
D
Logic Programming

Environments with

Advanced Parallelism
João Pedro Barreiros Nunes dos Santos
Programa Doutoral em Ciência de Computadores
Departamento de Ciência de Computadores

2016

Orientador
Ricardo Jorge Gomes Lopes da Rocha, Professor Auxiliar,

Faculdade de Ciências Universidade do Porto

João Pedro Barreiros Nunes dos Santos

Logic Programming Environments

with Advanced Parallelism

Thesis submitted to Faculdade de Ciências

of the Universidade do Porto to obtain

the degree of Doctor in Computer Science

Orientador: Prof. Doutor Ricardo Jorge Gomes Lopes da Rocha

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

2016

ii

Acknowledgements

First of all, I would like to thank my supervisor, Prof. Ricardo Rocha, for the support

and guidance during all this years. He was always there to listen, discuss and help me

to carry on this work. I am sure that I am now a better computer scientist because

of him.

Besides my advisor, I would like to express my gratitude to Prof. Vı́tor Santos Costa

for his availability and precious help specially during the implementation of the system.

I would like to express also a special acknowledgement to Prof. Fernando Silva for his

support.

I am thankful to Fundação para a Ciência e Tecnologia (FCT) for funding this work,

during 4 years, within the research grant SFRH/BD/76307/2011, and to the Center

for Research and Advanced Computing Systems (CRACS) for funding the remaining

time.

To my fellow colleagues at DCC-FCUP, specially Miguel Areias, Flávio Cruz and

Joana Côrte-Real, I would like to thank for the excellent work environment and to

my longtime friends, João Bento and José Vieira, for their unconditional friendship. I

wish you all the best for your future.

Finally, I would like to thank my parents, Isolina and Mário, and my son, Pedro Lúıs,

for their support and for always being by my side.

iii

iv

Resumo

Hoje em dia, os clusters de multicores estão a tornar-se cada vez mais acesśıveis e,

embora muitos sistemas paralelos de Prolog tenham sido desenvolvidos no passado,

não é do nosso conhecimento, que algum deles tenha sido especialmente concebido

para explorar a combinação de arquiteturas de memória partilhada com memória

distribúıda. Nesta tese, propomos um novo modelo computacional especialmente

concebido para tirar partido dessa combinação que introduz um modelo em camadas

com dois ńıveis de escalonamento, um para os agentes em memória partilhada, que

designamos por equipa de agentes (team of workers), e outro para as equipas de agentes

(que não partilham memória entre si). No seguimento desta proposta, apresentamos

uma primeira implementação do novo modelo que estende o sistema YapOr de forma

a explorar parallelismo-ou entre equipas de agentes. De modo a ser posśıvel tirar o

melhor partido do nosso sistema, propomos ainda um conjunto de predicados built-in

que constituem a sintaxe para interagir com o sistema. Os resultados experimentais

demonstram que o nosso sistema, quando comparado com o YapOr, alcança speedups

idênticos em memória partilhada e, quando executado em clusters de multicores, é

capaz de aumentar o speedup à medida que aumentamos o número de agentes por

equipa, aproveitando assim ao máximo o número de cores em cada máquina, e é capaz

de aumentar o speedup quando aumentamos o número de equipas, o que permite de

tirar partido da junção de mais máquinas ao cluster inicialmente dispońıvel. Em suma

e nossa convicção que o sistema desenvolvido no âmbito desta tese se apresenta como

uma alternativa viável e eficiente para a exploração do parallelismo-ou impĺıcito nos

clusters de baixo custo que existentes atualmente.

v

vi

Abstract

Nowadays, clusters of multicores are becoming the norm and, although, many or-

parallel Prolog systems have been developed in the past, to the best of our knowl-

edge, none of them was specially designed to explore the combination of shared and

distributed memory architectures. In this thesis, we propose a novel computational

model specially designed for such combination which introduces a layered model with

two scheduling levels, one for workers sharing memory resources, which we named a

team of workers, and another for teams of workers (not sharing memory resources).

Starting from this proposal, we then present a first implementation of such model and

for that we revive and extend the YapOr system to efficiently exploit or-parallelism

between teams of workers. In order to take full advantage of our system, we also

propose a new set of built-in predicates that constitute the syntax to interact with an

or-parallel engine in our system. Experimental results show that our system, when

compared against YapOr, achieves identical speedups for shared memory and, when

running on clusters of multicores, is able to increase speedups as we increase the

number of workers per team, thus taking advantage of the maximum number of cores

in a machine, and to increase speedups as we increase the number of teams, thus

taking advantage of adding more computer nodes to a cluster. We thus argue that

our system is an efficient and viable alternative for exploiting implicit or-parallelism

in the currently available clusters of low cost multicore architectures.

vii

viii

Contents

List of Tables xiv

List of Figures xvii

1 Introduction 1

1.1 Thesis Purpose . 2

1.2 Thesis Outline . 3

2 Logic Programming and Parallelism 5

2.1 Logic Programming . 5

2.1.1 Logic Programs . 6

2.1.2 Prolog . 7

2.1.3 Warren’s Abstract Machine . 9

2.2 Parallelism in Logic Programming . 11

2.2.1 Or-Parallelism . 13

2.2.1.1 Multiple Bindings Problem 13

2.2.1.2 Scheduling . 16

2.2.2 Environment Copying Models 17

2.3 Parallelism in the Yap Prolog system 22

2.4 Concept of Teams . 23

ix

3 Layered Model 25

3.1 Overview . 25

3.2 Syntax . 27

4 The YapOr System 33

4.1 Overview . 33

4.1.1 Basic Execution Model . 33

4.1.2 Incremental Copying . 34

4.1.3 Scheduling . 35

4.2 Implementation Details . 36

4.2.1 Memory Organization . 36

4.2.2 Choice Points and Or-frames . 39

4.2.3 Worker Load . 41

4.2.4 Sharing Work Process . 42

4.2.5 New Pseudo-Instructions . 43

5 Teams of Workers 45

5.1 Execution Model . 45

5.2 Starting a Parallel Execution . 47

5.2.1 Creating a Parallel Engine . 47

5.2.2 Running a Parallel Goal . 49

5.3 Memory Organization . 51

5.4 Team Scheduler . 52

5.5 Communication . 55

5.6 Load Balancing . 58

5.6.1 Selecting a Busy Team . 58

x

5.6.2 Selecting a Sharing Worker . 60

5.7 Sharing Process . 61

5.7.1 Delegated Sharing Process . 62

5.7.2 Preparing the Stacks to be Sent 64

5.7.3 Vertical Splitting . 66

5.7.4 Horizontal Splitting . 69

5.8 Termination . 72

5.9 Fetching Answers . 72

5.9.1 Protocol . 73

5.9.2 Implementation Details . 74

6 Performance Analysis 81

6.1 Benchmark Programs . 81

6.2 Performance Evaluation . 83

6.2.1 Overheads over YapOr . 84

6.2.2 Teams in the Same Machine . 87

6.2.3 Teams in Distributed Machines 89

6.2.4 Scalability . 91

7 Conclusions 97

7.1 Main Contributions . 97

7.2 Further Work . 99

7.3 Final Remark . 100

A Results 101

References 109

xi

xii

List of Tables

2.1 Main characteristics of the or-parallel models implemented in Yap . . . 23

5.1 Messages used for communication between teams 56

5.2 Messages used by the fetching answers protocol 73

6.1 Overheads added by YapOr with a single worker to sequential Yap . . . 84

6.2 Overheads added by our team implementation to YapOr when running

with a single worker . 85

6.3 Overheads added by our, implementation to YapOr when running with

1 team with the same number of workers 86

6.4 Speed ups comparing our implementation running in a single machine

against YapOr with one worker . 88

6.5 Speed ups comparing our implementation running in several machines

against YapOr with one worker . 90

6.6 Possible usage of the three or-parallel approaches for different scenarios

of clusters of multicore machines . 92

6.7 Execution times in milliseconds for the clusters with 1 machine and the

corresponding ratios for the clusters with 2, 4 and 8 machines for the

case of machines with 4, 8 and 16 cores each 93

6.8 Comparison between our approach and the standard stack splitting

approach . 95

A.1 Execution times in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.4 102

xiii

A.2 Execution time in seconds and coefficient of variation for the horizontal

splitting results used in Table 6.4 . 103

A.3 Execution time in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.5 104

A.4 Execution time in seconds and coefficient of variation for the horizontal

splitting results presented in Table 6.4 105

A.5 Execution times in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.7 and Table 6.8 106

A.6 Execution times in seconds and coefficient of variation for the horizontal

splitting results presented in Table 6.7 and Table 6.8 107

A.7 Execution times in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.8 using standard stack sppliting . 108

A.8 Execution times in seconds and coefficient of variation for the horizontal

splitting results presented in Table 6.8 using standard stack sppliting . 108

xiv

List of Figures

2.1 Schematic representation of a search tree proof in Prolog 8

2.2 WAM memory layout . 9

2.3 The multiple bindings problem . 14

2.4 The binding arrays model . 15

2.5 Relation between or-frames, choice-points, private and shared areas . . 18

2.6 Publishing private nodes . 19

2.7 Representation of the vertical splitting operation done by a sharing worker 20

2.8 In (a) worker Q is idle and waiting for worker P to share work with

it; in (b) P shares work using horizontal splitting; and in (c) P shares

work using vertical splitting . 21

3.1 Schematic representation of our layered model 26

3.2 A small example showing the usage of our syntax 30

4.1 Incremental Copying . 35

4.2 Memory layout for the (a) Yap and (b) YapOr systems 37

4.3 Copying segments of memory from one worker to another may lead to

problems if memory is not remapped 38

4.4 Memory addresses from the point of view of each worker after YapOr’s

remapping process . 39

4.5 Using memory rotation to solve the problem found in Fig 4.3 40

xv

4.6 Sharing a private choice point . 40

4.7 Local untried branches . 42

4.8 Steps and communication protocol between the two workers involved

in a sharing work operation . 43

5.1 Prolog code for the predicate par create parallel engine/2 47

5.2 Schematic representation of the process of spawning workers that con-

stitute a parallel engine . 48

5.3 Prolog code for the predicate par run goall/3 49

5.4 Fragment of pseudo-code from the getwork first time instruction 50

5.5 Prolog code for the predicate parallel run/2 50

5.6 Team memory layout . 52

5.7 Remapping process inside a team . 53

5.8 Team scheduler and its major components 54

5.9 Pseudo-code for the team idle scheduler 55

5.10 Pseudo-code for the team busy scheduler 55

5.11 Pseudo-code for the TS process message() procedure 57

5.12 Pseudo-code for the TS request work() procedure 59

5.13 Pseudo-code for the TS delegate request() procedure 60

5.14 On the left side, we can see a delegation frame before being initialized

and, on the right side, the same structure after the initialization to be

used in a delegation request . 63

5.15 Pseudo-code for the TS process delegation request() function responsi-

ble for processing a delegation request 64

5.16 Excerpt of code from the function TS process delegation ready() respon-

sible for receiving and processing a delegation response 65

xvi

5.17 On the left side, we have the schematic representation of the segments of

the stacks to be copied and, on the right side, we have the representation

of the auxiliary sharing area . 65

5.18 Representation of the vertical splitting operation done by a sharing worker 67

5.19 Pseudo-code for performing vertical splitting between teams 68

5.20 Representation of the horizontal splitting operation done by a sharing

worker . 69

5.21 Pseudo-code for performing horizontal splitting between teams 70

5.22 Representation of the fetching answers process 74

5.23 Pseudo-code for the process message from parallel engine() procedure . 75

5.24 Pseudo-Code for the c probe answers() procedure that implements the

predicate par probe answers/1 . 76

5.25 Pseudo-code for the c get answers() function that implements the pred-

icate par get answers/4. 77

5.26 Pseudo-code extending the TS process message() procedure to support

answers request messages . 78

6.1 Prolog program used for measuring the execution times in YapOr . . . 82

6.2 Prolog program used for measuring the execution times in our system . 83

xvii

Chapter 1

Introduction

The inherent non-determinism in the way logic programs are structured as simple

collections of alternative clauses makes Prolog very attractive for the exploitation

of implicit parallelism. Prolog offers two major forms of implicit parallelism: and-

parallelism and or-parallelism [16]. And-Parallelism stems from the parallel evaluation

of subgoals in a clause, while or-parallelism results from the parallel evaluation of a

subgoal call against the clauses that match that call. Arguably, or-parallel systems,

such as Aurora [28, 10, 45] and MUSE [4, 3, 5], have been the most successful parallel

Prolog systems so far. Intuitively, the least complexity of or-parallelism makes it more

attractive and productive to exploit than and-parallelism, as a first step. However,

practice has shown that a main difficulty is how to efficiently represent the multiple

bindings for the same variable produced by the or-parallel execution of alternative

matching clauses. One of the most successful or-parallel models that solves the

multiple bindings problem is environment copying, which has been efficiently used

in the implementation of or-parallel Prolog systems both on shared memory [4, 35]

and distributed memory [49] architectures.

Another key problem in the implementation of a parallel system is the design of

scheduling strategies to efficiently assign tasks to workers. In particular, with implicit

parallelism, it is expected that the parallel system automatically identifies oppor-

tunities for transforming parts of the computation into concurrent tasks of parallel

work, guaranteeing the necessary synchronization when accessing shared data. For

environment copying, scheduling strategies based on dynamic scheduling of work us-

ing or-frame data structures to implement such synchronization have proved to be

very efficient for shared memory architectures [4]. Stack splitting [19, 32, 48] is an

alternative scheduling strategy for environment copying that provides a simple and

1

2 CHAPTER 1. INTRODUCTION

clean method to accomplish work splitting among workers in which the available work

is statically divided beforehand in complementary sets between the sharing workers.

Due to its static nature, stack splitting was first introduced aiming at distributed

memory architectures [49] but, recent work, also showed good results for shared

memory architectures [48, 47].

Nowadays, the increasing availability and popularity of multicores and clusters of

multicores provides an excellent opportunity to turn Prolog an important member of

the general ecosystem of parallel computing environments. However, although many

parallel Prolog systems have been developed in the past [20], most of them are no

longer available, maintained or supported. Moreover, to the best of our knowledge,

none of those systems was specially designed to explore the combination of shared and

distributed memory architectures.

1.1 Thesis Purpose

This thesis presents the design, implementation and evaluation of a new model con-

ceived for exploring implicit or-parallelism in cluster of multicores. For that, we

introduce a layered model approach with two scheduling levels, one for workers sharing

memory resources, which we named a team of workers, and on top of that a sched-

uler for teams of workers (not sharing memory resources). This approach somehow

resembles the concept of teams used by some models combining and-parallelism with

or-parallelism, like the Andorra-I [40] or ACE [21] systems, where a layered approach

also implements different schedulers to deal with each level of parallelism.

Based on such layered model approach, we then present an implementation that revives

and extends the YapOr system [35] to efficiently exploit parallelism between teams

of workers running on top of clusters of multicores. YapOr is an or-parallel engine

based on the environment copying model that extends the Yap Prolog system [38] to

exploit implicit or-parallelism in shared memory architectures. Our implementation

takes full advantage of Yap’s state-of-the-art fast and optimized engine and reuses the

underlying execution environment, scheduler and part of the data structures used to

support parallelism in YapOr. On top of that, we have developed a new scheduler

based on techniques proposed for distributed memory. In order to take advantage of

our implementation, we also propose a new set of built-in predicates that constitute

the syntax to interact with an or-parallel engine in our system.

1.2. THESIS OUTLINE 3

To validate our design and implementation, we set up an experimental environment

using a set of 10 well known benchmark programs with several different numbers of

workers and different configurations of teams. Our experimental results show that our

implementation adds just a small overhead to YapOr when running in shared memory.

Furthermore, the experiments also show that our implementation is able to increase

the speedups as we increase the number of workers per team, thus taking advantage of

the maximum number of cores in a machine, and to increase speedups as we increase

the number of teams, thus taking advantage of adding more computer nodes to a

cluster.

1.2 Thesis Outline

This thesis is divided in seven major chapters that we briefly describe next:

Chapter 1: Introduction. The present chapter.

Chapter 2: Logic Programming and Parallelism. Presents the basic concepts

behind Logic Programming and parallelism with particular emphasis in the

Prolog language. It also introduces the key concepts of implicit parallelism

in Prolog focusing mainly in or-parallelism, which is the core topic of this thesis.

Chapter 3: Layered Model. Describes the high-level details and characteristics of

our parallel layered model aiming to run Prolog code in cluster of multicores and

presents the new syntax to interact with an or-parallel engine in our system.

Chapter 4: YapOr System. Presents the key aspects of the execution model of the

YapOr system, an or-parallel engine targeting shared memory architectures built

on top of Yap, wich is the base for the implementation of our layered model.

Chapter 5: Teams of Workers. Describes in detail the concepts, algorithms and

protocols behind our layered model proposal and how we have extended YapOr

in order to implement it.

Chapter 6: Performance Analysis. Presents a detailed analysis of the performance

of our implementation. Using a set of 10 well known benchmark programs with

a different number of workers and several distinct configurations of teams. We

have also used a simulator to assess the impact of the network latency in the

performance of our system.

4 CHAPTER 1. INTRODUCTION

Chapter 7: Conclusions. Summarizes the main contributions of the thesis and

highlights possible directions for further research.

Chapter 2

Logic Programming and Parallelism

This chapter gives a brief overview of the two main areas of research embraced by

this thesis. We begin by discussing Logic Programming with particular emphasis in

the Prolog language. Then we introduce the concept of implicit parallelism in Prolog

by focusing on the challenges that arise when implementing such systems and by

overviewing the most successful models proposed to exploit implicit parallelism in

Prolog.

2.1 Logic Programming

Logic Programming allows us to have a high level approach to programming. Such

characteristic can be seen in the way on how logic programs are written. Instead of

worrying about the details on how to solve the problem, programmers can focus in

what to solve. For that reason, Logic Programming is said to adhere to the declarative

paradigm.

Logic Programming can be seen as a simple theorem prover where programs are

statements defining a certain problem and questions may be asked to them. Then

questions are resolved against the program statements, in order to find the set of

answers that satisfies them.

