
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A MapReduce Construct for Yap Prolog

Joana Côrte-Real

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisors: Prof. Inês Dutra and Prof. Ricardo Rocha

July 2013

c© Joana Côrte-Real, 2013

Resumo

Neste trabalho, desenhou-se e implementou-se uma primitiva de alto nível para Prolog, baseada
no paradigma de programação MapReduce. MapReduce é um modelo de programação funcional
popularizado pela Google em 2008, apesar de ter raizes consideravelmente mais antigas. Este
modelo é constituído por duas operações simples, map e reduce, que podem ser facilmente apli-
cadas a um vasto número de algoritmos. Prolog, por sua vez, é uma linguagem assente em lógica
de predicados de primeira ordem, com elevado poder declarativo, o que permite ao programador
focar-se no algoritmo de resolução de um dado problema em vez de nos seus detalhes de mais
baixo nível. Prolog é um modelo de programação vocacionado para o armazenamento e trata-
mento de dados, havendo mesmo aplicações que estão preparadas para fazer inferências sobre
esses dados. Um construtor MapReduce aplicado neste cenário permitiria escalar eficientemente
todo o processo, reduzindo muito significativamente o tempo de execução.

A criação de uma primitiva de programação baseada em MapReduce para Prolog apresenta
três contribuições principais: (i) proporciona ao utilizador uma construção de alto nível de ab-
stração no modelo funcional MapReduce, mantendo a característica declarativa dos programas;
(ii) disponibiliza ao utilizador uma construção não existente em Prolog e que é representativa de
aplicações em várias áreas; (iii) permite paralelização, acelerando a execução de programas que
utilizam esta primitiva. Este último ponto é particularmente relevante dado que os processadores
de vários núcleos se têm tornado a escolha dominante em equipamentos informáticos, mesmo
aqueles destinados a uso pessoal. Este facto, aliado à crescente quantidade de dados que, cada
vez mais, são produzidos diariamente, faz com que uma ferramenta que utilize arquiteturas multi-
processador – eficientemente – para processamento de dados, suscite interesse.

O foco de MapReduce para Prolog são as arquiteturas multi-processador, apesar de a nossa
primitiva estar preparada para suportar ambientes híbridos (memória distribuída e memória partil-
hada), de forma implícita e transparente para o utilizador. MapReduce para Prolog foi implemen-
tado no sistema Yap e é constituído por uma arquitetura do tipo mestre-escravo, onde o mestre
é responsável pela divisão do trabalho e os escravos pelo processamento das tarefas que lhes são
atribuídas. A interface do construtor dispõe ainda de vários níveis de customização, e um dos
objetivos deste trabalho é a integração do nosso contrutor MapReduce com o sistema Yap sob a
forma de uma biblioteca. O nosso sistema foi testado com sucesso através da construção de quatro
aplicações distintas comuns na literatura: duas contendo dados numéricos, e as restantes contendo
termos de Prolog. Os testes foram feitos com duas implementações para a mesma interface de
programação, uma para um cluster de máquinas e outra para uma arquitetura multi-processador.
Determinou-se que o construtor escalou consistentemente o tempo de execução de forma quase
ideal para todas as aplicações, quer em memória partilhada, quer distribuída. Desenvolveram-se
e analisaram-se quatro técnicas de escalonamento de trabalho, das quais as mais eficazes serão
disponibilizadas na versão final da biblioteca. Finalmente, avaliou-se ainda o efeito da variação
do tamanho das unidades de trabalho distribuídas aos escravos a fim de establecer os parâmetros
por defeito para MapReduce para Prolog.

i

ii

Abstract

This work’s aim was to design and implement a high-level Prolog primitive, based on the MapRe-
duce programming paradigm. MapReduce is a programming model made popular by Google in
2008, even though its origins are more remote. It is composed by two simple operations, map and
reduce, which can easily be applied to numerous algorithms. On the other hand, Prolog is a first-
order logic predicate language with significant declarative power. This allowing the programmer
to focus on the resolution strategies for a problem in preference to the execution technicalities.
Prolog is also especially suited for data storage and processing; in fact, ILP deals with making
inferences from that data. A MapReduce construct applied in these circumstances would be able
to efficiently scale that process and thus significantly reduce execution times.

Including a MapReduce programming primitive in Prolog has three major benefits: (i) to make
available a high-level abstract construct which implements the MapReduce functional model main-
taining the declarative nature of the programs; (ii) to give access to a previously non-existent Pro-
log construct which is relevant to applications in numerous fields of knowledge; (iii) to allow for
parallelism, thus speeding-up the execution of programs using this construct. The latter is par-
ticularly relevant now that multicore processors have become the favourite choice to assemble
machines, even those for personal use. This, along with the fact that there are increasingly larger
data processing requirements in everyday life, renders a framework using multicore architectures
for efficient data processing highly relevant.

MapReduce for Prolog’s focus are multicore architectures, but our primitive supports hybrid
environments (shared and distributed memory), implicitly and transparently. MapReduce for Pro-
log was implemented in the Yap system and it follows a master-slave paradigm, in which the
master is responsible for dividing and assigning the work and the slaves for processing the chunks
dispatched to them. This construct’s interface has various customisation levels, and our aim is that
it will come to integrate the Yap Prolog system as built-in construct. Our system was successfully
tested using four distinct applications common in the literature: two of these were numeric, and
the other two were composed of Prolog terms. The test were made using two implementations
for the same programming interface, one for a cluster of machines and another for a multicore
architecture. It was determined that our construct scaled almost ideally for these datasets, both in
shared and distributed memory. Four scheduling methods were also developed and assessed, and
the two more efficient ones will be made available in the final version of the library. An evalu-
ation of the effect of the chunk size variation for different datasets and scheduling methods was
performed as well, in order to define standard parameters for MapReduce for Prolog.

iii

iv

Acknowledgements

Firstly and foremost, I would like to thank my supervisors Inês Dutra and Ricardo Rocha for
their constant attention and support. Professor Inês sat tirelessly at my workstation, helping me
overcome problems, and Professor Ricardo always gave me sharp and very pertinent advice, at
just the right moment. I am most grateful to both for their time and interest, which contributed
greatly towards the quality of this thesis work.

I am grateful to Hugo Ribeiro, for readily providing all the technical support I needed, and
still teaching me while doing it. I would like to thank PhD student Miguel Areias for helping me
track down an elusive issue, that surely would have been much more so without his help. I am
also grateful to Professor Vítor Santos Costa, for showing me around the Yap Prolog system when
I was just getting started, and for supporting me the for the remainder of this work. I would like
to thank Joana Dumas, the CRACS secretary, for making all the bureaucracy simpler for me.

I am grateful to project LEAP (PTDC/EIA-CCO/112158/2009) and to Fundação da Ciência
e Tecnologia for their support, under the research grant BI/120048/Leap_CRACS, from which I
have profited during the development of this thesis.

To PhD student João Santos, Rui Vieira and Hugo Sousa, my colleagues at the DCC, thank you
for all the moments well spent. To my colleagues at FEUP I am grateful for five wonderful years,
full of new experiences and lasting friendship. To Paulo Alcino and Joana Grifo, both physicists
and currently residing in London, may you be both there and here.

I am grateful to my family, for constant and unfaltering support; my mother Paula, my aunt
Isabel and my grandmother Maria Emília even offered to read this document. Bless you! To my
boyfriend Luís I would like to thank his continual reminder that I can surpass myself.

I am deeply indebted to you all, thank you again.

Joana Côrte-Real

v

vi

“Once you eliminate the impossible, whatever remains,
no matter how improbable, must be the truth.”

Sir Arthur Conan Doyle

vii

viii

Contents

Resumo i

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Thesis Purpose . 2
1.2 Thesis Outline . 3

2 Background and Related Work 5
2.1 Logic Programming . 5

2.1.1 The Prolog Language . 6
2.1.2 Parallelism in Prolog . 8
2.1.3 The Yap System . 9

2.2 The MapReduce Framework . 10
2.2.1 MapReduce Implementations . 12
2.2.2 MapReduce Applied to Prolog . 14

3 MapReduce in Prolog 17
3.1 Architecture . 17
3.2 File System . 19
3.3 Scheduling Methods . 19
3.4 User Interface . 22

3.4.1 Usage Examples . 23

4 Methodology 25
4.1 The Yap System in Detail . 25

4.1.1 Yap Threads . 26
4.1.2 Yap Statistics . 28
4.1.3 Yap Message Passing Interface . 29

4.2 MapReduce for Prolog Implementation . 30
4.3 Intel VTune Amplifier . 32
4.4 Materials . 34
4.5 Datasets . 38
4.6 Known Issues . 42

ix

x CONTENTS

5 Results 43
5.1 Initial Measurements . 43

5.1.1 Loading Data Files . 43
5.1.2 Sequential Execution Times . 44

5.2 Scheduling Methods Evaluation . 44
5.2.1 Varying Scheduling Strategies . 45
5.2.2 Load Balancing . 49
5.2.3 Varying Chunk Sizes . 50

5.3 Varying Data Sizes . 51

6 Conclusions and Future Work 61
6.1 Main Contributions . 61
6.2 Further Work . 62
6.3 Final Remark . 63

A Walltime Data 65
A.1 Dynamic Scheduling . 65

A.1.1 MAMMO . 65
A.1.2 BLOG . 68
A.1.3 PROB . 69
A.1.4 ODD . 70

A.2 Static Scheduling . 73
A.2.1 MAMMO . 73
A.2.2 BLOG . 74
A.2.3 PROB . 77
A.2.4 ODD . 78

A.3 Single-step Scheduling . 79
A.3.1 MAMMO . 79
A.3.2 BLOG . 82
A.3.3 PROB . 83
A.3.4 ODD . 84

A.4 Workpool Scheduling . 87
A.4.1 MAMMO . 87
A.4.2 BLOG . 87
A.4.3 PROB . 88
A.4.4 ODD . 89

B Load Balancing Data 91
B.1 Dynamic Scheduling . 91
B.2 Static Scheduling . 96
B.3 Single-step scheduling . 100

C Variation of Chunk Size 105
C.1 Dynamic Scheduling . 105
C.2 Static Scheduling . 108
C.3 Workpool Scheduling . 109

References 111

List of Figures

2.1 Example of basic Prolog program . 7
2.2 Example of basic Prolog queries and answers. 8
2.3 Pseudocode for map and reduce operations . 11
2.4 Graphic example of a MapReduce operation. 12
2.5 Example of MapReduce master-slave architecture 13

3.1 Framework architecture . 17
3.2 Single-step scheduling method. 20
3.3 Static scheduling method. 21
3.4 Dynamic scheduling method. 21
3.5 Workpool scheduling method. 21
3.6 MapReduce for Prolog predicates in shared memory architectures. 22
3.7 MapReduce for Prolog usage example for shared memory architecture 23
3.8 MapReduce for Prolog usage example for distributed memory architecture 23

4.1 Organization of the Yap system (courtesy of Ricardo Rocha, from [1]). 25
4.2 Organization of the Yap database (courtesy of Ricardo Rocha, from [1]). 26
4.3 Blocking predicate to receive a message from a queue. 27
4.4 Non-blocking predicate to receive a message from a queue. 28
4.5 Time measuring predicates kindly made available by Miguel Areias. 28
4.6 Example of an MPI program in Yap. 29
4.7 map_reduce/5 implementation details. 30
4.8 Auxiliar predicates in work distribution. 31
4.9 Dynamic scheduling implementation details. 32
4.10 Intel VTune Amplifier Hotspot analysis. 33
4.11 Intel VTune Amplifier lock detection. 33
4.12 Machines’ storage facility, located in DCC. 35
4.13 Machines’ front view. 36
4.14 Machines’ front view - detailed. 36
4.15 DellTM PowerEdgeTM R905 Architecture, from [2] 37
4.16 Map and reduce operations for dataset ODD. 38
4.17 Map and reduce operations for dataset PROB. 39
4.18 Map and reduce operations for dataset MAMMO. 40
4.19 Map and reduce operations for dataset BLOG. 41

5.1 Comparison of scheduling methods for ODD dataset (600,000 queries and 1,000
elements per chunk) . 45

5.2 Comparison of scheduling methods for PROB dataset (600,000 queries and 1,000
elements per chunk) . 46

xi

xii LIST OF FIGURES

5.3 Comparison of scheduling methods for MAMMO dataset (600,000 queries and
1,000 elements per chunk) . 47

5.4 Comparison of scheduling methods for BLOG dataset (600,000 queries and 1,000
elements per chunk) . 48

5.5 Load balancing for different scheduling methods (1,200,000 queries and 1,000
elements per chunk) . 49

5.6 Effect of chunk size variation in dynamic scheduling (1,200,000 queries) 50
5.7 Effect of chunk size variation in static scheduling (1,200,000 queries) 51
5.8 Effect of variation of queries size with dynamic scheduling in ODD dataset (1,000

elements per chunk) . 52
5.9 Effect of variation of queries size with dynamic scheduling in PROB dataset (1,000

elements per chunk) . 53
5.10 Effect of variation of queries size with dynamic scheduling in MAMMO dataset

(1,000 elements per chunk) . 54
5.11 Effect of variation of queries size with dynamic scheduling in BLOG dataset

(1,000 elements per chunk) . 55
5.12 Effect of variation of queries size with static scheduling in ODD dataset (1,000

elements per chunk) . 56
5.13 Effect of variation of queries size with static scheduling in PROB dataset (1,000

elements per chunk) . 57
5.14 Effect of variation of queries size with static scheduling in MAMMO dataset

(1,000 elements per chunk) . 58
5.15 Effect of variation of queries size with static scheduling in BLOG dataset (1,000

elements per chunk) . 59

List of Tables

4.1 Data type and background knowledge file size 38

5.1 Set-up times (in seconds) for varying dataset sizes 44
5.2 Sequential execution times (in milliseconds) for SMA and varying dataset sizes . 44
5.3 Sequential execution times (in milliseconds) for DMA and varying dataset sizes . 44

A.1 MAMMO DMA 300k (1000 elems/chunk) . 65
A.2 MAMMO SMA 300k (1000 elems/chunk) . 66
A.3 MAMMO DMA 600k (1000 elems/chunk) . 66
A.4 MAMMO SMA 600k (1000 elems/chunk) . 66
A.5 MAMMO DMA 1200k (1000 elems/chunk) . 66
A.6 MAMMO SMA 1200k (1000 elems/chunk) . 67
A.7 BLOG DMA 300k (1000 elems/chunk) . 68
A.8 BLOG SMA 300k (1000 elems/chunk) . 68
A.9 BLOG DMA 600k (1000 elems/chunk) . 68
A.10 BLOG SMA 600k (1000 elems/chunk) . 68
A.11 BLOG DMA 1200k (1000 elems/chunk) . 69
A.12 BLOG SMA 1200k (1000 elems/chunk) . 69
A.13 PROB DMA 300k (1000 elems/chunk) . 69
A.14 PROB SMA 300k (1000 elems/chunk) . 69
A.15 PROB DMA 600k (1000 elems/chunk) . 70
A.16 PROB SMA 600k (1000 elems/chunk) . 70
A.17 PROB DMA 1200k (1000 elems/chunk) . 70
A.18 PROB SMA 1200k (1000 elems/chunk) . 70
A.19 ODD DMA 300k (1000 elems/chunk) . 71
A.20 ODD SMA 300k (1000 elems/chunk) . 71
A.21 ODD DMA 600k (1000 elems/chunk) . 71
A.22 ODD SMA 600k (1000 elems/chunk) . 71
A.23 ODD DMA 1200k (1000 elems/chunk) . 72
A.24 ODD SMA 1200k (1000 elems/chunk) . 72
A.25 MAMMO DMA 300k (1000 elems/chunk) . 73
A.26 MAMMO SMA 300k (1000 elems/chunk) . 73
A.27 MAMMO DMA 600k (1000 elems/chunk) . 73
A.28 MAMMO SMA 600k (1000 elems/chunk) . 74
A.29 MAMMO DMA 1200k (1000 elems/chunk) . 74
A.30 MAMMO SMA 1200k (1000 elems/chunk) . 74
A.31 BLOG DMA 300k (1000 elems/chunk) . 74
A.32 BLOG SMA 300k (1000 elems/chunk) . 75

xiii

xiv LIST OF TABLES

A.33 BLOG DMA 600k (1000 elems/chunk) . 75
A.34 BLOG SMA 600k (1000 elems/chunk) . 75
A.35 BLOG DMA 1200k (1000 elems/chunk) . 75
A.36 BLOG SMA 1200k (1000 elems/chunk) . 76
A.37 PROB DMA 300k (1000 elems/chunk) . 77
A.38 PROB SMA 300k (1000 elems/chunk) . 77
A.39 PROB DMA 600k (1000 elems/chunk) . 77
A.40 PROB SMA 600k (1000 elems/chunk) . 77
A.41 PROB DMA 1200k (1000 elems/chunk) . 78
A.42 PROB SMA 1200k (1000 elems/chunk) . 78
A.43 ODD DMA 300k (1000 elems/chunk) . 78
A.44 ODD SMA 300k (1000 elems/chunk) . 78
A.45 ODD DMA 600k (1000 elems/chunk) . 79
A.46 ODD SMA 600k (1000 elems/chunk) . 79
A.47 ODD DMA 1200k (1000 elems/chunk) . 79
A.48 ODD SMA 1200k (1000 elems/chunk) . 79
A.49 MAMMO DMA 300k (1000 elems/chunk) . 80
A.50 MAMMO SMA 300k (1000 elems/chunk) . 80
A.51 MAMMO DMA 600k (1000 elems/chunk) . 80
A.52 MAMMO SMA 600k (1000 elems/chunk) . 80
A.53 MAMMO DMA 1200k (1000 elems/chunk) . 81
A.54 MAMMO SMA 1200k (1000 elems/chunk) . 81
A.55 BLOG DMA 300k (1000 elems/chunk) . 82
A.56 BLOG SMA 300k (1000 elems/chunk) . 82
A.57 BLOG SMA 600k (1000 elems/chunk) . 82
A.58 BLOG SMA 600k (1000 elems/chunk) . 82
A.59 BLOG DMA 1200k (1000 elems/chunk) . 83
A.60 BLOG SMA 1200k (1000 elems/chunk) . 83
A.61 PROB DMA 300k (1000 elems/chunk) . 83
A.62 PROB SMA 300k (1000 elems/chunk) . 83
A.63 PROB DMA 600k (1000 elems/chunk) . 84
A.64 PROB SMA 600k (1000 elems/chunk) . 84
A.65 PROB DMA 1200k (1000 elems/chunk) . 84
A.66 PROB SMA 1200k (1000 elems/chunk) . 84
A.67 ODD DMA 300k (1000 elems/chunk) . 85
A.68 ODD SMA 300k (1000 elems/chunk) . 85
A.69 ODD DMA 600k (1000 elems/chunk) . 85
A.70 ODD SMA 600k (1000 elems/chunk) . 85
A.71 ODD DMA 1200k (1000 elems/chunk) . 86
A.72 ODD SMA 1200k (1000 elems/chunk) . 86
A.73 MAMMO SMA 300k (1000 elems/chunk) . 87
A.74 MAMMO SMA 600k (1000 elems/chunk) . 87
A.75 MAMMO SMA 1200k (1000 elems/chunk) . 87
A.76 BLOG SMA 300k (1000 elems/chunk) . 88
A.77 BLOG SMA 600k (1000 elems/chunk) . 88
A.78 BLOG SMA 1200k (1000 elems/chunk) . 88
A.79 PROB SMA 300k (1000 elems/chunk) . 88
A.80 PROB SMA 600k (1000 elems/chunk) . 89

LIST OF TABLES xv

A.81 PROB SMA 1200k (1000 elems/chunk) . 89
A.82 ODD SMA 300k (1000 elems/chunk) . 89
A.83 ODD SMA 600k (1000 elems/chunk) . 89
A.84 ODD SMA 1200k (1000 elems/chunk) . 90

