
Rui Edgar da Silva Vieira

Or-Parallel Prolog Execution on

Multicores based on

Stack Splitting

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Novembro de 2011

Rui Edgar da Silva Vieira

Or-Parallel Prolog Execution on

Multicores based on

Stack Splitting

Dissertação submetida à Faculdade de Ciências da

Universidade do Porto como parte dos requisitos para a obtenção do grau de

Mestre em Engenharia de Redes e Sistemas Informáticos

Orientador: Ricardo Jorge Gomes Lopes da Rocha

Co-orientador: Fernando Manuel Augusto da Silva

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Novembro de 2011

To my family.

Dedicado à minha famı́lia.

5

6

Acknowledgments

First and foremost, I would like to give my utmost gratitude to my supervisor,

Prof. Ricardo Rocha, for the encouragement and support during the research and

preparation of this thesis. A professor whose inspiring and discerning personality is

always there for you. When faced with certain challenges, he advises and motivates a

student with his innovative suggestions. For giving me the chance to experience the

world of scientific research for the first time and for offering me the possibility to be

included in his research team, I am extremely thankful with nothing to regret.

Secondly, I would like to give my special thanks to my co-supervisor, Prof. Fernando

Silva, for his cheerful guidance and full-hearted support.

I am also grateful to the LEAP - Logic Environment with Advanced Parallelism project

(PTDC/EIA-CCO/112158/2009), for supporting me with a research grant during my

research work and, for the possibility to participate in the scientific community.

To my work colleagues Miguel Areias, João Raimundo, João Santos and Tiago Gomes

for the great fellowship and availability support during the research of this thesis.

Finally, I would like to dedicate my final acknowledgment to my family for their

particular way of fondness and support. To my parents, Fernando and Carminda, for

all the love you always indulged me. To my grandmother, Florinda, for being the best

grandmother in the world. To my dog Boris. Thank you all for making me the person

who firmly stands in front of you.

Rui Vieira

September 2011

7

8

Abstract

Prolog is a popular logic programming language that provides a declarative approach

to programming, being thus highly amenable for implicit parallelism. There are many

efficient sequential implementations of Prolog, mostly based on the Warren Abstract

Machine (WAM). Prolog is currently much used by machine learning and natural

language practitioners, but its applicability is much wider in scope.

Implicit parallel implementations of Prolog have been proposed in the past. The Muse

and YapOr systems are arguably two of the most efficient systems for shared memory

architectures, both based on the environment copying model. Stack splitting emerged

as an alternative model specially geared to distributed shared memory architectures

as it basically splits the computation in such a way that no further, or just minimal,

synchronization is required.

With the new multicore architectures, it just makes sense to recover the body of

knowledge there is in this area and either devise newer computational models that

fit best recent parallel architectures, or to reengineer prior computational models to

evaluate their performance on newer architectures. Here, we take the second path.

In this thesis, we focus on the design and implementation of the stack splitting strategy

in the YapOr system. Our aim is to take advantage of its robustness to efficiently

implement stack splitting support using shared memory, and then be able to directly

compare the YapOr based on environment copying with the YapOr based on stack

splitting. We devised two splitting schemes, the vertical splitting and the half splitting,

and have adapted data structures, scheduling and incremental copying procedures in

YapOr to cope with the new schemes. Finally, we evaluate their performance on a

set of known benchmarks on a multicore machine with up to 24 cores. Our initial

results confirm that YapOr with the stack splitting schemes is, in general, comparable

to YapOr with environment copying, obtaining in some cases better performance than

with environment copying.

9

10

Resumo

O Prolog é uma popular linguagem de programação lógica, na sua essência declarativa

e, por isso, muito adequada à exploração de paralelismo impĺıcito. Actualmente, exis-

tem já várias implementações sequenciais de Prolog bastante eficientes, na sua grande

maioria baseadas na Warren Abstract Machine (WAM). O Prolog é presentemente

muito usado pela comunidade nas áreas de aprendizagem automática e processamento

de ĺıngua natural, mas o seu escopo de aplicação é maior.

Num passado recente, foram várias as implementações que exploraram paralelismo

impĺıcito em Prolog. Em particular, os sistemas Muse e YapOr são dois dos mais

eficientes sistemas paralelos para arquitecturas de memória partilhada, ambos basea-

dos no modelo de cópia de ambientes. O modelo de divisão da pilha de pontos de

escolha (stack splitting) surgiu como um modelo alternativo especialmente adequado

para arquitecturas de memória distribúıda dado que, na sua essência, determina a

divisão da computação em duas partes independentes que praticamente não requerem

qualquer sincronização adicional.

Com o desenvolvimento das novas arquitecturasmulticore, faz todo o sentido recuperar

o conhecimento e experiência existente nesta área e, ou desenvolver novos modelos

computacionais melhor adequados a estas novas arquitecturas, ou refazer modelos

computacionais existentes, devidamente adaptados, e avaliar o seu desempenho nas

novas arquitecturas. Aqui, tomamos o segundo caminho.

Esta dissertação foca o desenho e implementação da estratégia de stack splitting

no sistema YapOr. O nosso objectivo é implementar o stack splitting em memória

partilhada, tirando partido da implementação robusta e consistente existente, de modo

a podermos comparar o desempenho das duas estratégias, stack splitting e cópia de

ambientes, usando o YapOr como sistema base. Desenvolvemos e implementamos

dois esquemas de divisão de trabalho, vertical splitting e half splitting, adaptamos

estruturas de dados, estratégia de scheduling e de cópia incremental no YapOr para

11

podermos lidar com estes novos esquemas. Finalmente, avaliamos o seu desempenho

num conjunto de programas de teste numa máquina com 24 cores. Os resultados

iniciais confirmam que o YapOr com as estratégias de stack splitting é comparável ao

YapOr com cópia de ambientes, obtendo em alguns casos melhor desempenho do que

com a cópia de ambientes.

12

Contents

Abstract 9

Resumo 11

List of Tables 18

List of Figures 21

1 Introduction 23

1.1 Thesis Purpose . 24

1.2 Thesis Outline . 25

2 Logic Programming and Parallelism 27

2.1 Logic Programming . 27

2.1.1 Logic Programs . 28

2.1.2 The Prolog Language . 31

2.1.3 The Warren Abstract Machine 32

2.1.3.1 Memory Architecture and Registers 32

2.1.3.2 Instructions and Code Translation 34

2.2 Parallelism in Logic Programming . 37

2.2.1 Or-Parallelism . 38

13

2.2.2 Or-Parallel Execution Models 39

2.2.2.1 Binding Arrays . 40

2.2.2.2 Environment Copying 40

2.2.2.3 Stack Splitting . 41

2.3 Chapter Summary . 43

3 The YapOr Engine 45

3.1 Execution Model . 45

3.2 Incremental Copy . 49

3.3 Scheduler . 49

3.3.1 General Ideas . 50

3.3.2 Strategies . 51

3.4 Or-parallelism Support . 52

3.4.1 Implemented Mechanisms . 52

3.4.2 Work Sharing Process . 52

3.5 Chapter Summary . 56

4 Supporting Stack Splitting in YapOr 57

4.1 General Ideas . 57

4.1.1 Getting Work in the Shared Region 58

4.1.2 Copying the Execution Stacks 59

4.1.3 Membership and Locking . 60

4.1.4 Sharing Work . 61

4.2 Vertical Splitting . 63

4.3 Half Splitting . 68

4.3.1 Split Counter . 70

14

4.3.2 Sharing Model . 71

4.4 Chapter Summary . 75

5 Supporting Stack Splitting with Incremental Copy 77

5.1 General Ideas . 77

5.2 Supporting Incremental Copy . 79

5.2.1 Sharing Without Copying the Stacks 80

5.2.2 Unbitmapping . 81

5.2.3 Copy Ranges Definition . 82

5.2.4 Dereference Phase . 83

5.2.5 Split Counter Checking Phase 85

5.3 Chapter Summary . 87

6 Performance Analysis 89

6.1 Benchmark Programs . 89

6.2 Performance Results . 90

6.2.1 Cost of the Parallel Model . 91

6.2.2 Parallel Execution . 92

6.3 Chapter Summary . 97

7 Conclusions and Further Work 99

7.1 Conclusions . 99

7.2 Future Work . 100

A Execution Times 103

B Benchmark Programs 107

15

References 125

16

List of Tables

6.1 Execution times, in seconds, for Yap’s sequential model and for Ya-

pOr’s implementation based on environment copying (EC), on vertical

splitting not using (VS) and using incremental copy (VS+IC), and on

half splitting not using (HS) and using incremental copy (HS+IC), all

running with a single worker. 91

6.2 Ratios showing the cost of YapOr’s parallel models, running with a

single worker, in comparison with Yap’s sequential model. 92

6.3 Speedups against the 1 worker case and against the sequential execu-

tion (in parenthesis) for YapOr’s implementation based on environment

copying. 93

6.4 Speedups against the 1 worker case and against the sequential execution

(in parenthesis) for YapOr’s vertical splitting implementation without

incremental copy. 94

6.5 Speedups against the 1 worker case and against the sequential execu-

tion (in parenthesis) for YapOr’s vertical splitting implementation with

incremental copy. 94

6.6 Speedups against the 1 worker case and against the sequential execu-

tion (in parenthesis) for YapOr’s half splitting implementation without

incremental copy. 96

6.7 Speedups against the 1 worker case and against the sequential exe-

cution (in parenthesis) for YapOr’s half splitting implementation with

incremental copy. 96

A.1 Execution times, in seconds, for YapOr’s implementation based on

environment copying. 103

17

A.2 Execution times, in seconds, for YapOr’s vertical splitting implementa-

tion without incremental copy. 104

A.3 Execution times, in seconds, for YapOr’s vertical splitting implementa-

tion with incremental copy. 104

A.4 Execution times, in seconds, for YapOr’s half splitting implementation

without incremental copy. 105

A.5 Execution times, in seconds, for YapOr’s half splitting implementation

with incremental copy. 105

18

List of Figures

2.1 Depth-first search tree with backtracking. 31

2.2 WAM memory layout and registers. 33

2.3 Vertical Splitting. 41

2.4 Horizontal Splitting. 42

2.5 Diagonal Splitting. 42

2.6 Half Splitting. 43

3.1 Relation between choice points and shared structures. 48

3.2 Sharing a choice point. 48

3.3 Incremental copy’s important conditions. 50

3.4 Nearest live node. 53

3.5 Memory areas involved in the incremental copy process. 54

3.6 The work sharing synchronous process. 55

3.7 Q ’s installation phase. 56

4.1 Getting work in the shared region with YapOr. 58

4.2 Getting work in the shared region with stack splitting. 59

4.3 Stage 1: Sharing loop. 62

4.4 Stage 2: Connecting old shared frames. 62

4.5 Stage 3: Updating depth. 63

19

4.6 Stage 4: Updating old shared frames. 63

4.7 Stage 5: Updating top shared frames. 64

4.8 Double spaced connection in or-frame creation. 65

4.9 Vertical splitting sharing loop pseudo-code. 66

4.10 Connecting old shared frames and updating depth. 67

4.11 Last or-frame connection pseudo-code. 68

4.12 Updating the OrFr nearest livenode in the old shared frames and the

top or-frame for both workers. 69

4.13 Pseudo-code for updating the OrFr nearest livenode fields in the old

shared frames. 69

4.14 Work chaining sequence of or-frames in vertical splitting. 70

4.15 Split counter sequences. 71

4.16 Sharing loop stage with half splitting. 72

4.17 Updating the split counter. 72

4.18 Checking if the middle node is already shared. 73

4.19 Half splitting stages 2 and 3. 74

4.20 Half splitting stages 4 and 5. 75

4.21 Work chaining sequence of or-frames in half splitting. 76

5.1 Structural differences for vertical splitting (a) without and (b) with

incremental copy. 78

5.2 Structural differences for half splitting (a) without and (b) with incre-

mental copy. 79

5.3 Vertical splitting without copying the stacks. 80

5.4 Half splitting without copying the stacks. 81

5.5 Copy ranges in YapOr and in stack splitting. 82

5.6 Stack segments to copy for stack splitting with incremental copy. 84

20

5.7 Dereference phase. 85

5.8 Split counter checking phase. 86

21

22

Chapter 1

Introduction

Declarative languages, as is the case with logic programming languages, have the ad-

vantage in which programmers do not have to explicitly specify the control of program

execution. Logic programming programs are characterized to be easily described and,

one of the most popular and high-level logic programming languages is Prolog.

Noticeable, most of the Prolog’s supremacy in logic programming languages was due

to its implementation efficiency. In fact, part of that efficiency was made possible first

by the implementation of a very efficient sequential machine called Warren’s Abstract

Machine (WAM) [1]. It enabled many specialized optimizations that made Prolog to

rise in its application range of real world problems in areas such as Natural Language

Processing, Machine Learning, Database Management, Automated Theorem Proving,

Expert Systems, Automated Answering Systems, Games and Ontologies.

Prolog programs, whose semantics is based on First Order Logic, naturally exhibit

implicit parallelism. One important source of parallelism arises from the simultaneous

evaluation of a Prolog goal against all the predicate clauses that match that goal. This

form of parallelism is called Or-parallelism. The advantage of implicit parallelism is

that one can develop specialized runtime systems to transparently explore the available

parallelism in Prolog programs, thus freeing the programmers from having to do it

explicitly. This idea is implemented in the YapOr system [16], a Prolog system that

exploit or-parallelism.

One main difficulty in the implementation of any parallel system is to devise an

efficient strategy to assign computing tasks to idle workers awaiting for work. A

parallel Prolog system is no exception as the parallelism it exhibits is highly irregular.

Achieving the necessary cooperation, synchronization and concurrent access to shared

23

24 CHAPTER 1. INTRODUCTION

data structures among several workers during their execution is a difficult task. The

stack splitting strategy [8] provides a simple, clean and efficient method to accomplish

work sharing among workers. It successfully splits the computation work of one worker

in two fully independent tasks, and thus was first introduced aiming at distributed

memory parallel architectures where synchronization and communication have higher

costs.

Recent advances in parallel architectures have made our personal computers parallel

with multiple cores sharing the main memory. The multicores and clusters of multi-

cores are now the norm, and exploiting implicit parallelism in a transparent way is a

quite relevant research direction to take. Although many parallel Prolog systems have

been developed in the past, namely Aurora [12], Muse [3], YapOr [16], evaluating their

performance or even the implementation of newer computational models specialized

for the multicores is still open to further research. In this thesis, we aim to design and

implement in YapOr the stack splitting strategy and make it efficient on multicore

architectures.

1.1 Thesis Purpose

In this thesis, we aim to study, design and implement efficient work sharing models

for or-parallel execution of Prolog programs. Our approach is to benefit from prior

research in our group on the development of the YapOr system and extend it to support

stack splitting using a shared memory programming model. YapOr is based on the

environment copying model, and, thus, changes or extensions to the current data

structures, scheduling procedures and the incremental copy mechanism are necessary.

The work developed allowed us to make some contributions, not only on the imple-

mentation of stack splitting, but also on the creation of new mechanisms, or simply

the update of others, particularly in connection to the incremental copy technique. A

list of the contributions made are as follows:

• The design and implementation of two stack splitting strategies within the YapOr

system, the vertical and half stack splitting both running with or without support

for the incremental copy technique. In particular, this included the following new

functionalities:

– The calculation of the first choice point to be assigned as the top choice

point for the requesting worker, in the work sharing procedure between two

1.2. THESIS OUTLINE 25

workers.

– The update of YapOr’s bitmap membership mechanism during the work

sharing procedure.

– The update of YapOr’s copy synchronization mechanism.

– A dereference phase that denotes a worker’s consistency when intended to

be in a certain computational state with an assigned choice point. This

occurs after the copy phase.

– The mechanism that ensures the consistency of the choice point value of

the requesting worker’s execution time, during the work sharing procedure.

• Performance comparison, with 1, 2, 4, 8, 16 and 24 cores, between YapOr with

environment copying and YapOr with vertical and half stack splitting strategies.

1.2 Thesis Outline

The following list briefly describes each chapter in this thesis.

Chapter 1: Introduction. The current chapter.

Chapter 2: Logic Programming and Parallelism. Introduces the basic concepts

on the foundations of Logic Programming and the Prolog language. Then, we

introduce the opportunities for parallelism in Prolog and overview strategies for

work sharing, namely the stack splitting strategies.

Chapter 3: The YapOr Engine. Presents the basic concepts and strategies that

support the design of the YapOr parallel system. We also detail some execution

models, such as the Environment Copying, and some optimization techniques,

such as the Incremental Copy. Emphasis is given to the work sharing procedure

and to its behavior.

Chapter 4: Supporting Stack Splitting in YapOr. Introduces the stack split-

ting schemes that are being implemented in YapOr, namely the vertical splitting

and the half splitting. These schemes originate a different behavior than the

original YapOr and might lead to different execution results in a certain set of

Prolog programs.

26 CHAPTER 1. INTRODUCTION

Chapter 5: Supporting Stack Splitting with Incremental Copy. Details the

most important implementation aspects of the incremental copy technique. Such

technique is only acquired when certain conditions are satisfied. We also detail

the necessary mechanisms that are crucial for achieving such conditions, and,

thus, to support the stack splitting approach.

Chapter 6: Performance Analysis. In this chapter we analyze the advantages and

weaknesses of each stack splitting scheme when compared to the environment

copying scheme. Several benchmark programs with different characteristics are

used in order to assess performance. A comparison is made between the original

YapOr with environment copying and the YapOr with the stack splitting schemes

implementation.

Chapter 7: Conclusions and Further Work. This chapter summarizes the dis-

cussion of the topics presented in this thesis and provides some conclusions on

the accomplishments achieved. The conclusions not only refer to the perfor-

mance comparison between the different versions of YapOr, but also advances

implementation improvements that can be made to the implemented schemes.

Future work is highlighted and discussed, along with the thesis final remark.

Chapter 2

Logic Programming and Parallelism

This chapter gives an overview of the most important aspects related to the work

presented in this thesis. In a self contained manner, first it introduces the basic

concepts of Logic Programming and the Prolog language and then it focus on the

main topic of this thesis: Parallelism in Logic Programming.

2.1 Logic Programming

Logic Programming languages are supported by a strong mathematical basis and are

considered to be very high-level and declarative languages, properties that induce a

simpler programming model. Declarative languages allow the programmer to concen-

trate on describing what the problem is, rather than describing how it is computed,

leaving resolution and control mostly to the computer.

Following the seminal work by Robinson in 1965 [13], Logic Programming started

to emerge as a computing language. Kowalski [10] gave relevance to its procedural

aspects, stating that an efficient inference procedural could be automated by applying

Robinson’s Resolution Principle. Logic Programming is based on a subset of the

first-order predicate logic - the Horn Clause logic. The Horn Clause logic provides a

basis for more powerful programming methods and is ideally suited to non-numerical

applications, as it simplifies the programming level difficulty when processing natural

language [11].

27

28 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

Karlsson claims that Logic Programming languages, such as Prolog, have the following

features [9]:

• Variables are logical variables that can be instantiated only once.

• Variables are untyped until instantiated.

• Variables are instantiated via unification, a comparative operation that finds the

most general common instance of two data objects.

• At unification failure, the execution backtracks and tries an alternative in the

last choices set in order to satisfy the original query.

In [4], Carlsson mentions that some of the advantages of Logic Programming are:

• Simple declarative semantics. A logic program is simply a collection of

predicate logic clauses.