Ideally, a logic program should be written as logic statements with the control of

execution being tackled as an independent issue by the resolution mechanism. This

idea was summarized by Kowalski [26] in:

5

6 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

Algorithm = Logic + Control

However, in practice, it might be a good idea to keep in mind the underlying resolution

mechanism if we want to write efficient logic programs.

2.1.1 Logic Programs

A logic program consists in a set of Horn clauses which have the following logic

representation:

∀ vi (B1 ∧ B2 ∧ ... ∧ Bn) =⇒ A

Or considering Prolog’s notation clauses are defined by:

A:- B1, B2, ..., Bn.

This can be read as “if B1 , B2, ..., Bn are all true then A is true”. This type of

clause is called a rule where the literal A is the head of the rule and the literals Bi are

the body subgoals. A clause without a body is called a fact, meaning that A is true,

and is represented by:

A.

In order to retrieve information from the program, a clause without head – called

query – is used:

:- B1, B2, ..., Bn.

Each literal in a clause is denoted as:

p(t1, t2, ..., tn)

Where p is the predicate name and the ti are terms. Each term can either be a constant

(represented by a word beginning with a lowercase letter), a variable (represented by

a word beginning with an uppercase letter) or a compound term. A compound term

2.1. LOGIC PROGRAMMING 7

is of the form f(s1, s2, ..., sn) where f is the functor name and s1, s2, ..., sn are also

terms)

Horn clauses in logic programs are interpreted using the Selective Linear Definite

resolution (SLD resolution) [27] which was proposed by Kowalski [25] based on the

previous work of Robinson [33]. Consider, for example, the query:

:- Q1,...,Qn.

SLD resolution would work on the following way:

• First, an operation called selectliteral, will select a body subgoal Qi.

• Then, an operation called selectclause, will select from the program a clause whose

head matches with Qi, if there is any. Assume that the selected clause that

matches with Qi is “Q:- B1,...,Bn.”. The unification process then determines a

substitution θ for the variables in Qi and the head Q such that θQi = θQ. Next,

Qi is replaced by the body of the selected clause, resulting in the following new

conjunction:

θ (Q1,...,Qi−1,B1,...,Bn,Qi+1,...,Qn)

• The process is then repeated to the subgoals in the new conjunction. If, during

such process, the conjunction at hand is reduced to true the resulting substitu-

tion θ is given as a solution. On the other hand, when there are no matching

clauses, backtracking occurs. Backtracking forces the computation to be restored

to the previous selection point in order to try another matching clause. The

program ends when there are no more clauses left to try, meaning that all

possibilities have been explored.

2.1.2 Prolog

Arguably, the most popular Logic Programming language is Prolog. The name Prolog

derives from the abbreviation of PROgramation en LOGic and was developed in

the first half of the 70’s by Colmerauer et al. [11] based on the theoretical work

developed by Kowalski [25] and Robinson [33]. In his work, Robinson described two

key concepts in the Prolog programming language: the unification and the resolution

8 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

process. Kowalski then showed that the Horn clauses together with unification and

resolution could have a procedimental meaning.

Till the late 70’s, Prolog was restricted to a group of people. But then everything

changed when, in 1977, David H. D. Warren presented the first Prolog compiler [51].

Later, in 1983, Warren proposed the Warren’s Abstract Machine (WAM) [52] capable

of running Prolog code even more efficiently.

The operational semantics of Prolog is given by SLD resolution with the operation

selectliteral selecting the subgoals from left to right and the operation selectclause

selecting the clauses by the order they are written in the program. The exploration

of the clauses of a program, done by SLD resolution, can be seen as a tree, where the

inner nodes represent choice points, the branches represent the different alternatives

(matching clauses) and the leaf nodes represent solutions or failures for the program.

In the specific case of Prolog, this tree is explored in a depth-first left to right form

with backtracking being used to move back in the tree. Figure 2.1 shows a schematic

representation of this process.

Query (entry point)

a(X)

b(X), c(X)

c(2)

true

c(3)

true

fail

1

2

3 4

5 6

7
8

a(X) :- b(X), c(X).
a(1).

b(2).
b(3).

c(2).

(X = 1)

(X = 3)(X = 2)

Prolog program

9

(X = 2)

Figure 2.1: Schematic representation of a search tree proof in Prolog

In order to make Prolog more suitable to the everyday use, many extra logical predi-

cates were added to the language. Some of the more important are:

• input/output predicates that allow, for example, to read from and write to files;

• the cut predicate (!) used to control the backtracking mechanism and reduce

the search space;

2.1. LOGIC PROGRAMMING 9

• assert and retract predicates which allow to modify the clauses of the program

during execution time;

• meta-logical predicates which allow the programmer to get information about

the execution of the current program.

2.1.3 Warren’s Abstract Machine

Due to its efficiency, nowadays the WAM is still the standard for most Prolog in-

terpreters. It was designed to efficiently support the two main features of Prolog –

unification and backtracking. This abstract machine is composed by two fundamental

specifications: the memory layout and the set of instructions.

The WAM memory layout is composed by 5 stacks and by a set of registers as depicted

in Fig. 2.2. Next, we briefly describe the functionality of each stack.

Heap

Stack

Trail

PDL

Choice Point Frame

continuation code

previous choice point

next clause

trail pointer

heap pointer

1st goal argument
...
nth goal argument

continuation environment

1st permanent variable
...
nth permanent variable

Memory

Environment Frame

TR

E

B

H

HB

S

P

CP Code Area

TR

E

B

H

HB

S

P

CP

top of the trail

current environment

current choice point

top of the heap

heap backtrack pointer

structure pointer

code pointer

continuation code pointer

continuation environment

continuation code

Registers

Figure 2.2: WAM memory layout

10 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

Code Area: this area stores the WAM instructions of the loaded programs.

Heap: area where the Prolog variables and terms are represented. The register H

points to the top of this area.

Stack: used to keep track of the choice points and environment frames data struc-

tures:

• choice points store the state of the computation so that it can be restored

later by the backtracking process. They are created whenever a goal has

more than one matching alternative. When backtracking occurs they are

used to restore the computation state in order to allow other alternatives

that are still open to be exploited. The register B points to the current

choice point. Each tree node in Fig. 2.1 corresponds, at the engine level,

to a choice point stack [52, 2].

• environment frames are created whenever a clause with more than one

body subgoal is executed. They are used to store information about the

execution of the subgoals and about the permanent variables, i.e., variables

that appear in more than one subgoal. The register E points to the current

environment.

Trail: during execution, variables can be instantiated, but whenever backtracking

occurs, their previous state must be restored. Because of that, every binding

made to variables is registered in this memory area so that it can be restored

when backtracking occurs. Register TR points to the top of this stack.

PDL (Push Down List): is an auxiliary stack used by the unification process.

The other registers in Fig. 2.2 are: the register S, used during the unification of

compound terms; the register HB, used to determine the bindings that should be

stored in the trail; the register P, that points to the WAM instruction being executed;

and the register CP, that points to where to return after a successful execution of the

current clause.

Regarding the WAM instructions set it was specially designed to: allow an easy

mapping between Prolog instructions and WAM instructions; and to allow an efficient

translation to native code. The instructions can be divided in four major groups that

are the following:

2.2. PARALLELISM IN LOGIC PROGRAMMING 11

Choice point instructions: these instructions are responsible for the allocation/deallocation

of choice points and recovery of the computation state when applying the Prolog

backtracking mechanism.

Control instructions: these instructions are responsible for the allocation/deallocation

of environments and for the management of the call/return of subgoals.

Unification instructions: as the name suggests, these instructions are responsible

for implementing the Prolog unification mechanism.

Indexing instructions: instead of trying all the clauses of a predicate, these type

of instructions allow to efficiently determine which clauses match with a given

subgoal, therefore accelerating the execution of the code. In general, these

instructions use, the first argument of the subgoal being called to select and

jump directly to those matching clauses.

2.2 Parallelism in Logic Programming

As we have seen earlier, the SLD operation seletclause in Prolog choses the clauses by

the order which they are written in the program and the selectliteral operation selects

the subgoals from left to right. But in fact, if we consider only pure logic programs,

clauses and literals can be selected in any other order without affecting the meaning

of the program. This is an important characteristic that we want to take advantage

of for exploring parallelism [15].

Exploring parallelism at the level of the SLD operations has one main advantage: we

can reuse the programs as originally written for sequential machines without the need

of any change. This kind of parallelism is called implicit parallelism. There are two

main sources of implicit parallelism in Prolog [12], that we discuss next in more detail.

Or-parallelism arises by the parallelization of the selectclause operation. It explores

in parallel the multiple clauses that match a given subgoal, i.e., it corresponds to the

parallel execution of the bodies of the alternative matching clauses. Or-parallelism

was implemented with success in many Prolog systems, being the Aurora [28] and the

MUSE [4] systems the most well known.

And-parallelism arises by the parallelization of the selectliteral operation. So, it cor-

responds to the parallel execution of the subgoals in the body of a clause. And-

parallelism can be subdivided itself in two categories:

12 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

• The first is called Independent And-parallelism, which only exploits in parallel

subgoals that are independent. Two subgoals are considered independent if they

do not share unbound variables or if the bindings to common variables produced

in one subgoal do not interfere with the computation of the other subgoals [23].

That restriction avoids the possible competition in the creation of bindings. This

approach was implemented in systems like &-Prolog [22] and &ACE [30, 31].

• The second is called Dependent And-parallelism and, as the name suggests, it

is the opposite of the previous approach. Dependent And-parallelism can be

implemented using two different strategies. In the first one, body subgoals are

run concurrently and each one can do its own bindings. After a conflicting

binding (a binding to a shared variable) [46] or at the end of the computation [24],

an extra step is needed to verify the consistency of the bindings produced. The

second strategy consists in allowing only one subgoal to do the bindings to a

certain variable (producer), while the other subgoals can only access it in a read

only mode (consumers). Several proposals in how to manage consumers and

producers can be seen in [20]. Systems like DASWAM [42, 41] and ACE [29],

implement support for Dependent And-parallelism.

Another source of implicit parallelism that can be found in logic programs is called

Unification Parallelism [7] and it arises from the parallelization of the unification

process. This kind of parallelism is usually fine-grained and because of that it has not

received much attention from the community.

For running a program in parallel using a system that only explores one form of

parallelism, first we would need to find out the predominant kind of parallelism present

in the program in order to be able to select the system that best fits our needs.

Even though this is the case, we would be wasting sources of parallelism since we

are throwing away the less predominant type of parallelism. Systems like Andorra-

I [40] and ACE [21] were designed to explore the two major types of parallelism

simultaneously. In theory they should be able to achieve better speedups than the

other systems but, because of their extreme complexity, this goal has not been achieved

so far by any system.

The problems of combining the two types of parallelism are more than the sum of the

problems of both approaches. For or-parallelism, the most problematic challenge is

dealing with the different bindings that can be done to the same variable during the

execution. With and-parallelism, the problem is quite different since workers exploring

different subgoals of the same clause must be able to freely access the bindings created

2.2. PARALLELISM IN LOGIC PROGRAMMING 13

by other workers. For that reason, the needs of or-parallelism and and-parallelism in

terms of bindings manipulation seem to be antithetical.

In the old years, the research in parallel Prolog has been focused mainly in shared

memory models and, for that reason, all the systems/models that we have mentioned

above were proposed targeting that kind of architectures. More recently, as distributed

memory systems became more affordable, examples of distributed Prolog systems were

also proposed [6, 49, 43, 34]. For our research, we are interested in or-parallelism for

both shared and distributed memory architectures.

2.2.1 Or-Parallelism

If we view the computation of a Prolog program as a tree, like the one represented

in Fig. 2.1, exploiting or-parallelism corresponds to exploiting more than one branch

at the same time and, for that reason, we call that tree an or-tree. Thus, at a first

glance, implementing an or-parallel system seems an easy task since the branches (i.e,

clauses), which are tried at the same time are independent from each other. But,

in fact, there are important problems that arise when we are extending a sequential

Prolog system to support or-parallelism. We begin this subsection by describing these

problems and by presenting some of the proposals to solve them. Then, we discuss in

more detail some of the or-parallel models introduced before and finally we focus on

the Yap Prolog system and its different proposals to support parallelism.

2.2.1.1 Multiple Bindings Problem

A major problem when implementing an or-parallel Prolog system is the multiple

bindings problem. Figure 2.3 illustrates this problem. At the left side of the figure

we have the code of a program and, at the right side, the execution tree for query p.

The query unifies with the first clause of the program and since variable X appears

in the body subgoal q(X), an entry for X is created in the heap. Later, when subgoal

q(X) is called, there are two clauses that match with q(X) and thus, if running the

program in parallel, there can be two workers dealing with each clause concurrently.

Both workers will try then to do a conditional binding to variable X, one trying to

bind it with value 1 while the other trying to bind it with value 2, which leads us to

the multiple bindings problem. Note that this problem does not arise in sequential

systems. With or-parallelism, variables may have different bindings at the same time

and for that reason, each worker should have its own private area where it can manage

14 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

its conditional bindings without interfering with the work of the other workers.

p:- ..., q(X), ...

q(X):- ..., X=1, ...
q(X):- ..., X=2, ...

?- p

 ..., q(X),

..., X=1,, X=2, ...

creation of variable X

binding
for varible X

binding
for variable X

Prolog program

Figure 2.3: The multiple bindings problem

Many models were proposed to deal with the multiple bindings problem. A compre-

hensive list and explanation for each model can be seen in [16]. An important aspect

that differentiates different models is that they can have different computational costs.

Gupta and Jayaraman [18] defined the criteria for an optimal or-parallel system:

• The cost of environment creation should be constant-time;

• The cost of variable access and binding should be constant-time;

• The cost of switching from a task to another should be constant-time.

So far, none of the proposals in the literature was able to fulfill these three requirements

simultaneously. Despite that, a good implementation should be able to mitigate such

problem by avoiding the more expensive tasks. The most well-known proposals are

the binding arrays [54, 53] and the environment copy [4] models.

In the binding arrays model, the system is extended so that each worker has a counter,

used to enumerate the variables found during the execution of the program and an

auxiliary array where it stores its conditional bindings. To better understand this

model, let us see an example. In Fig. 2.4 we have the same example used in Fig. 2.3

but now using the binding arrays model to avoid the binding conflicts. Again, we

begin by executing the query p that matches with one single clause in the program.

This clause then originates a call to q(X) and, since X is a new variable, it is assigned

with the current value of the counter, value 0 in this case since it is the first variable

being created. Then the counter is incremented. Each worker then uses this value

2.2. PARALLELISM IN LOGIC PROGRAMMING 15

to make its own bindings independently since the bindings are stored in the auxiliary

array in the position assigned for variable X, position 0 in this case.

Later, when a worker moves from one branch to another, as a consequence of not

having more work in its current branch, it must update its bindings by deinstalling

the old bindings in its binding array and by installing the bindings in the new branch.

Because of that and regarding the criteria defined by Gupta and Jayaraman, this

model is considered not to have constant cost of task switching, while the other costs

– environment creation and variable access – are constant. This model was first intro-

duced in the Aurora system and was later used in other systems like Andorra-I. The

binding arrays model was also the base for other models that combine or-parallelism

with and-parallelism, such as Shared Paged Binding Array [17] and SBA [13].

p:- ..., q(X), ...

q(X):- ..., X=1, ...
q(X):- ..., X=2, ...

?- p

..., q(X),

..., X=1,, X=2, ...

counter=0

counter=1counter=1 .
.
.

1

0

n

2
.
.
.

1

0 1

Binding
Array

Binding
Array

Prolog program

Figure 2.4: The binding arrays model

An alternative successful model for solving the multiple bindings problem is the

environment copying model, which was first proposed by the MUSE system and later

adopted by many others [50, 35]. In this model, each worker keeps a separate copy of

its own environment, thus the bindings to shared variables are done as usual without

conflicts, i.e., stored in the private execution stacks of the worker doing the binding.

Every time a worker shares work with another worker, all the execution stacks are

copied to ensure that the requesting worker has the same environment state down to

the search tree node where the sharing occurs. As a result of environment copying,

each worker can proceed with the execution exactly as a sequential engine, with just

minimal synchronization with other workers. Synchronization is mostly needed when

updating scheduling information and when accessing shared nodes in order to ensure

that unexplored alternatives are only exploited by one worker. All other WAM data

structures, such as the environment frames, the heap, and the trail do not require

synchronization. Regarding the criteria defined by Gupta and Jayaraman, this model

16 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

has the same characteristics as the previous, constant cost of environment creation

and variable access and non-constant cost of task switching.

Both environment copying and binding arrays models were first developed having

shared memory architectures in mind. More recently, environment copying has been

successfully adapted for distributed memory architectures with only a few minor

modifications [9, 49]. Since, in this thesis, we are interested in exploring or-parallelism

in both shared and distributed models this is one of the reasons we have focused our

study in the environment copying model.

2.2.1.2 Scheduling

A major challenge of any parallel system is the implementation of efficient scheduling

strategies to distribute work among workers. An or-parallel Prolog system is not an

exception and many strategies exist in the literature [10, 3, 8, 44, 43]. Due to the

dynamic nature of Prolog work, it is impossible to assign work in a balanced way

to the workers at the beginning of the execution of a program. In the specific case

of or-parallelism, open alternatives appear irregularly in the branches of the or-tree.

Therefore, we need a scheduler able to distribute work dynamically during execution

time. The interaction between workers and the need of workers to switch from task to

task are the two situations that the scheduler must minimize since they have a great

impact on the performance of the whole system.

The scheduler is also responsible for maintaining the sequential semantics of Prolog,

meaning that we should get the same output as in a sequential system. This is a

problem when the program contains predicates dealing with I/O, side-effects and the

cut predicate (!). In the case of the cut predicate, there is another problem that the

scheduler must consider that is known as the speculative work problem. In a sequential

system, when a cut is executed, all the alternatives at the right side and below the

scope of the cut are pruned away. In a parallel system, if one of those alternatives is

picked earlier than the cut be executed, it will result in wasted work. Therefore, the

scheduler must avoid giving this kind of work by selecting first the available work that

is closest to the left side of the or-tree.

