

Iproto 2.30 1.19 (DRE+DRS) 2.33 1.09 (DRA)

Leader 2.34 1.16 (DRE+DRS) 2.13 1.02 (DRA)

Sieve 2.26 1.09 (DRE+DRS) 2.26 1.08 (DRA)

114 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.10: Running time ratios for local and batched scheduling comparing standard

linear tabling against YapTab and the best linear optimization using the Warren tests

Programs Local Scheduling Batched Scheduling

Depths YapTab Best Linear (Opt) YapTab Best Linear (Opt)

3000 384.00 1.35 (DRA) 348.00 174.00 (DRA+DRE)

6000 1,264.00 1.08 (DRA) 354.00 354.00 (DRA+DRE)

9000 2,992.00 1.11 (DRA) 810.00 741.50 (DRA+DRE)

12000 1,288.00 1.04 (DRA) 1,483.00 810.00 (DRA+DRE)

For the local scheduling strategy, the results show that the best linear optimization was

the DRA used solely however, these best results have a huge difference from YapTab’s

suspension-based results. All the tests with depths equal or higher than 6000, have

ratios higher that 1,000.00 with YapTab’s.

For the batched scheduling strategy, the results show again an huge difference between

YapTab’s running time results and standard linear tabling. But for the best linear

optimization, which is DRA+DRE in all cases, the difference is not so huge. In

fact, some of them have similar performance to YapTab. For both YapTab and

the best linear optimization, the gain tends to increase as the depth configuration

increases despite the fact that YapTab’s gain ratio is higher than the DRA+DRE

linear optimization. Thus, for deeper configurations, it would be expectable that

YapTab would increase the difference to the DRA+DRE optimization.

6.5 Chapter Summary

In this chapter, we analyzed and compared the performance of the standard lin-

ear mechanism with the several optimizations, for the local and batched scheduling

strategies, and the performance between the best linear-based mechanism with the

suspension-based mechanism of YapTab.

Chapter 7

Conclusions and Future Work

In this chapter, we conclude this thesis by summarizing the work developed on the

design, implementation and performance evaluation of the linear tabling mechanisms

created for the YapTab system.

7.1 Conclusions

This thesis had two main goals. The first goal was to implement on YapTab an

efficient linear tabling mechanism which, in theory, could compete with suspension-

based mechanisms for both local and batched scheduling mechanisms. The second

goal was that our system should be as robust as possible, meaning that it should be

capable of correctly evaluate an huge class of problems written in Prolog.

To attend both goals we started the work by creating a test suite engine. Actually,

the engine has about 5 GBytes of information between several different tests and their

solutions/tables produced. The engine is capable of comparing running time results,

and test the correctness of the program’s solutions and tables obtained for the YapTab,

XSB and B-Prolog systems. The programs on the test suite include the path problem

with different definitions of the path/2 predicate and different transition graphs, the

problem proposed by David H. Warren with different edges, model checking tests,

basic tests to evaluate particular situations, and the tests mentioned on chapter 6

obtained from the OpenRuleBench community.

The second goal of our work, which was the correctness of the system, is thus actually

supported by the results produced by the test suite. Actually, for the local and batched

115

116 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

strategies, there was only one test, the recursion wine test obtained from the Open

Rule Bench community, that fails with on our linear tabling system. All the remaining

tests had successful results.

For the first goal, we have presented a new optimization for linear tabled evaluation

of logic programs using the local scheduling strategy, named DRS, and a framework,

on top of the Yap system, that integrates and supports the combination of the DRS

strategy with two other linear tabling optimizations, the DRE and DRA optimizations.

For the batched scheduling strategy, our framework includes the support for DRA

and DRE optimizations. We discussed how these strategies can optimize different

aspects of a tabled evaluation and we presented some implementation details of their

integration, with particular focus on the table space data structures and on the tabling

operations.