B.1 MAMMO DMA 1200k 16 slaves (1000 elems/chunk) 91
B.2 PROB DMA 1200k 16 slaves (1000 elems/chunk) 92
B.3 BLOG DMA 1200k 8 slaves (1000 elems/chunk) 92
B.4 ODD DMA 1200k 16 slaves (1000 elems/chunk) 93
B.5 MAMMO SMA 1200k 16 slaves (1000 elems/chunk) 93
B.6 PROB SMA 1200k 16 slaves (1000 elems/chunk) 94
B.7 BLOG SMA 1200k 16 slaves (1000 elems/chunk) 94
B.8 ODD SMA 1200k 16 slaves (1000 elems/chunk) 95
B.9 MAMMO DMA 1200k 16 slaves (1000 elems/chunk) 96
B.10 PROB DMA 1200k 16 slaves (1000 elems/chunk) 96
B.11 BLOG DMA 1200k 8 slaves (1000 elems/chunk) 97
B.12 ODD DMA 1200k 16 slaves (1000 elems/chunk) 97
B.13 MAMMO SMA 1200k 16 slaves (1000 elems/chunk) 98
B.14 PROB SMA 1200k 16 slaves (1000 elems/chunk) 98
B.15 BLOG SMA 1200k 16 slaves (1000 elems/chunk) 99
B.16 ODD SMA 1200k 16 slaves (1000 elems/chunk) 99
B.17 MAMMO DMA 1200k 16 slaves (1000 elems/chunk) 100
B.18 PROB DMA 1200k 16 slaves (1000 elems/chunk) 100
B.19 BLOG DMA 1200k 8 slaves (1000 elems/chunk) 101
B.20 ODD DMA 1200k 16 slaves (1000 elems/chunk) 101
B.21 MAMMO SMA 1200k 16 slaves (1000 elems/chunk) 102
B.22 PROB SMA 1200k 16 slaves (1000 elems/chunk) 102
B.23 BLOG SMA 1200k 16 slaves (1000 elems/chunk) 103
B.24 ODD SMA 1200k 16 slaves (1000 elems/chunk) 103

C.1 MAMMO DMA 1200k (16 slaves) . 105
C.2 MAMMO SMA 1200k (16 slaves) . 105
C.3 BLOG DMA 1200k (8 slaves) . 106
C.4 BLOG SMA 1200k (16 slaves) . 106
C.5 PROB DMA 1200k (16 slaves) . 106
C.6 PROB SMA 1200k (16 slaves) . 106
C.7 ODD DMA 1200k (16 slaves) . 106
C.8 ODD SMA 1200k (16 slaves) . 107
C.9 MAMMO DMA 1200k (16 slaves) . 108
C.10 MAMMO SMA 1200k (16 slaves) . 108
C.11 BLOG DMA 1200k (8 slaves) . 108
C.12 BLOG SMA 1200k (16 slaves) . 108
C.13 PROB DMA 1200k (16 slaves) . 109
C.14 PROB SMA 1200k (16 slaves) . 109
C.15 ODD DMA 1200k (16 slaves) . 109
C.16 ODD SMA 1200k (16 slaves) . 109
C.17 MAMMO SMA 1200k (16 slaves) . 110
C.18 BLOG SMA 1200k (16 slaves) . 110
C.19 PROB SMA 1200k (16 slaves) . 110

xvi LIST OF TABLES

C.20 ODD SMA 1200k (16 slaves) . 110

Abbreviations

API Application Programming Interface
DCC Departamento de Ciência de Computadores
DMA Distributed Memory Architecture
GM Global Master
HDFS Hadoop Distributed File System
ILP Inductive Logic Programming
IP Internet Protocol
LM Local Master
Prolog PROgrammation en LOGique
MPI Message Passing Interface
SL Slave
SLD Selective Linear Definite
SMA Shared Memory Architecture
WAM Warren Abstract Machine
Yap Yet Another Prolog

xvii

Chapter 1

Introduction

In the modern world there is a growing need for the efficient processing of immense amounts of

data in a simple and incisive way. Hardware is becoming increasingly more complex and pow-

erful, as well as much more affordable, due to competitive manufacturing processes and greater

economies of scale. In particular, the vulgarization of multicore processors presents a clear oppor-

tunity for taking advantage of these components’ architecture in order to significantly shorten task

processing times using parallelism, even in a common personal laptop. As such, there is an emerg-

ing demand for straightforward parallel interfaces for otherwise computationally taxing tasks, in

which users will not necessarily have an extensive programming background.

Logic Programming is strongly based on mathematical and logical concepts, making it an

accessible tool for users with relatively little programming experience but a relevant scientific

background, and allows for implicit parallelization by hiding implementation details from the pro-

grammers. The distinct declarative style of Prolog makes it an ideal tool for analysing, processing

or making inferences about data, having applications on a wide range of areas of knowledge, such

as machine learning [3], natural language processing [4] or program analysis [5], among many oth-

ers. The Prolog language also presents an interesting alternative to standard relational databases,

having some relevant applications in this area as well [6]. Furthermore, declarative languages are

typically very high level languages, meaning that the Prolog’s syntax is mostly independent of its

low level implementation. This allows users to detach their algorithms from almost any concern

with technical detail, since compilers already implement effective translation mechanisms.

In addition to ease-of-use, Prolog’s non-determinism allied to its declarative semantics invite

the use of parallelism as a tool to improve program efficiency, without increasing the program’s

complexity whatsoever. The aim of this work is then to introduce a widely known parallel pro-

gramming model - MapReduce - into the Prolog language, by designing and implementing an API

native to the Yap Prolog system [1]. The original MapReduce model [7] allows for handling data

throughout a cluster of machines, thus processing it in parallel and under a distributed architecture.

This system is composed of two user-defined operations - Map and Reduce - which conduce to an

extremely flexible programming model due to their structure.

Prolog is a programming language specially suited to store and analyze data, and even to make

1

2 Introduction

inferences based on that data. This is a feature that is increasingly more requested by programmers,

but the scalability of the existing data analyzing tools in Prolog has often been questioned. The

aim of this MapReduce for Prolog implementation is to provide the language – and the Yap system

in particular – with a flexible and easy-to-use framework for data processing in Prolog, with focus

on native data types. The MapReduce programming model is an ideal choice, since it is both well-

known and straightforward, presenting programmers with an attractive framework, which hides

all parallelization details but whose performance is efficient.

The MapReduce construct presented in this document can not only establish a processing

grid within a cluster of machines, but it can also take advantage of multicore processors in each

machine, if they exist. The latter feature is found to be especially relevant now that most processors

being built already incorporate at least two physical cores. Our implementation of a MapReduce

construct is aimed at relatively modest computing capabilities, and small to medium dataset sizes.

Under these conditions, it has proved to be agile and flexible, as well as highly efficient in terms

of speeding-up process executions for both computing and logical applications.

1.1 Thesis Purpose

Due to the vulgarization and growing affordability of computers, it is now common for people to

have access to more than one machine. In the last decade these machines were often equipped

with multicore processors, which have gained increasing significance as a standardized and inex-

pensive option. Both these facts combined provide ample possibilities for software designers to

take advantage of this emerging type of architecture composed of several machines with multicore

processors but relatively modest capabilities.

This thesis’ contribution lies in the fact that the MapReduce Construct for Prolog is applicable

to both multicore processors and clusters of machines, thus attaining high efficiency and much

shorter processing times in running tasks, while still using a straightforward declarative semantic

which implements the MapReduce model. This model is composed of two very basic operations

which are widely suitable for the processing of data concerning various applications [8]. It could

be argued that the lack of complexity of this model renders it trivial research-wise, nevertheless

we find that its simplicity is one of the key features which makes the paradigm so widely accepted

and used.

Logic Programming could be considered an unusual choice to implement a MapReduce model

since its focus is not on implementation details such as basic parallel constructs (threads or pro-

cesses); however, it presents an unique suitability to store facts in a background knowledge form

and draw conclusions from them, whilst it can still efficiently process most other forms of data.

Some criticisms have been made to logic programming languages regarding the reduced autonomy

of the programmer in terms of system definition and parallel optimization. This work addresses

that issue by implementing several possible levels of customization, from basic usage of the con-

struct to the definition of a grid of machines with their respective IP addresses and multicore ar-

chitectures. We hope this will effectively accommodate needs from users with strikingly different

1.2 Thesis Outline 3

goals and backgrounds.

1.2 Thesis Outline

This document is structured in 6 chapters, reflecting the different stages of the work. A brief

description for each one is provided below.

Chapter 1: Introduction. The current chapter.

Chapter 2: Background and Related Work. Presents relevant information on both logic pro-

gramming and MapReduce systems. In the first section, Prolog language basics such as first

order logic and Horn clauses are briefly described, followed by some examples of Prolog

syntax and semantics and an explanation regarding the various types of parallelism that can

be exploited in this language. This section also includes an overview of the Yap Prolog sys-

tem and of declarative programming in general. The latter section defines the MapReduce

model and addresses several implementations described in the literature. It then details the

most relevant works to this thesis, providing an in-depth analysis of their features.

Chapter 3: MapReduce in Prolog. The design of the system is detailed in this chapter, both for

clusters and for multicore architectures. The interface is also presented, as well as some

relevant examples of usage.

Chapter 4: Methodology. This chapter includes a thorough description of the datasets used to

validate the implementation. There is also an account of the machines used, as well as the

evaluation parameters for the results presented in the following chapter. In addition, the Yap

Prolog file system is introduced and a number of modifications and difficulties encountered

are detailed here. Some of the most relevant Yap Prolog libraries are briefly mentioned as

well.

Chapter 5: Results. This section contains firstly a quantitative account of the results from the

experiments with the system. Here are included the speedup plots and other measurements

considered pertinent to the systems’ assessment. The second part of this chapter contains

a qualitative description and discussion of the results, in order to provide some insight on

relevant points.

Chapter 6: Conclusions and Future Work. The work is summed up and some suggestions for

the future are detailed.

4 Introduction

Chapter 2

Background and Related Work

This chapter contains a summary of relevant state-of-the-art for both Logic Programming and the

MapReduce model. The Prolog language is introduced in some detail, and examples of usage are

provided. An explanation on how different forms of parallelism can be applied, with reference

to those examples, serves as preamble for the description of the MapReduce model. A number

of MapReduce implementations are presented and finally, an application of MapReduce to Logic

Programming is described in some detail, since it is a pertinent start point for this work.

2.1 Logic Programming

Since the mid-1900’s until the present time numerous programming languages have been devel-

oped. As such, a need arose to identify common features amongst the programming languages

so as to classify them accordingly. Therefore, four main paradigms have emerged from this pro-

cess, matching every programming language to one of these categories: imperative programming,

functional programming, logic programming or object-oriented programming. Imperative pro-

gramming’s semantic is composed of strict translations from machine language to a set of user

commands, whilst functional programming is concerned with features such as recursion or pat-

tern matching. Object oriented languages are the most recent paradigm and are versatile and very

complete in terms of functionalities. Declarative languages are also a relatively recent paradigm –

stemming from functional programming – and they aim at creating a dettachment between a pro-

gram’s goal and its execution details by enhancing the functional characteristics of the language

in preference to its technicalities. This allows the programmer to focus on the way in which the

program should be executed rather than how the actual computation is performed; the program-

ming task then becomes both easier and more efficient, as stated by J. W. Lloyd in [9]. Logic

programming languages are a subset of declarative languages, meaning that the programmer is

only required to specify what a program should do, and the language is responsible for executing

the specification in a fairly efficient way. It is evident that this paradigm of programming allows

for a detachment between the logic goals of the program and its execution goals, which can be ex-

plored towards greater efficiency. There are various languages in the logic programming category

5

6 Background and Related Work

(such as the Datalog [10] or Godel [11] languages), but only the Prolog family will be discussed

here since the remaining languages are out of the scope of this work. Prolog first appeared in

1972 [12], in result of extensive research on an experiment whose aim was to develop a strategy

for computers to interpret natural language. Since then, it has evolved and branched out into a

number of distributions such as SWI-Prolog [13], SICStus Prolog [14] or Yap [1].

2.1.1 The Prolog Language

In 1969, Cordell Green developed an automatic theorem proving procedure [15] applicable to

first-order logic systems, from where stem the numerous declarative programming languages in

existence today. Prolog’s syntax, in particular, is composed of clauses that can be expressed as a

conjunction of literals, also known as Horn clauses. This type of logical construction is a subgroup

of first-order logic, and as such it is not only resoluble and complete given a set of axioms but it

is also closed: the resolvent of two Horn clauses is also a Horn clause. This fact makes it possible

and convenient to recursively solve these clauses using resolution methods based on SLD [15].

In 1983, David Warren introduced a memory architecture and an instruction set, later named

the Warren Abstract Machine [16], meant to efficiently translate Prolog instructions to lower level

code, then to be resolved. The WAM still presently sets a relevant standard amongst Prolog com-

pilers [17]. It is important to note that whilst the order of the terms in a clause is mathematically

indifferent, it can be computationally taxing. More recent additions have been made to WAM and

other abstract machines in order to decrease the side-effects caused by parallel term computation,

deriving from the use of Or and And parallelism, to be described later.

Prolog is then a language composed of rules and terms, and their mutual interaction. It has

been argued that the logic programming paradigm should have been named the relational program-

ming paradigm [9] since that terminology better describes the nature of the language. A term is

the basic Prolog language entity, and it can be an atom (starts with lower-case letters or is enclosed

in single quotation marks), a number (float, integer), or a compound term (also named a functor).

An example of the latter would be a Prolog list such as [L1, L2, ..., LN]. A term can also be

a free variable (its name starts with an uppercase letter or an underscore) which is type-less until

it is unified, meaning that a value is then assigned to the variable. Since Prolog has no destructive

assignment of variables, unification for each variable can occur only once. However, backtracking

allows for unbinding already unified variables, since Prolog stores choicepoints and can restore a

previous program state so as to explore all possible solutions.

A rule in Prolog is necessarily a Horn clause, composed by a head and a body, and follows the

structure presented in Equation 2.1.

head : −body_clause1,body_clause2, ...body_clauseN . (2.1)

A rule’s head and body are related by the operator :-, which is an implication: for the head to be

2.1 Logic Programming 7

true, the body must also be true. A rule can have no body – the equivalent to 2.2.

head : −true. (2.2)

In these cases the rule is named a fact and represents a logical tautology in the program’s scope.

The set of rules and facts of a Prolog program is called its clauses. The rule names in a program

are also called predicates, and a predicate can have several clauses with different arity (number of

predicate arguments). The body of a rule is composed of a sequence of goals, interacting with one

another through connectives, or operators; in this case ,/2 corresponds to the AND connective.

Each goal represents a call to a predicate, which is then determined to be true or false. It is thus

evident that the execution of a Prolog program requires both a goal selection rule to determine

which goal is to be called next, and a search rule to choose which alternative of a goal to explore,

if several exist. Prolog’s resolution employs left-to-right goal selection and an depth-first search

strategy, and each resolution step taken is called reduction or logical inference. Since Prolog is a

programming language and thus not purely logical, it requires meta and extra-logical predicates

such as input/output operations, arithmetic operations or the cut operator. The latter must be

used under some circumstances for program correction, and it can also be helpful in expediting

execution by pruning the search tree and thus set aside unexploited alternatives. This operator is an

example of a non-logic predicate since it is sensitive to the order in which the goals are exploited.

Figure 2.1 gives an example of a basic Prolog program illustrating most of these concepts. In

cat(tom).
mouse(jerry).
cheese(roquefort).
cheese(emmental).

eats(X,Y):-cat(X),mouse(Y).
eats(X,Y):-mouse(X),cheese(Y).

Figure 2.1: Example of basic Prolog program

this program there are four assertions, or facts: tom is a cat, jerry is a mouse and roquefort

and emmental are both cheese. There is also a rule, or predicate, composed of a head eats(X,Y)

and a body containing the definition of eating. This rule expresses the fact that either cats eat mice

(first clause of eats/2) or mice eat cheese (second clause of eats/2). Figure 2.2 contains some

queries one could now pose regarding the program above (see Figure 2.1).

When analysing Figures 2.1 and 2.2 it becomes evident that the two parts - or clauses - of

the predicate eats(X,Y) are independent from each other in the sense that they do not have side

effects on one another. The fact that tom is a cat is detached from the fact that emmental is a type

of cheese, and so it follows that these calculations could be made simultaneously and that would

not alter the final answer of the query. This simple example serves to demonstrate the fitness of

Prolog languages to the application of implicit parallel execution, which will be discussed in more

8 Background and Related Work

?- eats(Anything,tom).
no

?- eats(tom,Anything).
Anything=jerry?
;
no

?- eats(jerry,Anything).
Anything=roquefort?
;
Anything=emmental.

Figure 2.2: Example of basic Prolog queries and answers.

detail in the following section.

2.1.2 Parallelism in Prolog

Parallelism in the Computer Science domain means to split a program in concurrent parts and ex-

ecute them simultaneously. This if often done with multi-threading, using only one machine, but

it can also support many machines running the same program at once. Also, parallelism can be

divided in two categories, depending of how aware the user is of the parallelization mechanism.

Implicit parallelism takes place when the programmer writes the code as if it were going to be

executed sequentially and the system is responsible for executing the code concurrently, for faster

and more efficient execution when compared to the sequential case. Explicit parallelism typically

obtains even better results in terms of efficiency, since the user can tune the system for optimum

performance. This, however, requires systems to provide a framework in which the user can decide

how he/she wants to run the program in a parallel way. These two forms of parallelism have radi-

cally different applications and implementations, and the focus of this document is on an explicit

parallel model; however, we explore it implicitly by default, hiding the parallelization details from

the user. Different levels of explicit parallelism can easily be incorporated in the MapReduce for

Prolog construct presented in this document because it provides different levels of customization,

rendering it possible for more experienced users to explicitly call parallel predicates in the system.

According to [18] there are three ways in which implicit parallelism can be explored in Prolog lan-

guages: And-parallelism, Or-parallelism and unification parallelism. A brief description of each

follows, with reference to Figs 2.1 and 2.2.

And-parallelism can be used when there is more than one subgoal in a resolvent, meaning that the

parallel executions either compete or cooperate to find a solution. This type of parallelism

can be dependent or independent, depending on whether there are variables common to the

branches which have not been unified prior to the query. Independent and-parallelism could

be applied given the following query: ?-eats(Something,Anything)., since it can be

broken down as two clauses: cat(Something),mouse(Anything)., which could both

2.1 Logic Programming 9

be executed simultaneously. An example of dependent and-parallelism would be ?-eats(

Something,Something)., using the same break-down structure.

Or-parallelism can be applied when more than one rule head unifies with a query. Thus, the solu-

tion space is searched concurrently, and in effect each search can lead to different valid solu-

tions. This form of parallelism applies when a query such as eats(Something,Anything

). is called, since there are two different clauses corresponding to the eats/2 predicate.

Unification parallelism can exist when a term with arity greater than one needs to be unified. In

such a case, the unification of its arguments can be done in parallel: eats(jerry,cheddar

)=eats(Mouse,Cheese).. In this case, the variables Mouse and Cheese can be bound to

jerry and emmental values concurrently.

Most Prolog systems currenlty available do not support parallelism [18]. The Yap and the

SICStus Prolog are two examples of systems that support implicit or-parallelism. Also, some

systems such as Yap or SWI Prolog maintain explicit parallel constructs (for instance, thread

support).

2.1.3 The Yap System

Yet Another Prolog system [1] first appeared in 1984 in University of Porto and presented a WAM

based design with some improvements, namely a very fast emulator written in assembly [1]. How-

ever, in the mid 90’s some portability issues regarding the system emulator assembly code raised,

forcing the Yap developers to revert to a C-based emulator, which at first proved to be much slower,

but whose performance has increased greatly over the past years [19]. Also, at this point, some

additions were made to the Yap system so as to support parallelism [20] and tabling mechanisms

[21]. Because Yap is meant to provide support not only for small applications, but also for ap-

plications which require the manipulation of large and complex databases, in the past few years

three very important additions have been made to the system. From [1] a short summary of these

features is presented below.

The Just-In-Time Indexer (JITI) allows for indexation of both multiple arguments, compound

terms and multiple modes of usage. Even though JITI can have a cost in terms of memory

usage, it is generally thought that the advantages in runtime outweigh it [22].

The Sequential Tabling Engine provides runtime support for sequential and dynamic mixed-

strategy tabling. This mechanism has proved yield good result when compared to other

Prolog systems in the literature [23], [24].

The Or-Parallel Tabling Engine uses incremental stack copying to increase runtime speeds, and

it has been shown in [24] that this methodology is successful for systems with medium

parallelism.