There are two major policies for dispatching work in or-parallel execution, namely

topmost and bottommost dispatching of work. The topmost policy gives priority to

the exploration of the nodes closer to the root, which are expected to hold more work

but are more susceptible of originating more sharing operations. The bottommost

2.2. PARALLELISM IN LOGIC PROGRAMMING 17

policy gives priority to sharing all the available work, which has the disadvantage of

opening large public regions but, on the other hand, it reduces the number of task

switching operations.

Two of the most successful or-parallel schedulers, proposed for the Aurora and Muse

systems, divide the or-tree in two parts: public and private. Public nodes of the or-

tree are nodes that are shared by more than one worker. The execution of alternatives

stored in public nodes requires some type of synchronization, while alternatives in

private nodes can be executed as in a sequential system. In these systems, a worker

explores first their private nodes and only when there is no more available work left to

try, it starts exploring public nodes. When all open alternatives of a worker, private

and shared, have been explored, it consults the scheduler in order to discover a busy

worker available to publish and share its open alternatives.

Since these kind of schedulers were designed for shared memory architectures, this

means that they can easily decide which worker should be selected to share work

with an idle worker. Thus, as they have a complete representation of the or-tree in

shared memory, they can use such information to make the best decision, for example,

by selecting a worker very close to the left side of the tree and with many open

alternatives. In systems like PALS [49] and OPERA [9], designed for distributed

memory architectures, the schedulers do not have the entire representation of the

or-tree, since this would require too many messages exchange between workers in

order to have such information up-to-date. Instead, workers send, from time to

time, information about their work loads and it is based on these workloads that

the scheduler does its choices.

2.2.2 Environment Copying Models

In this subsection, we present two of the most successful parallel execution models

based on environment copy. The first one was first proposed for the MUSE system

and was developed and designed to take advantage of shared memory architectures.

The other model, originally designed for the PALS system, is closely related with

MUSE but was specially tailored for distributed memory systems. The main difference

between these two models is related with the scheduler and, in particular, with the

process of sharing work. In both models a worker enters in scheduling mode when it

becomes idle (without work) and the scheduler is then responsible for finding a busy

worker that can share its open alternatives. Once it finds such a worker, the sharing

18 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

work process begins.

In the MUSE system, the first step of the sharing work process is publishing the

private nodes of the busy worker. The publishing process involves associating a new

data structure, called or-frame, to each private choice-point. Figure 2.5 shows the

relation between or-frames and choice-points. On the left side of the figure we can

see the worker P execution tree with white nodes representing choice points with

open alternatives and the black nodes representing choice points fully explored. Open

alternatives are represented by dotted lines. On the middle of the figure, we have

a common global area where the or-frames are store and, on the right side of the

figure, the local stack containing the set of stored choice points. The figure is also

divided horizontally in two areas: a private and a shared area. In the private area,

choice points point directly to the next open alternative while, in the public area, an

indirection is created with the choice points pointing to the corresponding or-frame

and then the or-frame pointing to the next open alternative. On the shared area,

when a node is fully explored, i.e. it has no open alternatives, its associated or-frame

is made to point to NULL. This may happen if, in the meantime, another worker has

explored the remaining alternatives in that node.

Choice Point
Stack

Local Space

Global Space

shared area

private area

Or-frames

CP 1

CP 2

CP 3

CP 4

CP 5

NULL

P

NULL

Figure 2.5: Relation between or-frames, choice-points, private and shared areas

Now consider that worker P receives a sharing request from a worker Q. In such case,

P would first need to publish his two private choice points as we have seen before.

The choice points will be made to point to the new corresponding or-frames and then

each or-frame point to the next open alternative previously stored on the associated

choice point. Figure 2.6 shows the schematic representation after that operation. Note

that the private area disappeared since the bottommost policy implies that all private

choice points must be published to be shared with the requesting worker.

2.2. PARALLELISM IN LOGIC PROGRAMMING 19

Choice Point
Stack

Local Space

Global Space

Or-frames

CP 1

CP 2

CP 3

CP 4

CP 5

NULL

P

shared area

NULL

Figure 2.6: Publishing private nodes

The or-frame structure gives support to a dynamic distribution of work by guarantee-

ing a synchronized access to the open alternatives and by avoiding that two or more

workers explore the same alternative. Moreover, each or-frame has information about

the workers sharing the corresponding node (i.e, holding a choice-point pointing to

the or-frame), and includes a pointer to the parent or-frame, which allows for a full

representation of the public or-tree. These two characteristics together greatly help

the scheduler in its task of distributing work efficiently by the available workers.

After the initial process of publishing the private nodes, the stacks can now be copied

from the busy worker to the idle one. The copy process can be optimized using a

technique called incremental copy [4]. Incremental copy is an optimization of the copy

process which avoids copying common parts of the stacks of two workers. Figure 2.7

illustrates this process. In Fig. 2.7(a), we have the state before copying where worker

Q is idle and worker P is willing to share its open alternatives with Q. The common

choice points of the two workers are depicted in grey background and, as expected,

all those choice points have no open alternatives. Worker Q has one more choice

point which is private and has no open alternatives either. Worker P has two more

choice points, one shared with a third worker and another one private, both with open

alternatives. Fig. 2.7(b) illustrates the state after copying. Here, we can see that

only the two non-common choice points of P were copied to Q (part depicted in grey

background). It is important to note that the previous private choice point in P has

now an or-frame associated to it and that the other choice point, that was already

shared with a third worker, is now also associated with worker Q.

Despite the good performance that the or-frames based model has shown in shared

memory, it is not suitable for distributed memory architectures. Since maintaining

20 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

Q

P

common part of the tree

NULL

NULL

NULL

(a) Initial state (before copying)

Q
P

NULL

NULL

Q

part of the
stacks
copied to Q

NULL

(b) After copying the stacks from P to Q

Figure 2.7: Representation of the vertical splitting operation done by a sharing worker

a structure similar to the or-frames in a distributed environment would be very

inefficient. Each time a worker would move in the tree or pick a new alternative, it

should synchronize such operation with all the other workers sharing the same branch

and we know that synchronization messages in a distributed environment results in a

great impact for the performance of the system.

To distribute work in distributed memory architectures, the PALS system uses a

variation of environment copying, named stack splitting [19]. In this model, in order to

avoid the multiple access to the open alternatives, the work is assigned statically when

the sharing process occurs, so that each worker knows beforehand which alternatives

belong to it. This reduces the amount of communication between workers, thus making

this strategy more suitable for distributed memory architectures.

Figure 2.8 illustrates two different stack splitting strategies. In Fig. 2.8(a) we have

the configuration before sharing, where worker P has 3 choice points with 9 open

alternatives while worker Q is idle and waiting for worker P to share work with it.

Figure 2.8(b) and Fig. 2.8(c) then show the configuration after sharing. In Fig. 2.8(b),

the strategy adopted is called horizontal splitting and the open alternatives in a choice

point are alternatively divided between both workers. In Fig. 2.8(c), the strategy

adopted is called vertical splitting and the open choice points are alternatively divided

between both workers.

2.2. PARALLELISM IN LOGIC PROGRAMMING 21

With stack splitting workers do not have a complete vision of the or-tree. The scheduler

bases its choices in fewer and less updated information, since messages are sent from

time to time and, usually, the only information present in that kind of messages is

the load of the worker sending it. Nevertheless, results showed that similar or close

speedups to those achieved by MUSE are possible and for some of the benchmarks the

results are even better [19].

QP

idle

c1

c2 c3

c4

b2 b3

a2
a3

a4

b1

a1

c5

(a) initial state

QP

c1

c2

b2

a2

b1

a1

c3

b3

a3

b1

a1
a4

c4
c5

(b) horizontal splitting

QP

c1

c2 c3

c4

a2
a3

a4

b1

a1

c1

b2 b3

b1

a1

c5

(c) vertical splitting

Figure 2.8: In (a) worker Q is idle and waiting for worker P to share work with it; in

(b) P shares work using horizontal splitting; and in (c) P shares work using vertical

splitting

22 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

2.3 Parallelism in the Yap Prolog system

During the past years, many or-parallel models were developed for the Yap Prolog sys-

tem. The first one to be implemented was YapOr which is based on the original MUSE

approach and uses or-frames to synchronize the access to the open alternatives [35].

Later on, a model named copy-on-write for logic programs (COWL) [36] was im-

plemented. This model is similar to environment copy since each worker maintains

its own execution stacks and uses or-frames to synchronize the access to the open

alternatives. The main difference between the two models resides on how the or-

parallel work is shared. In COWL this process works as follows: consider that worker

Q has no more alternatives to explore and wants to explore alternatives from worker

P. To share work, worker P performs a fork() and worker Q is made to execute the

new child process created by the system call. After a fork(), the operating systems

uses a technique, called copy-on-write, that only copies pages of memory when the

parent on child processes want to write on them. The COWL model takes advantage

of such characteristic in order to reduce overheads of copying the stacks.

Another model is the Sparse Binding Array (SBA) [13] which is based on the original

binding array model. In the SBA model each worker has its own shadow of the shared

stack space. When a given worker wants to perform a conditional binding to a shared

variable he does it on its shadow space. In order to synchronize the access to open

alternatives this model also uses or-frames. Comparing the three systems implemented

on top of Yap, experimental results showed that the environment copy model is the

one showing best performance [39].

More recently, a new approach to YapOr was done. The new system, called ThOr [37],

maintains the main concepts of YapOr unaltered but implements workers as POSIX

threads rather than processes, as in the original YapOr. Both approaches, YapOr and

ThOr, have shown similar speed ups for a set of benchmarks [37].

The static division of work using stack splitting was also implemented in Yap using two

different approaches. The first one, called YapDSS, was designed to run in distributed

memory in Beowulf clusters [34]. The second one was designed to run in multicores

by extending the YapOr model to support stack splitting and it has shown to be very

competitive when compared with the original YapOr approach [48, 47].

A summary of the main characteristics and differences of these models can be seen in

Table 2.1.

2.4. CONCEPT OF TEAMS 23

Table 2.1: Main characteristics of the or-parallel models implemented in Yap

Model/Approach memory workers binding scheme distrib. of work

YapOr shared processes env. copying or-frames

COWL shared processes env. copying or-frames

SBA shared processes binding arrays or-frames

ThOr shared threads env. copying or-frames

YapDSS distributed processes env. copying stack splitting

YapOr (stack splitting) shared processes env. copying stack splitting

2.4 Concept of Teams

The concept of teams was originally proposed by the Andorra-I system in order to be

able to exploit the combination of and-parallelism with or-parallelism. The or-parallel

component of Andorra-I follows the Aurora system that uses binding arrays to solve

the multiple bindings problem, while the and-parallel component was built to exploit

dependent and-parallelism.

In Andorra-I, or-parallelism is exploited at the team level meaning that, from the

outside, each team behaves (and can be seen) like a single Aurora engine (or worker).

Inside a team, and-parallelism is explored by several workers that cooperate in order

to solve the subgoals present in the or-branch assigned to the team. This team concept

is implemented by defining a master worker inside each team that is responsible

for allocating the new choice points and by exploring the or-parallelism, while the

remaining workers, called slaves, cooperate by exploiting the and-parallelism in the

choice point at hand.

The system is composed by two schedulers, one for each type of parallelism. In

the early versions of Andorra-I, the number of workers per team had to be defined

statically before the execution begins. Later, a top-scheduler [14] was proposed to

dynamically adapt, during the execution, the number of workers per team to the

type of predominant parallelism being explored at a given instant of time. When or-

parallelism is predominant, the slaves may became master and constitute their own

team. On the other hand, when and-parallelism is predominant the masters are able

to become slaves and join other teams.

The concept of teams was later used by some versions of the ACE system and by the

Paged Binding Array (PBA) model [17] to explore the combination of or-parallelism

with independent and-parallelism.

24 CHAPTER 2. LOGIC PROGRAMMING AND PARALLELISM

The ACE system uses environment copying to deal with the multiple bindings problem

and it can be viewed as a combination of the MUSE system with the exploitation

of dependent and-parallelism. When a query is executed in the ACE system, at

the beginning, only a single team is responsible for exploring its and-parallelism and

once a choice point is created the remaining teams may start requesting the or-work

present on it. The conceptual sharing process is similar to the one found in MUSE

with segments of memory being copied from a busy team to an idle team. After

that, the requesting team takes the next untried alternative in the new shared work

and, then, the workers inside the team begin exploring the and-parallelism inside that

(or-)alternative.

The PBA model extends the binding array model in order to support the combination

of or-parallelism with independent and-parallelism. In this model, the binding array

present on each team is divided in pages with each page being assigned to a worker

of the team, so that each worker can do its own bindings without interfering with the

bindings of the other workers.

For the purpose of our thesis, we will assume that, conceptually, a team is a set of

workers (processes or threads) who share the same address space and that cooperate

to solve a certain part of the main problem.

Chapter 3

Layered Model

In this chapter, we present the key concepts of our proposal in a high level approach.

We begin by briefly introducing our model. Next, we describe the syntax developed

to interact with it. Finally, we show a small and practical example to highlight the

potential of the model.

3.1 Overview

To the best of our knowledge, none of the models proposed in the literature is able to

take advantage of architectures which combine shared and distributed memory such

as ones based on clusters of multicores. As we have seen in the previous chapter,

the shared memory based models take advantage of synchronization mechanisms that

cannot be easily extended to distributed environments while the distributed memory

based models use specialized communication mechanisms that do not take advantage

of the fact that some workers can be sharing memory resources. The goal behind

our model is to implement the concept of teams in order to be able to explore such

combination while trying to reuse, as much as possible, Yap’s existing infrastructure.

We define a team as a set of workers (processes or threads) who share the same

memory address space and cooperate to solve a certain part of the main problem. By

demanding that all workers inside a team share the same address space implies that

all workers should be in the same computer node. On the other hand, we also want to

be possible to have several teams in a computer node or distributed by other nodes.

For workers inside a team, we can thus distribute work using both or-frames or

25

26 CHAPTER 3. LAYERED MODEL

stack splitting. For distributing work among teams, we can apply any of the stack

splitting strategies described before. This idea is similar to the MPI/OpenMP hybrid

programming pattern, where MPI is usually used to communicate work among workers

in different computer nodes and OpenMP is used to communicate work among workers

in the same node.

In order to take advantage of our model, we also propose a new syntax which follows

two important design rules. The first one is delegating to the user the responsibility

of explicitly declare which parts of the program should be run in parallel. The second

one is the ability of interacting asynchronously with the parallel engine for fetching

for answers. More details about this new syntax are presented in the next section.

To better understand our model, consider the schematic representation shown in

Fig. 3.1. On the left side of the figure, we have Yap’s console (or client worker)

which is a sequential Yap engine responsible for interacting with the user. On the

right side of the figure, we can see a parallel engine E constituted by a cluster of two

computer nodes - host node N1 and host node N2. In host node N1, there are two

teams, Team A and Team B, with four workers each while, in N2, there is only one

team, with eight workers named Team C. Both Team A and Team B use or-frames to

distribute work inside the team while Team C uses stack splitting.

Host N1

W
(B,0)

Team B

W
(B,1)

W
(B,2)

W
(B,3)

Host N2

W
(C,0)

Team C

W
(C,1)

W
(C,2)

W
(C,3)

W
(A,0)

Team A

W
(A,1)

W
(A,2)

W
(A,3)

W
(C,4)

W
(C,5)

W
(C,6)

W
(C,7)

stack
splitting

or-frames

Parallel Engine E

YAP 6.3.4
?-

shell
parallel

receive answers

or-frames

stack
splitting

stack
splitting

Figure 3.1: Schematic representation of our layered model

The execution of our layered model is very straightforward. At the beginning the

client worker is responsible for starting the execution of the user queries and running

sequential Prolog code. If during the execution of Prolog code, a goal marked to be

3.2. SYNTAX 27

run in parallel is found, it is sent to the parallel engine to be executed and since

our syntax allows asynchronous interaction with the parallel engine, the client worker

may continue executing code and check, from time to time, the state of the parallel

execution.

In our model, each team in the parallel engine has one worker responsible for con-

trolling the execution inside the team, called the master worker. Moreover, one of

these master workers will be responsible for receiving and starting the execution of

the parallel goal sent by the client worker and, for that reason, its team is called master

team.

After the master worker of the master team starts executing the goal it will inform

the remaining workers inside its team and the other teams in the parallel engine that

a new parallel execution has begun. After this notification, its teammates will start

sending it sharing requests in order to get work. It may then start sharing work

with them using the scheduling strategy defined in its own team. Then the execution

continues with the workers sharing work between them and cooperating to execute

the work available. At this point, the other teams are now also aware that the master

team has work, so they will start sending it sharing requests. When the master team

receives a request it selects a sharing worker to fulfill it. The work will then be divided

using stack splitting and sent to the master worker of the requesting team, which is

responsible for starting its execution and informing its teammates about the existence

of work inside the team, so that they can cooperate in the exploration of that work.

A team is considered to be out of work when all of its workers are idle. When that

happen it must contact a busy team in order to get work and repeat the process

described above. If all the teams are idle that means that the parallel goal is completed

explored and the client worker is notified that the execution has finished.

In our implementation, that will be described in detail in Chapter 5, we only use

exclusively or-frames to distribute work inside the the team while for distributing

work between teams both horizontal and vertical splitting are available.

3.2 Syntax

In this section, we present the built-in predicates that constitute the syntax to interact

with a parallel engine in our layered model. It includes the following five predicates:

28 CHAPTER 3. LAYERED MODEL

par create parallel engine/2

When the programmer plans to run parallel goals, this is the predicate that should

be called first. It is responsible for creating and launching the teams that form a

new parallel engine. As arguments it receives the name to be given to the new

parallel engine and a list of tuples. Each tuple in the list represents one team and has

information that is used by the underlying engine to know in which computer node

that team should be launched, how many workers must be spawned and the location

of the file containing the program that must be loaded by that team. For example,

the following call could be used to create the topology illustrated in Fig. 3.1:

par create parallel engine(E,[(N1,4,’prolog/prog.pl’), (N1,4,’prolog/prog.pl’),

(N2,8,’prolog/prog.pl’)]).

par run goal/3

As the name suggests, this is the predicate used to indicate that a given goal should

be run in parallel. The predicate receives as arguments the name of the parallel engine

where to run the goal, the goal to be run and a template indicating how the answers to

the given goal should be returned. Consider that we want to run, in parallel the goal

do something(X,Y,Z) and we are only interested in the answers obtained for variable

Z. In such case, the template could be defined as Z. If we want to run the query in

the previous parallel engine, thus we could write:

par run goal(E, do something(X,Y,Z),Z).

par probe answers/1

This predicate is used to check if a parallel execution has already found any answer.