The performance of our linear tabling system highly depends on using the correct

combination of optimizations for the problem at hand. As observed on the previous

chapter, different problems might have different results the same optimization (or

combination of optimizations), and the responsibility of choosing the best optimization

is given to the programmer. The performance of each optimization can be summarized

as follows:

• In general, the DRA optimization had good results. It reduces the running times

for programs with loop clauses, and if these type of clauses are not present, it

does not add any extra overhead to the evaluation.

• The DRE optimization can have very good or very bad results. It depends

on the type of the problem which is being evaluated. For example, for the

Warren tests, it can be considered a very good optimization when used with

batched scheduling, but can also a very bad optimization when used with local

scheduling.

• The DRS optimization had also good results. It showed that the strategy of

avoiding the consumption of non-looping solutions in re-evaluation rounds can

be quite effective for programs that can benefit from it, with insignificant costs

for the other programs.

• The combined optimization DRA+DRS also obtained good results. It showed

that both optimizations can be combined without jeopardizing the performance

of each other.

7.2. FUTURE WORK 117

• The combined optimizations with DRE enabled can have good or bad results,

because they are too dependent on the performance of the DRE optimization

for the particular test being considered.

Regarding the performance comparison between our linear-based tabling system and

YapTab’s suspension-based engine, the results obtained with our approach are very

interesting and very promising. Our experiments confirmed the idea that, in general,

suspension-based mechanisms obtain better results than linear tabling and that the

difference between both mechanisms depends of the specifics of the problem to be

evaluated. However, the commonly referred weakness of linear tabling of doing a huge

number of redundant computations for computing fix-points was not such a problem

in most of our experiments.

We thus argue that linear-based tabling mechanisms have two major advantages when

compared with suspended-based tabling. The first is that it is easier to implement

and thus it can be a good and first alternative to incorporate tabling into a Prolog

system without tabling support. The second is that by using the correct linear

tabling optimization, the difference between both approaches can be highly reduced.

Moreover, as linear tabling mechanisms use less memory space, this can have positive

effects on intensive memory usage problems.

7.2 Future Work

We next suggest some topics for future work:

More experimentation. Explore the impact of applying our strategies to more com-

plex problems, seeking real-world experimental results allowing us to improve

and consolidate even further our current implementation.

Support for negation. A wide range on problems that use tabling require the possi-

bility to manipulate negative subgoals. Extending our implementation with this

feature can be one major step forward to make it usable for a large community.

Support for multi-threading and parallelism. Since the evaluation of programs

in our linear tabling engine is less complex than the evaluation using a suspension-

based engine, it should be interesting to study how several linear tabled eval-

uations can run concurrently within such a model and take advantage of the

118 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

different linear tabling optimizations. Also, it should be interesting to compare

those results with the results already obtained with suspension-based mecha-

nisms for multi-threading [33] and parallelism [26].

7.3 Final Remark

The research involved analyzing the execution models for linear tabling and, in par-

ticular, the ones already implemented on other tabling systems. But, in fact, the first

implementation of a tabling engine on a Prolog system was a suspended-based tabling

engine. In our opinion, the linear-based tabling engines became hostages of this fact

and most of the actual research on tabling in done on suspended-based mechanisms.

We thus argue that, there is still too much work that can be done for this type of

mechanisms in order to increase their performance, and this thesis is only a small step

in that direction.

Appendix A

Path Tests

A.1 Local Scheduling

119

120 APPENDIX A. PATH TESTS

Table A.1: Running time ratios for local scheduling comparing standard linear tabling

against the several optimizations using the double definition of the path problem

(values higher than 1.00 mean that the optimization is better)