• Simple procedural semantics. A logic program can be read as a collection of

recursive procedures. In Prolog, for instance, clauses are tried in the order they

are written and goals within a clause are executed from left to right.

• High expressive power. Logic programs can be seen as executable specifica-

tions that despite their simple procedural semantics allow for designing complex

and efficient algorithms.

• Inherent non-determinism. Since in general several clauses can match a goal,

problems involving search are easily programmed in this kind of languages.

These advantages establish an easy way to program, manipulate and understand a

predominant compact code, which facilitates program transformations and allows more

transparency in parallelism.

2.1.1 Logic Programs

A logic program consists of a collection of clauses. Using Prolog’s nomenclature, a

clause can be a fact, i.e., an assertion with no conditions. A fact is the simplest clause,

it is represented as

A.

2.1. LOGIC PROGRAMMING 29

and, it can be read as “A is true”. A clause can also be defined as a rule of the form

A : − B1, ..., Bn.

where A is the head of the rule, B1, ..., Bn are the body literals (n > 0), and there is

a logical implication by the conditional symbol “:-” denoted by:

A ← B1, ..., Bn

or

∀ (B1 ∧ ... ∧ Bn → A)

or

∀ (¬B1 ∨ ... ∨ ¬Bn ∨ A)

meaning that “If B1, ..., Bn are true, then A is true as well” as the Resolution Principle

asserts.

Positive literals refer to the head of the clause and negative literals correspond to the

body of the clause. In logic programs, a clause is allowed to have only one positive

literal. The negative literals in the clause’s body are also called subgoals.

A different kind of clauses is when the head of the clause are none existent. In this

case, the clauses are denominated as queries. A query is a goal or a conjunction of

goals of the form

: − G1, ..., Gn.

A goal is a term that may be defined as an atom, a variable or a functor/compound

term. Variables are undefined terms and atoms are symbolic constants with zero arity.

Consider a functor term of the form

f (t1, ..., tn)

f/n is the functor name with arity n. The ti’s are the n argument terms and if f/n

has zero arity (n = 0) it is denoted as a simple atom.

30 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

The computation process is based on the submission of query clauses. Using preloaded

program clauses, which is the knowledge of the interpreter, the process of resolution

consists on the unification of the submitted arguments. Introduced by Kowalsky

[11], the process of resolution is simply a derivation of an inference system method

denominated by the name of Selective Linear Definite (SLD) inference rule. In this

process and in a procedural perspective, the clauses are selected in the order they

appear in the program and the subgoals in a clause are selected from left to right.

Solving a query thus involves the selection of a clause whose head matches the query

goal. If their arguments unification succeeds, the goals of the matching clause are

then executed from left-to-right. When an unification in these goals fails, the system

backtracks to the last selection undoing all bindings made to that point, and another

alternative is selected. If all goals succeed, a query solution is found.

An unification (or substitution) consists of finding the most general unifcation of

variables that makes two expressions identical. This process is composed by a finite set

of bindings among different variables or among variables to non-variable terms, where

each binding must be unique. Having defined a program p and submitting a query

?− q, the resolution either fails with p and q not unifying, or succeeds accordingly to

the bindings of the variables of q with p. When a variable Y is bound to an atom a

and to an atom b at the same time (Y = a∧ Y = b) then there is no unification. See,

next, a succeeded and a failed unification example:

p(a, f(a), Y).

?− p(X, f(Y), a). ?− p(X, f(Y), b).

X = Y = a no (X = a ∧ Y = a ∧ Y = b)

The backtracking mechanism is a search algorithm for finding all possible solutions

for a query that dynamically visits all alternative branches in the search tree. The

act of backtracking simply consists in restoring the computation up to the previous

node and trigger the next alternative from the unexplored alternative’s set. General

logic programs follow an execution model consisting on traversing search trees in a

depth-first left-to-right form, as shown in Figure 2.1.

2.1. LOGIC PROGRAMMING 31

Starting Point

1

4

6

7

5

2 3

Figure 2.1: Depth-first search tree with backtracking.

When a leaf of the tree is reached, backtracking takes place. The process terminates

when no more backtracking is possible, that is, when all sub-trees were traversed [17].

A leaf node can represent a solution or a failure. The inner nodes represent the choice

points for a matching predicate, while the alternative branches illustrate the clauses

being explored.

2.1.2 The Prolog Language

Starting from Robinson’s work [13] that described the well known inference rule,

Resolution with Unification, Prolog was initially intended as the programing language

developed by Alain Colmerauer and Phillipe Roussel in 1972, and later, as the Logic

Programming in general perspective. These were the times that Kowalski, Russel,

Colmerauer and its team discovered that “computation could be subsumed by deduc-

tion” [11]. Curiously, the name Prolog was chosen by Phillipe Roussel’s wife Jacqueline

as derives from the abbreviation of the words PROgramation en LOGique.

In 1977, David H. Warren made Prolog a viable language by developing the first com-

piler [18]. In 1983, Warren proposed a new abstract machine to execute Prolog code,

with the name Warren Abstract Machine (WAM) [19], which became the standard for

efficient implementation of most Prolog systems.

To make Prolog a suitable programming language it was necessary to introduce some

features that were not present in First Order Logic. These features include:

32 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

• Cut predicate. This predicate adds a limited form of control to the execution

by pruning unexploited alternatives from the computation.

• Meta-logical predicates. These predicates inquire the state of the computa-

tion and manipulate terms.

• Extra-logical predicates. These are predicates which have no logical mean-

ing at all. They perform input/output operations and manipulate the Prolog

database, by adding or removing clauses from the program being executed.

• Other predicates. These include arithmetic predicates, term comparison pred-

icates, extra control predicates, and a set of predicates that outputs the complete

set of answers for a given query.

2.1.3 The Warren Abstract Machine

The Warren’s legacy is an abstract machine consisting of a memory architecture and

instruction set tailored to Prolog [1]. The WAM is the basis of most of the current

Prolog compilers and the source for further sequential and parallel Prolog implemen-

tations. We next discuss the WAM’s memory architecture, registers, instructions and

code translation.

2.1.3.1 Memory Architecture and Registers

As shown in Figure 2.2, the WAM is composed by a set of stacks and a set of registers.

The WAM’s memory organization is divided into seven logical data structures: one

stack for the code area (Code); two stacks for data objects (Heap and Stack); one stack

for trailing the modifications along execution in order to allow backtracking (Trail);

one stack for the unification process (PDL); one stack for the tangle of symbols; and

one array used for temporary argument and registers allocation. In more detail:

2.1. LOGIC PROGRAMMING 33

HEAP

CODE

STACK

TRAIL

PDL

CP

P

HB

H

S

E

B Choice Point Frame

Environment Frame

TR

Registers

CP

P

S

HB

H

E

B

TR

continuation instruction pointer

current instruction pointer

structure pointer

heap backtrack pointer

current top of heap

current environment pointer

current choice point pointer

current trail pointer

B n

1st goal argument B+1

nth goal argument B+n

cont. environmentB+n+1

cont. instructionB+n+2

prev. choice pointB+n+3

next clauseB+n+4

trail pointerB+n+5

heap pointer B+n+6

E

E+1

cont. environment

cont. instruction

E+2

1st permanent var. E+3

nth permanent var. E+n+2

n

MEMORY

... ...

... ...

Figure 2.2: WAM memory layout and registers.

Code area is the memory section that contains the compiled WAM instructions

of the loaded programs and two instruction pointers, one pointing to the current

instruction being executed (P) and another pointing to the continuation instruction

upon successful execution of the subgoal at hand (CP).

Heap (or Global stack) is an array of data cells and its main function is to store

the data terms. The H register points to the current top of the heap.

Stack (or Local stack) is used to store the execution environments and the choice

points appearing in the search tree:

• Environments are used to store previous execution states and they are important

to allow the computation to safely return to the previous environment in the

tree, after evaluating a subgoal. Each environment frame is composed by the

previous environment frame address (E), accessed when the current environment

34 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

is deallocated; the address of the instruction to execute upon successful return

in a clause invocation; and the number n of permanent variables followed by the

sequence of the n permanent variables.

• Choice points are used for stacking up the unexplored alternatives corresponding

to predicates with more than an alternative (or clause), by saving the cor-

responding computational state in such a way that, after backtracking from

an alternative execution, it is possible to recover the state at the time the

choice point was created. A choice point is stacked up when a predicate is

invoked, and freed at the time of the last choice point alternative executes.

This structure stores all the key registers needed for the job. A choice point

has information about the number of arguments and the arguments themselves

for the current predicate; the environment of the previous choice point; the

continuation instruction; the previous choice point; the next alternative clause,

the current Trail pointer and the current Heap pointer.

Trail stores the addresses of all the variables which were bound during the current

execution branch. In order to recover the computational state, when backtracking

occurs, the variables on the trail are restored to its previous state and marked as free

variables. The TR register points to the current top of the Trail.

PDL (or Push Down List) is used as an unification stack with the operations empty,

pop and push.

Finally, the registers are used to control the WAM’s execution flow. Besides the already

mentioned registers, there are some other useful WAM registers. The HB register saves

the value of H of the most recent choice point. The S register is used in the unification

process to point to the argument being unified and is incremented when processing

the next argument.

2.1.3.2 Instructions and Code Translation

Prolog’s compilation process is considered fairly simple. For a predicate p/n, each

clause follows certain specifications to generate the corresponding WAM code. In

WAM, there are four main instruction groups:

2.1. LOGIC PROGRAMMING 35

• Choice Point Instructions

try me else L

retry me else L

trust me

This kind of instructions is intended for handling the execution order between

the clauses defining a predicate. The number of clauses will be the number of

choice point instructions and, since Prolog follows an SLD resolution scheme,

the writing order of the choice point instructions must look like this:

– For a two clause definition, the pattern is:

p/n : try me else L1

code for 1st clause

L1 : trust me

code for 2nd clause

– For more than two clauses, the pattern is:

p/n : try me else L1

code for 1st clause

L1 : retry me else L2

code for 2nd clause

.

Ln−1 : trust me

code for last clause

• Control Instructions

call p/n

proceed

allocate N

deallocate

When calling a clause, it’s necessary to save the environment in order to return

to it when the calling clause succeeds. The call and proceed instructions serve

as a procedure broker and return and the allocate and deallocate instructions

are defined to store and remove environments, respectively.

36 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

• Unification Instructions

put structure f/n,Xi get structure f/n,Xi

set variable Xi unify variable Xi

set value Xi unify value Xi

put structure f/n,Ai get structure f/n,Ai

put variable Xn,Ai get variable Xn,Ai

put value Xn,Ai get value Xn,Ai

There are two different kinds of unification instructions. On the left side are

the query instructions and on the right side are the program instructions. While

the query instructions are used on the body’s clause of a rule translation, the

program instructions translates pretty much everything else of the clause’s head.

The put and set query instructions are used to associate the argument registers

to the subgoals of the clause. The get and unify program instructions are

used for head unification with registers and structure arguments, respectively.

• Indexing Instructions

switch on term V,C, L, S

switch on constant N, T

switch on structure N, T

try L

retry L

trust L

The indexing instructions are not mandatory, they are simply used to avoid

the predicate clause’s not unifying with a given subgoal call, ie., the idea is

to determine beforehand which clauses unifies with a given predicate by select-

ing those that are compatible with certain filtering rules. On first argument

indexing [1], the filtering method is guided by the first argument type of the

invoked predicate. The switch on term instruction serves as a conditional

jumper accordingly to the type of the term, which can be, respectively, a variable,

a constant, a non-empty list or a structure. The switch on constant and

switch on structure second level indexing instructions are used to matching

clauses terms, respectively a constant term and a structure term. Identical to the

choice point sequence instructions referred before, the try/retry/trust third

level indexing instruction jump to a label L and, in the try/retry cases, they

save the next instruction in sequence as the next alternative for the choice point.

2.2. PARALLELISM IN LOGIC PROGRAMMING 37

2.2 Parallelism in Logic Programming

Considering the popularity and efficiency of the WAM, traditional Prolog imple-

mentations have started to grasp the interest on the idea of extending the existent

implementation models based on the WAM to a parallel model.

Exploring parallelism in a given paradigm, leads to solving two fundamental problems:

Parallelism recognition in a given program. This problem can be solved by the

compilers capacity of exploiting concurrent execution code, distinguish it from

sequential code (Implicit Parallelism). The other way is by direct intervention

of the programmer, which allows the use of explicit instructions on the program

code, and therefore in a certain way, switches the execution state from sequential

to parallel or vice versa (Explicit Parallelism).

Efficient work distribution among a set of process units. It is important to de-

fine the best way of serving the several workers in a multiprocessor system.

The idea is to provide a work distribution scheme, or scheduling strategy, that

successfully balances the work load among all cooperating workers and minimizes

worker idle time.

Prolog programs naturally exhibit several forms of parallelism, namely:

Or-parallelism allows the clauses of a predicate to be explored in parallel. This

happens when a predicate is defined by several clauses and when a subgoal call

unifies with the head of more than one clause.

a(X,Y) : − b(X), c(Y).

a(X,Y) : − d(X, Y), e(Y).

a(X,Y) : − f(X,Z), g(Z, Y).

And-parallelism allows the goals of a clause body to be executed in parallel.

a(X, Y) : − b(X), c(Y).

In this case, it is obvious the convenience of having more than one goal in a

clause’s body. The parallel execution of these goals raises two kinds of And-

parallelism [6]:

38 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

• Independent and-parallelism arises when the goals do not share variable

bindings, ie., the intersection among sets of the accessible variables in each

goal is empty meaning that, each goal has no influence on the outcome of

the other goals and do not share any unbound variable.

a(X, Y) : − b(X), c(Y).

• Dependent and-parallelism arises when the goals have common vari-

ables. One goal will create the bind between the common variables, which in

a parallel approach might cause racing conditions or trigger an incompatible

binding. In this type of And-parallelism, there are two ways of dealing

with this: (i) the goals can be executed simultaneously till the end and

then check for compatibility by comparing the variables assignments of the

produced bindings. (ii) the goals can be executed simultaneously until one

of them instantiates a common variable. The worker that claims the binding

is called the producer and, the others are considered to be consumers of

that common variable, by simply reading the binding as an input argument.

a(X, Y) : − d(X,Y), e(Y).

a(X, Y) : − f(X,Z), g(Z, Y), h(Z).

Unification parallelism happens during the process of unification of the arguments

of one’s body subgoal with one’s clause head. The various arguments can be

unified in parallel, as well as the different subterms in a term. This form of

parallelism is considered to be of low granularity and has not been one of the

most relevant research topics on parallelism in Prolog.

2.2.1 Or-Parallelism

At a first step, Or-parallelism seems much more simpler to be implemented efficiently

than And-parallelism. The major advantages motivating Or-parallelism’s use are [12]:

Generality. This kind of parallelism is relatively easy to exploit and does not restricts

any of the logic programming assets. An important advantage it brings is the

fact of being able to retrieve all solutions to a query.

Simplicity. There is no need for any extra programmer annotations, neither any

complex real-time analysis by the Prolog compiler.

2.2. PARALLELISM IN LOGIC PROGRAMMING 39

Closeness to Prolog. It is possible to easily exploit Or-parallelism by extending

the sequential execution of Prolog. The language semantics are preserved and

one can take advantage of the existing implementations of Prolog in order to

overpower max performance.

Granularity. This refers to the amount of work that can be run concurrently, ie.,

without the intervention of other work pieces that are being processed simulta-

neous. Or-parallelism has potential for high granularity Prolog programs with

high grain size of concurrent computations.

Applications. Or-parallelism encompasses a wide variety of applications, especially

in the area of Artificial Intelligence, in natural language processing, proving

theorems or answering queries in a database.

Despite the theoretical simplicity, the implementation of Or-parallelism is difficult due

to practical complications that emerge from the sharing of nodes in the Or-parallel

search tree. An important difference from a sequential implementation is that an

Or-parallel implementation must support multiple bindings for the same variable [7].

Given two nodes in two different branches of an Or-tree, all nodes above the least

common ancestor of these nodes (including it) are shared between the two branches.

A variable created in one of the ancestors nodes might thus be bounded differently in

these two branches. This invites for a new environment organization that guarantees

the correctness of the bindings in both branches [5].

A major problem in Or-parallelism implementation is thus the efficient representation

of the multiple environments coexisting simultaneous during program execution. The

act of accessing or binding a variable has a management cost. Since it has been

proven impossible to avoid both costs simultaneously [7], they can be minimized. A

way of doing this is by designing a scheduler, which equally distributes the unexplored

alternatives, of the search tree, among the set of running workers.

2.2.2 Or-Parallel Execution Models

Many or-parallel execution models have been proposed [6], but two have emerged

as references for future implementations. One is the Binding Arrays, introduced in

the Aurora system [4], and the other is the Environment Copying, introduced in

the Muse system [9]. Both systems are implemented on a SMM (Shared Memory

Multiprocessors) architecture where all the resources can be accessed by all processing

40 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

units in a shared memory environment, ie., if there is a change in a memory location,

this change is visible on all processing units.

2.2.2.1 Binding Arrays

In the Binding Arrays model, each worker carries an auxiliary data structure de-

nominated by binding array containing a logical set of conditional variables. These

variables are all numerated upon creation of a choice point. When a conditional

variable is instantiated, its value is stored in the binding array, and the address

and the conditional assignment are stored in the Trail. When accessing a variable

assignment, the variable label is used in order to index the binding array and retrieve

the assignment. Nevertheless, the model adds some computation overhead since every

variable is cached in the binding array.

Every worker has an entry in the binding array for the same variable. The operation

of work sharing takes place by updating the binding array. When a worker changes

its branch, for consistency reasons, it first updates its binding array by uninstalling

the stored assignments in the Trail of the old branch of the worker and then installs

the new information concerning the new worker’s position. This process of uninstal-

lation/installation entails an overhead which is difficult to minimize.

2.2.2.2 Environment Copying

In the Environment Copying model, each worker keeps a separated copy of its own

environment, in which it can freely store assignments without making conflicts. Unlike

in the Binding Arrays model, the unconditional assignments are not shared. Every

time a worker shares work with another worker, it copies all the execution stacks from

the sharing worker in order to be in the same computational state as the sharing

worker. This stack copying is realized through a mechanism called Incremental Copy.

This kind of copy takes advantage of the fact that the requesting worker has already

traversed part of the path between the root node and the youngest common node of

both workers. Therefore, it does not need to copy the stacks referring to the whole

path from root, but only the stacks starting from the youngest common node of both

agents.

2.2. PARALLELISM IN LOGIC PROGRAMMING 41

2.2.2.3 Stack Splitting

Both Binding Arrays and Environment Copying models need mechanisms that employ

mutual exclusion and ensure synchronization when accessing shared branches of the

search tree. An alternative strategy to this problem boils down by previously dividing

the available unexplored alternatives (undone work) by the sharing workers. The term

used for this strategy is Stack Splitting.

Stack Splitting has two main types of distributing undone work: Vertical Splitting and

Horizontal Splitting [8]. Vertical Splitting is based on the alternately division of choice

points between the two involved agents P an Q, in the work sharing process.

P Q

A

B

C

D

b1

b2
b3

b4

b5

a1

a2
a3

c1

c2
c3

d1
d2

Idle
Worker

Before Sharing(a)

P

Q

A

B

C

D

b1

b2
b3

b4

b5

a1

c1

d1
d2

A

B

C

b1

a1

a2
a3

c2
c3

After Sharing(b)

P

Figure 2.3: Vertical Splitting.