10 Background and Related Work

Yap is one of the fastest Prolog systems in existence, being highly portable due to its C source

code and very complete, integrating several modules of I/O operations, threads and databases.

The work described in this document is implemented on top of the Yap system.

2.2 The MapReduce Framework

MapReduce is a programming model developed by Google in the early 2000’s [7] aimed at pro-

cessing large amounts of data. As the name suggests, it is composed of two elementary operations:

map and reduce, which are based on primitives originally introduced in functional programming

languages such as Lisp. The map operation applies a transformation to a set of key/value pairs,

resulting in another set of the same size consisting of pairs with the same key but a mapped value.

The reduce operation groups all the mapped pairs with the same key and aggregates their values,

usually into one - or no - result. The pseudocode in Figure 2.3 illustrates the functions described

before. The aux_aggregator operation is independent of both the data being processed and the

map and reduce operations, rendering it autonomous from the remaining program; this operation

allows the user to run different kinds of data on the same MapReduce call and group then using a

key. This feature is specific to Google’s MapReduce implementation and it is not included in the

MapReduce for Prolog construct because it was found to be unnecessary. The size of the datasets

our construct is aimed at does not justify burdening the framework with another mandatory oper-

ation and since MapReduce for Prolog can be used iteratively, the user can simply make one call

for each data type in a loop.

Figure 2.4 depicts a very simple MapReduce operation. In that case, the inputs are squares,

triangles and circles, either black or white. The colour of the shapes represents their key and

the shape itself is the value. The mapping process transforms each shape into the first letter of

its name, thus mapping a square to an S, a triangle to a T, and so on. The mapped values are

then sorted by colour, corresponding to the aux_aggregator operation, and finally the reduce

function is called. This function consists of counting how many T’s there are. Thus, the result of

the operation per key is found to be 2 white T’s and 1 black T.

The MapReduce model was primarily developed to be applied onto a large set of machines

linked together - also known as a cluster - with the purpose of drastically reducing data processing

times by taking advantage of the parallel architecture of this system. Most MapReduce frameworks

described in the literature [7, 25, 26, 27, 28, 29], if not all, use a master-slave architecture, similar

to the one presented in Figure 2.5. Figure 2.5 depicts the flow of data in a generic MapReduce

application. The data flows from left to right and is controlled by the Master. The initial data

is assigned to one of the Mappers, and through computation is transformed into Intermediary

data. The Master then assignes Reducers with some of the Intermediary data and after the reduce

operations take place, the result is determined. Given the sometimes huge size of the clusters in

which MapReduce frameworks are applied (consider the architecture in [7]), they must be highly

fault-tolerant and robust. Amongst other precautions mentioned in the literature, the master node

2.2 The MapReduce Framework 11

map_operation(key, value) -> (key, mapped_value) {
mapped_value = perform_map_operation(value);

}

reduce_operation(key, set_of(mapped_value)) -> (key,
reduced_value) {
reduced_value = perform_reduce_operation(set_of(mapped_value)
);

}

aux_aggregator(set_of(key, mapped_value)) -> set_of(key, set_of(
mapped_value)) {
for each key compute
set_of(mapped_value) = aggregate_by_key(key, set_of(key,
mapped_value));

}

Figure 2.3: Pseudocode for map and reduce operations

is usually responsible for pinging the slave nodes, as well as backing up the processed data and

rescheduling work in case of slave failure.

So far, the features of the MapReduce paradigm have been superficially described, but nothing

has been said regarding its capability to meet real-world data processing requirements. The rele-

vance of this model lies in the fact that the map and reduce operations are suitable for expressing a

number of classic processing algorithms under a summation form [8]. This form allows for a direct

conversion to map and reduce operations, and it has been shown by [8] that algorithms such as lo-

cally weighted linear regression, expectation maximization and neural networks, amongst others,

can be applied successfully to a MapReduce framework.

Whilst these algorithms can be useful, the MapReduce model is by no means limited to them,

as many possible map and reduce operations can be defined for this framework. One needs only

to ensure that the operations have no collateral effects on data other than that being used in the

operation. Furthermore, it is necessary to guarantee that the operations on the data are associa-

tive and commutative, so that they can be executed in parallel and thus benefit from the inherent

speeding up of the process. This speed-up is a pertinent indicator to evaluate the performance of a

MapReduce framework running in parallel, and in this document the following metrics for system

speed-up will be adopted:

Su =
Ts

Tu
(2.3)

where

Su is the system speed-up for u processing units. If Su is greater than 1, the system is faster than

a sequential execution.

12 Background and Related Work

Figure 2.4: Graphic example of a MapReduce operation.

Ts is the time the system takes to run a sequential execution of the problem.

Tu is the time the system takes to run with u processing units.

The number of processing units in a system is considered to be the number of workers running

simultaneously during a given call. The ideal and maximum number of processing units for a

system can then be calculated as:

U =
M

∑
m=1

Pm

∑
p=1

Cp (2.4)

where

U is the total number of processing units in the system.

M is the number of Machines in the system.

Pm is the number of Processors in machine m.

Cp is the number of Cores in processor p.

2.2.1 MapReduce Implementations

There are presently several MapReduce implementations described in the literature [7, 25, 26, 27,

28, 29, 30], and in this document the most relevant to our work will be briefly introduced.

2.2 The MapReduce Framework 13

Figure 2.5: Example of MapReduce master-slave architecture

1. The HDFS or Hadoop Distributed File System [31] is a fault-tolerant distributed file sys-

tem, which is designed to run on low-cost hardware. Its purpose is to meet the requirements

of applications which need to manipulate large datasets and it was designed with a batch

processing methodology in mind, as opposed to iterative data processing. This system uses

data replication for higher reliability but also with the purpose of improving network traf-

fic and data accessibility. In [27] Hadoop is compared to other approaches of large-scale

data analysis, and whilst its setup time is negligible compared to others, the overall task

processing time was found to be 3.2 times slower than the second slower approach tested

(an SQL Database Management System) [27]. This highlights that there is still much work

to be done if the MapReduce framework is to become a dominant approach in large-scale

data-analysis.

2. Twister [29] presents an architecture different from other MapReduce frameworks since

it provides efficient support for iterative MapReduce calls. Unlike most systems in the

literature, it uses a publish/subscribe messaging protocol and attempts to reduce the amount

of communication data to a minimum by increasing the granularity of the map operation.

However, it does not feature any form of load balancing, nor is it highly fault tolerant. The

only safeguards Twister implements are to back data up at the end of each iteration and to

re-send work to slave nodes in case of failure. This approach presents slightly faster results

than Hadoop in the situations described in [29].

14 Background and Related Work

3. SAGA [26] is a high level API which executes operations on distributed systems, support-

ing various architectures like clusters, clouds or grids. Unlike the two previous frameworks,

SAGA is implemented natively in C++, as opposed to Java, and the MapReduce model was

recently introduced into it. This approach is slower than most others due to its portability;

the fact that it is not optimized for one distributed system only has a cost in terms of effi-

ciency. Still, it provides a simple interface for programmers to use the MapReduce model

in distributed systems with less conventional architectures.

2.2.2 MapReduce Applied to Prolog

One might wonder about the relevance of creating a MapReduce framework for Prolog, since there

are already several portable and flexible implementations for other programming languages in the

literature, as described in the previous sections. However, Prolog provides support for features

which would be difficult to implement in functional, imperative or object-oriented languages, such

as natural language analysis, machine learning and, of course, inductive logic programming. ILP is

the preferred Prolog application in this work because it requires intensive and iterative processing

of large amounts of data so as to infere rules applicable to it. As such, a MapReduce construct

would be a valuable tool to make this process simpler and more efficient. An example of such an

application is then briefly described below.

In [32], Ashwin Srinivasan et al. introduce an approach combining Hadoop’s MapReduce

framework [33] and the inductive logic programming system Aleph [34]. Their aim was to inves-

tigate whether the ILP engine could be applicable to very large datasets, seen as the amount of data

available for processing has become so large as not to fit into one machine’s memory. MapRe-

duce was the selected framework for this task, due to its abstraction level and the fact that several

machine learning algorithms can successfully be implemented on this model [8]. The approach

used in this work consisted of two distinct engines, one for running ILP and the other for running

the actual MapReduce using the Hadoop framework [31]. Two different sets of map and reduce

functions were developed for this system, with different aims. The first of these sets was meant

to distribute the background knowledge across the MapReduce cluster, so as to ensure that the

second set of functions - which actually perform the relevant calculations for the given examples

- had all the necessary clauses to be able to use a greedy algorithm. The Map Reduce and ILP

engines communicate and the latter transforms examples not yet covered in MapReduce queries.

When the last reduce operation is finished, the minimum cost clause determined is then returned

to the ILP engine.

The authors have used both synthetic and real-world datasets, with sizes ranging from tens

of thousands up to millions, and their results demonstrated that the MapReduce framework can

be efficiently applied in this context. Still, the size of the dataset must be significant (greater

than 500,000) in order to obtain some speed-up using this methodology. Also, the speed-ups are

not nearly linear until datasets of size 5 million, and for datasets smaller than 500,000 the data

processing time actually slows down when compared to sequential time due to the cost of data

communication and disk access in the cluster, amongst other factors.

2.2 The MapReduce Framework 15

To the best of our knowledge, there is no MapReduce framework native to Prolog, and so the

aim of this document is to describe a fast and versatile implementation of this framework in Yap.

The motivation for this lies in the need for a tool for transparent distributed computing in Prolog,

whose results present speed-ups even for small datasets, and whose interface would be available

as predicates in a Yap library. We believe this would contribute towards more and simpler data

processing support in Yap, and find it particularly relevant at an age when multi-core processors

are increasingly common and inexpensive.

16 Background and Related Work

Chapter 3

MapReduce in Prolog

In this chapter we describe our high-level MapReduce parallel construct for Prolog and present

the most relevant implementation details.

3.1 Architecture

The model’s architecture is loosely based on the architecture described in [7] in the sense that it

supports clusters of machines, but it innovates by taking advantage of the parallelism within each

machine. Figure 3.1 shows how our framework can apply to a generic distributed architecture.

Figure 3.1: Framework architecture

17

18 MapReduce in Prolog

There are three hierarchical levels in this architecture: the Global Master (GM), the Local

Masters (LMs) and the Slaves (SLs). The GM controls the flow of communications and first-level

scheduling, dispatching data to the LMs. There are as many LMs as machines in the cluster and

each LM is responsible for local data scheduling and dispatching among the SLs running on that

machine. The SLs execute both map and reduce predicates on their data and return the reduced

value to the respective LM. Each LM then performs a reduce operation on all its SLs’ reduced

values, and similarly the GM executes the last reduce operation of the call. This architecture

applies to distributed memory systems composed of multi-core machines.

For shared memory architectures (SMA), our MapReduce for Prolog uses multi-threading

while for distributed memory architectures (DMA), it uses MPI [35]. In the SMA implementation,

the first thread – LM0 – starts as many threads as the number of machine cores. Each thread runs a

slave interface, which waits for thread messages from LM0 and carries out the work. In the DMA

implementation, processes are started for each machine core or for each distributed computer

node. The SLs can be thought of as resources that LMs manage according to different scheduling

methods; the SLs do not keep track of how many operations they have executed, and they do not

self terminate. Instead, LMs are responsible for their creation, task assignment and termination.

The system requires a set-up time, in which each LM loads any files that may have been

requested by the user, so as to have the necessary information to carry out queries. This infor-

mation is named background knowledge; in the case of different LMs, each one can have its own

background knowledge. The set-up time is only spent once for each LM and each background

knowledge file requested, for the SMA implementation. For the DMA implementation, files need

to be read by all LMs. Since the data files are only loaded on LMs during the initialization of the

program, this model allows for no communication overheads during runtime. Note that the user is

responsible for having a copy of the program source code in each machine, as well as the map and

reduce predicates and any other data required to complete the queries.

The MapReduce predicates are user-defined but follow a specific pre-defined signature. The

map predicate has two arguments, the first being an element from the list of values to be mapped

and the second the mapped result. The reduce predicate also has two arguments, the first being a

list of Prolog terms to be reduced and the second the reduced result.

Each MapReduce call receives as arguments the names of predicates to be used to map and re-

duce data. As such, the user can specify several different predicates and use them indiscriminately

in different MapReduce calls without having to re-initialize the system. The MapReduce predicate

also requires a data array as input. This array can be created by the user, or it can be loaded from a

file automatically. Our framework includes predicates capable of creating an array of data from a

given file. The positions in the array contain the respective line of the file, in the form of a generic

Prolog term. We consider this to be a flexible approach, since the user can use data from any other

source he/she requires, as long as he/she makes it available to the system under this structure.

3.2 File System 19

3.2 File System

One of the main goals of this implementation is to provide a flexible system, which supports both

heavy computations across several machines and lighter iterative runs of MapReduce possibly

executing on one machine alone. We have designed a transparent architecture divided in three

functional modules as follows:

Initializer Creates a communication grid encompassing the LMs and the SLs, and loads the data

for each LM.

MapReduce This module is composed of the master and the slave files. Only one of these files

is used at any given time, according to the entity’s hierarchical level. The slave version ex-

ecutes the map and reduce predicates, while the master version performs reduce operations

and implements communication protocols.

Terminator Terminates the communication grid created by the Initializer and frees the allocated

memory.

Additionally, user-defined files are required in order to specify the several map and reduce

predicates to be used. The fact that this information is specified as Prolog predicates allows the

user to easily reconfigure them – including system architecture and map and reduce predicates; it

is also possible to run distinct MapReduce calls simultaneously.

3.3 Scheduling Methods

Most parallel and distributed MapReduce systems are not very concerned with the efficiency of

scheduling strategies, rather with their redundancy and fault-tolerance strategies. Conversely, and

since MapReduce for Prolog is an implementation for more modest computing capabilities, we

concern ourselves with the speedup that this construct achieves, when compared to executing the

MapReduce call sequentially. It is then crucial to have a scheduling method which allows for

good performance in parallel, and bearing this in mind we developed four scheduling methods: (i)

single-step scheduling; (ii) static scheduling; (iii) dynamic scheduling and (iv) workpool schedul-

ing.

Figures 3.3, 3.4, 3.5 and 3.2 depict the interaction between LMs and SLs on each type of

scheduling. This interaction can obviously extrapolate to GMs and LMs, respectively. All figures

depict three stages of the scheduling algorithm, temporally from left to right, and the explanatory

text is presented below.

Single-step scheduling is used as a base case. It takes the total number of items and distributes

them evenly across slaves in just one step. One block of items goes to one slave, another

to the second slave and so on, ensuring every SL is assigned the same number of queries,

approximately. In stage two of Figure 3.2, the method of dividing data is depicted, and in

stage three the division is completed.

20 MapReduce in Prolog

Figure 3.2: Single-step scheduling method.

Static scheduling consists of dividing the M data items in chunks of N elements and distributing

them in a round-robin fashion by all the slaves. It differs from the single-step scheduling

because the queries are distributed in several small chunks, in turns. Figure 3.3 shows that

it first attributes a chunk to each slave and from then all the data is distributed alternately by

the slaves.

Dynamic scheduling is more adaptive than the previous method, but also more demanding on

the LM in terms of computation time. At first, it also attributes a chunk of data to each

slave, in order, but then the LM waits for a reply from one of the SLs, informing that it is

free. This algorithm behaves differently from static scheduling because, as shown on stage

three of Figure 3.4, the LM waits for a reply from one of the SLs. The LM then attributes

further work to the free SL and waits again. Ultimately, and if the data granularity is low,

the dynamic scheduling converges towards static scheduling, since all SLs take the same

time to complete the same number of queries.

Workpool scheduling is similar to the dynamic one, but implements a pool of work that is con-

sumed on demand of idle slaves. As depicted in Figure 3.5, the SLs have access to a pool

of work that is filled by the LM with chunks of data to be processed. The SLs remove one

chunk of work when they are finished with their current one, until the pool is empty. The

LM is not responsible for distributing the work between SLs, and this can be computation-

ally less taxing on the LM entity. However, the access to the workpool is heavily competed

for, and more so with a growing number of SLs.

Results and other considerations on the various scheduling methods are presented in further

detail in Chapters 4 and 5, as well as some relevant future work, mentioned in Chapter 6.

3.3 Scheduling Methods 21

Figure 3.3: Static scheduling method.

Figure 3.4: Dynamic scheduling method.

Figure 3.5: Workpool scheduling method.

22 MapReduce in Prolog

3.4 User Interface

The MapReduce for Prolog user interface is composed of six predicates, as illustrated in Fig-

ure 3.6.

init_communicator(-Comm).
init_communicator(-Comm,+NoCores).
end_communicator(+Comm).

data_from_file(+Filename ,-DataArray).

map_reduce(+Comm,+MapPred ,+ReducePred ,+DataArray ,-Result).
map_reduce(+Comm,+MapPred ,+ReducePred ,+DataArray ,-Result ,+
Scheduling).

map_reduce(+Comm,+MapPred ,+ReducePred ,+DataArray ,-Result ,+
Scheduling ,+NoElements).

map(+Value,-MappedValue).
reduce(+ListOfValues ,-ReducedValue).

Figure 3.6: MapReduce for Prolog predicates in shared memory architectures.

The init_communicator/1 and init_communicator/2 predicates initialize the system: if

no NoCores argument is provided, the MapReduce for Prolog determines the number of cores

in the machine and starts the corresponding number of slaves. The predicate then returns the

slave’s information in the Comm argument. The end_communicator/1 predicate should be used

to terminate the communication grid and free memory.

The data_from_file/2 predicate can be used to consult a file and load its lines, as Prolog

terms, into an array. The use of this predicate is optional, since the user may build an array from

other sources and pass it as argument to the map_reduce() call. This predicate supports three levels

of customization. The most basic form – map_reduce/5 – uses the standard scheduling options.

The map_reduce/6 and map_reduce/7 allow the user to select a scheduling method and the

number of elements per chunk for that method, if applicable. These predicates can be called

iteratively and with different map and reduce operations, and they return only the final result.

Finally, the map/2 and reduce/2 are not part of the interface per se, but they are included

in the description for completeness and also because even though they are user-defined, their

signature must match the one in Figure 3.6. These predicates define the specific map and reduce

operations and their names are passed as arguments to the map_reduce/5 predicate. This allows

for great flexibility, since the user can define several predicates prior to execution, as well as, for

instance, specify different behaviours according to the machine the predicates are running in.

Due to the MPI communication protocol usage, the interface differs between shared memory

and distributed memory architectures. The predicates for the distributed memory version do not

contain the Comm argument, since the program is run as an MPI executable, meaning that the

3.4 User Interface 23

communication grid must be configured in the MPI protocol, outside the MapReduce for Prolog

interface. For distributed memory systems, it is assumed that the grid has been configured and

is running, and that a copy of the relevant files has been placed in every machine in the cluster.

It is also not possible to change the scheduling method to workpool, since the SLs behaviour

is radically different from the one exhibited in the other three scheduling methods. Other than

that, the interface is very similar in both cases, and the configuration options are common to both

cases. Note that the user can abstract from the details of the parallel implementation and machine

architecture as we provide interfaces with different levels of transparency.

3.4.1 Usage Examples

Two usage examples are now presented in Figures 3.7 and 3.8.

map(V,1):-call(V),!.
map(_,0).

reduce([],0):-!.
reduce([H|T],RV):-reduce(T,Aux),RV is Aux+H.

example(Result):-
init_communicator(8,Comm),
data_from_file(’queries.pl’,MyArray),
map_reduce(Comm,map,reduce,MyArray,Result1),
do_something(Result1,MyArray,MyNewArray),
map_reduce(Comm,map,reduce,MyNewArray ,Result2),
do_something(Result1,Result2,Result),
end_communicator(Comm).

Figure 3.7: MapReduce for Prolog usage example for shared memory architecture

map(V,MV):-MV is V mod 2.

reduce([],0):-!.
reduce([H|T],RV):-reduce(T,Aux),RV is Aux+H.

example(Result):-
data_from_file(’queries.pl’,MyArray),
map_reduce(Comm, map, reduce,MyArray,Result),
do_something(Result),
end_communicator.