Programs DRA DRE DRS

DRA DRA DRE

+ + + All

DRE DRS DRS

Double First

Cycle

500 1.26 1.26 1.25 1.26 1.25 1.26 1.27

1000 1.06 1.06 1.05 1.06 1.06 1.06 1.08

1500 1.15 1.15 1.15 1.15 1.12 1.15 1.17

Pyramid

500 1.01 1.01 1.00 1.01 1.00 1.00 1.01

1000 1.02 1.02 1.02 1.02 1.01 1.01 1.02

1500 1.02 1.02 1.00 1.01 1.03 1.02 1.05

Grid

20 1.24 1.24 1.22 1.24 1.22 1.24 1.19

30 1.03 1.04 1.03 1.03 1.03 1.00 1.04

40 1.04 1.04 1.03 1.03 1.03 1.04 1.03

Double Last

Cycle

500 1.17 1.17 1.17 1.17 1.13 1.18 1.19

1000 1.12 1.12 1.13 1.12 1.12 1.13 1.14

1500 1.08 1.07 1.08 1.07 1.07 1.08 1.10

Pyramid

500 1.14 1.14 1.12 1.14 1.12 1.13 1.14

1000 1.15 1.15 1.15 1.15 1.14 1.14 1.13

1500 1.12 1.12 1.14 1.12 1.11 1.13 1.15

Grid

20 1.41 1.41 1.40 1.40 1.40 1.39 1.42

30 1.08 1.09 1.08 1.05 1.07 1.08 1.06

40 1.03 1.04 1.01 1.03 1.02 1.03 1.04

A.1. LOCAL SCHEDULING 121

Table A.2: Running time ratios for local scheduling comparing standard linear tabling

against the several optimizations using the right definition of the path problem (values

higher than 1.00 mean that the optimization is better)

Programs DRA DRE DRS

DRA DRA DRE

+ + + All

DRE DRS DRS

Right First

Cycle

500 1.15 1.03 1.28 1.21 1.74 1.28 1.56

1000 1.25 1.01 1.30 1.23 1.65 1.27 1.62

1500 1.14 1.03 1.26 1.22 1.53 1.27 1.52

Pyramid

500 1.84 1.13 1.14 1.84 1.82 1.08 1.76

1000 1.66 1.06 1.08 1.68 1.71 1.10 1.82

1500 1.63 1.05 1.06 1.65 1.65 1.05 1.64

Grid

20 1.14 1.07 1.21 1.18 1.39 1.29 1.49

30 1.12 1.05 1.28 1.14 1.42 1.31 1.49

40 1.09 1.05 1.31 1.12 1.44 1.30 1.49

Right Last

Cycle

500 1.43 1.26 1.58 1.60 1.89 1.64 1.84

1000 1.42 1.18 1.44 1.46 1.79 1.49 1.28

1500 1.26 1.04 1.28 1.24 1.60 1.30 1.60

Pyramid

500 1.61 1.16 1.16 1.72 1.84 1.08 1.62

1000 1.50 1.01 1.01 1.55 1.54 1.00 1.58

1500 1.49 1.02 1.03 1.49 1.48 1.03 1.47

Grid

20 1.16 1.01 1.19 1.18 1.37 1.21 1.44

30 1.12 1.02 1.26 1.11 1.43 1.27 1.44

40 1.14 1.06 1.34 1.14 1.48 1.35 1.50

122 APPENDIX A. PATH TESTS

Table A.3: Running time ratios for local scheduling comparing standard linear tabling

against the several optimizations using the left definition of the path problem (values

higher than 1.00 mean that the optimization is better)