It receives as argument the name of the parallel engine that we are willing to probe

for answers. Using again the current example would be:

par probe answers(E).

It succeeds if the parallel engine has found any answer or if the parallel execution has

already finished. Otherwise, it fails.

par get answers/4

3.2. SYNTAX 29

The predicate par get answers/4 allows to retrieve answers asynchronously. It receives

four arguments. Again, the first argument is the name of the parallel engine. The

second argument specifies options about the reception of answers:

• max(N) – this option says that the user is willing to receive a maximum of N

answers, meaning that it can receive from one up to N answers, depending on

the number of answers that the parallel engine has found till that moment.

• exact(N) - this option is more restrictive, the predicate will block and wait

until the parallel engine has exactly N answers to return or the execution has

finished.

For both options the variable N can be unified with the constant which represents

the total of answers in the program at the moment of the call. The remaining two

arguments of predicate par get answers/4 are variables, the first one returns the list

of the answers found and the second the length of that list. This predicate is not

backtrackable, however when called again it will return a new set of answers (if

the parallel goal at hand has produced new answers). When all answers have been

retrieved and the parallel program has finished, the predicate simply fails. Using the

current example, if we want to retrieve exactly four answers we could write:

par get answers(E, exact(4), AnswersList, AnswersNumber).

par free parallel engine/1

This predicate is used to free a parallel engine when it is no longer needed. Using

again the current example would be:

par free parallel engine(E).

In order to show the potentialities of our syntax model, Fig 3.2 presents a full example

of its usage. Again, we are assuming the topology presented earlier. The file containing

the program is initially loaded by the Yap’s client. The query to be executed is

triggered by the last line of code, which runs a par computation/1 goal in parallel

and, at the end, sums in the client side the set of answers returned by the parallel

engine.

Predicate create/0 is responsible for configuring and starting the parallel engine E.

While predicate run/0 launches the parallel execution of the goal par computation/1.

30 CHAPTER 3. LAYERED MODEL

create:-

par_create_parallel_engine(E,[(N1,4,’prolog/prog.pl’),

(N1,4,’prolog/prog.pl’),

(N2,8,’prolog/prog.pl’)]).

run:-

par_parallel_run(E,par_computation(S),S).

wait:-

not par_probe_answers(E),

!,

writeln(’waiting for answers...’),

wait.

wait.

answers(Result):-

par_get_answers(engine_E, max(all), AnswersList, AnswersNumber),

!,

sum_answers(AnswersList, Sum),

answers(Result1),

Result is Sum + Result1.

answers(0).

sum_answers([], 0).

sum_answers([Head | Tail], Sum) :-

sum_answers(Tail, Sum1),

Sum is Head + Sum1.

free:-

par_free_parallel_engine(engine_E).

:- create, run, wait, answers(Result), writeln(Result), free.

Figure 3.2: A small example showing the usage of our syntax

3.2. SYNTAX 31

The code of this predicate is in the file prog.pl. After the parallel execution being

launched the predicate wait/0 will be probing for answers and writing to the console

‘waiting for answers...’. When the parallel program has found at least one answer

the predicate par probe answers/1 will fail and the predicate answers/0 will be called

in the continuation. This predicate will be responsible for summing all the answers

found by the parallel engine. In order to do that, it begins by calling the predicate

par get answers/4 with the option max(all), which will make the predicate to fetch

the maximum amount of answers found until that moment. After that, the answers

returned will be summed using the predicate sum answers/2. As we can see, the client

program does not need to wait until the parallel computation has finished to start doing

some computation with the answers already found. The predicate answers/1 is called

recursively till there are no more answers returned by the predicate par get answers/4

and it fails. Finally, the sum result will be shown in the console and the parallel engine

is freed.

32 CHAPTER 3. LAYERED MODEL

Chapter 4

The YapOr System

This chapter gives an overview of the YapOr system [35], an or-parallel engine imple-

mented on top of the Yap Prolog system. We begin by describing the concepts behind

its model and then we show the main extensions done to Yap in order to implement

the support for or-parallelism.

4.1 Overview

The YapOr system is based on the environment copying model, as originally proposed

for the MUSE system, and was designed to run in shared memory architectures. We

present next the key concepts and components behind its model.

4.1.1 Basic Execution Model

The YapOr’s parallel engine is constituted by a fixed number of workers that should

be specified by the user when starting the system. When the execution of a Prolog

goal begins, all workers are idle except one (that we will call it worker P). This worker

P is responsible for executing code in sequential mode, as a common Prolog engine

would do, until it finds a parallel directive which makes it to enter in parallel mode.

After entering in parallel mode, worker P informs the idle workers that a parallel

execution is beginning and, after that, starts executing code and generating choice

points to the subgoals that have more than one alternative, as usual.

33

34 CHAPTER 4. THE YAPOR SYSTEM

On the other hand, the idle workers will start sending share requests to worker P

so that they can begin to cooperate in the computation. Now consider that an idle

worker Q requests work to the busy worker P. If P has unexploited work, the sharing

process begins, which involves two main steps:

• worker P publishes its private choice points, which consists in associating an

or-frame to each choice point (remember that or-frames allow workers to syn-

chronize the access to the open alternatives present in public choice points);

• worker P copies its execution stacks to worker Q.

After these two steps, both workers are exactly in the same computational state.

Worker P will then resume its computation from where it was while worker Q simulates

a failure in order to force the Prolog backtracking mechanism to enter in action and

lead worker Q to take the next open alternative available from the shared state received

from P.

At this point, both workers P and Q have work and any other idle worker may request

work to them. When a worker is idle, the scheduler is responsible for finding a busy

worker with open alternatives to ask for sharing work, as described above. When there

is no more work available to explore the computation ends and all workers stay idle

waiting for the beginning of a new computation.

4.1.2 Incremental Copying

The operation of copying stacks from one worker to another might have a great impact

on the performance of the system. To minimize such impact, YapOr implements an

incremental copying technique [4]. With the incremental copying technique, worker Q

maintains the parts of the stacks that it has in common with P and only the differences

are copied from worker P to Q, thus reducing the total amount of memory to copy.

Figure 4.1 illustrates in detail how the incremental copying technique works. On the

left side, we have the execution tree where we can see that the idle worker Q shares the

three top nodes (or choice points) with P. On the left side, we have the representation

of the worker P’s stacks with the segments to be copied from P to Q colored in grey

background. At a first glance, we might think that only the parts of the stacks which

are not common to Q need to be copied in order to both workers became in the same

state. But, in fact we also need to copy the conditional bindings to the variables

4.1. OVERVIEW 35

Common
area

Non-Common
area

Worker P stacks
stack heap trail

Value1

Value2

Var1

Var2

CP1

CP2

CP3

CP4

CP5

Var2 = Value2

Var2

Var1

Var1 = Value1

CP1

CP2

CP3

CP4

CP5

Q

P

Figure 4.1: Incremental Copying

that belong to (were created in) the common area but were instantiated later in the

non-common area. In the figure, Var1 is one such example. Var1 was created in

choice point CP2 but was only instantiated in an alternative of choice point CP4.

Remember that when a variable is instantiated, a reference to its position is added

to the trail. Therefore, to copy these kinds of bindings, worker Q needs to traverse

the copied segment of the trail searching for variables referencing to the common part

of the stacks and copy its values in order to became fully consistent and in the same

computational state of worker P.

4.1.3 Scheduling

The execution time of a worker in YapOr is divided in two modes: engine mode and

scheduling mode. A worker is said to be in scheduling mode when it is idle and therefore

looking for work. After finding new work, a worker enters in engine mode where it

runs Prolog code as a sequential engine.

The YapOr scheduler is based on the original MUSE scheduler and it was designed

to minimize the execution time while maintaining the original semantics of Prolog.

As we have seen earlier, according to the criteria defined by Gupta and Jayaraman,

the task switching cost is not constant for the environment copying model. This is

36 CHAPTER 4. THE YAPOR SYSTEM

do to the operations done during the sharing work process such as publishing choice

points, copying stacks and restoring bindings. For that reason, one of the main goals

of the scheduler is to minimize the need for sharing work and, one of the strategies

adopted for that, was to force the busy worker to share as much work as possible.

That means that a busy worker must share all of its private choice points in order

to minimize the possibility that the requesting worker runs out of work too soon.

Another strategy adopted by YapOr’s scheduler is related with the amount of stacks

to copy. It states that the scheduler should give preference to selecting busy workers

that are near the requesting worker in the or-tree and which have the highest load

(number of unexplored private alternatives). This strategy is tightly related with the

incremental copy technique since it also tries to reduce the total amount of memory

to copy.

In a nutshell, YapOr’s scheduler works in the following way: when a worker runs out

of work it tries to find the nearest busy worker with the highest load to share work

with it. If there is no such busy worker willing to share work, the scheduler tries to

change the position of the idle worker in the or-tree to place it in a position where

there are more busy workers near by, thus increasing the probabilities of finding one

willing to share its choice points.

4.2 Implementation Details

In this section, we briefly present the main extensions done to Yap in order to support

implicit or-parallelism (for a more complete presentation please see [35]).

4.2.1 Memory Organization

Figure 4.2 shows the differences between the memory layout for the Yap and YapOr

systems. In Fig. 4.2(a) we can see Yap’s two main memory areas: the global area and

the stacks area. The global area includes the code area and the several data structures

responsible for supporting the execution of Prolog programs, while the stacks area

includes the local stack, the trail and the heap.

YapOr follows the same memory layout of Yap, but with more stacks areas added to

accommodate the total amount of workers. This is necessary since with environment

copying each worker has it own execution stacks where it can execute code as in a

4.2. IMPLEMENTATION DETAILS 37

Global Space

Stacks

(a) Yap

Stacks
Worker 0

Global Space

Stacks
Worker N

.
.
.

(b) YapOr

Figure 4.2: Memory layout for the (a) Yap and (b) YapOr systems

standard Prolog machine. A schematic view of YapOr’s memory layout can be seen

in Fig. 4.2(b).

YapOr’s memory is allocated as follows. When the system starts, the initial worker

(worker 0) is responsible for asking for memory to the operating system using one of

the two shared memory schemes available, namely mmap, which allows to map a file

in memory, and shmget, which creates a system shared segment. After that, worker

0 calls the fork system call to create the remaining workers which will inherit the

previously mapped address space. After that each new worker will need to remap the

inherited memory space. The process of memory remapping is necessary in order to

allow YapOr to copy memory directly from one worker to another without the need

of any post processing.

Let us see first in Fig. 4.3 what would happen if memory is not remapped. On the left

side of Fig 4.3 we can see the representation of the stacks of worker 0 and worker 1.

The stacks of worker 0 have addresses ranging from 10000 to 19999 while the stacks

of worker 1 have addresses ranging from 20000 to 29999. Now consider that part of

the stacks from worker 0 will be copied to worker 1, which includes the address at

position 18000 that is a pointer to position 12000. On the right side of Fig 4.3, we

can see the memory layout after copying. The memory position 18000 of worker 0 was

copied to memory position 28000 of the worker 1 and both are pointing to address

12000. From the point of view of worker 1, the value 12000 does not make sense since

it is a pointer to the memory space of worker 0. One possible solution to this problem

would be to readjust all the addresses in the copied parts of the stacks so that they

38 CHAPTER 4. THE YAPOR SYSTEM

10000

Global Space

20000

Worker 0

Worker 1

18000

12000 X

12000

(a) Memory before sharing

10000

Global Space

20000

28000 12000

18000 12000

12000 X

Worker 0

Worker 1

22000 X

(b) Memory after sharing

Figure 4.3: Copying segments of memory from one worker to another may lead to

problems if memory is not remapped

match the address space of the new worker, in the example 28000 would be adjusted

to point to address 22000, but this post processing would have a great impact in the

performance.

Let us see now how YapOr’s remapping process works. In order to do the remapping,

each worker rotates the memory so that, from its point of view, the range of addresses

of its stacks is the same as the range of addresses of the stacks from the point of view

of worker 0. This means that all workers will see their own addresses in the same

range of addresses, i.e., the range initially mapped for worker 0. Figure 4.4 illustrates

an example with three workers after the remapping process where we can see that all

workers, from their point of view, have their stacks ranging between addresses 10000

and 19999 and the remaining worker’s stacks addresses are rotated.

Now consider that worker 2 wants to copy its stacks to worker 0. In order to know

where to copy it first needs to calculate the offset between it and the receiving worker

using the following formula:

(receiving worker − sending worker + total num workers)%total num workers ∗
worker area size

which in this case would be:

(0 − 2 + 3)%3 ∗ 10000 = 10000

After that, consider that worker 2 wants to copy starting from address 15000, the

destination will be calculated by summing the offset to that address, giving as result

4.2. IMPLEMENTATION DETAILS 39

10000

Global Space

20000

30000

View Worker 0

Worker 0

Worker 1

Worker 2

30000

Global Space

10000

20000

View Worker 1

Worker 0

Worker 1

Worker 2

20000

Global Space

30000

10000

View Worker 2

Worker 0

Worker 1

Worker 2

Figure 4.4: Memory addresses from the point of view of each worker after YapOr’s

remapping process

25000, which from its point of view is an address in the worker 0 memory space.

Now that we have seen how the rotation of memory works, let us see what would

happen if we apply it also to the example of Fig 4.3. Figure 4.5 illustrates such

situation. On the left side of the Fig. 4.5 we have the worker 0 memory representation

before copying the stacks to worker 1. On the right side of the figure, we have the

memory representation after the copy, from both the point of view of worker 0 and

worker 1. As we can see from the point of view of worker 1, the addresses in its stacks

are now ranging from 10000 to 19999, which makes the pointer at address 18000,

copied from worker 0 to refer now to a valid address (address 12000). Since each

worker only uses its own stacks space, there is no problem that, for example, from

the point of view of worker 1, the pointer at address 28000, belonging to the stacks of

worker 0 points to address 12000 in the stacks of worker 1.

4.2.2 Choice Points and Or-frames

Choice points have a critical role in the Prolog backtracking mechanism by allowing the

computation to be restored to a previous saved state. After that the next unexplored

alternative stored in the choice point, is picked in order to explore a new branch in

the search tree. With or-parallelism, we can have more than one worker owning the

40 CHAPTER 4. THE YAPOR SYSTEM

10000

Global Space

20000

View Worker 0

20000

Global Space

10000
W
o
r
k
e
r

0

W
o
r
k
e
r

1

18000

28000 12000

12000 X

22000 X

View Worker 0

12000

Before Sharing

copying
18000

12000 X

12000

After Sharing

10000

Global Space

20000

18000 12000

12000 X

View Worker 1

28000

22000 X

12000

W
o
r
k
e
r

0

W
o
r
k
e
r

1

W
o
r
k
e
r

0

W
o
r
k
e
r

1

Figure 4.5: Using memory rotation to solve the problem found in Fig 4.3

same choice point and thus we need some sort of synchronization to avoid situations

where more than one worker starts exploring the same alternative. In order to do that

YapOr uses a shared structure, called or-frame to synchronize the access to the open

alternatives in a shared choice point. Figure 4.6 shows how a private choice point is

transformed into a public choice point and associated with an or-frame data structure.

next alternative

program counter

top of the trail

top of global stack

previous choice point

or-frame pointer

local untried braches

ALT

CP

TR

H

B

ENVcurrent enviroment

LUB

(NULL)

Private
Choice Point

CP

TR

H

B

ENV

(not used)

Public
Choice Point

ALT

Unlocked

P,Q

lock

next alternative

members

nearest live or-frame

next or-frame

choice point pointer

or-frame

get_work

After SharingBefore Sharing

Sharing

Figure 4.6: Sharing a private choice point

On the left side of Fig. 4.6 we can see a representation of a (private) Yap choice point.

In order to support or-parallelism two new fields were added, which are colored in

grey in the figure. The first one is a pointer to the corresponding or-frame, which

is made to point to NULL when the choice is not shared. The second one is the

local untried branches which corresponds to the number of private alternatives in the

4.2. IMPLEMENTATION DETAILS 41

current branch.

On the right side of the figure we can see the choice point after being shared and

associated with an or-frame. The next alternative field in the shared choice point is

made to point to a special get work instruction, the or-frame field is made to point to

the or-frame associated to it and the local untried branches field is no longer needed

since the above alternatives are now public.

The right side of Fig. 4.6 also shows that an or-frame structure is composed by six

fields. The lock field, as the name suggests, implements a lock that enable workers to

synchronize the access to the or-frame. The next alternative field was inherited from

the choice point and stores the pointer to the next untried alternative. The members

field stores information about which workers are currently sharing that choice point.

The choice point pointer field is a back pointer to the associated choice point. The

nearest live or-frame field is a pointer to the next or-frame corresponding to a choice

point with open alternatives. Finally, the next or-frame field points to the parent

or-frame in the current branch.

4.2.3 Worker Load

As we mentioned before, the YapOr scheduler selects busy workers according to the

position of the workers in the or-tree and their workload. Having the load of each

worker updated is thus very important but, updating it often, may have a great

impact in the performance so it is necessary to define a compromise between both. In

YapOr, the workload of a worker is updated when a new choice point is created.

We can define the load of a given worker as the sum of all the open alternatives in

its private choice points. Figure 4.7 illustrates how the process of calculating the load

of a worker is done. The figure represents an execution tree divided in shared and

private regions. With the private choice points showing the number of local untried

branches (the CP(LUB) field). The first private choice point has CP(LUB) = 0 since

the above shared choice points are not taken into account. The second private choice

point has CP(LUB) = 1, which is number of alternatives in the first private choice

point. The last choice point has CP(LUB) = 3, which is the sum of the previous

CP(LUB) plus the two open alternatives in the previous choice point. To calculate

the total workload of a worker we simply need to sum the CP(LUB) of its top choice

point with the number of alternatives present in that choice point. In this case, the

workload of the worker represented in the figure is thus 5.