As illustrated on Figure 2.3, the process begins with an idle worker Q asking for work

to a busy worker P. Accordingly to the available work in P ’s branch, P’s choice points

are alternately split between P and Q. After applying the division process, the stacks

are copied to Q and Q is set to begin its own execution.

In the Horizontal Splitting strategy, what is alternately divided is the unexplored

alternatives in each choice point. This strategy has the same divide-copy procedure

as Vertical Splitting. The split is shown as follows in Figure 2.4.

Diagonal Splitting is an alternative strategy that was idealized as a variation of

both Vertical Splitting and Horizontal Splitting, with the objective of extracting the

advantages of both and minimize the disadvantages of each [15]. This strategy adds

a better overall balance distribution (of tree’s distribution) because it is based on

the alternated division of all unexplored alternatives, regardless of the choice points

42 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

P Q

A

B

C

D

b1

b2
b3

b4

b5

a1

a2
a3

c1

c2
c3

d1
d2

Idle
Worker

Before Sharing(a)

P Q

A

B

C

D

b1

b3

b5

a1

a3

c1

c3

d1

A

B

C

D

b1

b2

b4

a1

a2

c1

c2

d2

After Sharing(b)

Figure 2.4: Horizontal Splitting.

positioning. This is shown in Figure 2.5.

P Q

A

B

C

D

b1

b2
b3

b4

b5

a1

a2
a3

c1

c2
c3

d1
d2

Idle
Worker

Before Sharing(a)

P Q

A

B

C

D

b1

b2

b4

a1

a2

c1

d1

A

B

C

D

b1

b3

b5

a1

a3

c1

d2

c3
c2

After Sharing(b)

PP

Figure 2.5: Diagonal Splitting.

Figure 2.6 illustrates a novel strategy introduced and proposed in this thesis, named

Half Splitting. Basically, this strategy is similar to Vertical Splitting and can be

resumed as a bi-partition of the available choice points in worker P. The closest choice

points to root are assigned to the requesting worker Q, and the remaining stay in P

computation.

2.3. CHAPTER SUMMARY 43

P Q

A

B

C

D

b1

b2
b3

b4

b5

a1

a2
a3

c1

c2
c3

d1
d2

Idle
Worker

Before Sharing(a)

P

Q

A

B

C

D

b1

a1

c1

c3

d1
d2

A

B

b2
b3

b4

b5

a1

a2
a3

c2

After Sharing(b)

PPP

Figure 2.6: Half Splitting.

In this thesis, special emphasis will be given specially to the Vertical Splitting and

Half Splitting strategies.

2.3 Chapter Summary

We introduced briefly Logic Programming and the Prolog language. In particular, we

discussed in detail the Warren Abstract Machine, as the pillar for most Prolog imple-

mentation basis, and we highlighted the main advantages of exploring Or-parallelism

and the solutions encountered for environment representation and work distribution

in parallel Prolog.

The following chapter will introduce the YapOr system, a parallel implementation of

Prolog based on the Environment Copying model with the Incremental Copy scheme.

44 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

Chapter 3

The YapOr Engine

This chapter introduces YapOr, an or-parallel engine that extends the Yap Prolog

system to exploit implicit or-parallelism in Prolog programs [16]. YapOr is based

on the Environment Copying model and follows most of the Muse implementation

concepts [3].

3.1 Execution Model

In YapOr’s shared memory execution model, each worker has a reserved local memory

space with the same layout, and shares a global memory space. As a WAM based

model, there are certain requirements that must be carried out for the efficient paral-

lelization of WAM’s sequential model. The idea is to have each worker behaving, most

of the time, as a pure Prolog sequential engine and, at some points of the execution, it

switches to execute scheduler tasks in order to synchronize or distribute work among

the available workers.

In YapOr, a worker is represented by a single processor or system process sharing two

common characteristics:

• Sequential execution Each worker is denoted as a sequential execution entity

with the usual WAM execution stacks.

• Logical address space Each worker manipulates its private execution stacks

by using an identical logical address space and sharing a common global address

space.

45

46 CHAPTER 3. THE YAPOR ENGINE

YapOr ’s addressing space is thus divided into two spaces: the global space and the

set of local spaces.

• The global space provides the basic support for sharing the main structures for

parallel execution. The space is divided into four parts: code area, where the code

for the loaded programs is stored; global information area, where synchronization

data is stored; shared structures creation area, where shared structures are

allocated; solutions area, where the solutions for the current executing goal are

stored.

• The local space is divided into a subset of local spaces, each belonging to a

system worker. The local stack, heap stack and trail are stored in each worker’s

local space, representing the worker’s execution state. Besides this, there is a

local information area, where local data related to parallelism is stored.

In the WAM, the nodes in the search tree are represented by the choice points

containing the unexplored alternatives of a certain predicate. These alternatives are

independent and, thus, can be executed in parallel.

A node is considered private when it is only accessible by the owner. On the other

hand, a node is considered shared when it is accessible by more than one worker. A

node is defined as a live node when it owns at least one unexplored alternative. It is

defined as a defunct node if there are no more alternatives left to try. When a node

is stated as shared, there is an identical choice point entry in the local stacks of the

workers who possess it. For each worker, this divides the search tree in two regions: a

private region and a shared region.

The execution procedure for the environment copying model can be summarized as

follows:

1. Just before a program execution begins, all workers are idle. When the execution

starts, one of the workers, namely P, is set to trigger the first unexplored

alternative for the given query. If P then executes a predicate with more than

one alternative, in practice, this corresponds to create a choice point in P ’s local

stack. This said, if P has more than one alternative in a choice point, this choice

point is represented as a live node and can then be shared among other workers.

3.1. EXECUTION MODEL 47

2. After that, one idle worker, say Q, calls for work to P in order to cooperate with

it in the pending unexplored alternatives.

3. Thereafter, if P accepts the request it should share its private nodes with Q

which includes:

• For each private node, P creates a shared structure in the global space, in

order to dictate the correspondent nodes as shared nodes (see Figure 3.1).

This structure includes information about the unexplored alternatives left

in the node and about the workers sharing it (see Figure 3.2). Each private

choice point entry, instead of pointing to the alternatives set, now points

to the correspondent created entry in the shared structure entry chain (see

field OrFr alt) and includes information about the workers membership

owning the choice point at hand (see field OrFr members). Besides that,

and in order to avoid simultaneous access to these structures, they use a lock

mechanism that guarantees mutual exclusion in the deliver of an available

alternative to the workers sharing a node (see field OrFr lock). Also, it

is implemented a new field, named OrFr nearest livenode, which may

contain a reference to the nearest live node or null if no more live nodes

exist. In YapOr, these shared structures are called or-frames.

• P copies his current state to Q, which corresponds to copy the local stack,

heap stack and trail respectively.

4. After the sharing process, P proceeds with its computation, while Q simulates

a failure. This failure calls the backtracking mechanism in order to get an unex-

plored alternative from the shared region, ie., from the corresponding youngest

shared structure, meaning that there is an access interface to scatter unexplored

alternatives among the workers. To prevent racing conditions on accessing the

shared structures it is used a lock based mutual exclusion mechanism.

5. Whenever a worker has no more alternatives to explore, it returns to the idle

state and comes back to search for a busy worker in order to inherit some of its

unexplored work.

6. When all alternatives of the search tree have been explored, the computation

terminates and all workers return to the idle state.

48 CHAPTER 3. THE YAPOR ENGINE

Root

P, Q

P, Q

P’s Local
Space

Global
Space

Q’s Local
Space

Top Shared
Structure

Top
of P

Top
of Q

Private Region

Shared Region

(choice points) (choice points)

Figure 3.1: Relation between choice points and shared structures.

Choice Point

ALT

CP

TR

H

B

ENV

CP_ALT

CP_CP

CP_TR

CP_H

CP_B

CP_ENV

CP_LUB

CP_OR_FR

Sharing

LUB

Choice Point

CP

TR

H

B

ENV

Unlocked

P & Q

Or-Frame

ALT

LUB

getwork pseudo instruction

OrFr_lock

OrFr_alt

OrFr_members

OrFr_next

OrFr_nearest_livenode

OrFr_node

Next choice point with
possible available work

Figure 3.2: Sharing a choice point.

3.2. INCREMENTAL COPY 49

3.2 Incremental Copy

One of the goals when sharing work is to put the two workers in the same computa-

tional state. This includes copying the stacks of a worker to another worker, which

can be considered an important overhead. Thus, a mechanism that minimizes the

amount of data transferred between the sharing worker P and the requesting worker

Q, can play an important role. One such mechanism is called Incremental Copy of the

environment assigned to a worker. Instead of copying the full stacks, the incremental

copy technique copies only the difference between the states of the two workers. To do

that, worker Q must first travel to the youngest common node with P, to allow state

consistency before asking for work. The process then determines the difference stack

limits and copies the missing stacks from P to Q.

This mechanism is efficiently implemented in YapOr. When a worker Q has no more

work in its computation sub-tree, ie., all choice point nodes are defunct, and there is a

worker P with live nodes, Q asks P to send sharable work. In order to be in the same

computational state, worker Q backtracks to the youngest common node with P (see

Figure 3.3). Worker P is now available for creating the shared structures in the global

space starting from the youngest common node. Then, for worker Q, it just copies the

parts from the local stack, heap stack and trail which reflect the difference between

P and Q states. This difference is measured by using the information on the choice

point corresponding to the youngest common node of Q and P and, by consulting the

top stack segments of P.

In case of existing references in P ’s trail, to variables in the common stack segments

the respective assignments must also be updated in Q in order to maintain the

intended state consistency. The extra copy of these carriable assignments is named

the installation phase.

3.3 Scheduler

This section describes the work distribution solution implemented in YapOr [14,16].

50 CHAPTER 3. THE YAPOR ENGINE

Local Space of P
before copying

Stack Heap Trail Root
Node

Q

Shared
Region

Private
Region

Modified
Variable

in common
stack

segment

Youngest
Common

Node

P

Figure 3.3: Incremental copy’s important conditions.

3.3.1 General Ideas

YapOr implements two execution modes: scheduling mode and engine mode. A worker

enters in scheduling mode whenever it runs out of work and starts searching for

available work. As soon as new work is assigned to it, the worker enters in engine

mode. In engine mode, a worker acts similarly as in pure sequential Prolog except

that it has the ability to communicate with other workers.

One of the problems to maintain a good scalability is that available work is irregu-

larly sized and thus some workers may terminate at different times, originating an

unbalanced work distribution. Thus, the two main functions of a work distributor are:

keeping intact the correctness of Prolog sequential semantics and, efficiently, assign

new tasks, ie. continuous portion of work, among the available idle workers. Some of

the main overheads that affects the overall system performance are: (i) the sharing

process of the private nodes and the copy of the state parts of a worker and, (ii)

synchronization to get new tasks from the shared region.

3.3. SCHEDULER 51

3.3.2 Strategies

Proposed by Ali and Karlsson [2], YapOr takes advantage of the following scheduler

strategies used up to enhance the original Muse implementation:

• In the work sharing process, the sharing worker with sharable work must share

all of its private nodes. This maximizes the shared work quantity, which allows

the requesting worker to find new tasks in the region already shared without

entering again in the idle state.

• The scheduler must select the worker with the largest amount of work and closest

in the search tree to the idle worker. The amount of work corresponds to the

number of unexplored alternatives owned by a worker in its sub-tree. Again, this

is intended to maximize the shared quantity of work. Being the closest worker

to the idle worker regards the relative position and proximity of both workers

in the search tree, this is intended to minimize the amount of stacks to copy

between workers.

• When the scheduler is not able to find available work in the system, it must try

to move in advance the idle worker into a better position in the search tree, in

order to avoid unnecessary costs to the system in future sharing operations.

The scheduler basic procedure can be resumed as follows. Every time a worker

backtracks to a shared choice point, it tries to solve the next unexplored alternative. If

there are no unexplored alternatives, the worker becomes idle and tries to select a busy

worker, with a sharable amount of work, searching first for workers below its current

position and only if no such worker exists it searches for workers above its position.

When no such worker exist, the scheduler moves the idle worker to the best available

position in the search tree, in order to minimize the future sharing operations.

Regarding the selection of busy workers, a good strategy might be the one that selects

the busy worker according to the relative distance between them and, the one with

the most available work. Another implemented strategy is: if Q did not find a busy

worker P starting from the sub-tree of its current node, it opts by finding a busy

worker outside the sub-tree of its current node. Among them, Q chooses the worker

P with the most available work and backtracks in the tree until reaching the youngest

common node with P. Then the worker Q will try the work sharing process in order

to claim work from P.

52 CHAPTER 3. THE YAPOR ENGINE

3.4 Or-parallelism Support

This section discusses in more detail YapOr’s main support mechanisms for extending

the sequential model to or-parallelism, which includes the environment copying model,

the scheduling policy and scheduling support.

3.4.1 Implemented Mechanisms

The process of searching for available work in the shared region, can be made more

efficient by quickly finding the youngest live node in the current branch of the tree.

For this, it is necessary a decision mechanism to find such live node in an efficient way.

Remember that shared structures created during the operations of work sharing have

information about unexplored alternatives and about the workers sharing the node.

Also, to prevent execution racing conditions a locking mechanism and membership

mechanism are used. At last, for decide whether there is or not a living node in

the current branch of tree, it is used the nearest live node decision mechanism (see

Figure 3.2).

When a worker ends a shared task, it verifies if the current youngest node is alive. If

so, it locks the or-frame corresponding to the node at hand and takes the next available

alternative. After that, it updates the or-frame with the next alternative of the taken

task (decreasing the number of available alternatives), releases the lock and starts the

taken task. If the node is defunct, as the node with depth 3 in Figure 3.4, the worker

accesses the OrFr nearest livenode field in the or-frame structure, which will lead

to the nearest live node with available work or, if pointing to the root or-frame, will

mean that there is no more available work in the current branch of the tree.

3.4.2 Work Sharing Process

This process happens when an idle worker Q sends a work request to a busy worker P

and P accepts such request. A sharing request can be refused: (i) when Q is not in

the search branch of P ; (ii) when P has a lower value than the stipulated minimum

load threshold value; (iii) when P ’s and Q ’s top or-frame are equal, that is when P

has no more unexplorable work besides the executing alternative. Though, when P

sends a negative answer, Q returns to scheduler mode and starts searching for another

busy worker.

3.4. OR-PARALLELISM SUPPORT 53

Root

Choice
Points

Or-Frames

Top Or-frame
Depth = 4

Top Choice Point

Depth = 3

Depth = 2

Depth = 1

OrFr_next

OrFr_next

OrFr_next

OrFr_next

cp_b

cp_b

cp_b

cp_b

OrFr_nearest_livenode

OrFr_nearest_livenode

OrFr_nearest_livenode

Altern = 1

Altern = 0

Altern = 4

Altern = 3

defunct

live

live

live

"Altern" corresponds to
the available alternatives

in a choice point

Figure 3.4: Nearest live node.

Accordingly to [16], the process of sharing can be divided in four main steps: (i) the

Initial step is where some auxiliary variables are initialized and the stack segments to

be copied are computed; (ii) the Sharing step is where the private choice points are

turned into public ones; (iii) the Copy step is where the computed segments are copied

from the busy worker stacks to the idle worker ones and, at last, (iv) the Installation

step is where the variables in the maintained stacks of the idle worker are updated

with the bindings present in the busy worker stacks.

The computation of the stack segments to copy, when using incremental copy, is done

by worker P. These stack segments are shown in detail in Figure 3.5.

The limits Q[B->cp h] and Q[B->cp tr] are both representative of Q ’s youngest

choice point fields. Q[B] defines the youngest choice point of Q in the search tree, as

P[B] defines for P, and Q[top node] defines the youngest shared choice point of Q as

54 CHAPTER 3. THE YAPOR ENGINE

P’s Local Space

Q[B->cp_h]

P[B->cp_h]

P[B]

Q[top_node] = Q[B]

P[TR]
P[B->cp_tr]

Q[B->cp_tr]

Heap
stack

P[top_node]

segments to copy

Local
stack

Trail
stack

Figure 3.5: Memory areas involved in the incremental copy process.

P[top node] defines for P. The Q[top node] always coincide with Q[B] which does

not happen with P. P[top node] does not coincide with P[B] when P has private

work.

In YapOr, the four steps mentioned above are implemented in cooperation by the two

workers involved in the sharing process. The sharing execution of P is set by the

p share work() function, and for worker Q, it is set by the q share work() function.

The cooperation exercised by both workers tries to minimize the cost of the sharing

process. The P and Q sharing process is detailed in Figure 3.6.

While Q is initially waiting to receive a sharing signal from P, P accepts the share

request and computes the stacks to copy. When the request is accepted, Q starts the

stack’s copying in advance as P shares its private nodes pairing them with new shared

structures. After that, P enters in copy mode along with Q in a synchronized way

and the stacks are copied in the following order: trail, heap and local stack for Q and

local stack, heap and trail for P.

3.4. OR-PARALLELISM SUPPORT 55

Worker P

Worker Q

Acceptance Share Copy

Sharing Nodes Shared Copy Done WR

"Worker Ready"
(wait for Q)

Request

Accept sharing
(Put both workers
in sharing status)

P ends the stack copying
synchronization when all

stacks are copied

When the local stack
is copied, Q waits for
P to end the process

(Share or do
not share)

flags the other worker

flag status

(local -> global -> trail)

Copy

(trail -> global) -> (local)

Waits for P to start
the private node

sharing procedure

"Worker Ready"
(signals P)

Sharing Nodes Shared Copy Done

(Q sends
sharing
request)

WR

P shares his
private work

WR

WR

Q starts copying the trail
and global stacks and waits
for P’s signal to decide if the
copy of local stack is needed

Q ends the
communication

process by signaling
both workers to
Ready status

P waits for Q
to change his

status to Ready

Figure 3.6: The work sharing synchronous process.

After the copy is done, P continues execution and goes back to Prolog execution while

Q performs the incremental copy installation phase. The installation phase, as shown

in Figure 3.7, is the process of installing the bindings in P referring to variables in the

maintained stack segments of Q. The installation procedure traverses all the references

to variables in the copied segment of the trail. Note that, the bindings assigned by P ’s

current alternative are not copied, because it is considered unnecessary work, since

the backtracking of Q to restart execution would simply dispose those bindings. In

Figure 3.5, this area corresponds to the interval between P[TR] and P[B->cp tr].

While Q ’s installation step is not complete, P cannot dispose the shared nodes from

its stacks. This is necessary in order to avoid possible undoing of bindings and

consequently, having different values assigned to the same variable of P and Q.

In Figure 3.7, the gray area represents the stack segments to be copied from P to

Q. Notice also how variables are created and/or instantiated between choice points.

For example, there are variables whose values are assigned at the moment they are

created. A good example would be variable A which is assigned with the value zero

when created. Other variables are only instantiated afterwards. For instance, variable

C was created before the choice point CP3 and then it was assigned with the value

two only after the choice point CP3. When this happens, such instantiations are

considered conditional bindings and must be marked with a reference in the trail

stack, as shown in the local space of P in Figure 3.7.

56 CHAPTER 3. THE YAPOR ENGINE

Root

B

C

A=0

B=1

D=3

P Q

D

C=2

TrailHeap

A=0

B=1

A=0

B=1

A=0

B=1

C C C=2

D=3 D=3

Before
copy

After
copy

After
installLocal

CP1

CP2

CP3

CP1

CP2

CP3

CP4

CP5

B

stack segments to be copied

C=2

D=3

variables to be installed

Common
Region

Copied
Region

P’s stacks Q’s global stack

CP5

CP4 D=3

A=0

B=1

C

D

Figure 3.7: Q ’s installation phase.