Programs DRA DRE DRS

DRA DRA DRE

+ + + All

DRE DRS DRS

Left First

Cycle

500 1.07 1.11 1.11 1.11 1.17 1.07 1.07

1000 1.24 1.26 1.22 1.24 1.22 1.28 1.31

1500 1.05 1.07 1.09 1.07 1.04 1.07 1.11

Pyramid

1000 1.12 1.17 1.17 1.18 1.13 1.17 1.13

1500 1.10 1.16 1.13 1.14 1.10 1.15 1.16

500 1.14 1.25 1.22 1.22 1.19 1.19 1.25

Grid

20 1.75 1.70 1.70 1.75 1.70 1.75 1.81

30 1.11 1.08 1.07 1.10 1.09 1.15 1.13

40 1.05 1.07 1.05 1.07 1.06 1.10 1.12

Model Checking

iproto 1.09 1.08 1.09 1.10 1.10 1.15 1.13

leader 1.09 1.09 1.06 1.04 1.05 1.13 1.10

sieve 1.09 1.07 1.06 0.99 1.01 1.10 1.05

Left Last

Cycle

500 1.11 1.07 1.17 1.23 1.11 1.11 1.17

1000 1.19 1.20 1.16 1.26 1.15 1.24 1.19

1500 1.14 1.18 1.14 1.18 1.17 1.16 1.18

Pyramid

500 1.11 1.19 1.11 1.16 1.14 1.16 1.16

1000 1.11 1.15 1.15 1.18 1.11 1.17 1.18

1500 1.05 1.10 1.06 1.10 1.03 1.10 1.12

Grid

20 1.73 1.68 1.63 1.73 1.73 1.84 1.84

30 1.10 1.11 1.09 1.13 1.10 1.15 1.12

40 1.02 1.02 1.00 1.01 1.00 1.07 1.08

Model Checking

iproto 1.13 1.13 1.13 1.15 1.14 1.19 1.18

leader 1.12 1.12 1.09 1.08 1.07 1.16 1.13

sieve 1.08 1.07 1.07 0.99 1.01 1.09 1.06

A.2. BATCHED SCHEDULING 123

A.2 Batched Scheduling

Table A.4: Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the double definition of the path

problem (values higher than 1.00 mean that the optimization is better)

Programs DRA DRE

DRA

+

DRE

Double First

Cycle

500 1.03 2.05 2.06

1000 1.01 2.03 2.05

1500 1.01 2.02 2.04

Pyramid

500 1.01 1.99 2.03

1000 1.01 2.00 2.06

1500 1.01 2.08 2.10

Grid

20 1.01 1.86 1.87

30 1.02 1.77 1.79

40 1.02 1.76 1.78

Double Last

Cycle

500 1.05 1.07 1.09

1000 1.01 1.01 1.02

1500 1.01 1.02 1.02

Pyramid

500 1.14 1.14 1.15

1000 1.05 1.05 1.05

1500 1.02 1.02 1.02

Grid

20 1.01 1.02 1.14

30 1.02 1.03 1.06

40 1.03 1.04 1.05

124 APPENDIX A. PATH TESTS

Table A.5: Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the right definition of the path problem

(values higher than 1.00 mean that the optimization is better)

Programs DRA DRE

DRA

+

DRE

Right First

Cycle

500 1.29 0.95 1.23

1000 1.27 0.93 1.25

1500 1.35 0.95 1.22

Pyramid

500 2.03 0.87 1.51

1000 2.15 0.89 1.55

1500 1.98 0.85 1.53

Grid

20 1.39 1.02 1.25

30 1.42 1.01 1.33

40 1.39 0.96 1.32

Right Last

Cycle

500 1.28 0.93 1.17

1000 1.39 0.96 1.25

1500 1.33 0.92 1.21

Pyramid

500 1.45 0.89 1.28

1000 1.96 0.89 1.51

1500 2.00 0.88 1.53

Grid

20 1.38 1.06 1.34

30 1.33 1.00 1.30

40 1.34 1.00 1.30

A.2. BATCHED SCHEDULING 125

Table A.6: Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the left definition of the path problem

(values higher than 1.00 mean that the optimization is better)