Figure 3.8: MapReduce for Prolog usage example for distributed memory architecture

The map/2 predicate introduced in Figure 3.7 verifies whether a given call is true and the

reduce/2 predicate applied in this example sums all the numbers in a list, which calculates how

24 MapReduce in Prolog

many terms are true for map/2. This example is intended to be illustrative of a map operation

native to Prolog, but there are many other possible applications for the simple but powerful frame-

work we provide, such as run map_reduce/5 calls in a loop, or define map and reduce operations

so as to apply the Naïve Bayes algorithm on a dataset, as described in [8], amongst other.

In Figure 3.8, the map/2 predicate is an example of a generic computation, and the purpose

of that MapReduce call is to determine the number of odd numbers in the queries.pl file. This

illustrates the high adaptability of MapReduce for Prolog, and its ease-of-use.

Chapter 4

Methodology

This chapter contains a thorough description of the software used to complete this work, such

as the Yap System, the Intel VTune Amplifier tool and openMPI. Also, modifications to the Yap

system source code and some known issues are also mentioned. Finally, the datasets used in the

experiments and the respective map and reduce operations are presented.

4.1 The Yap System in Detail

Even though the MapReduce for Prolog construct was implemented on the Yap system (version

6.3), some research about its internal structure was made. This was necessary in order to per-

form some fine tuning required to improve the efficiency of MapReduce for Prolog; its initial

results were not satisfactory. As such, slight modifications to the system have been made, and are

described in further detail in Section 4.3. The Yap system is then depicted in Figure 4.1

Engine

OPTYAP

YAPOR

YAPTAB

YAAM
Emulator

Compiler

Assembler

JITI

Clause Compiler

Internal
Database

Libraries

Prolog-Core Libraries

SWI Emulation

Top-Level

C-Core Libraries

C-Foreign Interface

Threads Library

User C
File

YAP Prolog

User Prolog
File

Figure 4.1: Organization of the Yap system (courtesy of Ricardo Rocha, from [1]).

In this system, there are four main data structures:

25

26 Methodology

Libraries are composed of user-level Prolog libraries and core Prolog and C libraries. In this

work, some changes have been made to the core libraries (see Section 4.1.1). MapReduce

for Prolog’s aim is to eventually integrate the user-level Prolog libraries of the Yap system.

Engine executes Yet Another Abstract Machine instructions and can use a number of strategies

to improve execution.

Compiler compiles Prolog clauses and converts the data to be stored in the internal database by

means of an assembler. Both the Engine and the Compiler are out of this work’s scope.

Internal Database is composed of a Global and a Local memory space, as depicted by Figure 4.2.

It contains Atom and Predicate Tables, which are shared between all the threads of the

program, even though each thread has its own Local WAM Registers.

LOCAL 1

WAM Registers

GLOBAL

Predicate
Table

Atom
Table

hello

port

NextOfAE
+

$live

PropsOfAE

OP
NextOfPE

FUNC

PropsOfAE

PRED

NextOfAE

NextOfAE

NextOfAE

LOCAL 2

WAM Registers

Figure 4.2: Organization of the Yap database (courtesy of Ricardo Rocha, from [1]).

Both the Atom Table and the Predicate Table are hash-based, and their entries are saved as a

linked-list which contains all the atom’s or the predicate’s properties. Again, note that every thread

saves its atoms in the joined Atom Table for Yap, and this is a factor hindering the shared memory

MapReduce for Prolog’s performance.

4.1.1 Yap Threads

The Yap supports standard POSIX threads, compatible with the SWI-Prolog multi-threaded li-

brary [36]. There are standard creating and termination predicates, and each thread is assigned a

4.1 The Yap System in Detail 27

local memory space to save all backtrackable data. The Yap system also supports thread commu-

nication by means of thread queues. There is a queue for each thread, and they share the same

name, which in this case works as an identifier of both the thread and the queue; the queue and the

thread are created and destroyed in the same operation. In addition, independent queues can be

created by the user, for other purposes. The queues have intrinsic associated condition variables,

so as to regulate access to their data, and there are predicates to send and get messages from the

queues which are signalled when new data is available on that queue.

There was some room for improvement in the current Yap implementation of the thread_get

_message/2 in terms of managing the locks efficiently, and the predicate was adjusted accord-

ingly. Also, a non-blocking version for this predicate – thread_get_message_non blocking

/2 – was developed. Figures 4.3 and 4.4 present the implementation of the blocking and non-

blocking versions of these predicates, respectively. The difference between these two imple-

mentations lies in the third clause of thread_get_message/2 and thread_get_message_non

blocking/2; the latter case fails when attempting to retrieve a message from an empty queue,

whilst the first waits on the condition variable Cond. Once it is signalled, the predicate acquires the

respective lock and proceeds to the message retrieval predicate thread_get_message_loop/4;

note that a second check for messages in the queue is performed then.

thread_get_message(Term):-
’$thread_self’(Id),
thread_get_message(Id,Term).

thread_get_message(Queue, Term):-
var(Queue),!,
’$do_error’(instantiation_error ,thread_get_message(Queue
,Term)).

thread_get_message(Queue,Term) :-
recorded(’$thread_alias’,[Id|Queue],_),!,
thread_get_message(Id, Term).

thread_get_message(Queue,Term):-
recorded(’$queue’,q(Queue,Mutex,Cond,_,Key),_),
’$db_is_dequeue_empty’(Key),!,
’$cond_wait’(Cond,Mutex),
’$lock_mutex’(Mutex),
’$thread_get_message_loop’(Key,Term,Mutex,Cond).

thread_get_message(Queue,Term):-
recorded(’$queue’,q(Queue,Mutex,Cond,_,Key),_),!,
’$lock_mutex’(Mutex),
’$thread_get_message_loop’(Key,Term,Mutex,Cond).

thread_get_message(Queue,Term):-
’$do_error’(existence_error(message_queue ,Queue),
thread_get_message(Queue,Term)).

Figure 4.3: Blocking predicate to receive a message from a queue.

28 Methodology

thread_get_message_nonblocking(Term):-
’$thread_self’(Id),
thread_get_message_nonblocking(Id,Term).

thread_get_message_nonblocking(Queue,Term):-
var(Queue),!,
’$do_error’(instantiation_error ,
thread_get_message_nonblocking(Queue,Term)).

thread_get_message_nonblocking(Queue,Term):-
recorded(’$thread_alias’,[Id|Queue],_),!,
thread_get_message_nonblocking(Id,Term).

thread_get_message_nonblocking(Queue,Term):-
recorded(’$queue’,q(Queue,Mutex,Cond,_,Key),_),
’$db_is_dequeue_empty’(Key),!,
fail.

thread_get_message_nonblocking(Queue,Term) :-
recorded(’$queue’,q(Queue,Mutex,Cond,_,Key),_),!,
’$lock_mutex’(Mutex),
’$thread_get_message_loop’(Key,Term,Mutex,Cond).

thread_get_message_nonblocking(Queue,Term) :-
’$do_error’(existence_error(message_queue ,Queue),
thread_get_message_nonblocking(Queue,Term)).

Figure 4.4: Non-blocking predicate to receive a message from a queue.

From Figures 4.3 and 4.4 it can be inferred that there is some competitiveness between threads

when retrieving a message from a queue. This proved to be an issue during implementation, and

so it was decided to make use of the threads’ individual message queues whenever possible, as

opposed to having a shared work queue, even though the results from that approach – presented in

Chapter 5 – were still good. This code can be found in ’pl/threads.yap’, in the Yap source code.

4.1.2 Yap Statistics

Since speed-up is one of the considerations for the validation of MapReduce for Prolog, it was

considered essential to have accurate time measuring operations. The Yap system makes avail-

able a statistics built-in predicate statistics/2 which takes as argument a parameter such as

walltime or cputime and returns its value at a given time. However, as this predicate’s preci-

sion was found to be insufficient for taking the necessary measurements, two new predicates were

developed and made available by Miguel Areias; they are presented in Figure 4.5.

statistics(thread_cputime_stime ,KernelTime).
statistics(thread_cputime_utime ,UserTime).

Figure 4.5: Time measuring predicates kindly made available by Miguel Areias.

4.1 The Yap System in Detail 29

These predicates measure time in miliseconds and are compatible with multi-threading appli-

cations. When the Yap system is started, a system time value is stored:YapStartOfTimes. The

times returned by the statistics/2 predicate are then measured by making system calls and

finding the difference from that time. Also, some modifications were made to the statistics/2

predicate regarding the measurement of the walltime parameter. These changes required altering

the files ’pl/statistics.yap’ in the core Prolog library, as well as the ’C/threads.c’ and ’C/sysbits.c’

in the core C library of Yap, and were mainly concerned with enhancing the precision of the

statistics/2 predicate. Namely, signed integers were converted to unsigned ones, since times

are always positive in this scope.

4.1.3 Yap Message Passing Interface

Message Passing Interface is a communications protocol for parallel programming [37]. Its source

code is available in C, C++ and Fortran, and since the MPI Forum [35] has standardized the

system in 1994 and again in 1996, many hardware designers and vendors have adopted it. MPI is

then a portable, highly efficient means of both broadcasting and messaging point-to-point, which

can be efficiently used for MapReduce support [38, 30]. Even though it was initially designed

to support distributed memory systems only, MPI2 and MPI3 have expanded scope to feature

a somewhat limited thread support. The MPI Forum has made an effort to integrate the best

features in various systems, and this has led to the discontinuation of some implementations,

such as lamMPI [39]. However, implementations such as openMPI [40] or MPICH [41] are still

maintained and supported.

The Yap system supports both lamMPI [39] and openMPI [40]. The module must be included

in the Prolog code using the following command: use_module(library(lam_mpi)). In ad-

dition, when running Yap, the system command mpirun ou mpiexec must be invoked. A basic

example of a program in Yap using MPI is depicted in Figure 4.6.

:-use_module(library(lam_mpi)).

example:-mpi_init ,
mpi_comm_rank(Rank),
Rank=\=0,!,
write(’I am Slave’),write(Rank),nl,
mpi_finalize.

example:-write(’I am Master’), nl,
mpi_finalize.

Figure 4.6: Example of an MPI program in Yap.

The mpi_init/0 and mpi_finalize/0 predicates must be invoked since this is required by

the MPI protocol. In MapReduce for Prolog as well as in the example, the master is the MPI

node with rank 0, and all the other processes are considered slaves. MPI in Yap also provides an

30 Methodology

interface to MPI messages, similar to the one described in Section 4.1.1 for threads. The messages

require the Rank of the process, but there is a broadcast option available as well.

4.2 MapReduce for Prolog Implementation

This section elaborates on some implementation details of the MapReduce for Prolog construct

presented in this document, namely the map_reduce/5 predicate. Figure 4.7 presents the lower

level implementation details of that predicate. Note that all map_reduce calls are subsets of

map_reduce/7.

map_reduce(Comm,MapPred,ReducePred ,DataArray ,Result):-
Scheduling = ’dynamic’,
NoElements = 1000,
map_reduce(Comm,MapPred,ReducePred ,DataArray ,Result,Scheduling
,NoElements).

map_reduce(Comm,MapPred,ReducePred ,DataArray ,Result,Scheduling)
:-
NoElements = 1000,
map_reduce(Comm,MapPred,ReducePred ,DataArray ,Result,Scheduling
,NoElements).

map_reduce(Comm,MapPred,ReducePred ,DataArray ,Result,Scheduling ,
NoElements):-
(
Scheduling == ’dynamic’ ->
distribute_work_dynamic(Comm, MapPred, ReducePred , DataArray
, NoElements , Result)

;
Scheduling == ’static’ ->
distribute_work_static(Comm, MapPred, ReducePred , DataArray ,

NoElements , Result)
;
error(’Please use static or dynamic as the scheduling method
.’)

).

Figure 4.7: map_reduce/5 implementation details.

Figure 4.8 details the implementation of the auxiliary predicates distribute_work_static

/6 and distribute_work_dynamic/6. Note that the dynamic scheduling is composed of three

work dispatching stages, whilst static scheduling only sends work and receives results, thus only

having two stages.

Figure 4.9 presents the algorithm used to schedule and dispatch the data to slaves, for the dy-

namic scheduling method, using the MPI protocol. The send_work_init_dynamic/7 predicate

4.2 MapReduce for Prolog Implementation 31

distribute_work_dynamic(Comm, MapPred, ReducePred , DataArray ,
NoElements , Result):-
length(DataArray , Size),
StartPosition = 0,
send_work_init_dynamic(Comm,MapPred,ReducePred ,DataArray ,
NoElements ,StartPosition , NewStartPosition),

send_chunk_per_result_dynamic(MapPred,ReducePred ,DataArray ,
NewStartPosition ,NoElements ,Size,FirstResults),

get_results_dynamic(Comm,LastResults),
append(FirstResults ,LastResults ,ResultList),
call(ReducePred ,ReduceList ,Result).

distribute_work_static(Comm, MapPred, ReducePred , DataArray ,
NoElements , Result):-
length(DataArray , Size),
StartPosition = 0,
send_work_init_static(Comm,MapPred,ReducePred ,DataArray ,
NoElements , Size, StartPosition),

get_results_static(Comm,ResultList),
call(ReducePred ,ReduceList ,Result).

Figure 4.8: Auxiliar predicates in work distribution.

distributes a chunk of work to each slave, in order. Then, the send_chunk_per_result_dynamic

/7 predicate waits for a result and sends another chunk of work to the slave that produces the result.

send_chunk_per_result_dynamic/7 does this until it reaches the end of the array. Finally, the

get_results_dynamic/2 predicate gathers the remaining results.

The details of the static scheduling method are similar, though slightly less complex. Since the

positions of an array in Yap start at 0, the Size argument is actually the last position of the array, or

Size - 1. On get_results_dynamic/2 the algorithm is not actually collecting a piece of work

form each slave, it is only making sure that as many pieces as there are slaves are collected. These

chunks of work correspond to the ones sent initially, and in the DMA case an auxiliary predicate

to determine the number of slaves in the grid must be used both in send_work_init_dynamic/5

and get_results_dynamic/2.

32 Methodology

send_work_init_dynamic(0,_,_,_,_,LastPosition ,LastPosition):-!.
send_work_init_dynamic(Slave,MapPred,ReducePred ,DataArray ,
NoElements ,StartPosition ,_):-
EndPosition is StartPosition + NoElements ,
send_to(Slave, [MapPred,ReducePred ,StartPosition ,EndPosition])
,

NewStartPosition is EndPosition + 1,
NewSlave is Slave - 1,
send_work_init_dynamic(NewSlave ,MapPred,ReducePred ,DataArray ,
NoElements ,NewStartPosition ,_).

send_chunk_per_result_dynamic(MapPred,ReducePred ,StartPosition ,
EndPosition ,NoElements ,Size,[ResultH|ResultT]):-
EndPosition is StartPosition + NoElements ,
EndPosition > Size,!,
receive_from(Slave,ResultH),
send_to(Slave,[MapPred,ReducePred ,StartPosition ,EndPosition]),
NewStartPosition is EndPosition + 1,
send_chunk_per_result_dynamic(MapPred,ReducePred ,
NewStartPosition ,EndPosition ,NoElements ,Size,ResultT).

send_chunk_per_result_dynamic(MapPred,ReducePred ,StartPosition ,
EndPosition ,NoElements ,Size,[ResultH|[]]):-
receive_from(Slave,ResultH),
send_to(Slave,[MapPred,ReducePred ,StartPosition ,Size]).

get_results_dynamic(0,[]):-!.
get_results_dynamic(Slave,[ResultH|ResultT]):-
receive_from(_,ResultH),
NewSlave is Slave - 1,
get_results_dynamic(Slave,ResultT).

Figure 4.9: Dynamic scheduling implementation details.

4.3 Intel VTune Amplifier

Intel VTune Amplifier [42] is a performance profiler for serial and parallel performance analysis,

made available by Intel for a 30-day trial [43]. This program is meant to analyse performance of

applications using Intel processor’s data, and it presents numerous statistics regarding the perfor-

mance of the application. Since the processors of the test machines are not Intel, this part of the

MapReduce for Prolog development took place in a machine with the following characteristics:

• One Intel Core2 Quad processor, 2.83 GHz (totalling 4 cores).

• 8 GB RAM and 500 GB Sata2 Hard Drive.

• Running Ubuntu 12.10 in 64-bit mode.

4.3 Intel VTune Amplifier 33

Intel VTune Amplifier comes with a pre-defined set of analysis, and in this work the Hotspot

and Concurrency analysis were the most used. Figure 4.10 shows the general aspect of one such

analysis.

Figure 4.10: Intel VTune Amplifier Hotspot analysis.

The use of this tool was motivated by poor results in the first MapReduce for Prolog implemen-

tations. Once it was determined that the higher-level code was not responsible for the non-linear

speed-ups, this option was used to track down the source of the problem. As such, several different

analysis were run and proved that many more locks were being called in the program than should

have been. Figure 4.11 depicts this situation.

Figure 4.11: Intel VTune Amplifier lock detection.

The yellow lines represent locks, and the white spaces in the bar represent waits. Intel VTune

Amplifier also allows for determining which part of the source code is causing a given lock, and

so this methodology was adopted as a form to address the poor performance problem. From Intel

VTune Amplifier, it was gathered that three different forms of locks were causing synchronization

overheads in MapReduce for Prolog. They are as follows:

34 Methodology

READ_LOCK is a pthread based lock, and it regulates access to protected structures, in read-

only mode.

WRITE_LOCK is similar to READ_LOCK, but in this case the access is required to make

changes in the protected data structures. Both these locks are used when accessing or creat-

ing entries in the Atom or Predicate tables.

PELOCK is a lock implemented by the Yap system and it is associated to the process of initial-

izing Yap and to the data indexing on startup.

In order to resolve this situation, modifications were made to the files ’C/adtdefs.c’, ’H/Y-

atom.h’ and ’C/absmi.c’, in the Yap core libraries. These modifications consisted only of com-

menting sections of outdated code, where possible, and they produced the desired result. However,

there is one locking situation that could not be resolved until the present date. The locks regulat-

ing access to the Atom Table are inefficient and cripple performance in applications that require

intensive access to it. This is the case of the BLOG dataset, which will be described in more detail

in Sec 4.5 and whose results are presented and commented on Chapter 5.

4.4 Materials

Our testing environment consisted of two shared memory machines, used both independently and

as a cluster. Their technical specifications are the same:

• Four six-core AMD Opteron 8425 processors, 2.1 GHz (totalling 24 cores).

• 64 GB RAM and 1.5 TB Hard Drive.

• Running Red Hat Enterprise Linux in 64-bit mode.

Figures 4.12, 4.13 and 4.14 show the physical location where these machines are running, as

well as a view of the front panel.

The four processors in each machine are mounted as depicted in Figure 4.15. These machines

are set up on a DellTM PowerEdgeTM R905 motherboard [2] each. Each group of two processors in

one machine shares cache memory registers, and there is a high-speed connection module named

riser board (item 4 in Figure 4.15) joining groups of two processors in the motherboard (above

and below). Both machines use the processor expansion module (item 6 in Figure 4.15), so as to

incorporate four processors on the same motherboard.

4.4 Materials 35

Figure 4.12: Machines’ storage facility, located in DCC.

36 Methodology

Figure 4.13: Machines’ front view.

Figure 4.14: Machines’ front view - detailed.

4.4 Materials 37

Figure 4.15: DellTM PowerEdgeTM R905 Architecture, from [2]

38 Methodology

4.5 Datasets

Four datasets of different characteristics were selected to validate the MapReduce for Prolog im-

plementation. Two of them are composed of data native to Prolog, as well as background knowl-

edge files (data files specified by the user) which must be consulted during execution. The other

two consist of integers, and simple operations are performed on them. Table 4.1 summarises this

information.

Table 4.1: Data type and background knowledge file size

Dataset Data type Background knowledge size
ODD Arithmetic –
PROB Probabilistic –
MAMMO Prolog facts 91.2 MB
BLOG Prolog facts 1.5 GB

We next describe the map and reduce operations applied to these datasets:

ODD the map operation verifies whether a number is odd and the reduce operation counts how

many odd numbers there are in the dataset. Code implementing these operations can be

found in Figure 4.16.