42 CHAPTER 4. THE YAPOR SYSTEM

shared
region

private
region

CP(LUB) = 0

CP(LUB) = 1

CP(LUB) = 3

Figure 4.7: Local untried branches

4.2.4 Sharing Work Process

When a worker Q runs out of work, the scheduler is responsible for finding a busy

worker P. Once it finds it, the idle worker Q should send a sharing request to P. The

busy worker P may then accept and start the sharing work process or decline the

solicitation if, for example, it has too few work that it is not worth sharing. This is

done in order to avoid situations where worker P would spend more time preparing and

sending the work than it would spend executing the work itself. Figure 4.8 shows the

most important steps and communication signals involved in a sharing work operation.

After accepting a share request, worker P starts by computing the areas to copy to

Q and since YapOr implements incremental copy only the non-common parts of the

stacks will be copied. After this initial step, worker P sends a sharing signal to worker

Q. Next, worker Q can start copying the trail and the heap stacks whilst worker P starts

publishing its private nodes. Worker Q may only start copying the local stack when it

receives a signal from P saying that its private nodes are made public. This happens

because publishing nodes involves changing the choice points which are located in

the local stack. After publishing the nodes, if needed, worker P may cooperate with

worker Q in copying the stacks. Then, the workers synchronize by sending a copy done

signal to each other. After that, the incremental copy mechanism requires that worker

Q installs the bindings for the variables in the non-copied segments, while worker P

can return to Prolog execution although it can not backtrack to the shared choice

points in order to avoid undoing bindings that are being copied by Q. In such case,

P must wait to receive a ready signal from Q confirming that all bindings are copied.

4.2. IMPLEMENTATION DETAILS 43

Worker P Worker Q

sharing
Compute stacks to copy

Publish private nodes
Copy trail
Copy heapnodes shared

Help Q in copy Copy local stack
copy done

copy done

Return to Prolog execution Install bindings
ready

Perform a fail

Figure 4.8: Steps and communication protocol between the two workers involved in a

sharing work operation

At the end, worker Q simulates a failure in order to pick an open alternative from the

youngest shared choice point.

4.2.5 New Pseudo-Instructions

YapOr introduces four new pseudo-instructions, three of them are related with the

parallel execution and one is related with the execution of the cut predicate.

Before the first execution or at the end of the execution of a previous parallel goal

all workers, except worker 0, execute the getwork first time instruction. The main

purpose of this instruction is to block the workers until worker 0 informs that a new

parallel goal is available.

As we have seen, when a choice is published the next alternative field is made to

point to a get work instruction. This instruction is then executed when a worker

backtracks to a shared choice point and it allow workers to synchronize the access

to the corresponding or-frame in order to pick the next open alternative, therefore

guaranteeing that only one worker gets access to a shared alternative.

A variant of the getwork instruction, is called getwork sequential, used when a pred-

icate is declared as sequential. This instruction guarantees that the alternatives in

a sequential public choice point are executed as if they were being interpreted by

44 CHAPTER 4. THE YAPOR SYSTEM

a sequential engine, i.e., an alternative is picked for execution only when there is no

available work in any younger choice point, which means that, the previous alternative

is fully explored.

A last instruction, called synch instruction, used to implement the cut predicate in

YapOr. The synch instruction implements a delay that delegates the execution of any

other operation shared area until the alternative at hand (the one executing the cut)

becomes the leftmost alternative in the or-tree. This is done in order to ensure that

the execution of the cut follows the same order as if it were being performed in a

sequential engine.

Chapter 5

Teams of Workers

This chapter discusses in detail our layered model, which aims to run Prolog in clusters

of multicore processors, and describes the changes done to Yap/YapOr in order to

efficiently support it.

5.1 Execution Model

At the beginning of the execution only one standard Yap engine, called the client

worker, is running. Before executing any parallel goal it is necessary to launch, at

least, one parallel engine. Predicate par create parallel engine/2 allows to create and

launch a new parallel engine. A parallel engine is composed by teams of workers with

each team behaving as an independent YapOr engine.

The worker 0 of each team is considered to be the master worker of the team and it is

responsible for controlling the execution inside the team and for the communication

with the other teams. Moreover, the first team to be launched is considered to be

the master team and its master worker is responsible for receiving and launching the

execution of the parallel goals sent by the client worker.

The predicate par run goal/3 allows to define goals to be run in parallel. When this

predicate is called a message with the goal to be run is sent from the client worker

to the master worker of the master team. This worker will then start the execution

of the received goal and notify all the master workers of the other teams belonging to

the same parallel engine about that. Inside the master team, the execution is similar

to the one seen for YapOr, with the master worker starting to share work with its

45

46 CHAPTER 5. TEAMS OF WORKERS

teammates. Outside the master team, the other teams are now aware that a parallel

computation has begun and thus they enter in scheduling mode. Soon after, they will

start contacting the master team in order to get work.

When a team A receives a sharing work request from a team B, the team sharing work

process begins. In the team sharing work process, first a worker W from inside team

A will be designated to answer the request. Then, worker W may reject or accept the

request based on its current conditions. If the request is accepted, W proceeds in the

following way:

• W starts by copying its stacks to an auxiliary area assigned to it;

• a stack splitting strategy is applied to its stacks and the stacks in the auxiliary

area;

• the stacks in the auxiliary area are sent to the master worker of the requesting

team B.

When the master worker of team B receives the stacks from team A, they are installed

on its own work space. At this point, the master worker of team B must inform the

remaining teammates that the team has now work. After that, the execution inside

team B evolves as a standard YapOr execution with the master worker performing a

fail, in order to take the next open alternative, and with its idle teammates starting

to ask it for work.

A team is considered to be out of work when every worker inside the team is idle.

When that happens, the team enters in scheduling mode in order to choose a busy

team to request work and the same sharing process, as described above, is repeated.

The execution ends when all teams are idle and, in the continuation, the client worker

is notified that the parallel execution is finished.

Our model can be seen as a layer implemented on top of the YapOr engine in order to

combine distributed memory with the already existing shared memory approach. In

our model, the communication between teams is done using MPI messages. The MPI

implementation chosen was Open MPI [1], although our model should be compatible

with any other recent MPI standard implementation. In the next sections, we present

the main implementation details of our model.

5.2. STARTING A PARALLEL EXECUTION 47

5.2 Starting a Parallel Execution

As we have seen in section 4.1, launching a parallel goal requires two steps. The

first step involves the creation of, at least, one parallel engine using the predicate

par create parallel engine/2, and then the predicate par run goall/3 can be used for

sending goals to be run in the available parallel engines. Next, we describe the key

implementation details behind these two steps.

5.2.1 Creating a Parallel Engine

When the predicate par create parallel engine/2 is called in the client worker, it initi-

ates the process of creating a parallel engine. The Prolog code for this predicate can

be seen in Fig. 5.1.

par_create_parallel_engine(EngineName,TeamList) :-

’$c_parallel_engine_create’(TeamList,EngineID),

assertz(parallel_engine(EngineName,EngineID)).

Figure 5.1: Prolog code for the predicate par create parallel engine/2

The predicate receives two arguments: the name to be given to the parallel engine,

represented by the variable EngineName, and a list of tuples defining the set of teams

to be created as part of the parallel engine, represented by the variable TeamList.

Each tuple < h, n, p > in TeamList includes a host h, the number of n workers to be

spawned on that team and the path p to the file program to be loaded by default.

When the predicate is called, the subgoal ’$c parallel engine create’/2 is the first

to be executed. The ’$c parallel engine create’/2 predicate is written using the C

language interface of Yap1 and is responsible for doing the most critical part of the

job – spawning the master workers of each team. In order to do that, it uses the

MPI Comm spawn multiple() function of the MPI API. Then a broadcast is performed

informing those master workers about the number of workers that will be present in

each team. During this process, a new EngineID (which is an integer) is assigned to

that new parallel engine, allowing to internally identify it. This EngineID corresponds

to the position of the engine frame data structure where information about that

parallel engine is stored. The EngineID is also used to perform an assert in order

to associate it with the name given to the new parallel engine.

1In what follows, all predicates that start with ‘$c ’ are defined using Yap’s C interface.

48 CHAPTER 5. TEAMS OF WORKERS

In the continuation, each master worker must then allocate the shared memory which

will support the parallel execution of its team and launch the remaining workers of

the team using the fork() system call, in a process similar to the one in YapOr. Each

worker will then remap its memory according to the process described in the next

section and, at last, jump to the getwork first time instruction. At that point, the

parallel engine is ready to run parallel goals.

A schematic representation summarizing the process of spawning processes can be seen

in Fig. 5.2. For this example, we consider again the topology presented in Chapter 3

that we have been using, which can be created with the call:

par create parallel engine(E,[(N1,4,’prolog\prog.pl’), (N1,4,’prolog\prog.pl’),
(N2,8,’prolog\prog.pl’)]).

In the figure, we can see that the master workers (workers 0) of each team are first

spawned by the client worker using the MPI Comm spawn multiple() function and

only after the other workers are launched using the fork() system call.

W
(B,0)

W
(B,1)

W
(B,2)

W
(B,3)

W
(C,0)

W
(C,1)

W
(A,0)

W
(A,1)

W
(A,2)

W
(A,3)

W
(C,7)

W
(C,2)

W
(C,4)

W
(C,6)

?-par_create_parallel_engine/3

Client Worker

MPI_Comm_spawn_multiple()

fork() fork()fork()

W
(C,5)

W
(C,3)

Team A Team CTeam B

Host node_1 Host node_2

Figure 5.2: Schematic representation of the process of spawning workers that

constitute a parallel engine

5.2. STARTING A PARALLEL EXECUTION 49

5.2.2 Running a Parallel Goal

After the creation of a parallel engine, the user can now run parallel goals and for that

it must use the predicate par run goal/3. The predicate receives as arguments the

name of the parallel engine where to run the goal, the goal to be run and a template

indicating how the answers to the given goal should be returned. Consider that we

want to run, in parallel the goal par computation(X,Y,Z) and we are only interested

in the answers obtained for variable Z. In such case, the template could be defined as

Z. The Prolog code for this predicate can be seen in Fig. 5.3.

par_run_goal(EngineName,Goal,Template) :-

engine_name_id(EngineName,EngineID),

’$c_run_parallel_goal’(EngineID,Goal,Template).

Figure 5.3: Prolog code for the predicate par run goall/3

The predicate par run goal/3 begins by translating the name of the team to the cor-

responding EngineID so that it can access the information stored in the engine frame

data structure. After that, the predicate ’$c run parallel goal’/3 is executed with the

EngineID as argument. This predicate is responsible for sending the goal and the

template to the parallel engine in order to be run. This is done by first converting the

goal and the template terms to strings (using the YAP WriteBuffer() function that

allows the terms stored in the heap to be converted into strings), and then by sending

a message containing such strings to the master worker of the master team.

In Fig. 5.4 we have a fragment of code, extracted from the getwork first time instruc-

tion, that shows what happens when a worker jumps to that instruction waiting for

the execution of a new parallel goal. As we can see, each master worker first waits

that all other workers inside its team became ready to initiate the computation, and,

after that, all master workers guarantee that all teams are in the same condition (all

master workers wait for each other). It is important to note that the first wait function

is implemented in shared memory by marking the ready workers in a bitmap while

the second waiting function is implemented using an MPI Barrier(). After this initial

synchronization, the master worker of the master team waits for a new parallel goal

to be sent by the client worker. When that happens, it begins by converting the goal

and the template strings into terms with the help of the YAP ReadBuffer() function,

and then the parallel computation starts by running the predicate parallel run/2 with

the goal and the template as arguments.

50 CHAPTER 5. TEAMS OF WORKERS

if (is_master_worker(worker)) {

wait_team_mates()

wait_for_master_workers()

if (is_master_team(team)) {

msg = Recv(client_worker)

goal = get_goal(msg)

template = get_template(msg)

goalTerm = YAP_ReadBuffer(goal)

tamplateTerm = YAP_ReadBuffer(template)

RunPred(parallel_run(goalTerm,templateTerm))

} else { //not the master team

wait_for_work_in_parallel_engine()

make_root_choice_point()

TS_team_idle_scheduler()

}

} else { //not a master worker

set_as_ready(worker)

wait_for_work_in_team()

make_root_choice_point()

LS_local_scheduler()

}

Figure 5.4: Fragment of pseudo-code from the getwork first time instruction

The code for the parallel run/2 predicate can be seen in Fig. 5.5. It begins by calling

the predicate ’$c yapor start’/0 which is responsible for initializing auxiliary execution

variables, setting up the first shared choice point and, more important, signalizing

the other master workers that the execution has begun. After that the predicate

’$execute’/1 starts the computation of the parallel goal. Each time the parallel goal

yields an answer the predicate ’$c parallel new answer’/1 is responsible for storing it.

parallel_run(Goal,Template) :-

’$c_yapor_start’,

’$execute’(Goal),

’$c_parallel_new_answer’(Template),

fail.

parallel_run(Goal,Template).

Figure 5.5: Prolog code for the predicate parallel run/2

Returning to the code of the getwork first time instruction, the remaining master

workers wait for the message to be sent by the master worker of the master team.

5.3. MEMORY ORGANIZATION 51

That signal is done in a form of a message that contains information, such as the

position of memory of the first choice point, that will allow the workers to create the

first shared choice point using the make root choice point() procedure. Then those

master workers must call the function TS team idle scheduler() which is responsible

for finding a busy team to request work to.

On the other hand, all (non-master) workers wait for a notification from their master

workers saying that their team has work. After receiving such signal, they allocate

also their first shared choice point using the make root choice point() procedure, this

time the first choice point can be consulted directly, through shared memory, in the

workspace of the master worker of their team. Then the workers call the local scheduler

function LS local scheduler() as a YapOr worker would do in order to search for work

inside its team. Every time a team runs out of work, the non-master workers return

to this instruction waiting again for its master worker to get work from another team.

From their perspective, every time the master worker gets work from the outside, is

like beginning a new parallel computation.

5.3 Memory Organization

A team in our model can be viewed, from the outside, as a standard YapOr engine.

For that reason, the management of memory and the memory layout is quite similar

in both systems.

Regarding the memory layout, the main difference is due to the new process of sharing

work between teams. Since this process requires auxiliary memory areas, they were

included in the new memory layout for a team. The size of each one of these areas

is the same of a worker area and the number of areas can be statically defined when

compiling the system. A schematic view of this new layout can be seen in Fig. 5.6,

with the new memory areas colored in grey.

The process of mapping memory inside the team is also very similar to YapOr. When

a new master worker is launched, it is responsible for allocating the memory that will

support the parallel execution of its team, which is done by calling the mmap() system

call. After that, using the fork() system call, it launches the remaining workers of the

team. Then, it is necessary to remap the memory, but now this process is done in a

slightly different way from YapOr’s original strategy.

In the remapping process of YapOr, each worker rotates the memory to guarantee that,

52 CHAPTER 5. TEAMS OF WORKERS

Stacks
Worker 0

Global Space

Stacks
Worker N

.
.
.

Auxiliary
Area 0

.
.
.

Auxiliary
Area M

Memory Areas
Inherited
from YapOr

New
Memory
Areas

Figure 5.6: Team memory layout

from its point of view, all workers see its own stacks area starting at the same address

space [35]. Now instead of rotating the memory, we reserve an address space that

will be used by all workers to remap their own areas without the need of remapping

the areas assigned to the other workers. In order to understand this process, let us

consider the example in Fig. 5.7. On the left side, it presents the initial mapping of the

memory space done by the master worker and, on the right side, the view, from the

perspective of each worker, and after applying the remapping process. In the example,

the reserved address space ranges from address 10000 to address 19999. Comparing

the diferents views of each worker with the initial mapping, we can observe that each

worker only remapped its area using the reserved address space thus maintaining the

remaining addresses intact.

5.4 Team Scheduler

In order to be able to efficiently distribute and balance the work among teams we have

developed a team scheduler. This new scheduler, can be seen as an extra layer on top

of the local scheduler (the scheduler used by YapOr) which in our model continues

5.4. TEAM SCHEDULER 53

Worker 0 View Worker 1 View Worker 2 View

20000

Global Space

30000

40000

Initial Mapping
(Master Worker)

Worker 0

Worker 1

Worker 2

Auxiliary
Area 0

50000

New
Remapping

10000

Unused
Space

20000

Global Space

30000

40000

Worker 0

Worker 1

Worker 2

Auxiliary
Area 0

50000

10000

Unused
Space

20000

Global Space

30000

40000

Worker 0

Worker 1

Worker 2

Auxiliary
Area 0

50000

10000

Unused
Space

20000

Global Space

30000

40000

Worker 1

Worker 2

Auxiliary
Area 0

50000

10000

Unused
Space

Worker 0

Figure 5.7: Remapping process inside a team

to be responsible for the distribution of work inside the teams. The team scheduler

implements several functionalities, such as: (i) the handling of the communications

between teams; (ii) the sharing work process, which allows a team to share work

with another team; and (iii) the termination process, which determines the end of the

execution of a parallel goal by ensuring that all search space was fully explored.

The team scheduler can be divided in two different modules. The first module, called

team idle scheduler, runs when a team is idle. A team is considered to be idle when all

of its workers run out of work. Once it happens, the master worker of that team enters

in scheduling mode and starts running the team idle scheduler which is responsible

for finding a busy team willing to share work. The second module, called team

busy scheduler, is run from time to time by all workers inside a busy team and it

is responsible for answering to the sharing requests sent by the idle teams.

In order to better understand how the team scheduler works let us consider the example

in Fig. 5.8, where we have two teams represented. On the left side of the figure, we have

an idle team A formed by four workers and, on the right side, we have a busy team

B also formed by four workers. The boxes inside both teams show the procedures

54 CHAPTER 5. TEAMS OF WORKERS

called during the execution of the two modules of the team scheduler. The arrows

represent information exchanged during scheduler execution – if they are exchange

between workers of the same team we call them notifications (represented as dotted

arrows), otherwise, if they correspond to information exchange between workers from

different teams, we call them messages (represented as solid arrows).