Programs DRA DRE

DRA

+

DRE

Left First

Cycle

500 1.26 0.83 1.10

1000 1.02 0.74 0.96

1500 1.12 0.78 1.00

Pyramid

500 1.08 0.78 0.97

1000 1.03 0.71 0.98

1500 1.40 1.02 1.37

Grid

20 1.16 0.77 1.16

30 1.01 0.69 1.00

40 1.05 0.71 1.01

Model Checking

iproto 1.17 0.65 1.15

leader 1.10 0.46 1.06

sieve 1.12 0.59 1.02

Left Last

Cycle

500 1.06 0.98 1.02

1000 1.05 0.92 0.96

1500 1.02 0.95 0.95

Pyramid

500 1.09 0.98 1.00

1000 1.20 1.11 1.15

1500 0.98 1.02 1.03

Grid

20 1.02 0.96 0.96

30 1.00 0.97 0.99

40 1.02 1.00 1.00

Model Checking

iproto 1.09 1.05 1.07

leader 1.02 1.02 0.97

sieve 1.08 1.07 0.99

126 APPENDIX A. PATH TESTS

Appendix B

OpenRuleBench Tests

B.1 Local Scheduling

Table B.1: Running time ratios for local scheduling comparing standard linear tabling

against the several optimizations using the transitive closure with no query bindings

(free-free version) OpenRuleBench problem (values higher than 1.00 mean that the

optimization is better)

Programs
DRA DRE DRS

DRA DRA DRE

+ + + All

Data Par DRE DRS DRS

Non-Cycle

1000 250000 1.85 1.00 1.00 1.84 1.83 1.00 1.85

1000 500000 1.74 1.01 1.00 1.74 1.74 1.01 1.73

1000 50000 1.93 1.01 1.00 1.94 1.93 1.00 1.94

2000 1000000 1.86 1.00 1.00 1.85 1.85 1.00 1.87

2000 500000 1.92 1.01 1.00 1.91 1.90 1.01 1.92

Cycle

1000 250000 1.19 1.01 1.00 1.51 1.50 1.01 1.51

1000 500000 1.49 1.00 0.99 1.48 1.47 1.00 1.50

1000 50000 1.40 1.03 1.01 1.39 1.41 1.02 1.43

2000 1000000 1.55 1.04 1.03 1.56 1.54 1.05 1.58

2000 500000 1.51 1.02 1.01 1.50 1.44 1.01 1.49

127

128 APPENDIX B. OPENRULEBENCH TESTS

Table B.2: Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query bindings (free-free

version) OpenRuleBench problem for Non-Cycle edges

Programs
DRA DRE DRS

DRA DRA DRE

+ + + All

Data Par DRE DRS DRS

1000 250000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -992,740 0 -992,740 -992,740 -992,740

Alternatives -1,740 0 0 -1,740 -1,740 0 -1,740

SCC Eval -742 0 0 -742 -742 0 -742

1000 500000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -998,069 0 -998,069 -998,069 -998,069

Alternatives -1,493 0 0 -1,493 -1,493 0 -1,493

SCC Eval -494 0 0 -494 -494 0 -494

1000 50000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -934,620 0 -934,620 -934,620 -934,620

Alternatives -1,917 0 0 -1,917 -1,917 0 -1917

SCC Eval -932 0 0 -932 -932 0 -932

2000 1000000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -3,987,905 0 -3,987,905 -3,987,905 -3,987,905

Alternatives -3,511 0 0 -3,511 -3,511 0 -3.511

SCC Eval -1,512 0 0 -1,512 -1,512 0 -1,512

2000 500000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -3,962,399 0 -3,962,399 -3,962,399 -3,962,399

Alternatives -3,742 0 0 -3,742 -3,742 0 -3,742

SCC Eval -1,747 0 0 -1,747 -1,747 0 -1,747

B.1. LOCAL SCHEDULING 129

Table B.3: Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query bindings (free-free

version) OpenRuleBench problem for Cycle edges

Programs
DRA DRE DRS

DRA DRA DRE

+ + + All

Data Par DRE DRS DRS

1000 250000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -2,000,000 0 -2,000,000 -2,000,000 -2,000,000

Alternatives -1,002 0 0 -1,002 -1,002 0 -1,002

SCC Eval -1 0 0 -1 -1 0 -1

1000 500000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -2,000,000 0 -2,000,000 -2,000,000 -2,000,000