After the stack copying is finished, the workerQ may have wrong values in the variables

belonging to the common stack segments that were assigned by a certain value in P ’s

private region and thus, a direct copy of such variable’s assignments must be made. As

shown in Figure 3.7 on the right, the variable C fits in these conditions and must be

installed with the value two. This allows the worker Q to retrieve its state consistency

by installing the correct value of every variable referenced in the copied trail segments

and instantiated in the common region.

3.5 Chapter Summary

This chapter introduced the YapOr or-parallel engine, an extension of the Yap Pro-

log system that supports implicit or-parallelism in Prolog programs. Based on the

environment copying model of Muse, emphasis was given to the main features of the

YapOr system, such as incremental copy advantages, the scheduler behavior and the

work sharing process in a distributed stacking system.

In the next chapter, we explain the implementation of stack splitting in the YapOr

system.

Chapter 4

Supporting Stack Splitting in

YapOr

This chapter describes our approach to extend the YapOr system to efficiently support

stack splitting. We start by presenting the main concepts behind the stack splitting

technique and then we discuss in more detail two stack splitting strategies to accom-

plish work sharing, namely vertical splitting and half splitting.

4.1 General Ideas

Stack splitting is a work sharing technique whose main goal is to split the available

work of a worker, that is all of its unexplored alternative branches, in approximately

two halves, one that will be kept and another to be shared with a requesting worker.

The split is done in such a way that no further synchronization will be necessary

between the workers involved, the one sharing and the one requesting work, when

they search for work in the shared region of the search tree. Here, we detail the

implementation of the vertical and half splitting schemes. Having two stack splitting

schemes allows extra flexibility to maximize parallel performance as one can pick the

strategy that fits best a particular program.

57

58 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

4.1.1 Getting Work in the Shared Region

The main goal of a scheduling strategy is to maximize the performance of a parallel

system by transferring available tasks from busy workers to less loaded ones, or to idle

workers waiting for work.

In YapOr, the shared region starts with a reference to the youngest shared choice point

and since the execution of alternatives is guided through the chaining of the or-frame’s

OrFr nearest livenode field, these fields are used to support the implementation of

the stack splitting model. Although in YapOr, the OrFr nearest livenode field was

used as an optimization for searching for available work in the shared region, for the

stack splitting implementation this field becomes mandatory.

As Figures 4.1 and 4.2 show, our proposal for implementing stack splitting is by

reassigning the top point of execution, one assigned to each sharing and requesting

worker, and then use the OrFr nearest livenode field to redirect the work contin-

uation points in such a way that the available work is split in two fully independent

computations.

OrFr_nearest_livenodeOrFr_next

W1’s top W2’s top

(a) Initial state

Or-frames

W1’s top

W2’s top

(b) Work ends
in W2’s top or-frame

Or-frames

No work left

Figure 4.1: Getting work in the shared region with YapOr.

As in YapOr implementation, each worker gets the available work trough the or-

frame of the current top choice point - the top or frame global variable. This

allows us to reuse YapOr’s general execution model, however, there are some issues

that need to be considered. In YapOr’s scheduler, there is one procedure, called

put no work in upper nodes(), that nullifies the OrFr nearest livenode connec-

tion of one live node when there is no more work left in all youngest nodes. This is

done by traversing the chain of nodes, using the OrFr next fields, and by updating

4.1. GENERAL IDEAS 59

OrFr_nearest_livenodeOrFr_next

W1’s top

W2’s top

(b) Work ends in W2’s
top or-frame

Or-frames

(a) Initial state

W1’s top

W2’s top

Or-frames

No work left

Figure 4.2: Getting work in the shared region with stack splitting.

the OrFr nearest livenode field to NULL. This happens because in YapOr, any or-

frame can become with no work left, independently of its order. For stack splitting

this is a dangerous situation since the OrFr nearest livenode chaining sequence can

be incorrectly destroyed. However, for stack splitting, this procedure is irrelevant and

can be ignored since there is an independent OrFr nearest livenode work chaining

sequence for each worker and, the work in the older or-frames can never be initiated

if there is still work in the younger or-frames.

4.1.2 Copying the Execution Stacks

In a parallel system based on environment copying, the copy of the execution stacks

can have a big impact on the system performance if the frequency of such activity or

the size of the stacks are very high.

The cost for placing a requesting worker Q in the same computational state as a

sharing worker P, is defined by having the stacks of Q in a node common to P, and

then by copying to Q the current state of P older than the common node. This

operation includes copying the global stack, local stack and trail.

In order to minimize the cost of copying the execution stacks, YapOr implements the

mechanism of incremental copy. This mechanism defines the segments of the stacks

to be copied and instead of copying the whole stacks starting from the root node, it

copies starting from the youngest common node, between P and Q. The ending point

is assigned to be the last node in P ’s current state, as denoted by the B register that

points to the current choice point. By reducing the difference between the starting

and ending points, incremental copy minimizes the copying overheads.

60 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

With stack splitting, the idea of incremental copy is similar, however, the ending

copy point may differ. Due to the pre-determined work distribution strategy in stack

splitting, which assigns the evaluation of each shared choice point either to P or Q,

the ending copy point is different from P ’s current choice point, which is not intended

to be on Q ’s execution stacks after sharing. As we will see, this results on having less

stack segments to copy.

4.1.3 Membership and Locking

The membership mechanism is one of the main YapOr’s function and corresponds to a

bitmap field in every or-frame data structure that defines the current set of workers that

owns or acts upon the respective choice point. Since the or-frames can be accessed

by the various acting workers, they are susceptible to racing conditions among the

worker’s set. For example, to retrieve the next available alternative in a shared choice

point or to manage the membership information, a locking mechanism is thus used.

With stack splitting this locking mechanism is maintained as well and the bitmap

membership is still used to define the set of workers sharing the choice point. Locking is

needed in order to provide mutual exclusion on managing the membership information

on such structures.

For instance, consider that a worker backtracks from a shared choice point: the worker

must access the or-frame’s bitmap of the corresponding choice point and zeroing the

position referring to it. Then, if there are no more workers marked in the bitmap,

meaning that the or-frame is only owned by the current worker, the or-frame is

removed.

One of the advantages of the stack splitting model is that each choice point stays

with only one worker responsible for the execution of its alternatives and, thus, the

simultaneous access by more than a worker to the same choice point to retrieve

alternatives never happens. Note that this differs from the case where the choice

point is shared, thus owned, by multiple workers in which case the respective or-

frame’s bitmap and locking mechanism are still required.

4.1. GENERAL IDEAS 61

4.1.4 Sharing Work

In this subsection, we introduce in more detail the implemented procedure for sharing

work in YapOr. Its goal is to share all private nodes of a busy worker, and in the

following sections we discuss its extension to support stack splitting. In general,

the method of interaction between workers is maintained for both models. The

selection, requesting and negotiation parts are a common feature between YapOr’s

implementation and stack splitting. The major difference has to do with how to

share the private choice points. In YapOr, this is done by the procedure called

share private nodes() and one of its functions is to define the available work chain

sequence. When a worker P provides another worker Q with some of its available

work, P shares with Q all private nodes in its branch of the tree. A worker P accepts

sharing its private work with a worker Q only when P has an acceptable private work

load, above a given threshold value.

For YapOr, the process of sharing P ’s private nodes is divided into five main stages:

1. Sharing loop. This stage corresponds to the sharing of the private nodes

of P. For each private node, a new or-frame is allocated and the access to

the unexplored alternatives previously done through the cp ap pointer in the

private choice points, is now done through the new or-frame which acts as

an interface for work retrieval. The alternative’s access is moved to the or-

frame field OrFr alternative, and the private cp ap pointers are updated to a

getwork pseudo instruction. All the private nodes have now a corresponding

or-frame, that are sequentially connected through the fields OrFr next and

OrFr nearest livenode. These frames are also assigned to P and Q in the

membership field (see Figure 4.3).

2. Connecting old shared frames. After sharing the private nodes, what is left

undone is the connection between the last new created or-frame and the current

top or frame of the worker. With such connection, we complete the chaining

between the newer and the older or-frames (see Figure 4.4).

3. Updating depth. In this stage, the depth field for the newly created or-

frames is updated to the value corresponding to the or-frames deepness in the

tree’s branch (see Figure 4.5).

4. Updating old shared frames. Next, the old shared or-frames on P ’s branch

are updated. Since the depth value is already correct on such frames, it only

62 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

Q’s topP,Q
3

4

......

P,Q

P,Q

P,Q

PP’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

Q’s topP,Q
3

4

......

PP’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

Sharing Loop

P[B] P[B]

... ...

Figure 4.3: Stage 1: Sharing loop.

P,Q

P,Q

P,Q

Q’s topP,Q
3

4

......

PP’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

P[B]

...

Figure 4.4: Stage 2: Connecting old shared frames.

remains to include the requesting worker Q in the membership field in the frames

starting from P ’s current top or frame til Q ’s top or frame (see Figure 4.6).

5. Updating top shared frames. Finally, the new top or-frames in each worker

are set. In YapOr, since all shared work is available to both workers, both

workers get the same top or frame (see Figure 4.7). This is not the case for

stack splitting as there are no workers with the same assigned nodes, and thus

the top or frame pointers are not the same. As we will see next, they are set

accordingly to the splitting scheme at hand.

In a certain way, we can say that the stack splitting model is going to be embedded

into these stages. After this procedure, the stacks are copied as usual.

4.2. VERTICAL SPLITTING 63

P,Q

P,Q

P,Q

Q’s topP,Q
3

4

......

PP’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

P[B]

5

6

7

...

Figure 4.5: Stage 3: Updating depth.

P,Q

P,Q

P,Q

Q’s topP,Q
3

4

......

P,QP’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

P[B]

5

6

7

...

Figure 4.6: Stage 4: Updating old shared frames.

4.2 Vertical Splitting

The vertical splitting strategy follows a pre-determined work splitting scheme in which

the chain of shared choice points defining the worker’s execution path is divided

in two, by alternating the choice points assigned to the sharing workers. At the

implementation level, the idea of this scheme is to use the OrFr nearest livenode

field in order to generate two alternated chain sequences in the or-frames, and thus

divide the initial sequence of work in two independent execution paths. Workers can

share the same or-frames but they have their own independent path without caring

for the or-frames not assigned to them.

The acceptance of a sharing request may not always succeed. When P has no private

64 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

P,Q

P,Q

P,Q Q’s top

P,Q
3

4

......

P’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

5

6

7

P,Q

...

Figure 4.7: Stage 5: Updating top shared frames.

choice points and the available work is restricted to the current shared choice point,

the sharing request is not accepted. This happens when the worker is executing in a

shared choice point with the OrFr nearest livenode field pointing to a dead-end. In

such situation, it is impossible to share the available alternatives in the shared choice

point since the procedure must respect the vertical splitting scheme where the division

process is made throughout choice points and not alternatives.

We next describe the major changes made to the sharing stages described previously

in order to implement the vertical splitting scheme.

As illustrated in Figure 4.8, the first noticeable difference from the previous description

is how the OrFr nearest livenode field is now connected. Instead of sequentially

connected, the OrFr nearest livenode field is now double spaced connected during

the or-frame creation process.

Starting from P ’s youngest choice point, the sharing loop procedure (see Figure 4.9)

traverses all P ’s private choice points and creates a corresponding or-frame by calling

the alloc or frame() procedure. In the pseudo-code in Figure 4.9, the current frame,

aux next frame and aux nearest frame variables represent, respectively, the or-

frame allocated in the current step, the or-frame allocated in the previous step,

which is used to link to the current or-frame by the OrFr next field, and the or-

frame allocated before the aux next frame, which is used as a double spaced frame

marker in order to initiate the OrFr nearest livenode fields. To continue the loop,

the aux nearest frame is updated to the aux next frame, and the aux next frame

is updated to the current frame.

4.2. VERTICAL SPLITTING 65

P,Q

P

3

4

P,Q
2

P,Q,R
1

Or-framesP’s
Choice
Points

Q’s
Choice
Points

Sharing Loop

P[B]

P’s top

Q’s top P,Q

P

3

4

P,Q
2

P,Q,R
1

Or-framesP’s
Choice
Points

Q’s
Choice
Points

P[B]

P’s top

Q’s top

P,Q

P,Q

P,Q

P,Q

P

ROOT ROOT

No work left

Figure 4.8: Double spaced connection in or-frame creation.

The sequentially created or-frames are connected by the OrFr next fields. So, if there

is a defined aux next frame, its OrFr next field is made to point to the current frame

variable. Moreover, If aux nearest frame is defined, then its OrFr nearest livenode

is also assigned to the current frame variable. For the top choice point, the or-frame

is initialized with just the owning worker P in the membership bitmap. The other

or-frames are initialized with both workers.

Next, follows the connection of the last newly allocated or-frames with the older and

already stored or-frame structure (see Figure 4.10(a)).

In this stage, consideration must be given to the condition of the current frame being

the root or-frame or just an ordinary or-frame (see Figure 4.11). If it is a root or-

frame, the OrFr nearest livenode fields of the auxiliary or-frames are assigned with

the value DEAD END. If not, they are assigned to the current frame variable, which

points to P ’s current top or-frame.

The DEAD END assignment marks the ending point for unexplored work. Initially, the

66 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

aux_next_frame = NULL

aux_nearest_frame = NULL

current_cp = B // the B register points to the youngest choice point

while (current_cp != top_cp)

// top_cp points to the youngest shared choice point

current_frame = alloc_or_frame(current_cp)

init_lock_field(OrFr_lock(current_frame))

if (aux_next_frame)

OrFr_next(aux_next_frame) = current_frame

add_to_bitmap(P & Q, OrFr_member(current_frame))

else

add_to_bitmap(P, OrFr_member(current_frame))

if (aux_nearest_frame)

OrFr_nearest_livenode(aux_nearest_frame) = current_frame

aux_nearest_frame = aux_next_frame

aux_next_frame = current_frame

current_cp = cp_b(current_cp) // move to the next choice point on stack

... // follows the pseudo-code on Figure 4.11

Figure 4.9: Vertical splitting sharing loop pseudo-code.

ending point was defined as the root or-frame, but in order to take advantage of the

incremental copy technique for stack splitting, the ending point was later defined as

the NULL value. This is discussed in detail next in Chapter 5.

The stage that follows is the depth field initialization for the newly created or-frames.

For vertical splitting, this is done as in YapOr implementation (see Figure 4.10(b)).

For the next stage, we need to decide where to continue the application of the vertical

splitting algorithm for the old shared nodes. If no private work was shared, which

means that we are only sharing work from the old shared nodes, the starting or-frame

is P ’s current top or-frame. Otherwise, if some new or-frame was created, the starting

or-frame is the last created frame in the sharing loop stage, which was connected

to P ’s current top or-frame in stage two. Either way, this serves the decision to

elect the or-frame where the continuation of vertical splitting, guided through the

OrFr nearest livenode field, should start. Figure 4.12(a) shows this update for the

old shared nodes and Figure 4.13 shows the pseudo-code for this procedure.

4.2. VERTICAL SPLITTING 67

P,Q

P

3

4

P,Q
2

1

P[B]

P’s top

Q’s top

P,Q

P,Q

P,Q

P,Q

P

P,Q

P

3

4

P,Q
2

1

P[B]

P’s top

Q’s top

P,Q

P,Q

P,Q

P,Q

5

6

7

9

8

P

Or-framesP’s
Choice
Points

Q’s
Choice
Points

ROOT

Or-framesP’s
Choice
Points

Q’s
Choice
Points

ROOT

P,Q,R

No work left

P,Q,R

(a) Connecting old shared frames (b) Updating depth

Figure 4.10: Connecting old shared frames and updating depth.

The procedure traverses the old shared frames until a dead-end frame is reached.

At each frame lies a reconnection process of the OrFr nearest livenode field. The

OrFr nearest livenode of the current frame is first saved to the aux nearest frame

variable. Then, if the aux nearest frame is not a root frame, the aux nearest frame’s

OrFr nearest livenode is assigned to the current frame’s OrFr nearest livenode,

and the process continues by moving the current frame to the aux nearest frame.

Otherwise, if the aux nearest frame is the root frame, the process ends.

Finally, Figure 4.12(b), illustrates the next and final stage of the sharing process,

the updating top shared frames stage. In the stack splitting implementation

without incremental copy, where the stacks are fully copied, this stage is similar

to YapOr’s implementation, except that Q ’s top or-frame is made to point to the

OrFr nearest livenode of P ’s top or-frame. As we will see next in Chapter 5, at

this stage for stack splitting with incremental copy, we also need to check if Q ’s top

or-frame includes some older P ’s shared frames, which originates a bitmap inclusion of

Q in such frames, or if Q ’s top or-frame was moved to an older Q ’s frame, originating

68 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

... // pseudo-code on Figure 4.9

if (aux_next_frame)

if (current_frame == root_frame)

OrFr_nearest_livenode(aux_next_frame) = DEAD_END

else

OrFr_nearest_livenode(aux_next_frame) = current_frame

OrFr_next(aux_next_frame) = current_frame

if (aux_nearest_frame)

if (current_frame == root_frame)

OrFr_nearest_livenode(aux_nearest_frame) = DEAD_END

else

OrFr_nearest_livenode(aux_nearest_frame) = current_frame

... // follows the pseudo-code on Figure 4.13

Figure 4.11: Last or-frame connection pseudo-code.

a bitmap exclusion till such frame.

Upon completion of the sharing process, it follows the stack copying phase. In some

situations of stack splitting, there is no need for any copy at all, and a backtracking

action is enough to place the requesting worker ready for execution. Next, when the

stacks are synchronized, in the stack splitting implementation without incremental

copy, P returns to its computation while Q processes the installation phase before

starting execution.

Figure 4.14 illustrates a more complex situation showing three consecutive vertical

splitting sharing operations. Following the illustration order, W1 first creates eight

or-frames and assigns four nodes to W2. Next, W1 shares his current pile of available

or-frames with a different worker W3, which leaves two nodes for W3 and the remaining

two for W1. Finally, W2 shares work with worker W4, giving two of its nodes to W4.

4.3 Half Splitting

The half splitting strategy also follows a pre-determined work splitting scheme in

which the chain of shared choice points in the worker’s execution path is partitioned

in two consecutive and equally sized parts. Each partition is a set of consecutive choice

points that are chained by the connections through the OrFr nearest livenode field

4.3. HALF SPLITTING 69

starting frame

P,Q

P,Q

3

4

P,Q
2

1

P[B]

P’s top

P,Q

P,Q

P,Q

P,Q

P

5

6

7

9

8

P,Q

P,Q

3

4

P,Q
2

1

P,Q

P,Q

P,Q

P,Q

P

5

6

7

9

8

P’s top

Q’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

ROOT

Or-framesP’s
Choice
Points

Q’s
Choice
Points

ROOT

No work left

P,Q,R

(a) Updating old shared frames (b) Updating top shared frames

P,Q,R

Figure 4.12: Updating the OrFr nearest livenode in the old shared frames and the

top or-frame for both workers.

... // pseudo-code on Figure 4.11

while (OrFr_nearest_livenode(current_frame) != DEAD_END)

aux_nearest_frame = OrFr_nearest_livenode(current_frame)

OrFr_nearest_livenode(current_frame) =

OrFr_nearest_livenode(aux_nearest_frame)

current_frame = aux_nearest_frame

Figure 4.13: Pseudo-code for updating the OrFr nearest livenode fields in the old

shared frames.

of the corresponding or-frames.