Team Sheduler

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

SHARE_REQUEST

Team Idle Scheduler

TS_request_work()

Team Busy Scheduler

W
(B,1)

Team Busy Scheduler

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()
SHARE_ACCEPT

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

Figure 5.8: Team scheduler and its major components

Since team A is idle, its master worker is running the team idle scheduler. The proce-

dure TS request work() is responsible for finding a busy team to request work to. In the

example, the procedure’s scheduling algorithm decided to send a SHARE REQUEST

to the busy team B. When the master worker in team B notices that there is a

pending message coming from other team it uses the procedure TS process message()

to process that message. The SHARE REQUEST from team A will then cause the

procedure TS delegate request() to be called in order to find the worker inside the

team with the best conditions to successfully answer the request. In this example, the

selected worker was worker 1 (or W(B,1)) and therefore a DELEGATE REQUEST

notification is sent to it. Worker W(B,1) also runs the team busy scheduler from

time to time looking for delegation requests and once it receives one, the procedure

TS process delegation request() is called. If the request is accepted, it then calls

the procedure TS share work() that is responsible for performing the stack splitting,

preparing the stacks to be shared and then send a DELEGATE ACCEPT notifica-

tion to the master worker. Otherwise, if the request is refused, it sends a DELE-

GATE REFUSE notification to the master worker informing that the request was

rejected. When the master worker receives a DELEGATE ACCEPT notification,

it sends a SHARE ACCEPT message together with the stacks to the requesting

team. The procedure TS process message() in team A is responsible for receiving the

SHARE ACCEPT message and by calling the procedure TS install stacks() that will

5.5. COMMUNICATION 55

install the stacks in the master worker. At that point, team A is no longer considered

to be idle and the master worker can now share work with its teammates. On the other

hand, if the request had been denied with a SHARE REFUSE message, team A would

try to initiate the termination process by calling the procedure TS try termination().

The code for the team idle scheduler can be seen in Fig. 5.9 while the code for the

team busy scheduler can be seen in Fig. 5.10.

TS_team_idle_scheduler() {

while (TRUE) {

if (TS_request_work())

fail() // backtracks to the top choice point to get work

else

TS_try_termination()

}

}

Figure 5.9: Pseudo-code for the team idle scheduler

TS_team_busy_scheduler() {

if (is_master_worker(worker)) {

if (probe_message())

TS_process_message()

if (probe_notification())

TS_process_delegation_ready()

} else {

if (probe_notification())

TS_process_delegation_request()

}

}

Figure 5.10: Pseudo-code for the team busy scheduler

In the next subsections, we discuss in more detail the two team scheduler’s modules

introduced here.

5.5 Communication

The communication between teams is done using messages. Those messages are

sent and received only by the master worker of each team, using the MPI functions

MPI Send() and MPI Recv(), respectively.

56 CHAPTER 5. TEAMS OF WORKERS

Team messages are divided in two groups: sharing messages and termination mes-

sages. In Table 5.1, we can see the messages along with content sent in each one.

The sharing messages, as the name suggests, are used to implement the team sharing

process. When a team is out of work, the SHARE REQUEST message is used to

request work to a busy team. A busy team might reply with a SHARE ACCEPT

message, to accept the request, or may decline it by sending a SHARE REFUSE

message. The extra content included in these messages is the current state of the load

array of the sending team and, in the specific case of the SHARE ACCEPT message,

the stacks to be installed in the requesting team. The load array is only used for

scheduling purposes and will be detailed in another section. The TERMINATION

messages are related with the termination process and they indicate when the current

parallel goal is fully exploited meaning that a team must end the current computation.

The termination process will be discussed in detail in a later section.

Table 5.1: Messages used for communication between teams

Group of Message Type of Message Extra Content

Sharing

SHARE REQUEST [LOAD ARRAY]

SHARE ACCEPT [LOAD ARRAY] [STACKS]

SHARE REFUSE [LOAD ARRAY]

Termination TERMINATION

Checking for messages regularly is vital to maintain the system updated but may also

be very costly. When a given team is busy, the master worker must run the team

busy scheduler. However, the master worker may be itself in two states: also busy

or idle. If the master worker is busy, the team busy scheduler is run one time per

each RUN TEAM BUSY SCHEDULER THRESHOLD times it performs the WAM

call instruction. Otherwise, if the master worker is idle, the outside team messages are

checked inside the main loop of the local scheduler. Another possibility is the team

being idle, which implies that the master worker is also idle and running the team

idle scheduler and thus checking for outside team messages. Figure 5.11 shows the

pseudocode for the TS process message() procedure that is responsible for receiving

and processing messages in both team busy scheduler and team idle scheduler. Please

note that in the team busy scheduler only SHARE REQUEST messages are expected

to be received.

The code begins by receiving the next pending message and the variables type of message,

team and load array are initialized with the correspondent content in the message

received. After that, the loads of the teams are updated with the new information re-

5.5. COMMUNICATION 57

TS_process_message() {

msg = Recv(any_team)

type_of_message = get_type_of_message(msg)

team = get_team(msg)

load_array = get_load_array(msg)

if (load_array)

update_load_array(load_array)

switch (type_of_message) {

case SHARE_REQUEST:

if (is_team_busy())

TS_delegate_request(team)

else // team is idle

Send(team, SHARE_REFUSE)

case SHARE_ACCEPT:

stacks = get_stacks(msg)

TS_install_stacks(stacks)

notify_teammates()

case SHARE_REFUSE:

// in this case the calling function will be responsible for dealing with it

case TERMINATION:

goto getwork_first_time

}

return type_of_message

}

Figure 5.11: Pseudo-code for the TS process message() procedure

ceived in the load array followed by the actions to be taken for each specific type of mes-

sage received (switch case statement in Fig. 5.11). When a SHARE REQUEST is re-

ceived, we first check if the team is busy and, in such case, the function TS delegate request()

is called. This function is responsible for finding the worker inside the team with the

best conditions to answer the request. Otherwise, if the team is idle, a SHARE REFUSE

message is sent immediately to the requesting team.

The TS process message() function also treats the replies to previously sent SHARE REQUEST

messages. If the reply to a sharing request is SHARE ACCEPT, we begin by calling

the TS install stacks() procedure which is responsible for installing the stacks sent by

the busy team. After that, the master worker informs their teammates that their team

has now work and starts computing that work. On the other hand, if the answer to a

58 CHAPTER 5. TEAMS OF WORKERS

share request is SHARE REFUSE the calling function in the team idle scheduler will

deal with it after the return of this procedure. A TERMINATION message is only sent

when the termination process detects that all teams are idle. For that reason, when

this message is received by a master worker, it simple jumps to the getwork first time

instruction which is responsible for synchronizing the workers and prepare them to a

new execution. At the end, the procedure returns the type of message received.

5.6 Load Balancing

When a team is idle, its master worker enters in scheduling mode where the function

TS request work() is used to select the team to which a SHARE REQUEST message

should be sent. When the request is received by the master worker of the busy team,

it calls the function TS delegate request() which is responsible for choosing the sharing

worker from the team. Even though the sharing request involves two teams, in practice,

the sharing process is done between two workers. The master worker of the requesting

team and the chosen sharing worker from the busy team. Next, we will see in more

detail the two functions involved in the selection of the busy team and in the selection

of the sharing worker.

5.6.1 Selecting a Busy Team

The TS request work() function is responsible for selecting a team with available work

to share. The pseudo-code for the TS request work() function can be seen in Fig. 5.12.

The function begins by selecting the busy team with the highest load and, if a busy

team exists, a SHARE REQUEST is sent to it. After that, it waits for an answer from

the busy team (function TS process message()) returning true or false if it receives a

SHARE ACCEPT or a SHARE REFUSE, respectively. While the TS request work()

is waiting for a response to the share request it may continue receiving and answering

messages from the outside. This constant updating of information might be useful, if

the current sharing request is rejected.

The team’s load information is stored in a bi-dimensional array, the load array, which

contains for each team its load and a timestamp. We define the load of a team as the

sum of the particular loads of each worker in the team. The load of each worker is

still computed as in YapOr (remember from Chapter 4 that the load of a worker is

given by the sum of all open alternatives in its private choice points).

5.6. LOAD BALANCING 59

TS_request_work() {

max_load = -1;

for (i = 0; i < number_teams; i++) {

if(get_load(load_array,i) > max_load){

max_load = get_load(load_array,i)

selected_team = i

}

}

if (max_load > -1) {

Send(selected_team,SHARE_REQUEST)

while (TRUE) {

if (probe_message()) {

answer = TS_process_message()

if (answer == SHARE_ACCEPT)

return TRUE

else if (answer == SHARE_REFUSE)

return FALSE

}

}

} else // no busy team found

return FALSE

}

Figure 5.12: Pseudo-code for the TS request work() procedure

The information in the load array is updated whenever a new team message is received.

When a worker sends a new message, it includes a copy of the load and timestamp

information in its load array, so that the receiving worker can update its array with

such information. This is done by comparing the timestamps in its load array with

the timestamps on the received load array and when a received timestamp is younger,

then the load array must be updated. Timestamps are implemented using an integer

which is incremented every time the corresponding team sends a new message. Thus,

whenever we refer that a timestamp A is younger than a timestamp B that means

that the timestamp A has a higher value than the timestamp B. It would be possible

to update the load array more often by sending specific LOAD INFO messages when-

ever certain operations are done, for example, after a successful sharing process the

requesting team could send a broadcast message informing all the others teams about

60 CHAPTER 5. TEAMS OF WORKERS

TS_delegate_request(team) {

sharing_worker = master_worker

max_load = load(sharing_worker)

for (i = 1; i < number_workers; i++) {

if (!has_delegations(i) && worker_load(i) > max_load) {

max_load = worker_load(i)

sharing_worker = i

}

}

if (max_load < THRESHOLD_FOR_SHARING || !available_sharing_areas()){

Send(team,SHARE_REFUSE)

return

}

frame = find_auxiliary_sharing_area()

if (sharing_worker == master_worker) {

new_load_requesting_team = TS_share_work(frame)

update_load_array(team,new_load_requesting_team)

Send(team,SHARE_ACCEPT)

} else{ //sharing_worker != master_worker

initialize_delegation_frame(frame,sharing_worker,team)

set_as_has_delegations(sharing_worker)

Send_notification(sharing_worker,DELEGATE_REQUEST,frame)

}

return

}

Figure 5.13: Pseudo-code for the TS delegate request() procedure

its new load. However, this will increase the number of messages circulating which

could have a negative performance impact.

5.6.2 Selecting a Sharing Worker

When a team is busy and receives a SHARE REQUEST, the TS delegate request()

function is used to select the worker with the highest load inside the team and to

delegate to such worker the sharing work task. This scheduler procedure can be seen

in Fig. 5.13.

5.7. SHARING PROCESS 61

The TS delegate request() procedure receives as argument the requesting team. Ini-

tially, it starts by selecting the worker with the highest load that currently is not

dealing with any other delegation request. After that, two conditions must be checked.

The first condition is if the load of the selected worker is lower than a defined threshold.

This is done in order to avoid sharing small tasks that may take more time sharing them

than eventually computing them. The second condition is related with the availability

of an auxiliary sharing memory area, as introduced in the memory organization section,

which is required for the sharing process. If one of these two conditions fails, the

procedure sends a SHARE REFUSE message to the requesting team in order to reject

the share request and then returns.

Otherwise, we must first find a free auxiliary sharing area by calling the function

find auxiliary sharing area() which will return the frame associated to that area. If

the selected sharing worker is the master worker, we begin by calling the function

TS share work() in order to do the stack splitting and preparing the stacks to be sent

in the auxiliary sharing area. After that, we update the load of the requesting team

with the load returned by the function TS share work(), which corresponds to the

work that will be sent. Then a SHARE ACCEPT message with the stacks is sent to

the requesting team. The master worker can then leave the team busy scheduler and

return to its work since the following steps in the sharing process are responsibility of

the requesting team.

On the other hand, if the selected worker is not the master worker, the stacks can not

be sent right away to the requesting team. First, we need to initialize the delegation

frame associated with the selected auxiliary sharing area which will further allow the

communication between the sharing worker and the master worker. After that, the

sharing worker is notified about this delegation by sending a DELEGATE REQUEST

together with the selected auxiliary sharing area. After this the master worker can

leave the team busy scheduler and return to its work. In the next section, we explain

in more detail this process and which are the next steps taken in a delegation process.

5.7 Sharing Process

As we have seen, we can distinguish two types of sharing: the sharing process done

by the master worker and the delegated sharing process. In the case of the master

worker, the stacks are sent immediately to the requesting team. In the delegated

sharing process, a worker diferent from the master worker is choosen for sharing its

62 CHAPTER 5. TEAMS OF WORKERS

stacks and therefore more steps are needed in order to send the stacks to the requesting

team. Next, we will discuss delegated sharing in more detail.

5.7.1 Delegated Sharing Process

Remember that, when a worker receives a delegated sharing request its stacks may

not be sent directly to the requesting team. This happens because Open MPI only

allows MPI processes to send messages and, in our model, the non-master workers

are non-MPI processes since they are launched using the fork() system call rather

than using a specific MPI procedure. When we are dealing with a delegated sharing,

the function TS delegate request() assigns an auxiliary sharing area to that particular

sharing operation. Each one of the auxiliary sharing areas has a delegation frame

associated to it that must be initialized in order to later allow the communication

between the master worker and the sharing worker.

The delegation frame structure includes the following nine fields (Figure 5.14, shows

a schematic representation of this structure): DgFr is free which indicates if the

auxiliary area associated to that particular frame is being used or not; DgFr ptr area

is a pointer to the first position of the auxiliary sharing area associated to that frame;

DgFr sharing worker represents the id of the sharing worker; DgFr requesting team

which is the idle team who is requesting for work; DgFr notification to master worker

is a field used by the sharing worker to communicate with the master work of its team;

DgFr stacks size informs the master worker about the total amount of memory used in

the auxiliary sharing area; DgFr new load requesting team informs the master worker

about the new load of the requesting team after the stacks being splitted.

Consider again the example in Fig. 5.8 that a message requesting work is sent from

team A to team B. When the scheduler on team B receives that message it starts

the process of selecting a sharing worker, which in our example is worker 1, and then

it must find a free auxiliary sharing area and initialize its delegation frame. On the

right side of Fig. 5.14, we can see the result of this initialization for the situation

described above. The field DgFr is free is updated to FALSE, meaning that the frame

is currently in use. The fields DgFr sharing worker and DgFr requesting team are now

matching this hypothetical sharing scenario with values 1 and A, respectively. Finally,

the field related with the communication, DgFr notification to master worker has no

messages yet. Next, with the frame initialized, it is time to notify worker 1 to start

the team sharing process.

5.7. SHARING PROCESS 63

DgFr_is_free

DgFr_ptr_area

DgFr_sharing_worker

DgFr_requesting_team

DgFr_notification_to_master_worker

DgFr_new_load_requesting_team

TRUE

0xXXXX

--

DgFr_stacks_size

A

1

--

--

Delegation Frame
After Initialization

Delegation Frame
Before Initialization

--

--

--

--

FALSE

0xXXXX

NO_MSG

Figure 5.14: On the left side, we can see a delegation frame before being initialized

and, on the right side, the same structure after the initialization to be used in a

delegation request

The non-master workers always check if they have any sharing delegation request

before executing any WAM call instruction. The pseudo-code for processing such a

request is shown in Fig. 5.15. The worker starts by receiving the delegation request and

then the variable frame is initialized. After that, the worker checks if its current load is

lower than a defined threshold (THRESHOLD FOR SHARING) that allows workers

to refuse sharing requests when its load is not enough. This condition was already

checked by the master worker but since the communication is not immediate, the load

might have changed. If the previous condition holds, the sharing worker denies the

request by sending a DELEGATE REFUSE notification to the master worker using

the field DgFr notification to master worker of the delegation frame. Otherwise, the

worker accepts the request and calls in the continuation the TS share work() procedure

that will perform the stack splitting, store the resulting stacks in the assigned auxiliary

sharing area and fill the fields DgFr stacks size and DgFr new load requesting team of

the delegation frame. After that, a DELEGATE ACCEPT notification is sent to the

master worker informing it that the stacks can now be sent to the requesting team.

The master worker also checks for answers to its delegation requests when it executes

the WAM call instruction. It does that by checking if there are any new notifications in

the DgFr notification to master worker field in each position of the delegation frame

array. When it finds one, it runs the function TS process delegation ready() which

uses the excerpt of code of Fig. 5.16 to process the request.

When the master worker receives a DELEGATE REFUSE notification, it sends a

64 CHAPTER 5. TEAMS OF WORKERS

TS_process_delegation_request() {

notification = Rcv_notification(master_worker)

frame = get_delegation_frame(notification)

if (worker_load(worker_id) < THRESHOLD_FOR_SHARING) {

DgFr_notification_to_master_worker(frame) = DELEGATE_REFUSE;

} else {

TS_share_work(frame);

DgFr_notification_to_master_worker(frame) = DELEGATE_ACCEPT;

}

}

Figure 5.15: Pseudo-code for the TS process delegation request() function responsible

for processing a delegation request

SHARE REFUSE message to the requesting team, removes the sharing worker from

the list of workers with delegations and frees the delegation frame. If the notification

received is a DELEGATE ACCEPT, first it sends a SHARE ACCEPT message to

the requesting team together with the stacks in the auxiliary sharing area. Then, it

updates its load array with the new load of the receiving team in order to be able to

propagate the new load in its following messages. At this point, the sharing worker

can be removed from the list of workers with delegations and the delegation frame is

made free again.

5.7.2 Preparing the Stacks to be Sent

The function TS share work() is responsible for preparing the stacks to be sent to the

requesting team. The first step taken by this function is to determine the segments

of the different stacks to be copied. In order to better understand how this is done,

observe the left side of Fig. 5.17, which presents the stacks in a worker area. The area

of the heap to be copied is delimited by the pointer to the heap in the root choice

point, which represents the first shared choice point, and the register H, which points

to the top of that stack. For the local stack, the area to be copied is delimited by

register B, that points to the last choice point, and by the root choice point. For the

trail, the area to be copied is given by register TR that points to the top of the trail,

and by the pointer to the trail in the root choice point.