Alternatives -1,002 0 0 -1,002 -1,002 0 -1,002

SCC Eval -1 0 0 -1 -1 0 -1

1000 50000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -2,998,566 0 -2,998,566 -2,998,566 -2,998,566

Alternatives -2,002 0 0 -2,002 -2,002 0 -2,002

SCC Eval -1 0 0 -1 -1 0 -1

2000 1000000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -8,000,000 0 -8,000,000 -8,000,000 -8,000,000

Alternatives -2,002 0 0 -2,002 -2,002 0 -2,002

SCC Eval -1 0 0 -1 -1 0 -1

2000 500000

Tabled Nodes 0 0 0 0 0 0 0

Answers 0 0 -8,000,000 0 -8,000,000 -8,000,000 -8,000,000

Alternatives -2,002 0 0 -2,002 -2,002 0 -2,002

SCC Eval -1 0 0 -1 -1 0 -1

130 APPENDIX B. OPENRULEBENCH TESTS

B.2 Batched Scheduling

Table B.4: Running time ratios for batched scheduling comparing standard linear

tabling against the several optimizations using the transitive closure with no query

bindings (free-free version) OpenRuleBench problem (values higher than 1.00 mean

that the optimization is better)

Programs
DRA DRE

DRA

+

Data Par DRE

Non-Cycle

1000 250000 1.85 1.01 1.85

1000 500000 1.69 1.01 1.74

1000 50000 1.96 0.97 1.93

2000 1000000 1.82 1.01 1.86

2000 500000 1.89 1.01 1.91

Cycle

1000 250000 1.52 1.07 1.52

1000 500000 1.44 1.01 1.44

1000 50000 1.54 1.10 1.53

2000 1000000 1.56 1.10 1.56

2000 500000 1.63 1.16 1.64

B.2. BATCHED SCHEDULING 131

Table B.5: Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query bindings (free-free

version) OpenRuleBench problem for Non-Cycle edges

Programs
DRA DRE

DRA

+

Data Par DRE

1000 250000

Tabled Nodes 0 0 0

Alternatives -998 0 -998

SCC Eval -742 0 -742

1000 500000

Tabled Nodes 0 0 0

Alternatives -999 0 -999

SCC Eval -494 0 -494

1000 50000

Tabled Nodes 0 0 0

Alternatives -985 0 -985

SCC Eval -932 0 -932

2000 1000000

Tabled Nodes 0 0 0

Alternatives -1,999 0 -1,999

SCC Eval -1,512 0 -1,512

2000 500000

Tabled Nodes 0 0 0

Alternatives -2,001 0 -2,001

SCC Eval -1 0 -1

132 APPENDIX B. OPENRULEBENCH TESTS

Table B.6: Statistics for local scheduling comparing standard linear tabling against

the several optimizations using the transitive closure with no query bindings (free-free

version) OpenRuleBench problem for Cycle edges

Programs
DRA DRE

DRA

+

Data Par DRE

1000 250000

Tabled Nodes 0 0 0

Alternatives -1,001 0 -1,001

SCC Eval -1 0 -1

1000 500000

Tabled Nodes 0 0 0

Alternatives -1,001 0 -1,001

SCC Eval -1 0 -1

1000 50000

Tabled Nodes 0 0 0

Alternatives -1,001 0 -1,001

SCC Eval -1 0 -1

2000 1000000

Tabled Nodes 0 0 0

Alternatives -2,001 0 -2,001

SCC Eval -1 0 -1

2000 500000

Tabled Nodes 0 0 0

Alternatives -2,001 0 -2,001

SCC Eval -1 0 -1

B.3. COMPARISON WITH YAPTAB 133

B.3 Comparison with YapTab

Table B.7: Running time ratios for local and batched scheduling comparing standard

linear tabling against YapTab and the best linear optimization using the transitive

closure with no query bindings (free-free version) OpenRuleBench problem for Non-

Cycle and Cycle edges

Programs Local Scheduling Batched Scheduling

Data Par YapTab Best Linear (Opt) YapTab Best Linear (Opt)