PROB the map operation assigns a partition of the probabilistic space to an occurrence and the

reduce operation counts the total number of occurrences in each partition. This can be used

to calculate conditional probabilities so as to implement a step of a Bayesian network, for

instance. The map and reduce operations for this dataset can be found in Figure 4.17

MAMMO and BLOG the map and reduce operations applied to these datasets are similar and are

reported in Figure 4.18 and Figure 4.19, respectively. The map operation verifies whether

a term is true, based on rules specified in the background knowledge files (which differ

according to the dataset) and the reduce operation counts how many terms were covered by

that rule.

map(Number,Rest):-
Rest is Number mod 2.

map(_,0).

reduce([],0):-!.
reduce([H|Xs],Out1):-reduce(Xs,Out),
Out1 is Out+H.

Figure 4.16: Map and reduce operations for dataset ODD.

4.5 Datasets 39

map(Term,[CWillow,CMissing,CAspen]):-
arg(1,Term,Elevation),Elevation > 2600,
arg(2,Term,Aspect),Aspect > 90,
arg(3,Term,Slope),Slope > 5,
arg(4,Term,HzDist),HzDist > 1200,
arg(5,Term,VtDist),VtDist > 230,
arg(11,Term,WilArea),WilArea = 0,
arg(12,Term,SoilType),SoilType = 0,
!,
arg(55,Term,Class),
(Class = 4 ->
(CWillow = 1, CMissing = 0, CAspen = 0)

;
(CWillow = 0, CMissing = 0, CAspen = 1)

).
map(_Term ,[0,1,0]).

reduce([],[0,0,0]).
reduce([[CWillow,CMissing,CAspen]|Tail],[W1,M1,A1]):-
reduce(Tail,[W,M,A]),
W1 is W+CWillow,
M1 is M+CMissing,
A1 is A+CAspen.

Figure 4.17: Map and reduce operations for dataset PROB.

Tests were run for both the shared memory and the distributed memory implementations,

across the two machines in the cluster, using different numbers of queries (300,000, 600,000 or

1,200,000 queries were posed for each test). We also performed experiments with the four differ-

ent scheduling strategies for a fixed number of queries (dataset size) and fixed number of items

sent to each slave (chunk size). Experiments varying the dataset and chunk sizes were performed

for 1, 2, 4, 8, 16 and 24 slaves.

40 Methodology

map(Term, 1) :-
is_malignant(Term),!.

map(_,0).

reduce([],0):-!.
reduce([H|Xs],Out1):-reduce(Xs,Out),
Out1 is Out+H.

is_malignant(A):-
same_study(A,B),
’HO_BreastCA’(B,hxDCorLC),
’MassPAO’(B,present),
’ArchDistortion’(A,notPresent),
’Sp_AsymmetricDensity’(A,notPresent),
’Calc_Round’(A,notPresent),
’SkinRetraction’(B,notPresent),
’Calc_Popcorn’(A,notPresent),
’FH_DCNOS’(B,none).

Figure 4.18: Map and reduce operations for dataset MAMMO.

4.5 Datasets 41

map(Term,1):-
item(Term),!.

map(_,0).

reduce([],0):-!.
reduce([H|Xs],Out1):-reduce(Xs,Out),
Out1 is Out+H.

item(A):-
blogname(A,energetica),
tk2(B,A,C,’VER:infi’,fare),
tk2(D,A,E,’VER:pres’,potere).

tk2(A,B,C,D,E) :-
(var(E) ->
tk(A,B,C,D,E),
D \= ’ADV’,
D \= ’PON’,
D \= ’CON’,
D \= ’PRE’,
D \= ’PRE:det’,
D \= ’DET:def’,
D \= ’DET:indef’,
E \= ’<unknown>’,
E \= ’@card@’

;
tk(A,B,C,D,E)

).

Figure 4.19: Map and reduce operations for dataset BLOG.

42 Methodology

4.6 Known Issues

This section enumerates the known issues regarding the MapReduce for Prolog implementation.

Note that most of these are mentioned again in Chapter 6, under future work.

• At this point, the Yap system does not yet support MPI protocol in multi-threaded applica-

tions, and this renders the use of a two-level scheduling method impossible at present.

• There are issues concerning reading and writing from files using the Yap system I/O inter-

face. When two threads or processes attempt to open the same file simultaneously, an error

occurs and they fail silently.

• As mentioned earlier, there is a syncronization point when accessing the Atom Table in Yap,

and this effect is more evident in applications which use words or strings frequently.

• It is presently necessary to run the mpi_init program before Yap runtime. This can be

done by executing the command -z "mpi_init" after calling yap in the command line,

for instance.

• The usage of different background knowledge files in each machine may be difficult, as

MapReduce for Prolog does not provide predicates to split the data itself. This implies the

user must split the files according to the needs of each slave, and that may not be trivial.

Chapter 5

Results

This chapter analyses the data obtained from MapReduce for Prolog thorough testing and presents

several plots, regarding the scheduling methods, the load balancing and the effect of varying the

number of elements per chunk. An effort is made throughout this chapter to maintain consistency

between notation and line colours on the plots. Finally, there is a discussion on both quantitative

and qualitative result aspects.

5.1 Initial Measurements

This section is concerned with measurements that are a basis for further testing, such as the time

for data loading and the sequential execution times for each dataset. Tests were performed using

the four datasets mentioned in Chapter 4, a varying number of queries for each (300,000, 600,000

or 1,200,000), different scheduling methods as described in Chap 3, and different chunk sizes for

those scheduling methods, when applicable.

Sections 5.1.1 and 5.1.2 below present some relevant data regarding measurements that are

used across all this chapter.

5.1.1 Loading Data Files

Table 5.1 contains the set-up time spent loading the queries files and the background knowledge,

when applicable, for each dataset and query number. This time is only spent on the first run of

the MapReduce for Prolog and it was recorded in seconds. In shared memory, the time of thread

creation and termination is not taken into account, since it is negligible. For distributed memory,

the termination time is also negligible. Note that the set-up time for distributed memory is highly

dependent on the number of running slaves and on the machines’ hard drive: if the files being

loaded are shared between several processes, the set-up time could be slightly increased.

43

44 Results

Table 5.1: Set-up times (in seconds) for varying dataset sizes

Dataset 300,000 600,000 1,200,000
ODD 2.4 4.2 7.8
PROB 24.0 47.5 95.5
MAMMO 30.2 34.0 41.8
BLOG 377.5 381.9 387.1

5.1.2 Sequential Execution Times

Tables 5.2 and 5.3 show the overall time (walltime), in milliseconds, of a MapReduce call for each

dataset. Note that the corresponding times between SMA and DMA vary significantly. This can

be justified by the fact that MPI runs processes (and not threads), which are managed at kernel

level, and thus more efficiently. In addition, MapReduce for Prolog is implemented using the Yap

Prolog system, which is not yet finely tuned for thread support. In particular, Yap’s sequential

version run in the MPI implementation uses simpler data structures and does not share global data

structures; thus their manipulation becomes simpler and faster.

Table 5.2: Sequential execution times (in milliseconds) for SMA and varying dataset sizes

Dataset 300,000 600,000 1,200,000
ODD 240 485 956
PROB 479 968 2,016
MAMMO 1,238 2,194 4,623
BLOG 824 1,872 3,783

Table 5.3: Sequential execution times (in milliseconds) for DMA and varying dataset sizes

Dataset 300,000 600,000 1,200,000
ODD 226 453 905
PROB 376 733 1,447
MAMMO 707 1,413 2,829
BLOG 573 1,148 2,294

5.2 Scheduling Methods Evaluation

This section thoroughly tests and assesses the MapReduce for Prolog scheduling methods. Firstly,

there is a comparison of the seven different scheduling possibilities, followed by an analysis of

the load balancing for each case. In addition, an assessment of the variation of the chunk size,

5.2 Scheduling Methods Evaluation 45

when applicable, is also made available. Finally, a qualitative discussion is presented and some

comments on performance are included. All the relevant raw data to aid in this section’s analysis is

included in Appendices A, B and C; these data include all the walltimes used to calculate the speed-

ups presented below, as well as a full account of each slave’s time for load balancing assessment

and the effect of chunk size variation.

5.2.1 Varying Scheduling Strategies

Figures 5.1, 5.2, 5.3 and 5.4 plot the seven scheduling methods made available by MapReduce

for Prolog for each dataset. The results presented here do not take into account the set-up times

described in Table 5.1. The aim of these plots is to demonstrate the variation of the performance

of the scheduling methods according to the type of data and also with the implementation used.

The data used to plot these graphs was obtained by running five trials of each MapReduce call

and calculating their average. Finally, the data from dataset BLOG is incomplete in the distributed

memory instances because memory constraints did not allow for running sixteen instances of this

application on the cluster. Note that the colours are fixed for each scheduling method and that

shared memory instances are marked with a cross, whilst distributed memory ones with a dot. For

further data refer to Appendix A.

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-SINGLE-STEP
SMA-STATIC

SMA-DYNAMIC
SMA-WORKPOOL

DMA-SINGLE-STEP
DMA-STATIC

DMA-DYNAMIC

Figure 5.1: Comparison of scheduling methods for ODD dataset (600,000 queries and 1,000 ele-
ments per chunk)

46 Results

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-SINGLE-STEP
SMA-STATIC

SMA-DYNAMIC
SMA-WORKPOOL

DMA-SINGLE-STEP
DMA-STATIC

DMA-DYNAMIC

Figure 5.2: Comparison of scheduling methods for PROB dataset (600,000 queries and 1,000
elements per chunk)

These results show that MapReduce for Prolog achieves nearly linear speed-ups, for both

shared and distributed memory, and for all the different datasets tested. The distributed memory

implementation has proved to be consistently faster than the shared memory one. This is to be

expected since MPI runs processes and Yap is not yet finely tuned for thread support. In fact, this

could explain the somewhat under achieving results for the dataset BLOG in shared memory. The

BLOG dataset requires intensive use of the Yap atom table, whose synchronization is centralized.

Since this table is shared between all slaves in a process, it can cause a significant overhead.

From Figures 5.1, 5.2, 5.3 and 5.4, we can also observe that globally the most efficient schedul-

ing methods are the workpool (SMA-POOL) and the dynamic scheduling (SMA-DYNAMIC or

DMA-DYNAMIC). If the data’s granularity was negligible, the dynamic algorithm would tend to

static scheduling, with slightly worse performance due to the small wait caused by the master only

sending work when the slave is already free. In the workpool strategy, the slaves are responsible

for their own work management, thus making it even more efficient than the dynamic schedul-

ing. However, and to ensure compatibility between both MapReduce for Prolog versions, we will

adopt the dynamic scheduling method as the default strategy, since it displays the best behaviour

for distributed memory and a close second for shared memory.

5.2 Scheduling Methods Evaluation 47

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-SINGLE-STEP
SMA-STATIC

SMA-DYNAMIC
SMA-WORKPOOL

DMA-SINGLE-STEP
DMA-STATIC

DMA-DYNAMIC

Figure 5.3: Comparison of scheduling methods for MAMMO dataset (600,000 queries and 1,000
elements per chunk)

48 Results

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-SINGLE-STEP
SMA-STATIC

SMA-DYNAMIC
SMA-WORKPOOL

DMA-SINGLE-STEP
DMA-STATIC

DMA-DYNAMIC

Figure 5.4: Comparison of scheduling methods for BLOG dataset (600,000 queries and 1,000
elements per chunk)

5.2 Scheduling Methods Evaluation 49

5.2.2 Load Balancing

In order to assess load balancing in the different scheduling methods, the CPU time of each slave

was measured and plotted in Figure 5.5. This test was run for 1.2 million queries and for sixteen

slaves, with the exception of DMA-BLOG, in which case it was only possible to use eight slaves

due to memory constraints. The y-axis of Figure 5.5 denotes the maximum deviation between

slaves, as a percentage of the average walltime of the respective run. As before, each MapReduce

call was run 5 times and all values presented are calculated from the averages of those runs. For

further data refer to Appendix B.

MAMMO BLOGPROBODD

0

5

10

15

20

25

30

35

40

45

50

M
ax

im
um

de
vi

at
io

n
(%

)

SMA-SINGLE-STEP
SMA-STATIC

SMA-DYNAMIC
DMA-SINGLE-STEP

DMA-STATIC
DMA-DYNAMIC

Figure 5.5: Load balancing for different scheduling methods (1,200,000 queries and 1,000 ele-
ments per chunk)

From Figure 5.5 it becomes evident that static scheduling is generally more efficient for

datasets PROB and ODD and dynamic scheduling for datasets MAMMO and PROB. This is

caused by the data granularity of the datasets native to Prolog; queries can take variable times

to succeed or fail, which can contribute to load imbalance. The fact that the SMA is consistently

slower than DMA, and more so for single-step scheduling, can be justified by the fact that the

communication between threads is slower than between MPI nodes due to synchronization issues

in the Yap Prolog system; this would cause a significant detachment between the reception of the

first data in each slave. This effect becomes more evident when the slaves are only processing a

large block of data, at once.

50 Results

5.2.3 Varying Chunk Sizes

Figure 5.6 and 5.7 depicts the effect of varying the size of the chunks in the two best performing

scheduling methods. The time is given in milliseconds and it is an average of five consecutive and

equal MapReduce runs. For further data refer to Appendix C.

0.1 0.5 1
·104

100

200

300

400

500

600

700

No. of Elements per Chunk

Ti
m

e
(m

s)

SMA-ODD
SMA-PROB

SMA-MAMMO
SMA-BLOG
DMA-ODD
DMA-PROB

DMA-MAMMO
DMA-BLOG

Figure 5.6: Effect of chunk size variation in dynamic scheduling (1,200,000 queries)

For all four datasets used for testing, there appears to be an optimum number of queries to

minimize execution time. In our methodology, when testing scheduling methods using chunks,

we have used queries of size 1,000 precisely to obtain the fastest result possible when assessing

other parameters. 1,000 elements per chunks is a somewhat empirical choice, however, because

even though the curves all demonstrate a tendency towards a minimum around that point, it would

require testing every single value to ensure that 1,000 is in fact the best choice.

5.3 Varying Data Sizes 51

0.1 0.5 1
·104

100

150

200

250

300

350

400

450

No. of Elements per Chunk

Ti
m

e
(m

s)
SMA-ODD
SMA-PROB

SMA-MAMMO
SMA-BLOG
DMA-ODD
DMA-PROB

DMA-MAMMO
DMA-BLOG

Figure 5.7: Effect of chunk size variation in static scheduling (1,200,000 queries)

5.3 Varying Data Sizes

This section introduces the speed-up plots for varying data sizes and for dynamic and static

scheduling, since these methods were found to be the best performing ones in the previous section.

Again, consistency is maintained in the plots below by fixing colours for the same size and using

different markers for shared and distributed memory. For further data refer to Appendix A.

Figures 5.8, 5.9, 5.10 and 5.11 depict the behaviour of dynamic scheduling, for each dataset,

with varying queries size and 1,000 elements per chunk.

52 Results

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k

SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.8: Effect of variation of queries size with dynamic scheduling in ODD dataset (1,000
elements per chunk)

5.3 Varying Data Sizes 53

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k
SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.9: Effect of variation of queries size with dynamic scheduling in PROB dataset (1,000
elements per chunk)

54 Results

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k

SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.10: Effect of variation of queries size with dynamic scheduling in MAMMO dataset
(1,000 elements per chunk)

5.3 Varying Data Sizes 55

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k
SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.11: Effect of variation of queries size with dynamic scheduling in BLOG dataset (1,000
elements per chunk)

56 Results

Figure 5.12, 5.13, 5.14 and 5.15 depict the behaviour of static scheduling, for each dataset,

with varying queries size and 1,000 elements per chunk.

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k

SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.12: Effect of variation of queries size with static scheduling in ODD dataset (1,000
elements per chunk)

In general, these results show that DMA seems to be immune to variations on the dataset size.

On the other hand, for SMA, these results show a generic tendency to obtain better speedups as

we increase the dataset size and the number of slaves, which confirms the good scalability of our

MapReduce for Prolog framework.

We believe all these tests consider and evaluate the most relevant features of MapReduce for

Prolog. They demonstrate that our construct can scale efficiently, and that it can manage data

with different granularity. We provide a flexible user interface, which allows for adapting the

scheduling method to the data type, should the user wish to do so. The results are good for both

shared and distributed memory implementations, making MapReduce for Prolog a flexible and

agile MapReduce implementation for modest computing capabilities, whose focus is data native

to Prolog.

5.3 Varying Data Sizes 57

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k
SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.13: Effect of variation of queries size with static scheduling in PROB dataset (1,000
elements per chunk)

58 Results

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k

SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.14: Effect of variation of queries size with static scheduling in MAMMO dataset (1,000
elements per chunk)

5.3 Varying Data Sizes 59

1 2 4 8 16 24

2

4

6

8

10

12

14

16

18

20

22

24

No. of Slaves

Sp
ee

d-
up

SMA-300k
SMA-600k
SMA-1200k
DMA-300k
DMA-600k
DMA-1200k

Figure 5.15: Effect of variation of queries size with static scheduling in BLOG dataset (1,000
elements per chunk)

60 Results

Chapter 6

Conclusions and Future Work

In this last chapter, a summary of the main contributions of this work is made, and some directions

for further work are provided. This thesis is then wraped up by some relevant final remarks.

6.1 Main Contributions

The work included in this thesis can be described as the design, implementation and testing pro-

cess for a MapReduce for Prolog construct. Even though MapReduce for Prolog’s architecture is

standalone, the construct was developed, assessed and tuned for the Yap system. Usage examples

and extensive documentation are also provided both in this work and in the code files.

This work can be divided into three main contributions:

MapReduce for Prolog – SMA is a version of the application that can be run in one machine

alone, taking advantage of parallel processors, which are now more than ever common. This

multi-threaded implementation presents nearly linear speed-ups until 24 cores as demon-

strated by the tests. However, its performance is slightly worse than that of the MapReduce

for Prolog – DMA, and this will be discussed in further detail in Section 6.2 below. To the

best of our knowledge, there is no MapReduce implementation for shared memory alone,

and so this work presents the novel opportunity of a transparent MapReduce for multicore

shared memory architectures.

MapReduce for Prolog – DMA presents the same functionalities as MapReduce for Prolog –

SMA, but has the advantage of running on a previously set up MPI grid, and thus provide

cluster support. This implementation can be thought of a lightweight, agile MapReduce

construct, as it is not redundant or fault tolerant, but rather aimed at smaller datasets and

relatively modest computing capabilities; in these cases, the MapReduce for Prolog – DMA

proves to have linear speed-ups and an overall good performance.

Scheduling technique assessment has demonstrated that MapReduce for Prolog can have very

good speed-ups by using the adequate scheduling method for each data type. Testing

in Chapter 5 has shown that the static scheduling algorithm performs better for numeric

61

62 Conclusions and Future Work

datasets, whilst the dynamic method proves to be a better choice for datasets native to Pro-

log. Other scheduling methods have been developed and evaluated, and have been found

dispensable; those methods will not be made available in the final version of the MapRe-

duce for Prolog code.

6.2 Further Work

We hope that the work resulting from this thesis has opened some new research opportunities, and

that by making MapReduce for Prolog available to Yap users we can gather feedback and improve

on this implementation. Currently, there are some points which still have room for improvement,

and they are mentioned below. Together with those points, we have placed some suggestions,

aimed mainly towards validating the implementation.

Improve BLOG dataset results Using Intel VTune Amplifier, it has been determined that the

Yap Atom Table is not yet parallelized. As such, and since the BLOG dataset accesses that

table often, its results were not in line with the remaining work. It would be revelant to

develop a version of the Yap Atom Table for multi-threaded applications, and this would

enable a subsequent improvement on the BLOG dataset performance for shared memory.

Develop a single MapReduce for Prolog Once Yap is finely tuned for thread support, it would

be pertinent to develop a hybrid version, with two scheduling levels, as originally described

in Chapter 3. We believe this would yield even better results, if not speed-up wise, quite

possibly in terms of overall time. At any rate, the fact that the user does not have to choose

between the shared and distributed memory versions would always be an improvement.

Distribute Data Across Cluster A relevant upgrade would also be to either set a network shared

memory space for machines on the cluster or develop a predicate to separate data according

to slaves and distribute it without user intervention. This would be interesting because each

slave should only read the data it will require, thus making the setup time much shorter.

Test MapReduce for Prolog with a large dataset Even though MapReduce for Prolog’s main

target is not demanding data processing, it would be pertinent to see how our construct

handles a more lengthy dataset; it would be interesting to determine if the speed-ups are still

linear for that case.