In the half splitting strategy, the nodes assigned to a worker are numbered sequentially

and independently from the other workers. By doing this, the condition to accept or

refuse a sharing request is quite simple. If the current choice point, pointed by register

70 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

root root root

W1’s top

W2’s top

W1’s top

W2’s top W2’s top

W3’s top

W1

W1

W1

W1

W2

W2

W2

W2

W1

W1

W3

W3

W2

W2

W2

W2

W4

W4

W3’s top

W1

W3

W3

W2

W2

W4’s top

root W1’s top

Or-frames Or-frames Or-framesOr-frames

(a) Initial state (b) W1 shares with W2 (c) W1 shares with W3 (d) W2 shares with W4

W1’s topW1

Figure 4.14: Work chaining sequence of or-frames in vertical splitting.

B, is numbered with a value higher than one, then it is considered that there is sharable

work. Otherwise, if the value is one or zero, the sharing request will be refused.

4.3.1 Split Counter

In order to support this numbering of nodes, a new field, named split counter, was

introduced in the choice point structure to provide information about the current

choice point’s depth in the corresponding partition for the worker at hand.

Note that a global depth information is already stored in the or-frame structures, but

this new field is necessary to allow the calculation of the relative depth of the worker’s

assigned choice points. By relative depth we mean the depth starting from the oldest

assigned choice point on the worker’s current branch.

After an half splitting sharing operation, there will be two consecutive sequences of

relative depths, both starting with the value one. One sequence is the actual sequence

of the sharing worker current branch. The other sequence starts in the choice point

where the split is done. Figure 4.15 illustrates a situation showing how the choice

points are numbered accordingly to the split counter mechanism described above.

Every time a split occurs, the sharing worker creates/shares the or-frames needed

4.3. HALF SPLITTING 71

root root

W2’s top

W2

W2

W2

W2

W1

W2

W2

W1’s top

W2’s top

W3

W3

W1

W2

W2

W3’s top

W1 stays with
2 nodes
including

the top frame

00

1

2

3

4

1

2

1

2W1[B]

Or-framesW1’s
Choice
Points

Or-framesW1’s
Choice
Points

W1[B]

(a) W1 before sharing with W3 (b) W1 after sharing with W3

W1’s top

Figure 4.15: Split counter sequences.

according to the half splitting algorithm. In the example, worker W1 starts the sharing

process with four nodes assigned to it, as the counter on the top choice point shows.

The choice points numbered 1 and 2 are then moved to worker W3, which includes

the associated or-frames creation/initialization. The choice points numbered 3 and 4

continue as belonging to worker W1 and are thus renumbered as 1 and 2, respectively.

Note also that the nodes numbered with the value 1 mark the last node of execution

for each worker and may thus protect the worker from backtracking to nodes belonging

to other workers. To guarantee such behavior, a practical solution was introduced by

creating an or-frame with the OrFr nearest livenode field pointing to a dead-end,

in this case the root or-frame. As explained next in Chapter 5, the dead-end mark

may differ when supporting incremental copy.

4.3.2 Sharing Model

Next, we describe in detail the extensions made to YapOr’s sharing work procedure,

in order to implement the half splitting scheme.

72 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

The basic rule of how half splitting model is driven is by sharing only half of the

assigned choice points belonging to the sharing worker. Figure 4.16 shows a situation

where the sharing worker P has six nodes assigned to it, which means that three of

them are going to be moved to the requesting worker Q. To update the split counter

after a new split, we need to update the split counter numbers for the choice points

starting from P ’s top choice point (register B) until the middle choice point in P ’s

initial partition. Figure 4.17 shows the pseudo-code for this procedure.

3 3

P,Q
2

P,Q
1

1

2

1

2

3

4

P P

5

6

1

2

3

3 P,Q

P

P,Q

Sharing Loop

P[B]

Or-framesP’s
Choice
Points

P’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

Q’s
Choice
Points

P[B]

P’s top

Q’s topP,Q
2

P,Q
1

1 Q’s top

ROOT0 0 ROOT0 0

1

No work left

Middle node

Figure 4.16: Sharing loop stage with half splitting.

current_cp = B // the B register points to the youngest choice point

split_number = cp_sc(current_cp) / 2 // cp_sc is the split counter field

while (cp_sc(current_cp) != split_number + 1)

cp_sc(current_cp) = cp_sc(current_cp) - split_number

current_cp = cp_b(current_cp) // move to the next choice point on stack

cp_sc(current_cp) = 1

... // follows the pseudo-code on Figure 4.18

Figure 4.17: Updating the split counter.

4.3. HALF SPLITTING 73

The oldest assigned choice point to the sharing worker is denominated the middle

node. Starting from P ’s top choice point (initially B), the split counter field, named

cp sc is updated by assigning the new counting values in a decreasing order until

reaching the middle node, which gets a split counter value of 1.

At the end of updating the split counter, the current cp variable refers to the middle

node (see figure 4.17). Starting from the middle node, the remaining nodes are updated

to belong to Q, which includes allocating and initializing the corresponding or-frames.

For the middle node an or-frame pointing to the dead-end root frame is created. As

already mentioned, the goal for this or-frame is simply to mark the end of P ’s assigned

work. This is shown in Figure 4.16 on the right side.

Here, we can distinguish two different situations for the sharing loop stage. In the cases

where there are more old shared nodes than private nodes in P ’s branch, the middle

node is already assigned with an or-frame. Thus, there is no need for a procedure

for the sharing loop described above. Therefore, we start by checking if the middle

node has an associated or-frame and if it is the case, the middle frame is assigned to a

dead-end and the requesting worker is excluded from all or-frames from the top frame

til the middle frame (see Figure 4.18).

... // pseudo-code on Figure 4.17

middle_frame = cp_or_fr(current_cp) // current_cp is the middle node

if (middle_frame)

OrFr_nearest_livenode(middle_frame) = DEAD_END

current_frame = top_or_frame // top_or_frame points to the youngest

while (current_frame != middle_frame) // or-frame

remove_from_bitmap(Q, OrFr_member(current_frame))

else

// sharing loop stage

Figure 4.18: Checking if the middle node is already shared.

74 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

After the sharing loop stage, it follows the connecting old shared frames stage

(see Figure 4.19(a)). Unlike vertical splitting, half splitting is not endured to carry

the decision of choosing which or-frame will link to the current top or-frame. In half

splitting, the process is resumed by linking the last new or-frame to the youngest P ’s

old shared or-frame.

3 3

P,Q
2

P,Q
1

1

2

1

2

3

P P1

2

3

3 P,Q

P

P,Q

P[B]

Or-framesP’s
Choice
Points

P’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

Q’s
Choice
Points

P[B]

P’s top

Q’s topP,Q
2

P,Q
1

1 Q’s top

ROOT0 0 ROOT0 0

1

P,Q

P

P,Q

1

2

3

4

5

6
Middle node

No work left(a) Connecting old shared frames (b) Updating depth

Figure 4.19: Half splitting stages 2 and 3.

The updating depth stage then starts from the middle frame until P ’s top frame

and it is the same as for the vertical splitting scheme (see Figure 4.19(b)). Next, after

the updating depth stage, we may have to decide if stack copying is needed or not.

The copy is needed when P ’s and Q ’s top frames differ. Note that this equality is

possible since Q ’s backtracking mechanism updates its top or-frame when Q is looking

for work. The same goes for the updating old shared frames stage. If the equality

is false, then the update starts from the frame pointed by the OrFr next middle frame

field, by adding Q to the old shared nodes (see Figure 4.20(a)).

The final and last stage is the updating top shared frames. As Figure 4.20(b)

shows, the top frame of the sharing worker P is assigned to be the middle frame and,

the top frame of the requesting worker Q is assigned to be the frame pointed by the

4.4. CHAPTER SUMMARY 75

middle frame’s OrFr next field.

3 3

P,Q
2

P,Q
1

1

2

1

2

3

1

2

3

3 P,Q

P

P,Q

P[B]

Or-framesP’s
Choice
Points

P’s top

Or-framesP’s
Choice
Points

Q’s
Choice
Points

Q’s
Choice
Points

P[B]

P’s top

Q’s top

P,Q
2

P,Q
1

1 Q’s top

ROOT0 0 ROOT0 0

P,Q

P

P,Q

1

2

3

4

5

6

P,Q 1

2

3

4

5

6

P,Q

No work left(a) Updating old shared frames (b) Updating top shared frames

Middle node

Figure 4.20: Half splitting stages 4 and 5.

Both workers are now setup to continue execution according to the half splitting

scheme. Q continues execution with the work available on the assigned shared or-

frames with global depth values 5, 4 and 3. P continues execution with its private

nodes and with the shared frame with global depth 6.

A final example of a sharing sequence with three consecutive half splitting share

procedures is shown in Figure 4.21. In the same order as illustrated, W1 first shares

four private nodes with W2, claiming four or five of its private nodes. Next, W1 shares

two private nodes with W3, claiming the remaining two or three nodes. Afterwards,

W2 shares three nodes with W4 and claims the remaining three or four nodes.

4.4 Chapter Summary

This chapter has provided a detailed description of the implementation of the vertical

and half stack splitting strategies. We first introduced initial concepts and sharing

76 CHAPTER 4. SUPPORTING STACK SPLITTING IN YAPOR

root root

W2’s top

W2

W2

W2

W2

root W1’s top

W1

W2

W2

W1’s top

W2’s top

W3

W3

W1 W1’s top

W2

W2

W3’s top

root

W2’s top

W1 has
8 or 9 nodes

W1 has
4 or 5 nodes

W2 has
6 or 7 nodes

W4

W4

W4 W4’s top

W2

Or-frames Or-frames Or-frames Or-frames

(a) Initial state (b) W1 shares with W2 (c) W1 shares with W3 (d) W2 shares with W4

Figure 4.21: Work chaining sequence of or-frames in half splitting.

stages, and then described the implementation details necessary to extend these stages

to correctly and efficiently implement the vertical and half splitting schemes.

The next chapter discusses the extension of these two schemes to support the incre-

mental copy technique.

Chapter 5

Supporting Stack Splitting with

Incremental Copy

This chapter describes the concepts and mechanisms necessary to extend the vertical

and half splitting schemes to support the incremental copy technique.

5.1 General Ideas

The incremental copy technique is one of the most important attributes in YapOr’s

current implementation. The efficiency of an or-parallel Prolog system based on stack

copying is highly dependent on the amount of the execution stacks that are needed

to be copied from a sharing worker to a requesting worker. With incremental copy,

the requesting worker is placed in a common consistent state with the sharing worker

before copying and the difference between them corresponds to the stack portions to

be copied from the sharing worker. In order to support this technique with the stack

splitting schemes, there are several implementation issues that need to be reviewed.

We next discuss in detail such modifications.

In functional terms, both stack splitting models, with or without incremental copy,

work by copying a limited amount of the execution stacks. However, with incremental

copy only the difference between workers is claimed as part of the copy. This behavior

is caused by the requesting worker’s placement when establishing a work request.

With incremental copy, whenever there is no more available work in a worker’s frame

set, instead of being placed in the root or-frame position as before, the worker is

77

78CHAPTER 5. SUPPORTING STACK SPLITTINGWITH INCREMENTAL COPY

placed at the choice point corresponding to the or-frame that links through the

OrFr nearest livenode field to the root or-frame. Due to this placement, the re-

questing worker can be maintained closer to the sharing worker in the search tree and

thus minimize the total amount of stack copying needed to put the two workers in the

same computational state. These structural differences are illustrated in Figures 5.1

and 5.2 for the vertical splitting and half splitting schemes, respectively.

root

W3

W1

W2

W2

W1

W1

W3

W2’s top

W1’s top

W3’s top

root

W3

W1

W2

W2

W1

W1

W3

W2’s top

W1’s top

W3’s top

NULL

NULL

NULL

Or-frames Or-frames

(a) Vertical splitting without
incremental copying

(b) Vertical splitting with
incremental copying

Figure 5.1: Structural differences for vertical splitting (a) without and (b) with

incremental copy.

The basic idea is that the final OrFr nearest livenode connection, in a worker’s

frame set, is replaced by the dead-end NULL value. For example, consider the worker

W3 in Figure 5.2, which is assigned with two or-frames with available work. After

executing all alternatives in the first or-frame, the worker moves to the choice point

assigned to the second or-frame. Then, when the available work in the second frame

is fully explored, W3 stops execution, as it reached a dead-ending or-frame, and its

current state of execution is maintained in the stacks.

Every time a worker reaches the last frame in its computation path and there are no

more unexplored alternatives, the worker tries to find new work from busy workers.

Consider again worker W3 in Figure 5.2 after exploring all available work. On one

hand, if it asks for work from worker W1, it can keep the stacks corresponding to the

5.2. SUPPORTING INCREMENTAL COPY 79

root

W2’s top

W2

W2

W3

W3

W1 W1’s top

W2

W2

W3’s top

root

W2’s top

W2

W2

W3

W3

W1 W1’s top

W2

W2

W3’s top

NULL

NULL

NULL

Or-frames Or-frames

(a) Half splitting without
incremental copying

(b) Half splitting with
incremental copying

Figure 5.2: Structural differences for half splitting (a) without and (b) with

incremental copy.

first five or-frames and only copy the differences to worker W1. On the other hand, if

it moves up in the tree and backtracks to W2’s frame set, it can ask W2 for available

work by requesting work situated in the same execution path as W2 and thus, no stack

copying may be needed.

In stack splitting, two different workers can never be executing in the same choice

points since there is a full separation of the work execution paths of each worker. This

division of choice points is a great advantage, as it reduces need for synchronization

and also allows for efficient copying. This is a crucial factor for system performance.

5.2 Supporting Incremental Copy

We now introduce the practical aspects for implementing stack splitting with support

for the incremental copy technique.

80CHAPTER 5. SUPPORTING STACK SPLITTINGWITH INCREMENTAL COPY

5.2.1 Sharing Without Copying the Stacks

First, we discuss the situations where a requesting worker Q does not need to copy any

stack segments of the sharing worker P in order to get new work. This may happen

when the top (youngest) or-frame of Q is equal or older than the current top or-frame

of P. Remember that, for Q to perform a sharing request to P, Q must first backtrack

to the youngest choice point common with P, which, in particular, can be the current

top choice point of P. Figures 5.3 and 5.4 show two different situations, for vertical

and half splitting respectively, where sharing is done without copying the stacks.

W1 has no work
and backtracks

W1’s top

root

W3

W4

W2

W2

W4

W3

NULL

NULL

NULL

Or-framesW1’s
Choice
Points

W3

NULL

W3’s top

W4’s top

W1

W2’s top W1’s top

W1’s top didn’t move,
no copy is needed

root

W1

W2

W4

W3

NULL

NULL

NULL

Or-framesW1’s
Choice
Points

W2

NULL

W2’s top

No work left(a) W1 requests work from W2 (b) W2 shares work with W1

Figure 5.3: Vertical splitting without copying the stacks.

Figure 5.3 shows a worker W1, with no work left in its assigned path, looking for a

busy worker W2 above its current position. As worker W2 is above worker W1, W1 has

to backtrack in such a way that the top or-frames of both workers coincide. After W2

has shared its work with W1, W1’s top or-frame after the sharing procedure remains

the same as the top or-frame before the sharing procedure and thus, in such case, no

stack copying is needed.

Figure 5.4 illustrates a similar situation for the half splitting scheme, but here the top

5.2. SUPPORTING INCREMENTAL COPY 81

root

W2’s top

W2

W2

W1

W2

W2

0

1
NULL

NULL

Or-framesW1’s
Choice
Points

W1 has no work
and backtracks

root

W2’s top

W2

W1

W2

W1

0

1

2

NULL

Or-frames

NULL

W1’s
Choice
Points

W1’s top

W1’s top

W1’s top moved up,
no copy is needed

No work left(a) W1 requests work from W2 (b) W2 shares work with W1

Figure 5.4: Half splitting without copying the stacks.

or-frame assigned after the sharing procedure corresponds to a choice point younger

than the one for the top or-frame before sharing. In such situation, the requesting

worker W1 only needs to move up in the search tree in order to be consistent with

the new top choice point assigned by the sharing procedure. By doing that, no stack

copying is needed and W1 only has to synchronize its stacks with W2 by passing through

the dereference phase and installation phase.

As we will see next, for the vertical splitting scheme an unbitmapping of the back-

tracked frames is still needed, and for the half splitting scheme a split counter checking

may also be needed for the backtracked frames.

5.2.2 Unbitmapping

As mentioned above, when a requesting worker Q obtains work from a sharing worker

P without copying the stacks, it still has to move up in the tree in order to reach the

new work assigned to it. In this movement, we may have to update the membership

information for the or-frames corresponding to the backtracked path. We named this

procedure as unbitmapping.

The unbitmapping procedure traverses the or-frames starting from the requesting

worker’s top or-frame before the sharing procedure until reaching the requesting

worker’s top or-frame after the sharing procedure, and removes the requesting worker

82CHAPTER 5. SUPPORTING STACK SPLITTINGWITH INCREMENTAL COPY

from the bitmap field for such or-frames. This procedure is only applied with the

vertical splitting scheme and was embedded in the updating top or-frames stage.

5.2.3 Copy Ranges Definition

In order to correctly copy the stacks from the sharing worker P to the requesting

worker Q, we need to define the copy range, i.e., the starting point and ending point,

for the stack segments to be copied. As Figure 5.5 shows, there are three important

stack pointers that are crucial for determining the copy ranges: (i) P’s top after

sharing; (ii) Q’s top before sharing; and (iii) Q’s top after sharing.

Q’s top
after

sharing

= P’s top
 after

 sharing

Q’s top
before
sharing

Q’s top
after

sharing

P’s top
after

sharing

Q’s top
before
sharing

Segments
to copy

P’s global or
local stack

P’s global or
local stack

(a) YapOr (b) Stack splitting

Figure 5.5: Copy ranges in YapOr and in stack splitting.

In YapOr, the incremental copy process includes copying everything in P ’s stack

segments that Q doesn’t have. With stack splitting, we only need to copy the interval

between Q ’s top before and after sharing for the global and local stacks. For the trail

stack, the process is similar to YapOr’s implementation and the same interval of the

trail stack is copied.

In YapOr, the copy ranges can be defined before starting the work sharing procedure

since P ’s current state will be fully shared with Q. For stack splitting, these ranges

can only be determined after traversing some of P ’s choice points.

5.2. SUPPORTING INCREMENTAL COPY 83

Figure 5.6 shows the stack segments to be copied for our stack splitting implementation

with the incremental copy technique. Note that some of the copy ranges can be

determined before starting the work sharing procedure, such as:

start_global = Q[old_top_node->cp_h]

end_local = Q[old_top_node]

start_trail = P[TR]

end_trail = Q[old_top_node->cp_tr]

The other two ranges:

end_global = Q[new_top_node->cp_h]

start_local = Q[new_top_node]

can only be determined after the new top node is known. In the vertical splitting

scheme, the top node can be known in the sharing loop stage, if there are choice

points in P ’s private region local stack, assigning the new top node with the second

choice point in P ’s choice point set (P[B->cp b]). If there are no private work to

share, then the new top node is assigned with the choice point that corresponds to

the or-frame pointed by OrFr nearest livenode(P[old top node->cp or fr]).