Non-Cycle

1000 250000 2.00 1.85 (DRA) 2.00 1.85 (DRA)

1000 500000 2.01 1.74 (DRA+DRE) 1.91 1.74 (DRA+DRE)

1000 50000 1.99 1.44 (All) 2.02 1.96 (DRA)

2000 1000000 1.97 1.87 (All) 2.03 1.86 (DRA+DRE)

2000 500000 2.01 1.92 (DRA) 2.01 1.90 (DRA+DRE)

Cycle

1000 250000 1.84 1.51 (DRA+DRE) 2.21 1.52 (DRA)

1000 500000 1.89 1.50 (All) 2.07 1.44 (DRA)

1000 50000 2.20 1.30 (All) 2.24 1.54 (DRA)

2000 1000000 1.91 1.58 (All) 2.29 1.56 (DRA+DRE)

2000 500000 1.82 1.51 (DRA) 2.40 1.64 (DRA+DRE)

134 APPENDIX B. OPENRULEBENCH TESTS

References

[1] H. Aı̈t-Kaci. Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT

Press, 1991.

[2] K. Apt and M. van Emden. Contributions to the Theory of Logic Programming.

Journal of the ACM, 29(3):841–862, 1982.

[3] M. Areias and R. Rocha. An Efficient Implementation of Linear Tabling Based

on Dynamic Reordering of Alternatives. In Proceedings of the 12th International

Symposium on Practical Aspects of Declarative Languages, PADL’2010, number

5937 in LNCS, pages 279–293, Madrid, Spain, January 2010. Springer-Verlag.

[4] M. Carlsson. Design and Implementation of an OR-Parallel Prolog Engine. PhD

thesis, The Royal Institute of Technology, 1990.

[5] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic

Programs. Journal of the ACM, 43(1):20–74, 1996.

[6] P. Chico, M. Carro, M. V. Hermenegildo, C. Silva, and R. Rocha. An Improved

Continuation Call-Based Implementation of Tabling. In International Symposium

on Practical Aspects of Declarative Languages, number 4902 in LNCS, pages 197–

213. Springer-Verlag, 2008.

[7] K. Clark. Predicate Logic as a computational formalism. Research monograph,

Imperial College, December 1979.

[8] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système de

communication homme–machine en francais. Technical report cri 72-18, Groupe

Intelligence Artificielle, Université Aix-Marseille II, 1973.

[9] B. Demoen and K. Sagonas. CAT: the Copying Approach to Tabling. In

International Symposium on Programming Language Implementation and Logic

Programming, number 1490 in LNCS, pages 21–35. Springer-Verlag, 1998.

135

136 REFERENCES

[10] B. Demoen and K. Sagonas. CHAT: The Copy-Hybrid Approach to Tabling.

Future Generation Computer Systems, 16(7):809–830, 2000.

[11] J. Freire, T. Swift, and D. S. Warren. Beyond Depth-First: Improving Tabled

Logic Programs through Alternative Scheduling Strategies. In International

Symposium on Programming Language Implementation and Logic Programming,

number 1140 in LNCS, pages 243–258. Springer-Verlag, 1996.

[12] Hai-Feng Guo and G. Gupta. A Simple Scheme for Implementing Tabled

Logic Programming Systems Based on Dynamic Reordering of Alternatives. In

International Conference on Logic Programming, number 2237 in LNCS, pages

181–196. Springer-Verlag, 2001.

[13] R. Karlsson. A High Performance OR-parallel Prolog System. PhD thesis, The

Royal Institute of Technology, 1992.

[14] R. Kowalski. Predicate Logic as a Programming Language. In Information

Processing, pages 569–574. North-Holland, 1974.

[15] R. Kowalski and Donald Kuehner. Linear Resolution with Selection Function. In

Artificial Intelligence 2, pages 227–260. North-Holland, 1971.