MPI Guide The authors would like to develop and include a practical MPI configuration guide

with the code. Whilst we are aware there is extensive documentation on message pass-

ing protocol, we would like to include a fully functional example using this interface for

MapReduce for Prolog, so as to ensure easy and fast configuration for even more basic

users.

6.3 Final Remark 63

Compare MapReduce for Prolog with other frameworks There is a vast number of MapRe-

duce frameworks described in the literature, and it would be relevant to evaluate MapRe-

duce for Prolog’s performance against that of Hadoop or Twister, for instance. The set-up

times, as well as the speed-ups should be considered.

6.3 Final Remark

A MapReduce parallel construct was designed and implemented in the Yap system. This con-

struct provides an elegant way of implementing many applications in the summation form in Pro-

log [8], with the advantage of being intrinsically parallelizable. Two parallel implementations of

the MapReduce are provided: a multithreaded and a message passing. In contrast to the Google’s

MapReduce implementation [7], whose focus is on distributed processing of data stored in disk,

our implementation focuses on parallelization of the map and reduce operations where the data is

already in memory.

This implementation has been tested using four applications and an evaluation of how different

scheduling strategies and chunk sizes can affect performance concluded that: (i) our MapReduce

construct can have linear speedups up to 24 processors; (ii) a dynamic distributed scheduling

strategy, in general, performs better than centralized or static strategies; (iii) the performance

varies signifficantly with the number of items being sent to each processor at a time; and (iv) our

MapReduce model is a good alternative for taking advantage of the currently available low cost

multi-core architectures.

One of the limitations of performance is related to the data synchronization used in the Yap

implementation. Work is in progress to decentralize the access to data structures in order to further

improve performance. We have also been studying best ways of executing MapReduce in the

hybrid distributed shared-memory multi-core architectures.

64 Conclusions and Future Work

Appendix A

Walltime Data

This chapter presents the raw data concerning the variation of MapReduce calls’ walltimes with

the number of queries. All times are given in milliseconds and the chapter is divided in sections ac-

cording to the scheduling method and subsections according to the dataset. On the tables, Slaves

denotes the number of slaves used to process the call, the Average is the average of five runs using

that number of slaves and Speedup represents the speed-up calculated from the time for one slave

on that table. This appendix includes the data used to plot Figures 5.1, 5.2, 5.3, 5.4, 5.8, 5.9, 5.10,

5.11, 5.12, 5.13, 5.14, 5.15 in Chapter 5.

A.1 Dynamic Scheduling

A.1.1 MAMMO

Slaves 1 2 4 8 16 24
801 364 185 94 44 33
801 363 183 92 45 34
800 365 183 93 46 34
801 363 183 92 47 33
799 363 182 93 48 33

Average 800 364 183 93 46 33
Speedup 1,00 2,20 4,37 8,62 17,40 23,96

Table A.1: MAMMO DMA 300k (1000 elems/chunk)

65

66 Walltime Data

Slaves 1 2 4 8 16 24
1118 586 288 151 84 64
1116 587 290 151 81 67
1119 585 289 151 82 68
1119 587 288 150 82 69
1118 585 288 150 82 69

Average 1118 586 289 151 82 67
Speedup 1,00 1,91 3,87 7,42 13,60 16,59

Table A.2: MAMMO SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1598 727 364 186 94 65
1598 726 364 186 95 65
1598 727 369 191 94 69
1597 726 365 186 97 65
1598 725 365 186 93 65

Average 1598 726 365 187 95 66
Speedup 1,00 2,20 4,37 8,54 16,89 24,28

Table A.3: MAMMO DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
2418 1197 593 296 157 119
2420 1198 590 296 156 117
2419 1198 591 301 161 117
2419 1195 591 299 159 121
2418 1197 591 300 161 119

Average 2419 1197 591 298 159 119
Speedup 1,00 2,02 4,09 8,11 15,23 20,39

Table A.4: MAMMO SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
3194 1451 730 372 189 130
3198 1454 736 375 186 133
3188 1451 729 371 192 128
3184 1450 727 371 187 129
3186 1450 731 370 188 130

Average 3190 1451 731 372 188 130
Speedup 1,00 2,20 4,37 8,58 16,93 24,54

Table A.5: MAMMO DMA 1200k (1000 elems/chunk)

A.1 Dynamic Scheduling 67

Slaves 1 2 4 8 16 24
4483 2332 1187 595 317 219
4485 2326 1189 593 314 220
4477 2330 1188 595 312 218
4480 2331 1189 596 315 229
4478 2326 1185 595 314 220

Average 4481 2329 1188 595 314 221
Speedup 1,00 1,92 3,77 7,53 14,25 20,26

Table A.6: MAMMO SMA 1200k (1000 elems/chunk)

68 Walltime Data

A.1.2 BLOG

Slaves 1 2 4 8
715 292 150 81
717 293 150 80
715 294 149 80
715 292 150 90
715 293 150 92

Average 715 293 150 85
Speedup 1,00 2,44 4,78 8,46

Table A.7: BLOG DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
856 492 252 160 121 112
854 493 260 160 122 93
891 491 261 160 125 113
982 492 255 148 114 113
978 493 259 151 105 101

Average 912 492 257 156 117 106
Speedup 1,00 1,85 3,54 5,85 7,77 8,57

Table A.8: BLOG SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8
1428 586 299 157
1428 587 299 157
1428 589 299 161
1427 584 298 157
1431 587 299 156

Average 1428 587 299 158
Speedup 1,00 2,44 4,78 9,06

Table A.9: BLOG DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1692 976 506 281 175 167
1696 977 512 287 176 167
1694 975 524 280 185 172
1692 975 517 295 178 152
1689 979 515 285 189 169

Average 1693 976 515 286 181 165
Speedup 1,00 1,73 3,29 5,93 9,37 10,23

Table A.10: BLOG SMA 600k (1000 elems/chunk)

A.1 Dynamic Scheduling 69

Slaves 1 2 4 8
2867 1173 598 312
2869 1176 601 314
2869 1173 597 312
2873 1174 595 312
2871 1172 596 312

Average 2870 1174 597 312
Speedup 1,00 2,45 4,80 9,19

Table A.11: BLOG DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
3802 1828 1012 551 352 286
3796 1814 1022 549 364 289
3796 1818 1013 564 360 274
3803 1813 1015 545 361 281
3792 1815 1022 544 364 284

Average 3798 1818 1017 551 360 283
Speedup 1,00 2,09 3,74 6,90 10,54 13,43

Table A.12: BLOG SMA 1200k (1000 elems/chunk)

A.1.3 PROB

Slaves 1 2 4 8 16 24
400 184 93 48 24 16
399 183 92 46 24 17
399 184 91 47 24 16
399 184 91 46 24 17
398 184 92 47 24 16

Average 399 184 92 47 24 16
Speedup 1,00 2,17 4,35 8,53 16,62 24,33

Table A.13: PROB DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
501 250 121 64 32 26
500 250 122 62 34 24
501 249 120 62 32 25
501 251 120 64 32 24
500 250 121 62 32 24

Average 501 250 121 63 32 25
Speedup 1,00 2,00 4,14 7,97 15,45 20,35

Table A.14: PROB SMA 300k (1000 elems/chunk)

70 Walltime Data

Slaves 1 2 4 8 16 24
799 370 188 100 54 39
793 363 182 95 49 32
797 370 189 100 53 37
794 365 184 96 50 34
792 362 183 94 49 33

Average 795 366 185 97 51 35
Speedup 1,00 2,17 4,29 8,20 15,59 22,71

Table A.15: PROB DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1006 506 247 124 64 48
1006 503 247 124 69 48
1006 505 248 125 66 47
1008 504 245 126 64 47
1011 505 247 126 64 52

Average 1007 505 247 125 65 48
Speedup 1,00 2,00 4,08 8,06 15,40 20,81

Table A.16: PROB SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1591 726 367 189 97 66
1604 737 380 201 109 78
1587 724 365 189 95 63
1586 728 368 192 98 67
1604 745 385 208 116 83

Average 1594 732 373 196 103 71
Speedup 1,00 2,18 4,27 8,14 15,48 22,33

Table A.17: PROB DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
2008 998 489 245 127 97
2010 1003 487 253 126 95
2005 996 489 247 130 104
2013 999 489 247 127 96
2006 997 488 246 129 102

Average 2008 999 488 248 128 99
Speedup 1,00 2,01 4,11 8,11 15,72 20,33

Table A.18: PROB SMA 1200k (1000 elems/chunk)

A.1.4 ODD

A.1 Dynamic Scheduling 71

Slaves 1 2 4 8 16 24
282 124 65 32 17 11
284 124 65 33 17 11
282 124 65 32 16 11
283 124 65 32 17 12
280 125 66 32 16 11

Average 282 124 65 32 17 11
Speedup 1,00 2,27 4,33 8,76 17,00 25,20

Table A.19: ODD DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
264 132 64 32 18 16
262 132 64 33 17 16
263 131 63 33 16 12
263 130 66 34 18 12
261 130 65 34 16 13

Average 263 131 64 33 17 14
Speedup 1,00 2,00 4,08 7,91 15,45 19,03

Table A.20: ODD SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
562 248 129 64 33 22
563 248 129 63 32 22
566 252 133 67 36 27
566 251 129 64 33 22
566 249 128 63 33 23

Average 565 250 130 64 33 23
Speedup 1,00 2,26 4,36 8,79 16,90 24,34

Table A.21: ODD DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
515 246 124 64 37 25
519 247 125 65 34 25
517 249 132 65 33 25
519 247 131 65 33 25
518 259 131 67 32 25

Average 518 250 129 65 34 25
Speedup 1,00 2,07 4,02 7,94 15,31 20,70

Table A.22: ODD SMA 600k (1000 elems/chunk)

72 Walltime Data

Slaves 1 2 4 8 16 24
1130 497 257 127 65 46
1133 499 261 132 70 49
1129 496 257 127 64 44
1129 495 256 128 65 46
1130 498 255 127 66 46

Average 1130 497 257 128 66 46
Speedup 1,00 2,27 4,39 8,82 17,12 24,46

Table A.23: ODD DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1044 523 260 133 64 46
1039 523 260 130 64 47
1040 517 257 130 63 46
1040 517 258 130 65 49
1044 515 258 130 64 46

Average 1041 519 259 131 64 47
Speedup 1,00 2,01 4,03 7,97 16,27 22,25

Table A.24: ODD SMA 1200k (1000 elems/chunk)

A.2 Static Scheduling 73

A.2 Static Scheduling

A.2.1 MAMMO

Slaves 1 2 4 8 16 24
708 354 181 91 47 38
706 354 180 93 46 37
707 355 180 92 46 37
706 353 180 91 47 38
706 353 181 92 47 37

Average 707 354 180 92 47 37
Speedup 1.00 2.00 3.92 7.70 15.16 18.89

Table A.25: MAMMO DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1239 619 315 161 90 77
1238 623 318 161 88 69
1239 622 314 161 86 67
1239 621 316 161 85 63
1237 623 317 162 86 64

Average 1238 622 316 161 87 68
Speedup 1.00 1.99 3.92 7.68 14.23 18.21

Table A.26: MAMMO SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1416 706 360 181 95 74
1410 705 363 182 93 74
1413 706 360 180 94 74
1412 706 360 180 93 75
1412 706 360 181 94 74

Average 1413 706 361 181 94 74
Speedup 1.00 2.00 3.92 7.81 15.06 19.04

Table A.27: MAMMO DMA 600k (1000 elems/chunk)

74 Walltime Data

Slaves 1 2 4 8 16 24
2186 1247 624 313 166 119
2198 1250 623 315 168 117
2189 1236 623 314 168 121
2200 1235 623 310 168 121
2199 1234 621 311 168 117

Average 2194 1240 623 313 168 119
Speedup 1.00 1.77 3.52 7.02 13.09 18.44

Table A.28: MAMMO SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
2832 1413 720 363 183 149
2825 1417 721 360 184 148
2827 1411 725 367 184 147
2829 1413 720 360 186 147
2830 1420 720 360 183 148

Average 2829 1415 721 362 184 148
Speedup 1.00 2.00 3.92 7.81 15.37 19.14

Table A.29: MAMMO DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
4625 2312 1256 626 331 256
4622 2324 1247 625 328 254
4624 2310 1254 624 330 254
4624 2311 1248 625 327 255
4622 2317 1255 624 326 254

Average 4623 2315 1252 625 328 255
Speedup 1.00 2.00 3.69 7.40 14.08 18.16

Table A.30: MAMMO SMA 1200k (1000 elems/chunk)

A.2.2 BLOG

Slaves 1 2 4 8
574 274 142 84
572 274 143 84
574 273 143 83
573 272 143 83
572 273 143 84

Average 573 273 143 84
Speedup 1.00 2.10 4.01 6.85

Table A.31: BLOG DMA 300k (1000 elems/chunk)

A.2 Static Scheduling 75

Slaves 1 2 4 8 16 24
825 453 271 162 113 84
826 456 271 167 114 84
825 452 266 167 114 84
822 454 273 168 115 87
823 454 271 169 113 87

Average 824 454 270 167 114 85
Speedup 1.00 1.82 3.05 4.95 7.24 9.67

Table A.32: BLOG SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8
1158 545 284 156
1145 545 290 158
1145 548 286 156
1147 545 283 157
1144 549 284 157

Average 1148 546 285 157
Speedup 1.00 2.10 4.02 7.32

Table A.33: BLOG DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1869 991 551 288 184 157
1871 994 549 286 184 158
1871 991 554 288 185 158
1882 988 552 287 189 157
1870 992 553 287 187 157

Average 1873 991 552 287 186 157
Speedup 1.00 1.89 3.39 6.52 10.08 11.90

Table A.34: BLOG SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8
2299 1097 568 316
2293 1095 570 315
2294 1093 578 319
2293 1094 569 313
2293 1101 571 312

Average 2294 1096 571 315
Speedup 1.00 2.09 4.02 7.28

Table A.35: BLOG DMA 1200k (1000 elems/chunk)

76 Walltime Data

Slaves 1 2 4 8 16 24
3784 2012 1119 584 320 349
3773 2015 1120 578 322 350
3789 2019 1112 583 322 351
3787 2018 1113 579 327 351
3780 2015 1119 574 324 342

Average 3783 2016 1117 580 323 349
Speedup 1.00 1.88 3.39 6.53 11.71 10.85

Table A.36: BLOG SMA 1200k (1000 elems/chunk)

A.2 Static Scheduling 77

A.2.3 PROB

Slaves 1 2 4 8 16 24
377 174 98 43 22 15
376 175 99 42 22 15
377 175 98 42 22 20
375 175 97 42 22 15
375 173 97 41 21 14

Average 376 174 98 42 22 16
Speedup 1.00 2.16 3.84 8.95 17.25 23.80

Table A.37: PROB DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
480 251 130 77 47 29
480 251 126 74 47 27
477 251 123 66 37 28
478 251 123 63 37 30
478 248 123 63 37 32

Average 479 250 125 69 41 29
Speedup 1.00 1.91 3.83 6.98 11.67 16.39

Table A.38: PROB SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
734 347 190 91 47 32
731 351 190 91 46 31
731 348 189 98 54 32
739 351 189 91 47 33
730 348 190 92 47 33

Average 733 349 190 93 48 32
Speedup 1.00 2.10 3.87 7.92 15.21 22.76

Table A.39: PROB DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
965 486 250 134 70 55
968 486 254 129 74 51
969 487 255 129 70 52
969 487 256 129 67 50
971 486 254 129 67 54

Average 968 486 254 130 70 52
Speedup 1.00 1.99 3.82 7.45 13.91 18.48

Table A.40: PROB SMA 600k (1000 elems/chunk)

78 Walltime Data

Slaves 1 2 4 8 16 24
1443 698 365 184 93 63
1447 705 367 186 93 64
1458 704 381 197 107 63
1441 715 364 188 92 63
1446 705 366 183 93 69

Average 1447 705 369 188 96 64
Speedup 1.00 2.05 3.93 7.71 15.14 22.47

Table A.41: PROB DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
2022 1003 503 256 136 104
2011 1003 510 255 131 106
2017 1003 512 257 143 102
2014 1004 508 254 131 100
2014 1005 511 256 132 105

Average 2016 1004 509 256 135 103
Speedup 1.00 2.01 3.96 7.89 14.97 19.49

Table A.42: PROB SMA 1200k (1000 elems/chunk)

A.2.4 ODD

Slaves 1 2 4 8 16 24
227 116 58 29 15 11
229 116 59 30 15 10
225 115 58 29 15 11
227 115 58 30 15 10
224 115 58 29 15 10

Average 226 115 58 29 15 10
Speedup 1.00 1.96 3.89 7.70 15.09 21.77

Table A.43: ODD DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
242 132 61 34 22 18
241 121 61 33 20 17
238 124 61 33 21 15
240 120 61 31 19 16
240 121 60 31 19 14

Average 240 124 61 32 20 16
Speedup 1.00 1.94 3.95 7.41 11.89 15.01

Table A.44: ODD SMA 300k (1000 elems/chunk)

A.3 Single-step Scheduling 79

Slaves 1 2 4 8 16 24
456 230 116 58 29 20
450 231 120 59 29 20
455 230 115 58 30 19
451 228 115 58 30 20
452 230 116 59 28 20

Average 453 230 116 58 29 20
Speedup 1.00 1.97 3.89 7.75 15.51 22.87

Table A.45: ODD DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
484 243 126 62 41 34
484 243 121 63 34 34
485 243 121 62 33 28
485 243 120 60 36 28
485 242 121 60 36 32

Average 485 243 122 61 36 31
Speedup 1.00 2.00 3.98 7.89 13.46 15.53

Table A.46: ODD SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
908 458 232 120 60 40
901 455 232 117 59 41
903 451 237 121 58 39
906 453 231 116 61 40
905 461 229 115 58 39

Average 905 456 232 118 59 40
Speedup 1.00 1.99 3.90 7.68 15.28 22.73

Table A.47: ODD DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
956 480 246 122 76 58
956 483 244 121 66 71
963 487 244 123 68 62
946 482 246 123 66 64
959 479 245 124 73 55

Average 956 482 245 123 70 62
Speedup 1.00 1.98 3.90 7.80 13.70 15.42

Table A.48: ODD SMA 1200k (1000 elems/chunk)

A.3 Single-step Scheduling

A.3.1 MAMMO

80 Walltime Data

Slaves 1 2 4 8 16 24
832 347 174 100 55 39
693 345 177 100 55 37
695 345 173 100 55 38
697 346 172 101 55 37
695 345 172 101 54 38

Average 722 346 174 100 55 38
Speedup 1.00 2.09 4.16 7.20 13.18 19.11

Table A.49: MAMMO DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1234 621 310 161 92 66
1235 608 311 158 91 67
1231 609 312 157 90 66
1231 613 313 170 90 70
1229 610 312 159 88 68

Average 1232 612 312 161 90 67
Speedup 1.00 2.01 3.95 7.65 13.66 18.28

Table A.50: MAMMO SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1518 691 344 196 110 77
1518 690 347 197 109 76
1519 690 348 198 111 77
1518 693 347 198 110 76
1517 690 347 196 110 76

Average 1518 691 347 197 110 76
Speedup 1.00 2.20 4.38 7.71 13.80 19.87

Table A.51: MAMMO DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
2433 1190 626 323 177 130
2422 1187 626 320 178 127
2425 1190 619 323 175 126
2421 1189 623 327 176 126
2412 1199 625 319 173 126

Average 2423 1191 624 322 176 127
Speedup 1.00 2.03 3.88 7.51 13.78 19.08

Table A.52: MAMMO SMA 600k (1000 elems/chunk)

A.3 Single-step Scheduling 81

Slaves 1 2 4 8 16 24
2978 1516 692 395 217 153
2979 1517 698 394 216 154
2985 1518 694 398 219 154
2988 1513 694 393 225 154
2979 1513 697 393 216 155

Average 2982 1515 695 395 219 154
Speedup 1.00 1.97 4.29 7.56 13.64 19.36

Table A.53: MAMMO DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
4943 2438 1225 628 342 251
4907 2464 1226 629 346 253
4894 2461 1224 622 342 249
4914 2449 1224 622 341 254
4905 2437 1224 627 345 249