5.7. SHARING PROCESS 65

team = DgFr_requesting_team(frame)

sharing_worker = DgFr_sharing_worker(frame)

if (DgFr_notification_to_master_worker(frame) == DELEGATE_REFUSE)

Send(team,SHARE_REFUSE)

else if (DgFr_notification_to_master_worker(frame) == DELEGATE_ACCEPT) {

Send(team,SHARE_ACCEPT)

update_load_requesting_team(team,DgFr_new_load_requesting_team(frame))

}

unset_as_has_delegations(sharing_worker)

free_auxiliary_sharing_area(frame)

Figure 5.16: Excerpt of code from the function TS process delegation ready() respon-

sible for receiving and processing a delegation response

The values that delimit those areas are stored in the header region of the auxiliary

sharing area together with the load of the new team that will be determined during

the stack splitting operation. Following the header region are the heap, local stack and

trail segments as determined before. Since the information in the auxiliary sharing

area will be sent to the requesting team, we try to reduce the size of that message by

copying those segments in such a way that there is no gaps between them. A schematic

view of the steps discussed above is depicted on the right side of Fig. 5.17.

H

root_cp->cp_h

B

root_cp

TR

root_cp->cp_tr

load

HEAP

Worker Area Auxiliary Sharing Area

LOCAL STACK

TRAIL

root_cp->cp_h

H

B

root_cp

root_cp->cp_tr

TR

HEADER

HEAP

LOCAL STACK

TRAIL

Figure 5.17: On the left side, we have the schematic representation of the segments

of the stacks to be copied and, on the right side, we have the representation of the

auxiliary sharing area

Now we have two copies of the stacks, one in the sharing worker stacks and another

66 CHAPTER 5. TEAMS OF WORKERS

in the auxiliary sharing area. So we are now able to perform the stack splitting

operation between both. Our system implements two different stack splitting strategies

– vertical splitting and horizontal splitting – which are described in detail in the next

two subsections. After the stack splitting operation completes, the LOAD of the

sharing worker and the load in the header are both updated to reflect the changes

done and the auxiliary sharing area is ready to be sent to the requesting team. Once

the master worker of the requesting team receives it, it just needs to install the stacks

in its own worker space with the help of the information present in the header.

5.7.3 Vertical Splitting

Before seeing how vertical splitting is implemented, let us consider the example in

Fig. 5.18a where we can see the schematic representation of the execution tree of the

sharing worker, which is the same as the stacks in the auxiliary sharing area since

they were copied as explained before. The execution tree is divided in two regions,

the shared and the private region. In the shared region, we have choice points that

are shared between the sharing worker and some of its teammates (nodes that have

or-frames associated to them in the figure). On the private region, we have the choice

points produced by the sharing worker, that have not been shared yet. In Fig. 5.18b,

we can see the representation of the execution trees in the sharing worker and in

the auxiliary sharing area after performing the vertical stack splitting operation. It

is important to note that the nodes (choice points) in the shared region were also

splitted. However, since the auxiliary area will be sent to another team, the or-frames

associated to those shared choice points can be removed. Therefore, we can say that

in the auxiliary sharing area there is only private work.

Figure 5.19 shows in detail the TS vertical splitting() procedure which implements

the vertical splitting operation in our model. The function receives as arguments

the pointer to the beginning of the local stack in the auxiliary sharing area. First

we initialize the variable stack cp with the current choice point that is given by the

register B and then we initialize the variable sharing state.

Next, inside the while loop, it will traverse the local stack in the sharing worker area

and in the axillary sharing area, starting in the youngest choice point. Initially, it

calculates the corresponding position in the auxiliary area of the choice point in the

local stack. This is done by first determining the offset between the choice point in

the local stack and the one pointed by register B and then by adding this offset to

5.7. SHARING PROCESS 67

c2

shared
region

private
region

null

b2

c3

Sharing Worker

b3
b2

c3

d2

d3

e2

e3

(a) Before vertical splitting

c2

b3
b2

shared
region

private
region

null

c3

null

c3

d3

Sharing Worker Auxiliary Sharing
Area

e2

e3

(b) After vertical splitting

Figure 5.18: Representation of the vertical splitting operation done by a sharing worker

the base of the local stack in the auxiliary area. The code inside the loop follows by

checking if the choice point at hand has work and, if there is available work, then it is

checked the sharing state of the algorithm. There are two states: AUXILIARY AREA

and SHARING WORKER, which are used to define the division of the choice points

in the vertical splitting fashion. The AUXILIARY AREA state means that the choice

point at hand should be given to the auxiliary sharing stack and nullify in the local

stack of the sharing worker. In order to do that, we begin by first checking if the

choice point is shared or private. If it is shared, we must lock the or-frame associated

with it, copy the next alternative in the or-frame to the choice point in the auxiliary

sharing stack, nullify the access to the next alternative in the or-frame, and unlock

the or-frame. Otherwise, if the choice point at hand is private, we just invalidate the

available work in the choice point in the sharing worker stack by putting the next

alternative field (cp ap) pointing to the NO WORK instruction and leave intact the

copy of that choice point in the auxiliary sharing stack. The NO WORK instruction

is a pseudo-instruction used to mark the choice points that become without work

during stack splitting. Therefore this instruction does not perform any relevant work,

it simply redirects the computation to the above choice point. Returning to the code,

the next step is changing the sharing state to SHARING WORKER, meaning that the

next choice point with work should be owned by the sharing worker. Thus, when the

sharing state is SHARING WORKER, the corresponding choice point in the auxiliary

sharing stack is updated to the NO WORK instruction and after that the sharing state

is set again to AUXILIARY AREA. When the choice point at hand has no work but is

shared, we simply put the next available alternative of the choice point in the auxiliary

68 CHAPTER 5. TEAMS OF WORKERS

TS_vertical_splitting(aux_area_local_top) {

stack_cp = B // B is a register pointing to the current choice point

sharing_state = AUXILIARY_AREA

while(stack_cp != ROOT_CP){

aux_area_cp = aux_area_local_top + (stack_cp - B)

if (has_work(stack_cp)) {

if (sharing_state == AUXILIARY_AREA) {

if (is_shared_cp(stack_cp)) {

or_fr = stack_cp->cp_or_fr

lock_or_frame(or_fr)

aux_area_cp->cp_ap = OrFr_alternative(or_fr)

OrFr_alternative(or_fr) = NULL

unlock_or_fram(or_fr)

} else // private cp

stack_cp->cp_ap = NO_WORK

sharing_state = SHARING_WORKER

} else { // sharing_state = SHARING_WORKER

aux_area_cp->cp_ap = NO_WORK

sharing_state = AUXILIARY_AREA

}

} else //cp without work

if (is_shared_cp(stack_cp))

aux_area_cp->cp_ap = NO_WORK

stack_cp = stack_cp->cp_b

}

}

Figure 5.19: Pseudo-code for performing vertical splitting between teams

stack pointing to the NO WORK instruction. Then we update the stack cp and the

aux area cp and proceed to the next iteration of the while loop.

During this process, the CP LUB field of each choice point is also updated in order

to maintain its coherence. For the sake of simplicity, we have omitted that part from

the pseudo-code in Fig. 5.19.

5.7. SHARING PROCESS 69

5.7.4 Horizontal Splitting

In Fig. 5.20a we have again the same example of Fig. 5.18a but now using horizontal

splitting to divide work between the stacks of the sharing worker and the stacks in

the auxiliary sharing area. In this strategy, instead of splitting the choice points we

split the unexplored alternatives in the choice points. The final result can be seen in

Fig. 5.20b.

c2

shared
region

private
region

null

b2

c3

Sharing Worker

b3
b2

c3

d2

d3

e2

e3

(a) Before horizontal splitting

Sharing Worker Auxiliary Sharing
Area

c2

shared
region

private
region

null

b2

b2

d2

e3

c2

b3

c3

d3

null

(b) After horizontal splitting

Figure 5.20: Representation of the horizontal splitting operation done by a sharing

worker

In order to implement this splitting strategy, a new field called split offset was added to

the choice point and or-frame data structures. This new field will help us to calculate

the alternatives belonging to each team after a sharing operation. It is initialized with

a value of one when a choice point is created and its value is doubled each time the

choice point is splitted with another team. When a choice point is turned public the

value in the split offset of the choice point is simply copied to the field with the same

name in the corresponding or-frame. With the split offset, the difference is that, when

backtracking, instead of trying the next alternative, as usual, now, we use the split

offset field to calculate that alternative. For example if the split offset is two, then

instead of trying the next alternative n, we jump n and we try the next alternative

after n (offset of two).

Figure 5.21 shows in detail the TS horizontal splitting() procedure responsible for im-

plementing the horizontal splitting operation in our model. As before with TS vertical splitting(),

the function also receives as argument the pointer to the top of the local stack in the

auxiliary sharing area. Again it begins by initializing the variable stack cp with the

70 CHAPTER 5. TEAMS OF WORKERS

current choice point and then the variable sharing state.

TS_horizontal_splitting(aux_area_local_top) {

stack_cp = B // B is a register pointing to the current choice point

sharing_state = AUXILIARY_AREA

while(stack_cp != ROOT_CP){

aux_area_cp = aux_area_local_top + (stack_cp - B)

if (has_work(stack_cp)) {

if (is_shared_cp(stack_cp)) {

Or_fr = stack_cp->cp_or_fr

lock_or_frame(stack_cp->or_fr)

next_alt = next_alternative(OrFr_alternative(or_fr),

OrFr_split_offset(stack_cp->or_fr))

if (sharing_state == SHARING_WORKER) {

aux_area_cp->cp_ap = OrFr_alternative(or_fr)

OrFr_alternative(or_fr) = next_alt

sharing_state = AUXILIARY_AREA

} else { // sharing_state == AUXILIARY_AREA

aux_area_cp->cp_ap = next_alt

sharing_state = SHARING_WORKER

}

aux_area_cp->cp_split_offset *= 2

OrFr_split_offset(or_fr) *= 2

unlock_or_frame(or_fr)

} else { // private cp

next_alt = next_alternative(stack_cp->cp_ap,stack_cp->cp_split_offset)

if (sharing_state == SHARING_WORKER) {

stack_cp->cp_ap = next_alt

sharing_state = AUXILIARY_AREA

} else { // sharing_state == AUXILIARY_AREA

aux_area_cp->cp_ap = next_alt

sharing_state = SHARING_WORKER

}

aux_area_cp->cp_split_offset *= 2

stack_cp->cp_split_offset *= 2

}

}

stack_cp = stack_cp->cp_b

}

}

Figure 5.21: Pseudo-code for performing horizontal splitting between teams

5.7. SHARING PROCESS 71

After this initialization, the while loop, will traverse the local stack in the sharing

worker area and in the axillary sharing area, starting in the youngest choice point.

Then the code inside the while loop checks if the choice point at hand has work

and then if it is shared. In such case, we must lock the or-frame associated with

that choice point and then we call the function next alternative() that receives, as

arguments, the current alternative in that or-frame and the horizontal splitting offset.

The function will then return the next alternative based on the given offset. At this

point, we must check the sharing state of the algorithm. There are two sharing states:

SHARING WORKER and AUXILIARY AREA, which are used to define which one

of the areas will have the choice point at hand moving to the next alternative.

Thus, if we are in SHARING WORKER state, it means that it is the choice point

in the sharing worker area that will be updated to the next alternative. This is

done by putting the choice point in the auxiliary area pointing to the alternative

in the or-frame and by updating the or-frame alternative to point to the alternative

returned by the next alternative() function. Finally, we change the sharing state to

AUXILIARY AREA.

Otherwise, if we are in AUXILIARY AREA state, the choice point in the auxiliary

area is put to point to the alternative returned by the next alternative() function,

while the alternative in the or-frame is left untouched. After that the sharing state

is changed again to SHARING WORKER. At the end, we update the splitting offset

in the or-frame and in the choice point by doubling their values and we unlock the

or-frame.

Our procedure also deals with private choice points. In that case, the idea behind the

algorithm is the same but without or-frames associated. We simply put the choice

point in the sharing worker area or in the auxiliary sharing area pointing to the next

alternative returned by the next alternative() function, depending if we are dealing,

respectively, with the SHARING WORKER or with the AUXILIARY AREA state.

Then we update the offset in the choice point in both stacks. At the end, we update

the stack cp and the aux area cp and we proceed to the next iteration of the while

loop.

Like with the TS vertical splitting() procedure, the CP LUB field of each choice point

is also updated but for the sake of the simplicity we omitted that in the explanation.

72 CHAPTER 5. TEAMS OF WORKERS

5.8 Termination

Every sharing message in our system includes the load array of the team sending it.

When a team receives a sharing message, it uses that information to update its own

load array. From a conceptual point of view, the load array can be seen as the view

that a team has about the other teams in the parallel engine. Therefore, it is not only

useful for selecting teams with work but also for initiating the termination process.

When a team runs out of work, the team idle scheduler, first uses the information in

the load array as a way to select the team with the highest load in order to make it a

share request. Otherwise, if no such team is found, the termination process begins.

In our model, the load of a team is the sum of the loads of all workers in the team,

while the load of a worker is given by the number of untried private alternatives in its

execution tree. Therefore, in an extreme scenario we may have a team with load 0 but

that is still busy. This may happen if, for example, all the unexplored alternatives,

are in the shared region of the team. In order to distinguish these two situations,

we defined that when a team is completely out of work, its load is represented as -1,

instead of 0.

The termination process thus ensures that all teams are idle by traversing the load

array in order to check if all have a load value of -1. If that condition is verified, a TER-

MINATION message is sent to all the other teams signalizing that the computation

has ended. Otherwise, we restart the process of requesting work by sending sharing

requests to the workers with higher load or load 0. Meanwhile, as other teams refuse

sharing work, they will send their load array which may contain newer information

that could help to decide if the computation has ended or not.

5.9 Fetching Answers

As we have seen before, predicates par probe answers/2 and par get answers/4 can

be used to deal with the answers yielded by the parallel computation. The first one

checks if there are new answers available while the second one is used to return answers

according to a defined criteria. In order to implement these predicates, we propose

a protocol that allows to request and receive a bunch of answers from the parallel

engine.

5.9. FETCHING ANSWERS 73

5.9.1 Protocol

In order to implement this protocol, we introduced a counter per team that keeps

track of the number of answers currently stored in the team and we extended the

load array so that it also includes information about the number of answers per team.

Remember that the load array is sent in every sharing message in our system and,

thus, we will use it to propagate also this information.

The master team has an important role in this protocol, being responsible for estab-

lishing a bridge between the parallel execution and the client worker. The master team

informs the client worker about the availability of answers in the parallel engine and

then it is responsible for receiving and trying to fulfill the requests sent by the client

worker. Sometimes, to fulfill these requests, it needs to contact the other teams in the

parallel engine. The communication between the client worker, master team and the

other teams is accomplished by four new messages which can be seen in Table 5.2.

Table 5.2: Messages used by the fetching answers protocol

Type of message Extra Content

ANSWERS FOUND

ANSWERS REQUEST [NUMBER OF ANSWERS] (TYPE OF REQUEST)

ANSWERS REPLY [ANSWERS][(HAS MORE ANSWERS) � (LOAD ARRAY)]

END EXECUTION

The first message is the ANSWERS FOUND message which is sent by the master

team to the client worker in order to inform that there is at least one available answer

in the parallel engine. The next one, the ANSWERS REQUEST message, is used for

requesting answers and can be sent by the client worker to the master team or by the

master team to the other teams. As extra content, it includes the number of answers

being requested and, if sent by the client worker, information about the type of request

(as stated in Chapter 3 when presenting the predicate par get answers/4). The type of

request can be MAX, meaning a maximum of NUMBER OF ANSWERS answers must

be returned, or EXACT, which indicates that NUMBER OF ANSWERS answers

should be returned. The ANSWERS REPLY message is used to reply to a previous

ANSWERS REQUEST message and contains the list of answers being returned. If

sent by a common team to the master team, it includes the updated load array.

Otherwise, if sent by the master team to the client worker, it includes the actual

number of remaining answers in the parallel engine. Finally, the END EXECUTION

message is sent by the master team to the client worker to inform it that the execution

74 CHAPTER 5. TEAMS OF WORKERS

has ended. Figure 5.22 shows an example of the fetching answers process which occurs

when the predicate par get answers/4 is called on the client worker side.

Parallel Engine engine_E

?-par_get_answers/4

Yap

Team
A

Team
B

1. ANSWER_REQUEST
2.

ANS
WER

_RE
QUE

ST

3.
ANS

WER
_RE

PLY

Team
C

4. ANSWER_REQUEST
5. ANSWER_REPLY

6. ANSWER_REPLY

Figure 5.22: Representation of the fetching answers process

On the left side of Fig. 5.22, we have the client worker and, on the right side, we

have a parallel engine composed by three teams. The client worker starts by sending

a ANSWERS REQUEST message to the master team A (messages are represented

by arrows and numbered) and if the master team does not have enough answers in

its team to fulfill the request, it starts contacting the other teams. In this example,

the master team A starts by contacting team B. Then, after receiving a reply from

team B, team A checks if the answers received from B together with the answers in its

team are enough to fulfill the request. If not, it must contact the next team. In this

example, the next team is team C. After team C’s reply, the master team found that it

already has enough answers to fulfill the request and therefore a ANSWERS REPLY

message is sent to the client worker. This message includes not only the set of answers

but also information about if there are more answers in the parallel engine. In case no

more answers exist in the parallel engine then, later when a new answer is found, an

ANSWERS FOUND message should be sent to the client worker informing about the

availability of new answers. Finally, when the execution ends an END EXECUTION

message is sent to the client worker.

5.9.2 Implementation Details

In order to support the implementation of the two client side predicates, we ex-

tended the engine frame structure with two boolean fields. The first one, named

5.9. FETCHING ANSWERS 75

has answers, is made true when the parallel engine has answers. The other one, called

is running, is set to true by the predicate parallel/2 and to false when the message

END EXECUTION is received. In order to receive and process the messages from

the parallel engine, both predicates call the process message from parallel engine()

procedure that can be seen in Fig. 5.23.

process_message_from_parallel_engine(engine_id) {

msg = Recv(engine_id)

type_of_message = get_type_of_message(msg)

answers = NULL

switch (type_of_message) {

case ANSWERS_FOUND:

has_answers(engine_id) = TRUE

case END_EXECUTION :

is_running(engine_id) = FALSE

case ANSWERS_REPLY:

answers = get_answers(msg)

has_answers(engine_id) = get_has_more_answers(msg)

}

return answers

}

Figure 5.23: Pseudo-code for the process message from parallel engine() procedure

The function receives as argument the engine id of a given parallel engine and pro-

cesses the three types of messages that can be received from it by the client worker.