For the half splitting implementation, the new top node is always assigned with the

choice point denoted by P[middle node->cp b]. If there is private work to share,

then the new top node in known in the sharing loop stage, otherwise, occurs be-

fore the updating old shared frames stage and assigns the new top node with

P[old top node->cp b]. Note that for the trail, it is mandatory to copy the interval

between P[TR] and P[B->cp tr] in order to implement a new phase, named the

dereference phase, necessary to correctly support stack splitting with incremental copy,

as it will be explained in the next subsection.

5.2.4 Dereference Phase

According to YapOr’s implementation, after copying the stack segments between the

worker P and the worker Q, P continues its execution while Q starts the installation

phase. Since the stack splitting work sharing process does not fully copies the stack

segments of P, the installation phase of the variables in the trail may be not enough to

84CHAPTER 5. SUPPORTING STACK SPLITTINGWITH INCREMENTAL COPY

Q[old_top_node->cp_h]

P[B->cp_h]

P[B]

Q[old_top_node] = Q[B]

P[TR]
P[B->cp_tr]

Q[old_top_node->cp_tr]

P[old_top_node]

segments
to copy

Q[new_top_node->cp_h]

Q[new_top_node]

Q[new_top_node->cp_tr]

Global
 stack

Local
stack

Trail
stack

P’s stacks

Figure 5.6: Stack segments to copy for stack splitting with incremental copy.

correctly setup Q ’s stacks and a new phase, called dereference phase, must come first

than the installation phase. This is necessary in order to avoid the possibility of Q

have incorrectly bounded variables in the copied segments. This may happen when P

has instantiated variables belonging to the copied segments, i.e., in the execution path

between Q[new top node] and Q[old top node], that where bound in the execution

path not copied to Q, i.e., between P[B] and Q[new top node].

The dereference procedure traverses the trail from P[TR] to Q[new top node->cp tr]

looking for references to variables in the copied segments of the global and local

stacks. If such a variable is found then the variable is dereferenced and becomes

a free variable with no value assigned. Figure 5.7 illustrates a situation that shows

why the dereference phase is necessary to correctly setup Q ’s stacks.

Starting from Q ’s assigned top choice point, CP4, notice how some variables in Q ’s

global stack are not consistent with the computational state corresponding to the CP4

choice point. One of them is variable D which was a free variable before CP4 creation

5.2. SUPPORTING INCREMENTAL COPY 85

Root

B

C

A=0

B=1

D=3

P

QC=2

A=0

B=1

Trail

P’s stacks

Global

A=0

B=1

C=2

D

After
install

Q’s global stack

CP1

CP2

CP3

CP4

CP5

B

stack segments to be

D=3

D

D

E

C

E

A=0

B=1

A=0

B=1

C C

D=3

Before
copy

After
copy

A=0

B=1

C

D

After
dereference

variables to be dereferenced

variables to be installed

copied

Local

CP1

CP2

CP5

CP4

CP3 C=2

Figure 5.7: Dereference phase.

and is bound with the value three in Q ’s global stack after copying. This happens

because D was instantiated by P only after CP4 creation. The reference to D in the

trail after CP4 creation confirms such behavior. Thus, after the copying phase, the

dereferencing procedure operates in order to reset such incorrectly bound variables in

the copied stack segments.

5.2.5 Split Counter Checking Phase

Here, we introduce the split counter checking phase that is used to install the correct

split counter values in the older choice points belonging to a requesting worker Q. This

mechanism is done by the requesting worker Q after the work sharing and copying

procedures. This checking phase is necessary in order to avoid incoherent values in the

split counter cp sc fields for the choice points, in the requesting worker Q, not copied

from P. We can say that such incoherence is caused by the independent work sharing

operations with different workers that make the common (not copied) stack segments

of P and Q, namely the local stack’s choice points cp sc fields, to be inconsistent in

Q. Notice also that when Q ’s new top choice point is younger than the old top choice

point, no copy is done, which can also lead to inconsistencies in the cp sc values of

86CHAPTER 5. SUPPORTING STACK SPLITTINGWITH INCREMENTAL COPY

Q ’s choice points.

1W1 has no work
and backtracks

(c) W2 shares work with W1

W1’s top

root0

NULL

Or-framesW1’s
Choice
Points

2

1
NULL

W2

W2

W2’s top

(b) In the meantime, W2 shares
work with another worker

root 0

NULL

Or-frames W2’s
Choice
Points

1
NULL

W2

2

1
NULL

(a) W1 is idle and
looking for busy workers

root 0

NULL

Or-frames W2’s
Choice
Points

1
NULL

2

1
NULL

W2

W1

W1

NULL

0

W1’s
Choice
Points

1

W1’s top

2
cp_sc value is 1

in W2’s choice point

2

cp_sc value must be 1
in W1’s choice point

NULL

1

2

NULL

W2’s top

W2[B]

W1’s top

W2’s top

W2[B]

No work left

Segments copied

Middle node

Figure 5.8: Split counter checking phase.

Figure 5.8 shows an example where the split counter checking phase is necessary.

Such situation starts with an idle worker W1 moving up in the tree until reaching a

busy worker W2. By doing that, W1 places itself in the same top choice point as W2.

However, in the meantime, W2 shared part of its work with another worker, which

5.3. CHAPTER SUMMARY 87

lead to differences in the split counter values in the choice points of W1 and W2 (see

Figure 5.8(b)).

Next, W1 requests and gets work from W2 (see Figure 5.8(c)), but W1’s choice points

not copied from W2 have wrong split counter values. W1 accesses W2’s local stack and

retrieves one value, from the same choice point that corresponds to W1’s new top choice

point, that is correct. After this, it is followed the update of the split count values of

the older choice points in W1’s local stack. The split counter checking phase is thus

used to install the correct split counter values in the older choice points belonging to

the requesting worker W1.

5.3 Chapter Summary

This chapter presented the most important implementation details for supporting

stack splitting with incremental copy. We discussed the copy range definition of the

stack segments to be copied, the mandatory dereference phase necessary to unbound

the incorrectly bound variables in the copied segments of the requesting worker and,

finally, the situations where the split counter mechanism may need a checking phase.

In the next chapter, we present experimental results for both stack splitting schemes

and for that we use a set of benchmark programs widely used to assess the performance

of or-parallel Prolog systems.

88CHAPTER 5. SUPPORTING STACK SPLITTINGWITH INCREMENTAL COPY

Chapter 6

Performance Analysis

In this chapter, we evaluate the performance of our two stack splitting schemes when

using a set of well-known benchmarks widely used to evaluate or-parallel Prolog

systems, and we make a comparison between the vertical splitting, half splitting and

YapOr’s implementation based on environment copying.

As parallel platform for our experiments, we used a machine with four AMD Six-

Core Opteron TM 8425 HE (2100 MHz) chips (24 cores in total) and 64 (4x16) GB

of DDR-2 667MHz RAM, running GNU/Linux (kernel 2.6.31.5-127 64 bits). The

machine was running in multi-user mode, but no other users were using the machine.

Each benchmark was executed twenty times and the results presented next are the

average of those twenty executions.

6.1 Benchmark Programs

The details for the set of benchmark programs used in our experiments are presented

in appendix B. Here, we just give a briefly description:

• cubes7. A program that consists of stacking 7 colored cubes in a column in

such a way that no color appears twice in the same column for each given side.

• ham. A program for finding all the Hamiltonian cycles in a graph with 26 nodes,

with each node connected to 3 other nodes.

• magic. A program to solve the Rubik’s magic cube problem.

89

90 CHAPTER 6. PERFORMANCE ANALYSIS

• map. A program for solving the problem of coloring a map of 10 countries with

five colors in such a way that all two adjacent countries have different colors.

• nsortN. A program for ordering a list of N elements using a naive algorithm

and starting with the list inverted.

• puzzle. A program that solves a version of the sudoku problem where the

diagonals must add up to the same amount.

• puzzle4x4. A program that solves a maze problem in a 4x4 grid by moving an

empty square.

• queens13. A program to solve the 13-queens problem that analyzes the board

state at every step.

All the benchmark programs find all the solutions for the given problem by simulating

an automatic failure whenever a new solution is found. Some of programs have search

trees with depths that, in some cases, are over the value 60. Others have depths

that not exceed the value 10, but can be quite extensive in their branching numbers,

generating a very wide search tree.

6.2 Performance Results

Next, we show the performance results for the stack splitting implementation in the

YapOr system. We start by measuring the cost of the parallel model over the sequential

system. Then, we evaluate the behavior of the vertical splitting and the half splitting

implementations with and without the incremental copy technique and compare with

YapOr’s environment copying model. For shaping a fair comparison among all imple-

mentations, we considered not only the base execution times with 1 worker for each

strategy, but also the base execution times of the sequential implementation.

All systems were compiled with the same configuration parameters and using the same

compiler’s back-end architecture. To measure the execution time, we took advantage

of YapOr’s timing support and we used it in all models in the same way.

6.2. PERFORMANCE RESULTS 91

6.2.1 Cost of the Parallel Model

Table 6.1 presents the execution times, in seconds, for the set of benchmark programs,

when using the sequential version of the Yap system and when using the several

YapOr parallel versions with one worker. Table 6.2 presents the corresponding ratios

that show the cost of supporting the parallel models when not taking advantage of

them, since we are executing with a single worker. The last row in Table 6.2 presents

the average of all execution times for each version.

Table 6.1: Execution times, in seconds, for Yap’s sequential model and for YapOr’s

implementation based on environment copying (EC), on vertical splitting not using

(VS) and using incremental copy (VS+IC), and on half splitting not using (HS) and

using incremental copy (HS+IC), all running with a single worker.

Programs Yap

YapOr with 1 worker

EC VS VS+IC HS HS+IC

cubes7 0.202 0.211 0.211 0.210 0.213 0.214

ham 0.321 0.385 0.386 0.384 0.252 0.352

magic 45.990 45.322 45.435 45.358 41.149 41.431

map 22.434 25.352 25.359 25.358 25.803 25.591

nsort10 2.567 2.928 2.885 2.948 2.669 2.670

nsort11 28.239 32.063 31.336 32.008 29.432 29.035

nsort12 339.406 382.037 385.050 383.204 341.111 340.400

puzzle 0.154 0.177 0.177 0.177 0.173 0.170

puzzle4x4 9.875 10.187 10.168 10.173 9.434 9.462

queens13 48.220 51.162 51.099 51.272 48.180 48.277

Σ 497.408 549.824 552.105 551.093 498.516 497.601

By observing the results on Tables 6.1 and 6.2, we can say that, for these set of

benchmark programs, YapOr’s vertical splitting scheme has on average an overhead of

9,7% without incremental copy and 10.1% with incremental copy over Yap’s sequential

implementation. Also, YapOr’s half splitting scheme has on average an overhead of

3.7% without incremental copy and 3.3% with incremental copy over Yap’s sequential

implementation, which is the best result among the five models. Notice that YapOr’s

implementation based on environment copying has on average an overhead of 10.0%.

This cost is identical to the cost observed previously for YapOr’s implementation based

92 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.2: Ratios showing the cost of YapOr’s parallel models, running with a single

worker, in comparison with Yap’s sequential model.

Programs

EC VS VS+IC HS HS+IC

Yap Yap Yap Yap Yap

cubes7 1.044 1.044 1.038 1.056 1.059

ham 1.198 1.203 1.197 1.101 1.098

magic 0.985 0.988 0.986 0.895 0.901

map 1.130 1.130 1.130 1.150 1.141

nsort10 1.140 1.124 1.149 1.040 1.040

nsort11 1.135 1.110 1.133 1.042 1.028

nsort12 1.126 1.134 1.129 1.005 1.003

puzzle 1.152 1.149 1.151 1.124 1.106

puzzle4x4 1.032 1.030 1.030 0.955 0.958

queens13 1.061 1.060 1.063 0.999 1.001

Average 1.100 1.097 1.101 1.037 1.033

on environment copying [16]. In general, for all models, YapOr overheads result from

handling the work load register and from testing operations that (i) verify whether

the youngest node is shared or private, (ii) check for sharing requests, and (iii) check

for backtracking messages due to cut operations.

6.2.2 Parallel Execution

To assess the performance of the or-parallel models, we ran YapOr with a varying

member of workers for our set of benchmark programs, and we show the obtained

speedups. For the speedups we used the obtained execution times and compare

them (i) against the corresponding execution times with one worker, which reflects

the improvement in execution time for each parallel implementation independently,

and (ii) against the execution times for the sequential implementation, reflecting the

general improvement in execution time starting from the sequential implementation.

These second results give a more fair comparison between the parallel implementations

since, when an obtained value is considered to be the best speedup value among all

implementations, it shows that it has the fastest execution time values.

6.2. PERFORMANCE RESULTS 93

Tables 6.3 to 6.7 show the obtained speedups for each of the five YapOr’s models. The

execution times are in appendix A. For each entry in these tables we show the speedup

against the case with 1 worker and, in parenthesis, against the sequential execution

time. Also, in all cases, the best results among all implementations are marked with

a gray background color. For each number of workers, at the end, we also show the

average and efficiency calculation of all speedups.

Table 6.3: Speedups against the 1 worker case and against the sequential execution

(in parenthesis) for YapOr’s implementation based on environment copying.

Programs

Workers

1 2 4 8 16 24

cubes7 (0.958) 1.917(1.836) 3.411(3.267) 5.908 (5.659) 7.960 (7.624) 7.760 (7.432)

ham (0.834) 1.968(1.642) 3.712(3.098) 6.405(5.344) 8.768 (7.316) 7.775 (6.487)

magic (1.015) 2.009(2.039) 3.994(4.053) 7.959 (8.077) 15.850 (16.083) 23.598 (23.945)

map (0.885) 2.036(1.802) 4.047(3.581) 8.029(7.105) 15.731(13.920) 22.965(20.322)

nsort10 (0.877) 2.104(1.845) 4.116 (3.609) 8.070 (7.076) 15.333 (13.444) 20.488 (17.965)

nsort11 (0.881) 2.125 (1.871) 4.216 (3.714) 8.369 (7.371) 16.611 (14.630) 24.560 (21.631)

nsort12 (0.888) 2.054(1.825) 4.145(3.683) 8.318(7.390) 16.763(14.893) 24.973(22.186)

puzzle (0.868) 1.971(1.711) 3.415 (2.963) 5.395 (4.682) 6.846 (5.942) 5.793 (5.027)

puzzle4x4 (0.969) 2.010(1.948) 4.027 (3.903) 8.016 (7.770) 15.803 (15.319) 23.148 (22.438)

queens13 (0.943) 1.999(1.884) 3.991 (3.761) 7.953 (7.496) 15.841 (14.930) 23.582 (22.226)

Average (0.912) 2.019(1.840) 3.907 (3.563) 7.442 (6.797) 13.551 (12.410) 18.464 (16.966)

Efficiency (0.912) 1.010(0.920) 0.977 (0.891) 0.930 (0.850) 0.847 (0.776) 0.769 (0.707)

From table 6.3 we can see how the YapOr’s implementation based on environment

copying compares with the new stack splitting approaches. Each gray background

entry illustrates the cases where environment copying is not surpassed by any stack

splitting approach, while the remaining entries correspond to cases where the results

obtained with one of the stack splitting approach is better.

In general, we can observed that stack splitting obtains better results for the cases

with a smaller number of workers and that environment copying seems to perform

better, on average, for the cases with 16 and 24 workers. In any case, if considering

the speedups against the sequential execution times, for the 10 programs in analysis,

environment copying only obtains better results in 4 and 5 programs for 16 and 24

workers, respectively.

Tables 6.4 and 6.5 illustrate the speedup results for the vertical splitting implementa-

tion without and with the incremental copy technique, respectively.

94 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.4: Speedups against the 1 worker case and against the sequential execution (in

parenthesis) for YapOr’s vertical splitting implementation without incremental copy.

Programs

Workers

1 2 4 8 16 24

cubes7 (0.958) 1.758(1.684) 2.742(2.626) 3.488(3.341) 3.131(2.999) 2.519(2.413)

ham (0.831) 1.867(1.551) 2.875(2.389) 3.862(3.210) 3.959(3.290) 3.532(2.935)

magic (1.012) 2.011(2.036) 3.988(4.037) 7.907(8.004) 15.606(15.797) 22.828(23.107)

map (0.885) 2.037(1.802) 4.047(3.581) 7.963(7.045) 15.362(13.590) 22.067(19.522)

nsort10 (0.890) 2.067(1.839) 3.953(3.518) 7.329(6.521) 11.025(9.811) 11.702(10.413)

nsort11 (0.901) 2.070(1.865) 4.121(3.714) 8.121(7.318) 15.639(14.094) 22.116(19.931)

nsort12 (0.881) 2.075 (1.829) 4.181 (3.686) 8.382 (7.388) 16.851 (14.853) 25.018 (22.052)

puzzle (0.870) 1.770(1.540) 2.256(1.963) 2.158(1.878) 1.814(1.578) 1.396(1.214)

puzzle4x4 (0.971) 2.002(1.944) 3.990(3.875) 7.851(7.625) 15.051(14.617) 21.024(20.418)

queens13 (0.944) 1.991(1.879) 3.949(3.726) 7.803(7.364) 15.076(14.227) 21.767(20.540)

Average (0.914) 1.965(1.797) 3.610(3.311) 6.487(5.969) 11.351(10.486) 15.397(14.255)

Efficiency (0.914) 0.982(0.898) 0.903(0.828) 0.811(0.746) 0.709(0.655) 0.642(0.594)

Table 6.5: Speedups against the 1 worker case and against the sequential execution

(in parenthesis) for YapOr’s vertical splitting implementation with incremental copy.

Programs

Workers

1 2 4 8 16 24

cubes7 (0.963) 1.924 (1.853) 3.454 (3.327) 5.733(5.521) 7.252(6.984) 6.284(6.052)

ham (0.835) 2.002 (1.673) 3.717 (3.106) 6.415 (5.359) 8.375(6.996) 5.980(4.996)

magic (1.014) 2.007(2.035) 3.989(4.044) 7.954(8.065) 15.817(16.037) 23.465(23.792)

map (0.885) 2.041(1.805) 4.058 (3.590) 8.055 (7.126) 15.777 (13.958) 23.017 (20.363)

nsort10 (0.871) 2.110 (1.837) 4.107(3.575) 8.039(6.999) 15.121(13.165) 20.165(17.557)

nsort11 (0.882) 2.106(1.858) 4.152(3.663) 8.223(7.255) 16.243(14.331) 23.987(21.162)

nsort12 (0.886) 2.043(1.809) 4.095(3.627) 8.207(7.269) 16.480(14.597) 24.576(21.767)

puzzle (0.869) 1.983 (1.723) 3.376(2.933) 5.204(4.522) 6.015(5.226) 4.912(4.268)

puzzle4x4 (0.971) 2.011 (1.952) 4.016(3.899) 7.990(7.756) 15.786(15.324) 23.141(22.463)

queens13 (0.940) 2.002 (1.882) 3.985(3.748) 7.932(7.460) 15.699(14.765) 23.323(21.934)

Average (0.912) 2.023 (1.843) 3.895(3.551) 7.375(6.733) 13.256(12.138) 17.885(16.435)

Efficiency (0.912) 1.011 (0.921) 0.974(0.888) 0.922(0.842) 0.829(0.759) 0.745(0.685)

In general, the overall performance of vertical splitting with incremental copy is

quite close to the performance of the original YapOr with environment copying. By

analyzing the speedups in both tables, it is clear the improvement obtained with the

6.2. PERFORMANCE RESULTS 95

incremental copy technique in the vertical splitting implementation. On terms of

average, the difference is noticeable in all worker cases. For example, for 8, 16 and 24

workers, the speedup gain is 0.764 (from 5.969 without incremental copy to 6.733 with

incremental copy), 1.652 (from 10.486 to 12.138) and 2.180 (from 14.255 to 16.435),

respectively, which shows a clear positive tendency as the number of workers increases.