[16] S. Liang, P.Fodor, H. Wan, and M.Kifer. OpenRuleBench: An Analysis of the

Performance of Rule Engines. In Internacional World Wide Web Conference

Committee, Madrid, Spain, April 2009. ACM Press.

[17] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[18] D. Michie. Memo Functions and Machine Learning. Nature, 218:19–22, 1968.

[19] Richard A. O’Keefe. The Craft of Prolog. The MIT Press, 1990.

[20] C. Pusch. Verification of compiler correctness for the WAM. In J. Wright,

J. Grundy, and J. Harrison, editors, Proceedings of the 9th International

Conference on Theorem Proving in Higher Order Logics(TPHOL-96), number

1125 in LNCS, Turku, Finland, 1996. Springer-Verlag.

[21] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient

Tabling Mechanisms for Logic Programs. In International Conference on Logic

Programming, pages 687–711. The MIT Press, 1995.

REFERENCES 137

[22] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient

Access Mechanisms for Tabled Logic Programs. Journal of Logic Programming,

38(1):31–54, 1999.

[23] R. Ramesh and W. Chen. Implementation of Tabled Evaluation with Delaying in

Prolog. IEEE Transactions on Knowledge and Data Engineering, 9(4):559–574,

1997.

[24] P. Rao, K. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A System for

Efficiently Computing Well-Founded Semantics. In International Conference on

Logic Programming and Non-Monotonic Reasoning, number 1265 in LNCS, pages

431–441. Springer-Verlag, 1997.

[25] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle.

Journal of the ACM, 12(1):23–41, 1965.

[26] R. Rocha. On Applying Or-Parallelism and Tabling to Logic Programs. PhD

thesis, Department of Computer Science, University of Porto, 2001.

[27] R. Rocha, C. Silva, and R. Lopes. Implementation of Suspension-Based Tabling

in Prolog using External Primitives. In Local Proceedings of the 13th Portuguese

Conference on Artificial Intelligence, pages 11–22, 2007.

[28] R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine Designed

to Support Parallelism. In Conference on Tabulation in Parsing and Deduction,

pages 77–87, 2000.

[29] K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-

Order Stratified Logic Programs. ACM Transactions on Programming Languages

and Systems, 20(3):586–634, 1998.

[30] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database

Engine. In ACM SIGMOD International Conference on the Management of Data,

pages 442–453. ACM Press, 1994.

[31] V. Santos Costa, K. Sagonas, and R. Lopes. Demand-Driven Indexing of Prolog

Clauses. In International Conference on Logic Programming, number 4670 in

LNCS, pages 395–409. Springer-Verlag, 2007.

[32] Z. Somogyi and K. Sagonas. Tabling in Mercury: Design and Implementation. In

International Symposium on Practical Aspects of Declarative Languages, number

3819 in LNCS, pages 150–167. Springer-Verlag, 2006.

138 REFERENCES

[33] T. Swift and R.Marques. Concurrent and Local Evaluation of Normal Programs.

In International Conference on Logic Programming, number 5366 in LNCS, pages

206–222. Springer-Verlag, 2008.

[34] H. Tamaki and T. Sato. OLDT Resolution with Tabulation. In International

Conference on Logic Programming, number 225 in LNCS, pages 84–98. Springer-

Verlag, 1986.

[35] Nilsson Ulf and Jan M. Logic, Programming and Prolog. John Wiley and Sons,

Sweden, 1995.

[36] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI

International, 1983.

[37] D. H. D. Warren. Implementation of Prolog. In 5th International Conference and

Symposium on Logic Programming, 1988.

[38] Neng-Fa Zhou, T. Sato, and Yi-Dong Shen. Linear Tabling Strategies and

Optimizations. Theory and Practice of Logic Programming, 8(1):81–109, 2008.

[39] Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation

of a Linear Tabling Mechanism. In Practical Aspects of Declarative Languages,

number 1753 in LNCS, pages 109–123. Springer-Verlag, 2000.