Average 4913 2450 1225 626 343 251
Speedup 1.00 2.01 4.01 7.85 14.31 19.56

Table A.54: MAMMO SMA 1200k (1000 elems/chunk)

82 Walltime Data

A.3.2 BLOG

Slaves 1 2 4 8
744 286 174 89
549 289 175 89
552 290 176 90
552 288 173 89
552 290 174 89

Average 590 289 174 89
Speedup 1.00 2.04 3.38 6.61

Table A.55: BLOG DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
874 480 274 211 136 129
877 481 273 211 132 130
883 478 273 212 132 128
892 480 274 211 131 129
891 476 276 213 131 128

Average 883 479 274 212 132 129
Speedup 1.00 1.84 3.22 4.17 6.67 6.86

Table A.56: BLOG SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8
1283 540 284 171
1282 545 283 174
1289 544 281 172
1284 544 283 172
1288 540 285 172

Average 1285 543 283 172
Speedup 1.00 2.37 4.54 7.46

Table A.57: BLOG SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1988 1038 607 324 226 235
1994 1042 605 319 225 231
1981 1043 604 320 226 235
1988 1000 606 319 224 238
1990 999 605 321 226 237

Average 1988 1024 605 321 225 235
Speedup 1.00 1.94 3.28 6.20 8.82 8.45

Table A.58: BLOG SMA 600k (1000 elems/chunk)

A.3 Single-step Scheduling 83

Slaves 1 2 4 8
2461 1259 630 330
2450 1258 635 333
2458 1261 641 332
2460 1258 642 334
2464 1260 636 333

Average 2459 1259 637 332
Speedup 1.00 1.95 3.86 7.40

Table A.59: BLOG DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
3570 2047 1132 590 383 366
3561 2042 1136 577 387 363
3554 2038 1132 576 384 367
3562 2041 1136 581 387 368
3563 2047 1135 581 385 364

Average 3562 2043 1134 581 385 366
Speedup 1.00 1.74 3.14 6.13 9.25 9.74

Table A.60: BLOG SMA 1200k (1000 elems/chunk)

A.3.3 PROB

Slaves 1 2 4 8 16 24
341 179 89 47 25 18
346 173 91 48 25 18
348 177 89 46 25 17
343 175 91 47 25 18
346 177 90 47 26 18

Average 345 176 90 47 25 18
Speedup 1.00 1.96 3.83 7.34 13.68 19.37

Table A.61: PROB DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
528 269 139 78 54 41
535 266 136 72 49 38
532 269 137 73 49 38
529 264 136 74 48 39
532 266 136 74 55 43

Average 531 267 137 74 51 40
Speedup 1.00 1.99 3.88 7.16 10.42 13.35

Table A.62: PROB SMA 300k (1000 elems/chunk)

84 Walltime Data

Slaves 1 2 4 8 16 24
684 350 176 96 49 34
695 347 178 95 48 34
688 348 177 95 48 34
689 346 177 97 49 34
697 350 176 95 49 33

Average 691 348 177 96 49 34
Speedup 1.00 1.98 3.91 7.22 14.21 20.43

Table A.63: PROB DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1040 531 288 151 104 71
1030 531 284 145 103 74
1023 526 283 146 102 71
1037 528 296 146 101 71
1036 527 292 146 102 71

Average 1033 529 289 147 102 72
Speedup 1.00 1.95 3.58 7.04 10.09 14.43

Table A.64: PROB SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
3190 699 352 201 98 66
1369 709 354 203 98 67
1385 709 352 201 98 67
1376 715 356 201 98 67
1360 712 357 202 98 67

Average 1736 709 354 202 98 67
Speedup 1.00 2.45 4.90 8.61 17.71 25.99

Table A.65: PROB DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
2064 1030 607 283 182 140
2048 1034 601 282 181 138
2041 1030 600 282 180 137
2049 1025 598 283 174 163
2039 1029 600 282 173 152

Average 2048 1030 601 282 178 146
Speedup 1.00 1.99 3.41 7.25 11.51 14.03

Table A.66: PROB SMA 1200k (1000 elems/chunk)

A.3.4 ODD

A.3 Single-step Scheduling 85

Slaves 1 2 4 8 16 24
244 121 63 35 17 12
246 122 63 35 18 13
248 124 62 42 17 12
248 123 62 35 18 13
249 123 62 35 17 13

Average 247 123 62 36 17 13
Speedup 1.00 2.01 3.96 6.79 14.20 19.60

Table A.67: ODD DMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
283 149 78 65 44 30
276 145 79 64 39 34
286 147 79 65 40 30
288 146 77 64 39 28
276 146 77 64 40 28

Average 282 147 78 64 40 30
Speedup 1.00 1.92 3.61 4.38 6.98 9.39

Table A.68: ODD SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
488 245 124 70 34 25
494 245 123 71 34 25
496 246 123 71 34 25
491 245 123 70 34 25
490 247 123 71 35 25

Average 492 246 123 71 34 25
Speedup 1.00 2.00 3.99 6.97 14.38 19.67

Table A.69: ODD DMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
571 295 162 127 79 55
563 289 150 124 68 56
584 293 153 124 67 53
562 285 158 127 69 52
560 290 160 129 70 51

Average 568 290 157 126 71 53
Speedup 1.00 1.96 3.63 4.50 8.05 10.64

Table A.70: ODD SMA 600k (1000 elems/chunk)

86 Walltime Data

Slaves 1 2 4 8 16 24
978 487 263 125 66 49
979 487 265 126 68 49
978 489 267 127 66 48
972 486 265 126 68 48
978 487 266 125 68 50

Average 977 487 265 126 67 49
Speedup 1.00 2.01 3.68 7.77 14.54 20.02

Table A.71: ODD DMA 1200k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1123 603 308 204 151 98
1111 581 314 200 140 98
1108 611 318 203 141 105
1150 608 310 201 141 99
1112 607 318 197 144 105

Average 1121 602 314 201 143 101
Speedup 1.00 1.86 3.57 5.58 7.82 11.10

Table A.72: ODD SMA 1200k (1000 elems/chunk)

A.4 Workpool Scheduling 87

A.4 Workpool Scheduling

A.4.1 MAMMO

Slaves 1 2 4 8 16 24
1086 558 288 148 80 62
1088 557 291 147 80 59
1087 558 287 147 83 59
1087 554 294 148 78 61
1088 555 287 147 78 60

Average 1087 556 289 147 80 60
Speedup 1.00 1.95 3.76 7.38 13.62 18.06

Table A.73: MAMMO SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
2184 1139 575 293 153 115
2184 1134 577 292 152 115
2188 1134 575 290 154 116
2185 1126 576 293 153 116
2187 1134 574 292 153 115

Average 2186 1133 575 292 153 115
Speedup 1.00 1.93 3.80 7.48 14.28 18.94

Table A.74: MAMMO SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
4606 2335 1154 593 308 221
4619 2332 1158 592 306 221
4620 2331 1155 591 307 221
4619 2332 1153 590 309 222
4618 2334 1156 582 306 220

Average 4616 2333 1155 590 307 221
Speedup 1.00 1.98 4.00 7.83 15.03 20.89

Table A.75: MAMMO SMA 1200k (1000 elems/chunk)

A.4.2 BLOG

88 Walltime Data

Slaves 1 2 4 8 16 24
828 445 245 157 106 101
830 447 251 154 110 100
827 449 252 156 104 100
828 447 249 156 108 100
829 446 249 153 111 100

Average 828 446 249 155 107 100
Speedup 1.00 1.85 3.32 5.34 7.68 8.27

Table A.76: BLOG SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1864 956 483 281 185 175
1860 957 477 271 183 173
1863 958 475 263 187 175
1864 957 490 273 180 166
1868 957 484 268 177 178

Average 1863 957 481 271 182 173
Speedup 1.00 1.95 3.87 6.87 10.22 10.75

Table A.77: BLOG SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
3247 1784 954 524 327 276
3247 1782 957 519 326 288
3246 1785 942 513 318 278
3251 1779 943 522 323 288
3246 1787 940 520 322 291

Average 3247 1783 947 519 323 284
Speedup 1.00 1.82 3.43 6.25 10.05 11.43

Table A.78: BLOG SMA 1200k (1000 elems/chunk)

A.4.3 PROB

Slaves 1 2 4 8 16 24
483 243 119 61 33 27
483 243 119 63 32 24
482 242 119 60 32 24
481 235 120 61 33 24
482 236 119 60 33 27

Average 482 240 119 61 33 25
Speedup 1.00 2.01 4.05 7.90 14.79 19.13

Table A.79: PROB SMA 300k (1000 elems/chunk)

A.4 Workpool Scheduling 89

Slaves 1 2 4 8 16 24
937 491 241 122 65 45
936 486 241 122 64 44
934 478 241 123 63 44
932 478 241 122 65 46
939 478 240 121 64 45

Average 936 482 241 122 64 45
Speedup 1.00 1.94 3.89 7.67 14.57 20.88

Table A.80: PROB SMA 600k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
1932 966 474 246 124 88
1931 968 476 240 133 91
1925 971 473 242 130 92
1937 965 476 243 124 94
1927 971 475 240 124 90

Average 1930 968 475 242 127 91
Speedup 1.00 1.99 4.07 7.97 15.20 21.21

Table A.81: PROB SMA 1200k (1000 elems/chunk)

A.4.4 ODD

Slaves 1 2 4 8 16 24
245 122 62 30 17 14
243 121 60 31 16 13
241 121 60 30 16 12
243 121 61 31 15 15
243 120 60 30 17 13

Average 243 121 61 30 16 13
Speedup 1.00 2.01 4.01 7.99 15.00 18.13

Table A.82: ODD SMA 300k (1000 elems/chunk)

Slaves 1 2 4 8 16 24
478 240 121 61 31 23
475 239 120 60 31 23
475 242 119 61 31 22
470 242 120 60 31 23
473 242 119 61 31 22

Average 474 241 120 61 31 23
Speedup 1.00 1.97 3.96 7.83 15.30 20.98

Table A.83: ODD SMA 600k (1000 elems/chunk)

90 Walltime Data

Slaves 1 2 4 8 16 24
960 476 239 120 63 44
955 477 240 121 64 45
957 471 240 121 61 46
956 476 240 122 64 46
953 479 236 120 62 45

Average 956 476 239 121 63 45
Speedup 1.00 2.01 4.00 7.92 15.23 21.15

Table A.84: ODD SMA 1200k (1000 elems/chunk)

Appendix B

Load Balancing Data

This appendix includes raw data used to plot Figure 5.5 in Chapter 5, concerning the load bal-

ancing. The three sections in this chapter contain the data for each scheduling method. All times

are given in miliseconds, d max is the difference between the fastest and the slowest slave and

d max % is the ratio between that difference and the average walltime of the call.

B.1 Dynamic Scheduling

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 189 191 193 189 192 191
slaves 183 184 182 184 183 183

173 177 175 174 175 175
181 180 185 185 187 184
175 172 171 172 179 174
185 184 185 185 184 185
174 177 169 170 170 172
186 185 185 185 185 185
168 174 175 174 175 173
186 184 186 182 186 185
175 177 175 168 180 175
183 187 184 183 183 184
172 174 170 170 173 172
185 176 185 184 184 183
172 174 172 174 171 173
185 183 187 179 183 183
175 178 170 174 171 174

d max 13
d max% 7.0%

Table B.1: MAMMO DMA 1200k 16 slaves (1000 elems/chunk)

91

92 Load Balancing Data

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 100 101 103 95 105 101
slaves 91 92 92 92 91 92

73 81 75 81 80 78
83 84 84 87 89 85
79 74 74 79 78 77
93 89 92 87 92 91
80 80 82 78 77 79
91 90 88 90 90 90
83 79 84 75 76 79
92 91 92 91 90 91
81 83 76 78 78 79
91 92 93 92 92 92
77 80 79 84 77 79
91 88 90 93 91 91
76 81 82 83 78 80
91 88 92 91 91 91
84 85 84 81 84 84

d max 15
d max % 15.1%

Table B.2: PROB DMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 295 300 303 300 300 300
slaves 287 287 288 276 285 285

259 270 267 258 268 264
287 287 296 296 290 291
260 268 264 268 263 265
289 287 289 287 283 287
261 262 262 257 255 259
294 287 289 286 287 289
256 269 262 262 267 263

d max 32
d max % 10.6%

Table B.3: BLOG DMA 1200k 8 slaves (1000 elems/chunk)

B.1 Dynamic Scheduling 93

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 64 68 69 66 68 67
slaves 60 62 62 59 62 61

53 55 47 51 45 50
60 60 61 60 62 61
52 48 49 49 52 50
61 61 63 61 59 61
55 53 50 52 47 51
62 61 62 61 61 61
53 54 49 52 53 52
60 62 64 62 63 62
54 54 47 52 52 52
61 61 58 59 61 60
53 50 47 50 50 50
62 60 61 61 61 61
49 48 48 48 54 49
61 60 60 60 62 61
51 48 48 47 54 50

d max 13
d max % 19.1%

Table B.4: ODD DMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 316 310 307 313 310 311
slaves 268 272 292 291 276 280

264 258 274 288 267 270
272 264 265 257 269 265
266 267 263 258 262 263
288 270 266 274 265 273
280 263 267 265 261 267
276 273 292 272 270 277
297 269 261 264 275 273
268 256 267 263 260 263
265 260 269 267 273 267
277 287 291 284 275 283
285 263 265 261 259 267
245 261 263 263 264 259
260 271 259 271 272 267
264 270 265 291 289 276
267 258 265 268 263 264

d max 24
d max % 7.6%

Table B.5: MAMMO SMA 1200k 16 slaves (1000 elems/chunk)

94 Load Balancing Data

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 136 135 136 137 137 136
slaves 95 95 90 93 93 93

95 89 91 89 98 92
92 103 126 112 89 104
96 90 96 94 97 95
91 89 87 113 107 97
100 91 92 94 93 94
88 89 95 84 91 89
100 85 111 122 98 103
109 116 103 131 93 110
95 88 91 88 84 89
95 96 85 89 91 91
120 110 93 106 96 105
94 90 112 88 98 96
98 94 90 98 96 95
94 91 86 95 94 92
93 111 104 113 91 102

d max 21
d max % 15.6%

Table B.6: PROB SMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 349 368 359 359 348 357
slaves 271 279 289 322 276 287

259 276 268 282 310 279
274 282 276 266 277 275
274 285 274 264 266 273
323 296 273 270 282 289
280 284 283 277 277 280
280 309 306 276 278 290
270 275 285 274 268 274
270 275 279 288 278 278
273 278 273 269 280 275
274 269 270 275 275 273
306 283 290 286 283 290
287 291 318 268 270 287
288 304 278 285 293 290
291 330 284 281 292 296
291 289 285 297 290 290

d max 23
d max % 6.4%

Table B.7: BLOG SMA 1200k 16 slaves (1000 elems/chunk)

B.1 Dynamic Scheduling 95

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 65 66 67 68 69 67
slaves 23 27 24 19 28 24

44 44 28 29 29 35
33 17 29 54 31 33
23 24 29 22 30 26
37 29 28 24 28 29
23 21 25 27 24 24
36 49 24 27 26 32
19 23 30 37 28 27
29 26 47 26 32 32
22 20 58 33 35 34
19 24 29 24 29 25
30 30 30 39 24 31
22 30 28 38 46 33
26 27 29 25 28 27
22 29 27 24 30 26
29 21 20 27 27 25

d max 11
d max % 16.1%

Table B.8: ODD SMA 1200k 16 slaves (1000 elems/chunk)

96 Load Balancing Data

B.2 Static Scheduling

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 189 191 193 189 192 191
slaves 183 184 182 184 183 183

173 177 175 174 175 175
181 180 185 185 187 184
175 172 171 172 179 174
185 184 185 185 184 185
174 177 169 170 170 172
186 185 185 185 185 185
168 174 175 174 175 173
186 184 186 182 186 185
175 177 175 168 180 175
183 187 184 183 183 184
172 174 170 170 173 172
185 176 185 184 184 183
172 174 172 174 171 173
185 183 187 179 183 183
175 178 170 174 171 174

d max 13
d max % 7.0%

Table B.9: MAMMO DMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 100 101 103 95 105 101
slaves 91 92 92 92 91 92

73 81 75 81 80 78
83 84 84 87 89 85
79 74 74 79 78 77
93 89 92 87 92 91
80 80 82 78 77 79
91 90 88 90 90 90
83 79 84 75 76 79
92 91 92 91 90 91
81 83 76 78 78 79
91 92 93 92 92 92
77 80 79 84 77 79
91 88 90 93 91 91
76 81 82 83 78 80
91 88 92 91 91 91
84 85 84 81 84 84

d max 15
d max % 15.1%

Table B.10: PROB DMA 1200k 16 slaves (1000 elems/chunk)

B.2 Static Scheduling 97

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 295 300 303 300 300 300
slaves 287 287 288 276 285 285

259 270 267 258 268 264
287 287 296 296 290 291
260 268 264 268 263 265
289 287 289 287 283 287
261 262 262 257 255 259
294 287 289 286 287 289
256 269 262 262 267 263

d max 32
d max % 10.6%

Table B.11: BLOG DMA 1200k 8 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 64 68 69 66 68 67
slaves 60 62 62 59 62 61

53 55 47 51 45 50
60 60 61 60 62 61
52 48 49 49 52 50
61 61 63 61 59 61
55 53 50 52 47 51
62 61 62 61 61 61
53 54 49 52 53 52
60 62 64 62 63 62
54 54 47 52 52 52
61 61 58 59 61 60
53 50 47 50 50 50
62 60 61 61 61 61
49 48 48 48 54 49
61 60 60 60 62 61
51 48 48 47 54 50

d max 13
d max % 19.1%

Table B.12: ODD DMA 1200k 16 slaves (1000 elems/chunk)

98 Load Balancing Data

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 334 324 323 325 325 326
slaves 300 296 298 300 302 299

310 312 313 310 310 311
308 295 306 302 307 304
328 317 314 316 317 318
311 309 313 304 311 310
321 309 315 312 316 315
319 310 312 315 317 315
314 321 314 316 318 317
322 312 318 313 316 316
304 301 296 297 302 300
326 320 318 317 318 320
321 311 312 312 316 314
299 297 296 299 301 298
306 299 301 300 300 301
318 318 317 320 318 318
317 309 312 307 313 312

d max 21
d max % 6.6%

Table B.13: MAMMO SMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 136 134 136 137 137 136
slaves 123 124 121 124 122 123

118 115 114 123 122 118
121 119 114 120 115 118
126 126 131 129 124 127
114 123 122 124 118 120
119 121 111 122 116 118
118 114 118 116 122 118
116 123 116 112 112 116
127 128 129 129 117 126
126 126 128 132 128 128
119 121 115 115 116 117
128 123 130 116 127 125
128 125 123 123 121 124
135 127 127 127 131 129
119 124 121 121 110 119
111 120 118 121 121 118

d max 14
d max % 10.0%

Table B.14: PROB SMA 1200k 16 slaves (1000 elems/chunk)

B.2 Static Scheduling 99

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 380 379 380 379 380 380
slaves 288 288 291 292 287 289

343 346 345 339 347 344
293 300 295 296 297 296
287 294 290 291 289 290
301 312 317 319 314 313
321 326 319 323 324 323
282 288 284 289 288 286
283 285 286 282 280 283
277 282 283 278 281 280
352 352 352 356 356 354
314 313 315 316 317 315
310 313 313 309 315 312
309 312 310 307 308 309
376 372 375 374 375 374
301 300 304 303 301 302
315 314 317 315 313 315

d max 94
d max % 24.8%

Table B.15: BLOG SMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 68 71 70 68 74 70
slaves 55 58 59 47 55 55

48 45 55 61 51 52
54 58 57 63 62 59
49 60 47 63 60 56
56 46 48 59 59 54
58 55 42 53 58 53
55 59 64 48 63 58
51 52 57 55 55 54
64 50 59 51 54 56
51 56 57 48 57 54
53 59 52 62 62 58
58 58 57 62 59 59
57 59 61 60 65 60
50 63 59 57 51 56
59 62 48 61 44 55
57 54 46 51 57 53

d max 8
d max % 12.0%

Table B.16: ODD SMA 1200k 16 slaves (1000 elems/chunk)

100 Load Balancing Data

B.3 Single-step scheduling

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 187 188 189 189 189 188
slaves 177 176 177 176 177 177