The only exception seems to be the nsort12 program. Note that, for the nsort11

program, the speedup gain already shows a huge reduction (from 19.931 without

incremental copy to 21.162 with incremental copy for 24 workers), when compared

with nsort10, where the speedup gain is clear (from 10.413 to 17.557 for 24 workers).

We believe that this behavior is related to the balance between the overhead of copying

unneeded stack segments, as happens without incremental copy, against the overhead

of executing the dereference and installation phases, as necessary with incremental

copy. In this particular case, it seems that the percentage of saving for using incre-

mental copy and thus not copy the full set of stacks, starts to be considerable for the

nsort10 program, but then as we increment the size of the program, this percentage

becomes less significant for the nsort11 program and for the nsort12 it seems to be

irrelevant, making the overhead of executing the dereference and installation phases a

potential cost.

Finally, we present in Tables 6.6 and 6.7, the obtained speedup results for the half

splitting implementation without and with the incremental copy technique, respec-

tively.

By analyzing the speedups in both tables, the improvements obtained with the in-

cremental copy technique in the half splitting implementation are clear. On terms of

average, the difference is overwhelming in all worker cases. For example, for 8, 16 and

24 workers, the speedup gain is 2.138 (from 4.542 without incremental copy to 6.680

with incremental copy), 4.132 (from 7.193 to 11.325) and 6.116 (from 8.827 to 14.943),

respectively, which shows again a clear positive tendency as the number of workers

increases. We believe that these good results with incremental copy are also related to

the percentage of saving achieved for not copy the full set of stacks. This advantage is

more clear in the case of halt splitting since, by splitting the search tree in two halves

and by sharing the older half, it reduces the stacks segments to be shared and thus to

be copied, which augments the potential percentage of common stack segments that

do not need to be copied.

Comparing to vertical splitting, on average, the overall performance of half splitting

with incremental copy is not so close to the performance of the original YapOr with

96 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.6: Speedups against the 1 worker case and against the sequential execution

(in parenthesis) for YapOr’s half splitting implementation without incremental copy.

Programs

Workers

1 2 4 8 16 24

cubes7 (0.947) 0.598(0.566) 0.745(0.705) 0.811(0.769) 0.619(0.586) 0.429(0.406)

ham (0.908) 1.324(1.202) 1.672(1.519) 2.036(1.849) 2.090(1.898) 1.790(1.626)

magic (1.118) 1.970(2.201) 3.715(4.153) 6.840(7.644) 11.938(13.342) 14.719(16.451)

map (0.869) 1.097(0.954) 1.973(1.716) 2.860(2.487) 2.963(2.576) 2.628(2.285)

nsort10 (0.962) 1.827(1.757) 3.401(3.270) 5.985(5.756) 8.785(8.448) 9.307(8.950)

nsort11 (0.959) 1.962(1.883) 3.848(3.692) 7.493(7.189) 13.722(13.166) 19.322(18.539)

nsort12 (0.995) 1.896(1.886) 3.782(3.763) 7.505(7.468) 14.751(14.678) 21.290(21.183)

puzzle (0.890) 1.522(1.355) 1.821(1.621) 1.983(1.765) 1.778(1.582) 1.428(1.270)

puzzle4x4 (1.047) 1.924(2.014) 3.659(3.830) 6.516(6.821) 10.908(11.418) 12.985(13.592)

queens13 (1.001) 1.674(1.675) 2.657(2.660) 3.673(3.676) 4.233(4.236) 3.962(3.965)

Average (0.970) 1.579(1.549) 2.727(2.693) 4.570(4.542) 7.179(7.193) 8.786(8.827)

Efficiency (0.970) 0.790(0.775) 0.682(0.673) 0.571(0.568) 0.449(0.450) 0.366(0.368)

Table 6.7: Speedups against the 1 worker case and against the sequential execution

(in parenthesis) for YapOr’s half splitting implementation with incremental copy.

Programs

Workers

1 2 4 8 16 24

cubes7 (0.944) 1.886(1.781) 3.211(3.033) 4.948(4.672) 5.485(5.179) 3.866(3.651)

ham (0.911) 2.000(1.822) 3.539(3.224) 5.735(5.224) 6.099(5.557) 4.447(4.051)

magic (1.110) 2.036 (2.260) 4.001 (4.442) 7.923(8.795) 15.713(17.442) 23.299(25.863)

map (0.877) 2.167 (1.900) 3.821(3.350) 6.117(5.363) 6.724(5.894) 5.541(4.857)

nsort10 (0.961) 1.968(1.892) 3.827(3.680) 7.629(7.335) 14.030(13.490) 18.631(17.913)

nsort11 (0.973) 1.948(1.895) 3.882(3.776) 7.791(7.577) 15.321(14.901) 22.677(22.056)

nsort12 (0.997) 1.894(1.889) 3.799(3.788) 7.606(7.583) 15.402(15.357) 22.827(22.761)

puzzle (0.904) 1.974(1.785) 3.268(2.955) 4.954(4.480) 5.543(5.013) 4.933(4.461)

puzzle4x4 (1.044) 1.998(2.086) 3.961(4.134) 7.743(8.081) 14.950(15.602) 21.966(22.925)

queens13 (0.999) 1.986(1.983) 3.913(3.909) 7.697(7.688) 14.834(14.817) 20.921(20.897)

Average (0.972) 1.986(1.929) 3.722(3.629) 6.814(6.680) 11.410(11.325) 14.911(14.943)

Efficiency (0.972) 0.993(0.965) 0.931(0.907) 0.852(0.835) 0.713(0.708) 0.621(0.623)

environment copying. For example, the average speedups for environment copying,

vertical and half splitting are, respectively, 12.410, 12.138 and 11.325 for 16 workers

and 16.966, 16.435 and 14.943 for 24 workers.

6.3. CHAPTER SUMMARY 97

On the other hand, for the 10 programs in analysis, we can observe that half split-

ting with incremental copying obtains the best speedup results in 9, 7, 6, 5 and 4

programs for 2, 4, 8, 16 and 24 workers, respectively. Considering all combinations of

programs and workers, half splitting obtains the higher number of best results among

all implementations and it owns the best average/efficiency for the cases of 2 and 4

workers.

6.3 Chapter Summary

In this chapter, we analyzed and compared the performance of the vertical and half

splitting schemes in the YapOr system and for that we used a set of benchmark Prolog

programs widely used to assess the performance of or-parallel Prolog systems.

Although stack splitting was initially proposed for distributed memory architectures,

our results show that YapOr with the stack splitting schemes is, in general, comparable

to YapOr with environment copying, obtaining in some cases better performance than

with environment copying. According to the set of results obtained, we can also

conclude that both stack splitting implementations, vertical and half splitting, clearly

benefit from incremental copy. Globally, the results are quite encouraging as well given

that in many benchmarks we achieved performances that are above a speedup of 20

on 24 cores.

98 CHAPTER 6. PERFORMANCE ANALYSIS

Chapter 7

Conclusions and Further Work

In this chapter we give a summary of the obtained conclusions on the implementation

of stack splitting model and its performance evaluation on multicore shared memory

architectures. We also describe topics of future work that builds on the work presented

in this thesis.

7.1 Conclusions

In this thesis, we aimed for the design and implementation of work sharing stack

splitting schemes, such as vertical splitting and half splitting, in the YapOr system.

YapOr is a matured Or-Parallel Prolog system based on the environment copying

model. The implementation of the stack splitting model required modifications and

extensions to existing data structures, re-implementation of the incremental copy

technique, and prepare the code to accommodate two different splitting strategies.

Some relevant mechanisms that were implemented to ensure the stack splitting model’s

consistency are:

• A dereference phase to dereference the conditional bindings from variables that

are not in the stack segments to be copied or should become unassigned.

• A split count checking phase that verifies the chaining of counters so that they are

consistent. In the half splitting strategy, after a number of sharing operations,

this counter could appear inconsistent and thus needs to be re-installed.

99

100 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

• An efficient unbitmapping operation and a consistent update of the top choice

point are ensured during the work sharing procedure.

In chapter 6, we presented extensive results on the performance of the different

strategies implemented, namely, the original YapOr with environment copying, and

YapOr with vertical and half stack splitting. The results observed for the benchmarks

used, allowed us to derive the following conclusions:

• Incremental copy clearly benefits performance as, in general, both stack splitting

strategies show significant gains over not using incremental copy. Only in cases

where the ratio between a full copy of the stacks and a partial copy, as it results

from the incremental copy, does not compensate for the overheads involved, then

incremental copy does not show gains.

• The performance of vertical stack splitting overall is quite close to the perfor-

mance of the original YapOr.

• The half stack splitting strategy performs better in 4 of 10 benchmarks.

• The results overall on the new multicore architectures are quite encouraging

given that in many benchmarks we achieve performances that are above a

speedup of 20 on 24 cores.

• Although stack splitting was initially proposed envisaging a distributed memory

architecture, the results show that it is equally suitable for shared memory

architectures. This is a clear advantage of stack splitting over the environment

copying model, since we could use it as the basis for an hybrid execution model

aiming at clusters of shared memory.

7.2 Future Work

Although a major effort was made to consolidate the work presented in this thesis,

there is still room for improvements. We describe next some ideas for further work

that could influence positively performance results.

Improving the worker positioning for work sharing. By devising a clever strat-

egy of worker’s positioning in the search tree, possibly more at the top of the

7.2. FUTURE WORK 101

tree, we may be able to overcome some of the inefficiencies in the work sharing

observed in the vertical and half splitting strategies.

Implementation of new stack splitting strategies. Using this thesis as an intro-

duction to the field, other schemes of stack splitting can be implemented and

embedded in the work sharing procedure of YapOr. Examples of these schemes

are the horizontal [8] and diagonal stack splitting [15].

Designing a strategy for clusters of multicores. Considering the success of the

stack splitting model for the both types of architectures, distributed memory and

shared memory, we can innovate by proposing a strategy that can exploit the

mix of both architectures as it is now the normal case with clusters of multicores.

This requires the design and implementation of a new system that supports two

levels of work sharing/distribution using stack splitting strategies. The idea is to

combine workers into teams. A team of workers should run on a shared memory

machine and should behave as a normal parallel system as just described in this

thesis. Different teams should be assigned to different nodes of the cluster. Work

sharing between teams should follow a work stealing strategy in which a team

without work has one of its workers to probe other teams for work. Whenever a

team worker shares work with another team, it performs the stack splitting to

divide its available work, and then sends it to the requester worker in a different

team. Care must be taken in order to detect computation completion.

102 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

Appendix A

Execution Times

This appendix includes a set of tables that contains the execution times for the

programs used in Chapter 6.

Environment Copying

Table A.1: Execution times, in seconds, for YapOr’s implementation based on

environment copying.

Workers

Programs 2 4 8 16 24

cubes7 0.110 0.062 0.036 0.026 0.027

ham 0.195 0.104 0.060 0.044 0.049

magic 22.556 11.348 5.694 2.859 1.921

map 12.451 6.264 3.158 1.612 1.104

nsort10 1.391 0.711 0.363 0.191 0.143

nsort11 15.092 7.604 3.831 1.930 1.305

nsort12 185.951 92.159 45.928 22.790 15.298

puzzle 0.090 0.052 0.033 0.026 0.031

puzzle4x4 5.068 2.530 1.271 0.645 0.440

queens13 25.594 12.820 6.433 3.230 2.169

Σ 268.499 133.653 66.806 33.353 22.488

103

104 APPENDIX A. EXECUTION TIMES

Vertical Splitting

Table A.2: Execution times, in seconds, for YapOr’s vertical splitting implementation

without incremental copy.

Workers

Programs 2 4 8 16 24

cubes7 0.120 0.077 0.060 0.067 0.084

ham 0.207 0.134 0.100 0.098 0.109

magic 22.590 11.392 5.746 2.911 1.990

map 12.447 6.266 3.184 1.651 1.149

nsort10 1.396 0.730 0.394 0.262 0.247

nsort11 15.141 7.604 3.859 2.004 1.417

nsort12 185.579 92.092 45.939 22.851 15.391

puzzle 0.100 0.078 0.082 0.098 0.127

puzzle4x4 5.080 2.548 1.295 0.676 0.484

queens13 25.668 12.940 6.548 3.389 2.348

Σ 268.328 133.862 67.208 34.006 23.345

Table A.3: Execution times, in seconds, for YapOr’s vertical splitting implementation

with incremental copy.

Workers

Programs 2 4 8 16 24

cubes7 0.109 0.061 0.037 0.029 0.033

ham 0.192 0.103 0.060 0.046 0.064

magic 22.601 11.371 5.702 2.868 1.933

map 12.426 6.249 3.148 1.607 1.102

nsort10 1.397 0.718 0.367 0.195 0.146

nsort11 15.199 7.709 3.893 1.971 1.334

nsort12 187.604 93.582 46.692 23.252 15.593

puzzle 0.089 0.052 0.034 0.029 0.036

puzzle4x4 5.059 2.533 1.273 0.644 0.440

queens13 25.616 12.866 6.464 3.266 2.198

Σ 270.293 135.244 67.669 33.908 22.880

105

Half Splitting

Table A.4: Execution times, in seconds, for YapOr’s half splitting implementation

without incremental copy.

Workers

Programs 2 4 8 16 24

cubes7 0.357 0.286 0.263 0.345 0.498

ham 0.267 0.211 0.174 0.169 0.197

magic 20.892 11.075 6.016 3.447 2.796

map 23.516 13.076 9.022 8.709 9.817

nsort10 1.461 0.785 0.446 0.304 0.287

nsort11 15.000 7.649 3.928 2.145 1.523

nsort12 179.953 90.191 45.449 23.124 16.022

puzzle 0.114 0.095 0.087 0.097 0.121

puzzle4x4 4.904 2.578 1.448 0.865 0.727

queens13 28.790 18.130 13.117 11.383 12.161

Σ 275.253 144.077 79.949 50.587 44.150

Table A.5: Execution times, in seconds, for YapOr’s half splitting implementation

with incremental copy.

Workers

Programs 2 4 8 16 24

cubes7 0.113 0.067 0.043 0.039 0.055

ham 0.176 0.100 0.061 0.058 0.079

magic 20.350 10.355 5.229 2.637 1.778

map 11.808 6.698 4.183 3.806 4.619

nsort10 1.357 0.698 0.350 0.190 0.143

nsort11 14.902 7.478 3.727 1.895 1.280

nsort12 179.691 89.598 44.756 22.101 14.912

puzzle 0.086 0.052 0.034 0.031 0.035

puzzle4x4 4.735 2.389 1.222 0.633 0.431

queens13 24.311 12.337 6.272 3.254 2.308

Σ 257.529 129.770 65.879 34.644 25.640

106 APPENDIX A. EXECUTION TIMES

Appendix B

Benchmark Programs

This appendix contains the set of benchmark programs used in Chapter 6.

cubes7

benchmark :- cubes7(X).

cubes7(Sol):-

cubes(7,Qs),

solve(Qs, [], Sol).

cubes(7,[q(p(5,1),p(0,5),p(3,1)),

q(p(2,3),p(1,4),p(4,0)),

q(p(3,6),p(0,0),p(2,4)),

q(p(6,4),p(6,1),p(0,1)),

q(p(1,5),p(3,2),p(5,2)),

q(p(5,0),p(2,3),p(4,5)),

q(p(4,2),p(2,6),p(0,3))]).

solve([],Rs,Rs).

solve([C|Cs],Ps,Rs):-

set(C,P),

check(Ps,P),

solve(Cs,[P|Ps],Rs).

check([],_).

check([q(A1,B1,C1,D1)|Ps],P):-

P = q(A2,B2,C2,D2),

A1 =\= A2, B1 =\= B2, C1 =\= C2, D1 =\= D2,

check(Ps,P).

set(q(P1,P2,P3),P):- rotate(P1,P2,P).

set(q(P1,P2,P3),P):- rotate(P2,P1,P).

107

108 APPENDIX B. BENCHMARK PROGRAMS

set(q(P1,P2,P3),P):- rotate(P1,P3,P).

set(q(P1,P2,P3),P):- rotate(P3,P1,P).

set(q(P1,P2,P3),P):- rotate(P2,P3,P).

set(q(P1,P2,P3),P):- rotate(P3,P2,P).

rotate(p(C1,C2),p(C3,C4),q(C1,C2,C3,C4)).

rotate(p(C1,C2),p(C3,C4),q(C1,C2,C4,C3)).

rotate(p(C1,C2),p(C3,C4),q(C2,C1,C3,C4)).

rotate(p(C1,C2),p(C3,C4),q(C2,C1,C4,C3)).

ham

benchmark :- ham(_).

ham(H):-cycle_ham([a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z],H).

cycle_ham([X|Y],[X,T|L]) :-

chain_ham([X|Y],[],[T|L]),

ham_edge(T,X).

chain_ham([X],L,[X|L]).

chain_ham([X|Y],K,L) :-

ham_del(Z,Y,T),

ham_edge(X,Z),

chain_ham([Z|T],[X|K],L).

ham_del(X,[X|Y],Y).

ham_del(X,[U|Y],[U|Z]) :- ham_del(X,Y,Z).

ham_edge(X,Y) :-

ham_connect(X,L),

ham_el(Y,L).

ham_el(X,[X|_]).

ham_el(X,[_|L]) :- ham_el(X,L).

ham_connect(a,[b,n,m]).

ham_connect(b,[c,a,u]).

ham_connect(c,[d,b,o]).

ham_connect(d,[e,c,v]).

ham_connect(e,[f,d,p]).

ham_connect(f,[g,e,w]).

ham_connect(g,[h,f,q]).

ham_connect(h,[i,g,x]).

ham_connect(i,[j,h,r]).

ham_connect(j,[k,i,y]).

ham_connect(k,[l,j,s]).

ham_connect(l,[m,k,z]).

ham_connect(m,[a,l,t]).

ham_connect(n,[o,a,t]).

ham_connect(o,[p,n,c]).

ham_connect(p,[q,o,e]).

ham_connect(q,[r,p,g]).

ham_connect(r,[s,q,i]).

ham_connect(s,[t,r,k]).

109

ham_connect(t,[s,m,n]).

ham_connect(u,[v,z,b]).

ham_connect(v,[w,u,d]).

ham_connect(w,[x,v,f]).

ham_connect(x,[y,w,h]).

ham_connect(y,[z,x,j]).

ham_connect(z,[y,l,u]).

nsort10

benchmark :- nsort(_).

nsort(L) :- go_nsort([10,9,8,7,6,5,4,3,2,1],L).

go_nsort(L1,L2) :-

nsort_permutation(L1,L2),

nsort_sorted(L2).

nsort_sorted([X,Y|Z]) :-

X =< Y,

nsort_sorted([Y|Z]).

nsort_sorted([_]).

nsort_permutation([],[]).

nsort_permutation(L,[H|T]):-

nsort_delete(H,L,R),

nsort_permutation(R,T).

nsort_delete(X,[X|T],T).

nsort_delete(X,[Y|T],[Y|T1]) :- nsort_delete(X,T,T1).

puzzle

benchmark :- puzzle_solution(_).

puzzle_solution([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S]) :-

List=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19],

puzzle_member(A,List,La), puzzle_member(B,La,Lb),

C is 38-A-B, puzzle_member(C,Lb,Lc),

A < C,

puzzle_member(D,Lc,Ld), H is 38-A-D, puzzle_member(H,Ld,Lh),

A < H, C < H,

puzzle_member(E,Lh,Le), puzzle_member(F,Le,Lf), G is 38-D-E-F, puzzle_member(G,Lf,Lg),

L is 38-C-G, puzzle_member(L,Lg,Ll),

A < L,

puzzle_member(I,Ll,Li), M is 38-B-E-I, puzzle_member(M,Li,Lm),

Q is 38-H-M, puzzle_member(Q,Lm,Lq),

A < Q,

puzzle_member(J,Lq,Lj), N is 38-C-F-J-Q, puzzle_member(N,Lj,Ln),

K is 38-H-I-J-L, puzzle_member(K,Ln,Lk),

P is 38-B-F-K, puzzle_member(P,Lk,Lp),

S is 38-L-P, puzzle_member(S,Lp,Ls),

A < S,

R is 38-Q-S, puzzle_member(R,Ls,Lr), 38 is D+I+N+R,

110 APPENDIX B. BENCHMARK PROGRAMS

puzzle_member(O,Lr,_Lo), 38 is M+N+O+P, 38 is A+E+J+O+S, 38 is G+K+O+R.

puzzle_member(X,[X|Y],Y).

puzzle_member(X,[X2|Y],[X2|Y2]) :- X \== X2, puzzle_member(X,Y,Y2).

map

benchmark :- map(_).

map(M) :- other_map(M),

map_colours(C),

colour_map(M,C).

my_map([country(a,A,[B,C,D,F,G]),

country(b,B,[A,C,E,G]),

country(c,C,[A,B,D,E]),

country(d,D,[A,C,E,F,H]),

country(e,E,[B,C,D,H,I,J]),

country(f,F,[A,D,G,H,J]),

country(g,G,[A,B,F,J]),

country(h,H,[D,E,F,I,J]),

country(i,I,[E,H,J]),

country(j,J,[E,F,G,H,I])]).

other_map([country(pa,PA,[TO,MA,AM,RR,AP]),

country(am,AM,[AC,RR,RO,MT,RN]),

country(ac,AC,[AM]),

country(rn,RO,[AM]),

country(ro,RR,[PA,AM]),

country(ap,AP,[PA]),

country(to,TO,[PA,MA]),

country(ma,MA,[TO,PA,PI]),

country(pi,PI,[MA,CE,PE]),

country(ce,CE,[PI,RN,PB]),

country(rn,RN,[CE,PB]),

country(pb,PB,[RN,PE,CE]),

country(pe,PE,[PB,CE,PI,AL]),

country(al,AL,[PE,SE]),

country(se,SE,[BA,AL])]).

colour_map([],_).

colour_map([Country|Map], Colourlst) :-

colour_country(Country, Colourlst),

colour_map(Map, Colourlst).

colour_country(country(_,C,AdjacentCs), Colourlst) :-

map_del(C, Colourlst, CL),

map_subset(AdjacentCs, CL).

map_subset([],_).

map_subset([C|Cs], Colourlst) :-

map_del(C, Colourlst, _),

map_subset(Cs, Colourlst).

map_colours([red, green, blue, white]).

111

map_del(X, [X|L], L).

map_del(X, [Y|L1], [Y|L2]) :-

map_del(X, L1, L2).

magic

benchmark :- magic_go7(S).

magic(S) :- magic_go7(S).

magic_go7(S):- magic_problem7(Y), magic_solve(7,Y,S).

magic_problem7([[2,3,3,1,5,5,5,3,3],

[6,3,5,2,2,5,6,6,2],

[4,6,1,4,6,6,6,6,5],

[4,1,5,4,4,5,2,4,3],

[6,3,1,2,3,5,3,4,4],

[1,1,1,1,1,2,4,2,2]]).

magic_movimento(1,0).

magic_movimento(2,1).

magic_movimento(3,2).

magic_movimento(4,3).

magic_movimento(5,4).

magic_movimento(6,5).

magic_movimento(7,6).

magic_solve(_,[[1,1,1,1,1,1,1,1,1],

[2,2,2,2,2,2,2,2,2],

[3,3,3,3,3,3,3,3,3],

[4,4,4,4,4,4,4,4,4],

[5,5,5,5,5,5,5,5,5],

[6,6,6,6,6,6,6,6,6]],[]).

magic_solve(N,[[L11,L12,L13,_,_,_,_,_,_],

[L21,L22,L23,_,_,_,_,_,_],

[L31,L32,L33,_,_,_,_,_,_],

[L41,L42,L43,_,_,_,_,_,_],

[L51,L52,L53,L54,_,L56,L57,L58,L59],

[_,_,_,_,_,_,_,_,_]], [dir1|L]):-

magic_movimento(N,N1),

magic_solve(N1,[[L41,L42,L43,_,_,_,_,_,_],

[L11,L12,L13,_,_,_,_,_,_],

[L21,L22,L23,_,_,_,_,_,_],

[L31,L32,L33,_,_,_,_,_,_],

[L53,L56,L59,L52,_,L58,L51,L54,L57],

[_,_,_,_,_,_,_,_,_]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [dir2|L]):-

magic_movimento(N,N1),

112 APPENDIX B. BENCHMARK PROGRAMS

magic_solve(N1,[[L11,L12,L13,L44,L45,L46,L17,L18,L19],

[L21,L22,L23,L14,L15,L16,L27,L28,L29],

[L31,L32,L33,L24,L25,L26,L37,L38,L39],

[L41,L42,L43,L34,L35,L36,L47,L48,L49],

[L53,L56,L59,L52,L55,L58,L51,L54,L57],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [dir3|L]):-

magic_movimento(N,N1),

magic_solve(N1,[[L11,L12,L13,L14,L15,L16,L47,L48,L49],

[L21,L22,L23,L24,L25,L26,L17,L18,L19],

[L31,L32,L33,L34,L35,L36,L27,L28,L29],

[L41,L42,L43,L44,L45,L46,L37,L38,L39],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L63,L66,L69,L62,L65,L68,L61,L64,L67]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [lat1|L]):-

magic_movimento(N,N1),

magic_solve(N1,[[L67,L12,L13,L64,L15,L16,L61,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L57,L34,L35,L54,L37,L38,L51],

[L43,L46,L49,L42,L45,L48,L41,L44,L47],

[L11,L52,L53,L14,L55,L56,L17,L58,L59],

[L33,L62,L63,L36,L65,L66,L39,L68,L69]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [lat2|L]):-

magic_movimento(N,N1),

magic_solve(N1,[[L11,L68,L13,L14,L65,L16,L17,L62,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L58,L33,L34,L55,L36,L37,L52,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L12,L53,L54,L15,L56,L57,L18,L59],

[L61,L32,L63,L64,L35,L66,L67,L38,L69]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [lat3|L]):-

magic_movimento(N,N1),

113

magic_solve(N1,[[L11,L12,L69,L14,L15,L66,L17,L18,L63],

[L27,L24,L21,L28,L25,L22,L29,L26,L23],

[L59,L32,L33,L56,L35,L36,L53,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L13,L54,L55,L16,L57,L58,L19],

[L61,L62,L31,L64,L65,L34,L67,L68,L37]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [frn1|L]):-

magic_movimento(N,N1),

magic_solve(N1,[[L17,L14,L11,L18,L15,L12,L19,L16,L13],

[L57,L22,L23,L58,L25,L26,L59,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L67,L44,L45,L68,L47,L48,L69],

[L51,L52,L53,L54,L55,L56,L49,L46,L43],

[L61,L62,L63,L64,L65,L66,L27,L24,L21]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [frn2|L]):-

magic_movimento(N,N1),

magic_solve(N1,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L54,L23,L24,L55,L26,L27,L56,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L64,L43,L44,L65,L46,L47,L66,L49],

[L51,L52,L53,L48,L45,L42,L57,L58,L59],

[L61,L62,L63,L28,L25,L22,L67,L68,L69]],L).

magic_solve(N,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L23,L24,L25,L26,L27,L28,L29],

[L31,L32,L33,L34,L35,L36,L37,L38,L39],

[L41,L42,L43,L44,L45,L46,L47,L48,L49],

[L51,L52,L53,L54,L55,L56,L57,L58,L59],

[L61,L62,L63,L64,L65,L66,L67,L68,L69]], [frn3|L]):-

magic_movimento(N,N1),

magic_solve(N1,[[L11,L12,L13,L14,L15,L16,L17,L18,L19],

[L21,L22,L51,L24,L25,L52,L27,L28,L53],

[L33,L36,L39,L32,L35,L38,L31,L34,L37],

[L61,L42,L43,L62,L45,L46,L63,L48,L49],

[L47,L44,L41,L54,L55,L56,L57,L58,L59],

[L29,L26,L23,L64,L65,L66,L67,L68,L69]],L).

nsort11

benchmark :- nsort(_).

nsort(L) :- go_nsort([11,10,9,8,7,6,5,4,3,2,1],L).

114 APPENDIX B. BENCHMARK PROGRAMS

go_nsort(L1,L2) :-

nsort_permutation(L1,L2),

nsort_sorted(L2).

nsort_sorted([X,Y|Z]) :-

X =< Y,

nsort_sorted([Y|Z]).

nsort_sorted([_]).

nsort_permutation([],[]).

nsort_permutation(L,[H|T]):-

nsort_delete(H,L,R),

nsort_permutation(R,T).

nsort_delete(X,[X|T],T).

nsort_delete(X,[Y|T],[Y|T1]) :- nsort_delete(X,T,T1).

nsort12

benchmark :- nsort(_).

nsort(L) :- go_nsort([12,11,10,9,8,7,6,5,4,3,2,1],L).

go_nsort(L1,L2) :-

nsort_permutation(L1,L2),

nsort_sorted(L2).

nsort_sorted([X,Y|Z]) :-

X =< Y,

nsort_sorted([Y|Z]).

nsort_sorted([_]).

nsort_permutation([],[]).

nsort_permutation(L,[H|T]):-

nsort_delete(H,L,R),

nsort_permutation(R,T).

nsort_delete(X,[X|T],T).

nsort_delete(X,[Y|T],[Y|T1]) :- nsort_delete(X,T,T1).

puzzle4x4

benchmark :- puzzle4x4(X).

puzzle4x4(X) :- pz4x4_go12(X).

pz4x4_go12(S):- pz4x4_problem12(Y), pz4x4_solve(12,Y,S).

pz4x4_problem12([2, o, 3, 8,

1, 6,11, 7,

5, 9,10,16,

13,14,12,15]).

pz4x4_movimento(1,0).

115

pz4x4_movimento(2,1).

pz4x4_movimento(3,2).

pz4x4_movimento(4,3).

pz4x4_movimento(5,4).

pz4x4_movimento(6,5).

pz4x4_movimento(7,6).

pz4x4_movimento(8,7).

pz4x4_movimento(9,8).

pz4x4_movimento(10,9).

pz4x4_movimento(11,10).

pz4x4_movimento(12,11).

pz4x4_solve(_,[1, 2, 3, o,

5, 6, 7, 8,

9,10,11,12,

13,14,15,16],[]).

pz4x4_solve(N, [P11, o,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m11|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[o,P11,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

o,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m11|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[o,P12,P13,P14,

P11,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [o,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m12|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P12, o,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12, o,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m12|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11, o,P12,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

116 APPENDIX B. BENCHMARK PROGRAMS

pz4x4_solve(N, [P11,P12,P13,P14,

P21, o,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m12|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11, o,P13,P14,

P21,P12,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11, o,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m13|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P13, o,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13, o,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m13|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12, o,P13,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22, o,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m13|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12, o,P14,

P21,P22,P13,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12, o,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m14|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P14, o,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23, o,

P31,P32,P33,P34,

P41,P42,P43,P44],[m14|L]):-

pz4x4_movimento(N,N1),

117

pz4x4_solve(N1,[P11,P12,P13, o,

P21,P22,P23,P14,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [o,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m21|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P21,P12,P13,P14,

o,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21, o,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m21|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

o,P21,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

o,P32,P33,P34,

P41,P42,P43,P44],[m21|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

o,P22,P23,P24,

P21,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11, o,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m22|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P22,P13,P14,

P21, o,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

o,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m22|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P22, o,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

118 APPENDIX B. BENCHMARK PROGRAMS

P21,P22,P23,P24,

P31, o,P33,P34,

P41,P42,P43,P44],[m22|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21, o,P23,P24,

P31,P22,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22, o,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m22|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21, o,P22,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12, o,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m23|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P23,P14,

P21,P22, o,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21, o,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m23|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P23, o,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32, o,P34,

P41,P42,P43,P44],[m23|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22, o,P24,

P31,P32,P23,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23, o,

P31,P32,P33,P34,

P41,P42,P43,P44],[m23|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22, o,P23,

119

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13, o,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m24|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P24,

P21,P22,P23, o,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22, o,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m24|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P24, o,

P31,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33, o,

P41,P42,P43,P44],[m24|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23, o,

P31,P32,P33,P24,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

o,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m31|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P31,P22,P23,P24,

o,P32,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31, o,P33,P34,

P41,P42,P43,P44],[m31|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

o,P31,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

120 APPENDIX B. BENCHMARK PROGRAMS

o,P42,P43,P44],[m31|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

o,P32,P33,P34,

P31,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21, o,P23,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m32|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P32,P23,P24,

P31, o,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

o,P32,P33,P34,

P41,P42,P43,P44],[m32|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P32, o,P33,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32, o,P34,

P41,P42,P43,P44],[m32|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31, o,P32,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41, o,P43,P44],[m32|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31, o,P33,P34,

P41,P32,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22, o,P24,

P31,P32,P33,P34,

P41,P42,P43,P44],[m33|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P33,P24,

P31,P32, o,P34,

P41,P42,P43,P44],L).

121

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31, o,P33,P34,

P41,P42,P43,P44],[m33|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P33, o,P34,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33, o,

P41,P42,P43,P44],[m33|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32, o,P33,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42, o,P44],[m33|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32, o,P34,

P41,P42,P33,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23, o,

P31,P32,P33,P34,

P41,P42,P43,P44],[m34|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P34,

P31,P32,P33, o,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32, o,P34,

P41,P42,P43,P44],[m34|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P34, o,

P41,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43, o],[m34|L]):-

pz4x4_movimento(N,N1),

122 APPENDIX B. BENCHMARK PROGRAMS

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33, o,

P41,P42,P43,P34],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

o,P32,P33,P34,

P41,P42,P43,P44],[m41|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P41,P32,P33,P34,

o,P42,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41, o,P43,P44],[m41|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

o,P41,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31, o,P33,P34,

P41,P42,P43,P44],[m42|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P42,P33,P34,

P41, o,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

o,P42,P43,P44],[m42|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P42, o,P43,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42, o,P44],[m42|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41, o,P42,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

123

P21,P22,P23,P24,

P31,P32, o,P34,

P41,P42,P43,P44],[m43|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P43,P34,

P41,P42, o,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41, o,P43,P44],[m43|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P43, o,P44],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P43, o],[m43|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42, o,P43],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33, o,

P41,P42,P43,P44],[m44|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P44,

P41,P42,P43, o],L).

pz4x4_solve(N, [P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42, o,P44],[m44|L]):-

pz4x4_movimento(N,N1),

pz4x4_solve(N1,[P11,P12,P13,P14,

P21,P22,P23,P24,

P31,P32,P33,P34,

P41,P42,P44, o],L).

queens13

benchmark :- get_solutions(13,S).

get_solutions(Board_size, Soln) :- solve(Board_size, [], Soln).

124 APPENDIX B. BENCHMARK PROGRAMS

newsquare([square(I,J)|Rest],square(X,Y)) :-

X is I+1,

snint(Y),

not_threatened(I,J,X,Y),

safe(X,Y,Rest).

newsquare([],square(1,X)) :- snint(X).

a(_).

a.

safe(X,Y,[square(I,J)|L]) :-

not_threatened(I,J,X,Y),

safe(X,Y,L).

safe(X,Y,[]).

not_threatened(I,J,X,Y) :-

I =\= X,

J =\= Y,

I-J =\= X-Y,

I+J =\= X+Y.

solve(Board_size,Initial,Final) :-

newsquare(Initial,Next),

solve(Board_size,[Next|Initial],Final).

solve(Bs,[square(Bs,Y)|L],[square(Bs,Y)|L]) :- size(Bs).

size(13).

snint(1).

snint(2).

snint(3).

snint(4).

snint(5).

snint(6).

snint(7).

snint(8).

snint(9).

snint(10).

snint(11).

snint(12).

snint(13).

References

[1] H. Aı̈t-Kaci. Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT

Press, 1991.

[2] K. Ali and R. Karlsson. Full Prolog and Scheduling OR-Parallelism in Muse.

International Journal of Parallel Programming, 19(6):445–475, 1990.

[3] K. Ali and R. Karlsson. The Muse Approach to OR-Parallel Prolog. International

Journal of Parallel Programming, 19(2):129–162, 1990.

[4] M. Carlsson. Design and Implementation of an OR-Parallel Prolog Engine. PhD

thesis, The Royal Institute of Technology, 1990.

[5] G. Gupta. Parallel Execution of Logic Programs on Multiprocessor Architectures.

PhD thesis, Department of Computer Science, University of North Carolina, 1991.

[6] G. Gupta, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel Execution of

Prolog Programs: A Survey. Research report, Laboratory for Logic, Databases

and Advanced Programming, New Mexico State University, 1997.

[7] G. Gupta and B. Jayaraman. Analysis of Or-parallel Execution Models. ACM

Transactions on Programming Languages, 15(4):659–680, 1993.

[8] G. Gupta and E. Pontelli. Stack Splitting: A Simple Technique for Implementing

Or-parallelism on Distributed Machines. In International Conference on Logic

Programming, pages 290–304. The MIT Press, 1999.

[9] R. Karlsson. A High Performance OR-parallel Prolog System. PhD thesis, The

Royal Institute of Technology, 1992.

[10] R. Kowalski. Predicate Logic as a Programming Language. In Information

Processing, pages 569–574. North-Holland, 1974.

125

126 REFERENCES

[11] R. Kowalski. The Early Years Of Logic Programming. Communications of the

ACM, 31:38–43, 1988.

[12] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren,

A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski,

and B. Hausman. The Aurora Or-Parallel Prolog System. In International

Conference on Fifth Generation Computer Systems, pages 819–830. Institute for

New Generation Computer Technology, 1988.

[13] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle.

Journal of the ACM, 12(1):23–41, 1965.

[14] R. Rocha. Um Sistema Baseado na Cópia de Ambientes para a Execução de

Prolog em Paralelo. Master’s thesis, University of Minho, 1996.

[15] R. Rocha, F. Silva, and R. Martins. YapDss: an Or-Parallel Prolog System for

Scalable Beowulf Clusters. In Portuguese Conference on Artificial Intelligence,

number 2902 in LNAI, pages 136–150. Springer-Verlag, 2003.

[16] R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog

System Based on Environment Copying. In Portuguese Conference on Artificial

Intelligence, number 1695 in LNAI, pages 178–192. Springer-Verlag, 1999.

[17] Nilsson Ulf and Jan M. Logic, Programming and Prolog. John Wiley and Sons,

1995.

[18] D. H. D. Warren. Applied Logic – Its Use and Implementation as a Programming

Tool. PhD thesis, Edinburgh University, 1977.

[19] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI

International, 1983.