180 180 179 180 181 180
179 180 181 180 180 180
180 180 180 179 181 180
176 177 177 178 177 177
179 178 179 178 178 178
177 177 177 180 178 178
180 179 180 179 178 179
170 170 171 171 172 171
179 178 178 179 178 178
182 182 182 183 184 183
180 180 179 180 181 180
181 181 181 182 181 181
179 179 179 179 181 179
187 188 189 188 187 188
182 181 180 181 182 181

d max 17
d max % 9.0%

Table B.17: MAMMO DMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 93 94 94 93 93 93
slaves 93 92 91 92 92 92

90 90 89 89 90 90
85 85 82 85 84 84
91 93 94 93 92 93
91 89 89 90 90 90
88 90 89 90 89 89
87 84 86 86 85 86
89 90 89 89 89 89
88 87 86 87 86 87
92 92 91 93 92 92
86 83 85 85 85 85
87 87 87 86 87 87
92 91 89 90 90 90
91 90 89 89 90 90
86 83 84 85 83 84
89 90 89 90 89 89

d max 8
d max % 9.0%

Table B.18: PROB DMA 1200k 16 slaves (1000 elems/chunk)

B.3 Single-step scheduling 101

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 328 327 328 328 331 328
slaves 283 286 285 287 289 286

248 252 252 254 252 252
282 285 285 287 287 285
247 251 250 252 251 250
328 325 329 328 330 328
250 254 253 255 253 253
282 284 283 287 286 284
252 256 255 254 256 255

d max 78
d max % 23.7%

Table B.19: BLOG DMA 1200k 8 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 72 66 66 66 66 67
slaves 63 63 64 64 63 63

64 65 66 66 65 65
62 61 60 62 61 61
64 65 64 65 65 65
63 63 64 64 64 64
63 63 64 64 63 63
63 63 63 64 63 63
63 64 64 65 64 64
62 61 61 61 61 61
64 65 65 66 65 65
66 63 62 64 63 64
70 63 64 64 65 65
62 64 63 64 64 63
64 64 64 66 64 64
65 63 63 63 63 63
65 65 65 66 66 65

d max 4
d max % 6.3%

Table B.20: ODD DMA 1200k 16 slaves (1000 elems/chunk)

102 Load Balancing Data

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 375 368 366 365 364 368
slaves 323 323 325 322 327 324

367 365 362 362 364 364
367 367 363 364 360 364
339 334 337 331 338 336
369 365 364 363 364 365
367 366 364 364 364 365
333 337 336 334 339 336
361 364 361 362 362 362
329 337 336 333 338 335
332 338 338 334 340 336
327 327 327 323 327 326
338 333 336 329 337 335
330 337 335 333 337 334
347 344 346 343 346 345
374 363 365 364 364 366
324 325 325 324 326 325

d max 42
d max % 11.4%

Table B.21: MAMMO SMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 246 216 214 213 213 220
slaves 212 215 213 212 212 213

182 201 205 202 202 198
186 189 191 188 187 188
186 190 192 190 189 189
184 187 189 187 185 186
166 169 170 170 168 169
185 190 190 189 187 188
210 214 211 212 212 212
196 198 198 196 196 197
196 198 199 197 196 197
196 200 200 198 197 198
197 200 200 198 197 198
164 167 168 167 165 166
153 159 161 159 158 158
165 168 169 170 167 168
150 156 157 156 155 155

d max 58
d max % 26.3%

Table B.22: PROB SMA 1200k 16 slaves (1000 elems/chunk)

B.3 Single-step scheduling 103

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 406 406 406 409 405 406
slaves 393 394 393 396 393 394

266 269 270 271 267 269
351 348 362 347 346 351
348 347 346 356 346 349
404 406 403 406 404 405
227 232 234 235 231 232
365 381 364 396 360 373
347 343 341 351 343 345
393 395 395 398 393 395
231 234 234 237 232 234
341 331 342 331 336 336
352 348 348 352 349 350
404 406 404 406 405 405
217 221 222 224 220 221
351 348 348 349 346 348
384 376 377 348 381 373

d max 184
d max % 45.3%

Table B.23: BLOG SMA 1200k 16 slaves (1000 elems/chunk)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
walltime 119 118 115 118 140 122
slaves 104 104 101 107 99 103

113 114 114 110 135 117
116 110 116 117 116 115
100 104 104 103 114 105
107 109 110 114 116 111
103 103 105 101 104 103
108 108 109 109 102 107
112 115 114 116 116 115
113 116 110 117 116 114
109 108 112 109 107 109
105 107 106 104 101 105
107 107 108 108 102 106
102 100 105 102 103 102
103 105 105 105 101 104
106 105 107 100 103 104
103 101 105 101 104 103

d max 15
d max % 12.1%

Table B.24: ODD SMA 1200k 16 slaves (1000 elems/chunk)

104 Load Balancing Data

Appendix C

Variation of Chunk Size

This appendix presents the raw data concerning the variation of chunk size, for the applicable

scheduling methods. It is divided into sections, each corresponding to a form of data scheduling.

On the tables, Elems respresents the number of query elements on a chunk and Average is cal-

cluated using the data collected in five consecutive runs of the same call. Figures 5.6 and 5.7 in

Chapter 5 were plotted using the data presented in this appendix.

C.1 Dynamic Scheduling

Elems 50 100 500 1000 5000 10000
374 245 198 194 194 192
362 248 199 192 196 196
396 246 198 194 194 194
312 463 199 193 194 194
459 248 199 193 195 194

Average 381 290 199 193 195 194
Table C.1: MAMMO DMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
462 372 314 336 345 341
541 374 310 337 344 342
523 358 310 334 346 342
567 396 310 336 346 340
675 372 313 336 345 341

Average 554 374 311 336 345 341
Table C.2: MAMMO SMA 1200k (16 slaves)

105

106 Variation of Chunk Size

Elems 50 100 500 1000 5000 10000
535 386 314 299 302 304
527 388 315 303 300 308
556 386 315 301 302 303
476 593 315 301 301 308
612 387 315 301 299 305

Average 541 428 315 301 301 306
Table C.3: BLOG DMA 1200k (8 slaves)

Elems 50 100 500 1000 5000 10000
758 429 354 339 408 378
742 400 366 339 400 398
667 410 364 341 392 384
692 399 361 328 383 365
710 423 364 338 378 383

Average 714 412 362 337 392 382
Table C.4: BLOG SMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
350 160 102 93 89 93
384 157 102 93 88 93
246 527 102 176 89 92
476 157 100 94 89 91
565 158 101 92 89 92

Average 404 232 101 110 89 92
Table C.5: PROB DMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
519 229 141 128 176 188
518 295 138 127 175 187
521 280 137 131 177 192
516 281 138 130 175 196
516 274 140 131 173 199

Average 518 272 139 129 175 192
Table C.6: PROB SMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
270 128 68 63 61 67
259 128 68 64 60 67
289 127 67 63 61 67
207 342 69 63 61 68
350 128 69 65 61 66

Average 275 171 68 64 61 67
Table C.7: ODD DMA 1200k (16 slaves)

C.1 Dynamic Scheduling 107

Elems 50 100 500 1000 5000 10000
475 245 80 66 93 108
478 248 79 65 99 107
479 247 82 65 95 111
480 246 75 66 96 110
487 248 80 64 96 108

Average 480 247 79 65 96 109
Table C.8: ODD SMA 1200k (16 slaves)

108 Variation of Chunk Size

C.2 Static Scheduling

Elems 50 100 500 1000 5000 10000
338 220 206 208 207 193
361 219 206 207 207 194
395 219 207 207 206 193
278 411 207 206 206 193
424 220 206 207 207 193

Average 359 258 206 207 207 193
Table C.9: MAMMO DMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
367 335 303 311 343 358
367 333 301 310 342 352
368 330 299 309 342 350
364 344 298 315 346 356
367 330 301 309 342 366

Average 367 334 300 311 343 356
Table C.10: MAMMO SMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
476 334 309 322 293 312
450 335 311 323 294 311
479 547 311 324 294 310
373 334 308 322 292 311
554 336 311 323 292 313

Average 466 377 310 323 293 311
Table C.11: BLOG DMA 1200k (8 slaves)

Elems 50 100 500 1000 5000 10000
451 357 384 321 332 349
455 360 383 318 335 348
452 359 383 317 336 348
454 355 386 319 332 348
449 359 381 318 333 349

Average 452 358 383 319 334 348
Table C.12: BLOG SMA 1200k (16 slaves)

C.3 Workpool Scheduling 109

Elems 50 100 500 1000 5000 10000
380 150 589 92 91 96
353 150 99 92 90 96
223 226 99 93 89 97
506 150 99 92 90 96
221 150 100 92 90 96

Average 337 165 197 92 90 96
Table C.13: PROB DMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
356 164 140 138 186 204
348 169 138 139 186 209
354 175 137 139 185 206
350 162 135 139 183 207
354 164 136 141 184 210

Average 352 167 137 139 185 207
Table C.14: PROB SMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
252 107 67 61 59 72
243 108 67 62 60 71
311 109 68 61 60 73
190 320 66 62 60 74
337 108 68 61 60 73

Average 267 150 67 61 60 73
Table C.15: ODD DMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
403 159 66 66 124 141
403 161 65 91 121 148
403 167 66 70 115 146
401 154 66 65 115 147
402 155 66 68 116 148

Average 402 159 66 72 118 146
Table C.16: ODD SMA 1200k (16 slaves)

C.3 Workpool Scheduling

110 Variation of Chunk Size

Elems 50 100 500 1000 5000 10000
365 336 304 315 343 333
379 333 302 316 340 331
365 335 303 316 343 334
365 334 304 317 340 338
378 331 302 315 339 338

Average 370 334 303 316 341 335
Table C.17: MAMMO SMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
359 331 324 329 380 344
361 329 313 330 377 359
359 331 320 329 380 358
367 328 322 331 377 358
383 338 318 321 376 356

Average 366 331 319 328 378 355
Table C.18: BLOG SMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
756 157 128 128 171 180
756 157 130 142 172 181
751 155 129 134 171 179
756 156 131 129 171 182
745 158 129 127 170 180

Average 753 157 129 132 171 180
Table C.19: PROB SMA 1200k (16 slaves)

Elems 50 100 500 1000 5000 10000
737 311 65 62 97 107
727 272 62 64 96 110
732 297 63 61 94 108
739 290 63 62 95 109
734 374 64 62 95 109

Average 734 309 63 62 95 109
Table C.20: ODD SMA 1200k (16 slaves)

References

[1] V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System. Journal of Theory and
Practice of Logic Programming, 12(1 & 2):5–34, 2012.

[2] DELL. DellTM PowerEdgeTM R905 – Hardware Owner’s Manual, 2007. URL: http://
www.manualowl.com/m/Dell/PowerEdge-R905/Manual/189693.

[3] D. Page and A. Srinivasan. ILP: A short look back and a longer look forward. The Journal
of Machine Learning Research, 4:415–430, 2003.

[4] P. M. Nugues. An Introduction to Language Processing with Perl and Prolog: An Outline of
Theories, Implementation, and Application with Special Consideration of English, French,
and German. Springer, 2006.

[5] W. C. Benton and C. N. Fischer. Interactive, scalable, declarative program analysis: from
prototype to implementation. In Proceedings of the 9th ACM SIGPLAN international con-
ference on Principles and practice of declarative programming, pages 13–24. ACM, 2007.

[6] D. Li and D. Liu. A fuzzy Prolog database system. John Wiley and Sons Inc, 1990.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM, 51(1):107–113, 2008.

[8] Cheng-Tao Chu, S. Kyun Kim, Yi-An Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Oluko-
tun. Map-Reduce for Machine Learning on Multicore. In Advances in Neural Information
Processing Systems 19, pages 281–288. MIT Press, 2007.

[9] J. W. Lloyd. Practical Advantages of Declarative Programming. In Joint Conference on
Declarative Programming, GULP-PRODE, volume 1, pages 18–30, 1994.

[10] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What You Always Wanted to Know About
Datalog (And Never Dared to Ask). Knowledge and Data Engineering, IEEE Transactions
on, 1(1):146–166, 1989.

[11] Patricia Hill and John Wylie Lloyd. The Gödel programming language. The MIT Press,
1994.

[12] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In History of programming
languages—II, pages 331–367. ACM, 1996.

[13] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. Journal of Theory and
Practice of Logic Programming, 12(1 & 2):67–96, 2012.

[14] M. Carlsson and P. Mildner. SICStus Prolog - the first 25 years. Theory and Practice of
Logic Programming, 12(1-2):35–66, 2012.

111

http://www.manualowl.com/m/Dell/PowerEdge-R905/Manual/189693
http://www.manualowl.com/m/Dell/PowerEdge-R905/Manual/189693

112 REFERENCES

[15] C. Green. Application of theorem proving to problem solving. Technical report, Defense
Technical Information Center Document, Stanford University, 1969.

[16] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International,
1983.

[17] H. Aït-Kaci. Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT Press, 1991.

[18] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel Execution of
Prolog Programs: A Survey. ACM Transactions on Programming Languages and Systems,
23(4):472–602, 2001.

[19] V. Santos Costa. Optimising Bytecode Emulation for Prolog. In Principles and Practice of
Declarative Programming, number 1702 in LNCS, pages 261–267. Springer-Verlag, 1999.

[20] R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog System Based on
Environment Copying. In Portuguese Conference on Artificial Intelligence, number 1695 in
LNAI, pages 178–192. Springer-Verlag, 1999.

[21] R. Rocha, F. Silva, and V. Santos Costa. On a Tabling Engine That Can Exploit Or-
Parallelism. In International Conference on Logic Programming, number 2237 in LNCS,
pages 43–58. Springer-Verlag, 2001.

[22] V. Santos Costa, K. Sagonas, and R. Lopes. Demand-Driven Indexing of Prolog Clauses. In
International Conference on Logic Programming, number 4670 in LNCS, pages 395–409.
Springer-Verlag, 2007.

[23] R. Rocha. On Improving the Efficiency and Robustness of Table Storage Mechanisms for
Tabled Evaluation. In International Symposium on Practical Aspects of Declarative Lan-
guages, number 4354 in LNCS, pages 155–169. Springer-Verlag, 2007.

[24] R. Rocha, F. Silva, and V. Santos Costa. Dynamic Mixed-Strategy Evaluation of Tabled
Logic Programs. In International Conference on Logic Programming, number 3668 in
LNCS, pages 250–264. Springer-Verlag, 2005.

[25] S. Papadimitriou and J. Sun. DisCo: Distributed Co-clustering with Map-Reduce: A Case
Study Towards Petabyte-Scale End-to-End Mining. In International Conference on Data
Mining, pages 512–521. IEEE Computer Society, 2008.

[26] C. Miceli, M. Miceli, S. Jha, H. Kaiser, and A. Merzky. Programming Abstractions for
Data Intensive Computing on Clouds and Grids. In IEEE/ACM International Symposium on
Cluster Computing and the Grid, pages 478–483. IEEE Computer Society, 2009.

[27] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker. A
Comparison of Approaches to Large-Scale Data Analysis. In ACM International Conference
on the Management of Data, pages 165–178. ACM, 2009.

[28] S. Pallickara, J. Ekanayake, and G. Fox. Granules: A Lightweight, Streaming Runtime for
Cloud Computing with Support, for Map-Reduce. In International Conference on Cluster
Computing and Workshops, pages 1–10. IEEE Computer Society, 2009.

[29] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: A
Runtime for Iterative MapReduce. In ACM International Symposium on High Performance
Distributed Computing, pages 810–818. ACM, 2010.

REFERENCES 113

[30] S. Plimpton and K. Devine. MapReduce in MPI for Large-scale Graph Algorithms. Parallel
Computing, 37(9):610–632, 2011.

[31] D. Borthakur for Apache Software Foundation. The Hadoop Distributed File System: Ar-
chitecture and Design, 2007. URL: http://hadoop.apache.org/docs/r0.18.0/hdfs_
design.pdf.

[32] A. Srinivasan, T. A. Faruquie, and S. Joshi. Data and task parallelism in ILP using MapRe-
duce. Machine Learning, 86(1):141–168, 2012.

[33] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System.
In Symposium on Mass Storage Systems and Technologies, pages 1–10. IEEE Computer
Society, 2010.

[34] A. Srinivasan. The Aleph Manual, 2004. URL: http://www.cs.ox.ac.uk/activities/
machlearn/Aleph.

[35] Message Passing Interface Forum. URL: http://www.mpi-forum.org.

[36] J. Wielemaker. Native Preemptive Threads in SWI-Prolog. In International Conference on
Logic Programming, number 2916 in LNCS, pages 331–345. Springer-Verlag, 2003.

[37] E. L. Lusk W. Gropp and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message Passing Interface, volume 1. MIT press, 1999.

[38] Torsten Hoefler, Andrew Lumsdaine, and Jack Dongarra. Towards Efficient MapReduce
Using MPI. In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
pages 240–249. Springer, 2009.

[39] LAM/MPI Parallel Computing. URL: http://www.lam-mpi.org.

[40] G. Bosilca T. Angskun J. J. Dongarra J. M. Squyres V. Sahay P. Kambadur B. Barrett A.
Lumsdaine R. H. Castain D. J. Daniel R. L. Graham T. S. Woodall E. Gabriel, G. E. Fagg.
Open MPI: Goals, concept, and design of a next generation MPI implementation. In Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface, pages 97–104.
Springer, 2004.

[41] B. Toonen N. T. Karonis and I. Foster. MPICH-G2: a Grid-enabled implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing, 63(5):551–563,
2003.

[42] R. K. Malladi. Using Intel R© VTuneTM Performance Analyzer Events/Ratios & Optimizing
Applications, 2009.

[43] Intel Software. Intel R© VTuneTM Amplifier XE 2013, 2013. URL: http://software.
intel.com/en-us/intel-vtune-amplifier-xe.

http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf
http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf
http://www.cs.ox.ac.uk/activities/machlearn/Aleph
http://www.cs.ox.ac.uk/activities/machlearn/Aleph
http://www.mpi-forum.org
http://www.lam-mpi.org
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe

	Front Page
	Resumo
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Purpose
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Logic Programming
	2.1.1 The Prolog Language
	2.1.2 Parallelism in Prolog
	2.1.3 The Yap System

	2.2 The MapReduce Framework
	2.2.1 MapReduce Implementations
	2.2.2 MapReduce Applied to Prolog

	3 MapReduce in Prolog
	3.1 Architecture
	3.2 File System
	3.3 Scheduling Methods
	3.4 User Interface
	3.4.1 Usage Examples

	4 Methodology
	4.1 The Yap System in Detail
	4.1.1 Yap Threads
	4.1.2 Yap Statistics
	4.1.3 Yap Message Passing Interface

	4.2 MapReduce for Prolog Implementation
	4.3 Intel VTune Amplifier
	4.4 Materials
	4.5 Datasets
	4.6 Known Issues

	5 Results
	5.1 Initial Measurements
	5.1.1 Loading Data Files
	5.1.2 Sequential Execution Times

	5.2 Scheduling Methods Evaluation
	5.2.1 Varying Scheduling Strategies
	5.2.2 Load Balancing
	5.2.3 Varying Chunk Sizes

	5.3 Varying Data Sizes

	6 Conclusions and Future Work
	6.1 Main Contributions
	6.2 Further Work
	6.3 Final Remark

	A Walltime Data
	A.1 Dynamic Scheduling
	A.1.1 MAMMO
	A.1.2 BLOG
	A.1.3 PROB
	A.1.4 ODD

	A.2 Static Scheduling
	A.2.1 MAMMO
	A.2.2 BLOG
	A.2.3 PROB
	A.2.4 ODD

	A.3 Single-step Scheduling
	A.3.1 MAMMO
	A.3.2 BLOG
	A.3.3 PROB
	A.3.4 ODD

	A.4 Workpool Scheduling
	A.4.1 MAMMO
	A.4.2 BLOG
	A.4.3 PROB
	A.4.4 ODD

	B Load Balancing Data
	B.1 Dynamic Scheduling
	B.2 Static Scheduling
	B.3 Single-step scheduling

	C Variation of Chunk Size
	C.1 Dynamic Scheduling
	C.2 Static Scheduling
	C.3 Workpool Scheduling

	References