If the message received is ANSWERS FOUND then the corresponding has answers

field is set to TRUE. In the case of an END EXECUTION message, the corresponding

is running field is set to false. For an ANSWERS REPLY message, the variable an-

swers is set to point to the list of answers returned by the parallel engine, has answers

field is set to the value received in the message that indicates if the parallel engine has

more answers or not. At the end, the function returns the answers received, which

has a non-NULL value when an ANSWERS REPLY message is received.

The predicate par probe answers/2, used to check if the parallel engine has yielded

any answer is implemented in the C language by the c probe answers() procedure as

shown next in Fig. 5.24.

The function begins by checking if there is any pending message in which case it calls

the function process message from parallel engine() in order to update the state of the

76 CHAPTER 5. TEAMS OF WORKERS

c_probe_answers(engine_id) {

if (probe_message(engine_id)) // only ANSWERS_FOUND and END_EXECUTION messages can exist

process_message_from_parallel_engine(engine_id)

if (is_running(engine_id) && !has_answers(engine_id))

return FALSE

else

return TRUE

}

Figure 5.24: Pseudo-Code for the c probe answers() procedure that implements the

predicate par probe answers/1

parallel engine at hand. Then, it checks if the computation is running and it has no

answers and, if so, it returns false and the predicate fails. Otherwise, it returns true

and the predicate succeds.

The core of the predicate par get answers/4 is also written in the C language and its

pseudo-code can be seen in Fig. 5.25.

Again, first we check if there is any pending message and, if so, we call the function

process message from parallel engine() to update to the state of the parallel engine at

hand. Next, if the parallel engine is not running and it has no answers, the function

returns NULL which indicates that the predicate par get answers/4 must fail. In

the next block of code, we wait until we know that the parallel engine has answers.

While waiting, if an END EXECUTION message is received, it returns NULL and

the predicate fails. On the other hand, when we know that the parallel engine has

answers, we send it an ANSWER REQUEST message and we wait for the answers.

Now that we have seen the implementation on the client side, let us see how we have

extended the parallel engine to also support this protocol. In order to do that, a

new case for dealing with ANSWERS REQUEST messages was added to the switch-

case statement of the original TS process message() function (as presented before in

Fig. 5.11). Figure 5.26 shows the extended code.

When an ANSWERS REQUEST is received, the function starts by checking if it is the

master team running the code. If it is the master team, it begins by determining the

number of answers being requested and the type of request that we are dealing with.

After that, the number of answers available in the the parallel engine is determined

5.9. FETCHING ANSWERS 77

c_get_answers(engine_id,mode,n_answers) {

if (probe_message(engine_id))

process_message_from_parallel_engine(engine_id)

if (!is_running(engine_id) && !has_answers(engine_id))

return NULL

while (!has_answers(engine_id)) {

process_message_from_parallel_engine(engine_id)

if (!is_running(engine_id))

return NULL

}

Send(engine_id,ANSWER_REQUEST,n_answers)

do

answers = process_message_from_parallel_engine(engine_id)

while (answers == NULL)

return answers

}

Figure 5.25: Pseudo-code for the c get answers() function that implements the

predicate par get answers/4.

by consulting the information in the load array. Then, we check if the type of request

is EXACT and if the number of answers in the parallel engine is enough to satisfy

the requested number of answers. If not, the request is marked as pending and the

function returns. Later, when the master team verifies that the request can be fulfilled,

it reactivates the request and a response with the answers is sent to the client worker.

Whenever the master team finds a new answer or receives a new message it checks if

there are any pending requests and, if so, it checks if now there are enough answers

in the parallel engine.

Otherwise, if at least one of the two previous conditions is not verified, we can prepare

the response to be sent to the client worker. We begin by initializing the variable

ans available with the number of available answers in the master team and the variable

answers list with the list of answers in the master team. The variable next team is then

initialized with team B, which is the first team to be contacted to send its answers.

The condition in the while loop states that the loop continues until we have the

number of answers needed to fulfill the request or all the teams have been contacted.

78 CHAPTER 5. TEAMS OF WORKERS

msg = Recv()

type_of_message = get_type_of_message(msg)

team = get_team(msg)

...

switch (type_of_message) {

...

case ANSWERS_REQUEST:

if (is_master_team(team)) {

n_ans_requested = get_number_of_answers(msg)

type_request = get_type_of_request(msg)

n_ans_parallel_engine = count_answers(load_array)

if (type_request == EXACT && n_ans_requested > n_ans_parallel_engine){

put_pending_request(n_ans_requested)

} else {

ans_available = count_answers_in_team()

ans_list = answers_in_team()

while (ans_available < n_ans_requested && has_next_team_to_be_called()) {

next_team = next_team_to_be_called(next_team)

Send(next_team, ANSWERS_REQUEST, n_ans_requested - ans_available)

msg = Recv()

answers = get_answers(msg)

ans_available = ans_available + count_answers(answers)

ans_list = ans_list + answers

}

Send(team,ANSWERS_REPLY,ans_list)

}

} else { // team != master_team

ans_list = answers_in_team()

Send(team,ANSWERS_REPLY)

}

...

}

Figure 5.26: Pseudo-code extending the TS process message() procedure to support

answers request messages

5.9. FETCHING ANSWERS 79

Inside the loop, we basically keep contacting teams sending ANSWERS REQUEST

messages, requesting the missing answers. When a non-master team receives an

ANSWERS REQUEST message, it simply sends a response with its answers. The

number of answers send must be always less or equal than the number of answers

requested.

80 CHAPTER 5. TEAMS OF WORKERS

Chapter 6

Performance Analysis

In this chapter, we assess, evaluate and analyse the performance of our system. In or-

der to understand its behaviour in different scenarios, we have run several experiments

using from one up to 32 workers organized in different configurations of teams, using

different different stack splitting strategies and different network latency conditions.

6.1 Benchmark Programs

For benchmarking, we used a set of ten programs that we briefly describe next:

Arithmetic Puzzle – Given a list of N integers, the program finds how to place the

arithmetic signs *, +, - , / and = between the N integers so that the result is a correct

equation. We used a version with 10 integers, which we named arithmetic(10).

Cubes – This program consists of stacking N colored cubes in a column in such a

way that no color appears twice in the same column for each given side. We used a

version with 10 cubes, which we called cubes(10).

Ham – A program that finds hamiltonian cycles in a given graph. We used a version

with 40 edges, which we called ham(40).

Knight Move – Given a initial point (i,j) in a chessboard and a number N this

program finds a path of length N using the allowed knight moves in chess. We used a

version with paths of length 13, which we called knight move(13).

Magic Cube – A program for solving the Rubik’s magic cube problem.

81

82 CHAPTER 6. PERFORMANCE ANALYSIS

Map Colouring – This program checks if a given map can be colored using only

three colors in such a way that no two adjacent countries have the same colour. We

used a map with 46 countries, which we called map colouring(46).

Nsort – A program that sorts an array of N integers by brute force. We used a version

with an array with 12 integers, which we called nsort(12).

Puzzle – A program that solves a maze problem in a N*N grid by moving an empty

square. We used a version with a 4*4 grid which we called puzzle(4).

Queens – A program that solves the problem of placing N queens in a N*N chessboard

so that no two queens may attack each other. We used a version with 14 queens, which

we called queens(14).

Send More Money – A program that uses brute force to find the correct substitution

of letters by numbers so that SEND + MORE = MONEY.

The benchmark programs presented above find all the possible solutions for their

problems.

For measuring the execution time in YapOr we used the code shown next in Fig. 6.1.

Predicate go/0 is the top query goal that will start measuring the execution time and

then call the parallel/1 predicate. The parallel/1 predicate launches the execution of

our benchmark program in parallel and executes it until finding all answers. After

that the total elapsed time is calculated and printed to the screen.

go :- statistics(walltime, [Start,_]),

parallel(benchmark),

statistics(walltime, [End,_]),

Time is End-Start,

write(’WallTime is ’), write(Time).

Figure 6.1: Prolog program used for measuring the execution times in YapOr

For measuring the execution time in our system we run on the client worker the code

shown in Fig. 6.2. The code begins by creating the parallel engine, that will be respon-

sible for running the benchmark, using the predicate par create parallel engine/2 1.

After that, it is safe to call the go/0 predicate that starts by measuring the execution

time and then calls the predicate par run goal/3 in order to run the benchmark in

the parallel engine. After that a par barrier/1 predicate is called. This predicate was

1This process is not necessary in YapOr since the number of workers is passed using a flag.

6.2. PERFORMANCE EVALUATION 83

:- par_create_parallel_engine(engine_E,(N1,4,’prolog\benchmark.pl’,

N2,4,’prolog\benchmark.pl’).

go :- statistics(walltime, [Start,_]),

par_run_goal(engine_E,benchmark,_),

par_barrier(engine_E),

statistics(walltime, [End,_]),

Time is End-Start,

write(’WallTime is’), write(Time).

Figure 6.2: Prolog program used for measuring the execution times in our system

specially developed to help us in the benchmarking process and it will wait until the

computation on the parallel engine side has finished. After this the elapsed time is

calculated and printed to the screen.

6.2 Performance Evaluation

The environment for our experiments included two parallel machines, each one with

four AMD SixCore Opteron TM 8425 HE @ 2.1 GHz (24 cores per machine, 48 cores

in total) and 64 GBytes of main memory each, both running Fedora 20 with the

Linux kernel 3.19.8-100 64 bits. The two machines are connected through a one Gbit

router shared with other servers. In the experiments that follow, we have not collected

results for more than 16 workers per machine (32 workers in total) because we do not

had full access to the machines and since other users could be using the machines

simultaneously, thus interfering with our results, we decided to be safer to go only

until 16 workers per machine.

The Yap and YapOr versions used in our experiments are based on Yap’s 6.3.4 engine

which was also the base for our team implementation. The MPI implementation used

was OpenMPI version 1.7.3.

The results presented next were obtained by executing each benchmark 10 times and

by calculating the average of that executions. For simplicity of presentation, in most

tables, we only present speed ups or ratios against the base case. Full results including

also the execution times and the coefficient of variation can be seen on Appendix A.

The coefficient of variation is defined as the ratio of the standard deviation to the

mean and gives an idea of the dispersion of the results in the 10 runs.

84 CHAPTER 6. PERFORMANCE ANALYSIS

In the next sections we use the following convention to refer to systems and their

configurations. Our system is represented by Teams(T,W) where T represents the

number of teams and W the number of workers per team (for a total number of

T*workers). Standard stack splitting (without teams) is represented by SS(W) and

YapOr by YapOr(W) where W is the total number of workers.

6.2.1 Overheads over YapOr

In order to measure the impact of our system we start by analyzing the overheads

introduced over YapOr. For that, we ran our set of benchmarks with YapOr with

one worker (YapOr(1)) and compare it against the two versions of our system, using

vertical splitting (VS) and horizontal splitting (HS), when executing with a single

team with one worker (Teams(1,1)).

Before seeing the overheads of our implementation, let us see the overheads introduced

by YapOr over sequential Yap. Table 6.1 shows the execution times in milliseconds

for Yap and YapOr(1) and the corresponding overheads of YapOr(1) over Yap.

Table 6.1: Overheads added by YapOr with a single worker to sequential Yap

Program Yap YapOr(1) YapOr(1)/Yap

arithmetic(10) 304.455 361.439 1.19

cubes(10) 52.172 67.503 1.29

ham(40) 95.375 121.444 1.27

knight move(13) 321.563 395.602 1.23

magic cube 34.339 46.872 1.36

map colouring(46) 140.376 178.729 1.27

nsort(12) 317.252 406.292 1.28

puzzle(4) 12.708 17.538 1.38

queens(14) 466.543 552.275 1.18

send more 53.171 69.684 1.31

Average 1.28

The overhead of YapOr over Yap is nearly 28% ranging from 18% in the queens(14)

benchmark to 38% in the puzzle(4) benchmark. These results are very different from

those presented by Santos Costa et al. [37] using the same machine which were around

3% but with a different version of Yap and YapOr (version 6.0.1) and with a different

set of benchmarks. We thus decided to repeat the experiments done by Santos Costa

6.2. PERFORMANCE EVALUATION 85

et al. and we were able to reproduce their results. But with version 6.3.4 of Yap we

got again higher overheads, this time around 31%. Another interesting detail is that

comparing both versions of Yap, version 6.3.4 is around 45% slower than version 6.0.1

for our set of benchmarks.

Now, let us see the overheads introduced by our team implementation over YapOr.

Table 6.2 shows the overheads for both the vertical splitting and horizontal splitting

versions.

Table 6.2: Overheads added by our team implementation to YapOr when running

with a single worker

Teams(1,1) Teams(1,1)/YapOr(1)

Program VS HS VS HS

arithmetic(10) 366.632 361.453 1.01 1.00

cubes(10) 64.04 71.753 0.95 1.06

ham(40) 124.301 121.586 1.02 1.00

knight move(13) 377.642 390.299 0.95 0.99

magic cube 53.049 49.358 1.13 1.05

map colouring(46) 175.58 182.361 0.98 1.02

nsort(12) 400.239 378.670 0.99 0.93

puzzle(4) 18.533 18.508 1.06 1.06

queens(14) 540.263 542.387 0.98 0.98

send more 71.506 68.889 1.03 0.99

Average 1.01 1.01

As we can see, the overheads added are on average 1% for both scheduling strategies.

Observing the results in more detail, we can see that there are some benchmarks

which have no overhead and, in fact, they are faster in our implementation than in

YapOr. For example, the nsort(12) benchmark in horizontal splitting is 7% faster

in our team implementation than in YapOr. In theory this should not happen since

our implementation adds an extra layer to YapOr. Furthermore, we were expecting

that horizontal splitting had higher overheads than vertical splitting since horizontal

splitting performs extra operations, even when executing with a single worker. One

extra operation is the initialization of the choice point offset field whenever a new

choice point is created. Another extra operation is related with the backtracking

process, that needs to determine the next alternative to be tried based on the offset

field.

86 CHAPTER 6. PERFORMANCE ANALYSIS

After looking carefully to the code we believe that the results we got in the overheads

added by YapOr to Yap and between the two versions of our implementation might be

related with compilation issues. Comparing Yap version 6.0.1 with Yap version 6.3.4

we can see that more code was added to Yap’s abstract machine which may explain

the difference of 45% we saw previously. YapOr also adds more code to the abstract

machine, therefore we think that the compiler might have problems optimizing the

code which may explain the differences between Yap and YapOr in version 6.3.4.

We also measured the overheads added to YapOr when we execute our system with

vertical splitting and horizontal splitting with more than one worker. For that, we

run YapOr with 4, 8 and 16 workers and we compare it with our team implementation

running with the same number of workers in one team. It is important to note that

in configurations with just one team, the stack splitting strategies will not be used for

distributing work and thus the execution should be identical to YapOr. In Table 6.3

we show the execution times obtained for YapOr and the overheads added by the

versions of our system.

Table 6.3: Overheads added by our, implementation to YapOr when running with 1

team with the same number of workers

4 workers 8 workers 16 workers

Program YapOr(4) Teams(1,4) YapOr(8) Teams(1,8) YapOr(16) Teams(1,16)

VS HS VS HS VS HS

arithmetic(10) 167.731 1.01 0.98 117.421 0.95 0.95 106.649 0.99 0.95

cubes(10) 16.829 0.96 1.08 8.449 0.96 1.08 4.253 0.96 1.09

ham(40) 30.498 1.04 1.01 15.162 1.06 1.03 7.586 1.07 1.05

knight move(13) 99.862 0.96 0.98 50.350 0.96 0.98 25.192 0.96 0.99

magic cube 11.862 1.13 1.04 5.945 1.12 1.05 2.971 1.14 1.07

map colouring(46) 45.027 0.98 1.01 22.499 0.99 1.02 11.304 1.00 1.03

nsort(12) 101.896 1.01 0.95 51.310 1.00 0.96 25.571 1.02 0.98

puzzle(4) 4.421 1.06 1.07 2.206 1.07 1.09 1.113 1.06 1.12

queens(14) 138.120 1.00 0.98 69.280 0.99 0.98 34.329 1.01 1.00

send more 17.450 1.03 1.01 8.766 1.02 1.01 4.425 1.01 1.02

Average 1.02 1.01 1.01 1.02 1.02 1.03

The overheads for vertical splitting are on average 2%, 1% and 2% for 4, 8 and 16

workers, respectively. For horizontal splitting are 1%, 2% and 3% for the same numbers

of workers, respectively. In summary, our results show that our system adds a small

overhead to YapOr which makes it also adequate for running in shared memory.

6.2. PERFORMANCE EVALUATION 87

6.2.2 Teams in the Same Machine

In the previous subsections, we have seen that our system achieves comparable results

to YapOr when we run it with just one team. Here, we want to assess the impact in

terms of speed ups when the number of teams increases. So, we run again experiments

for 4, 8 and 16 workers with different configurations of teams using only one of the

machines available. It is important to note that when two processes in the same

machine exchange messages, by default, OpenMPI uses shared memory instead of

using the loopback interface. Such characteristic guarantees that the communication

latency is minimal allowing us to have a more accurate and clear idea about the cost

of increasing the number of teams.

Table 6.4 shows the speed ups obtained by our experiments using the different config-

urations of teams when compared with the execution of YapOr with a single worker.

The table is divided in three parts: execution with 4, 8 and 16 workers. The columns

represent the configurations of teams tested where the number of teams in which

workers are divided increases from left to right and all the teams have the same

number of workers. For each team configuration, we show the results for both vertical

and horizontal splitting, columns VS and HS, respectively.

As expected, in general, the benchmark programs see their speed ups decrease when

we increase the number of teams. This decrease is more visible in the configuration

of 16 workers. By comparing the speed ups obtained for configuration Teams(1,16)

with configuration Teams(16,1) (both with 16 workers in total) we can see that there

is a decrease of around 2 for vertical splitting (from 14.30 to 12.27) and around 1

for horizontal splitting (from 14.14 to 13.00). The only benchmark that increases the

speed ups when the number of team increases is the arithmetic(10) benchmark, which

seems to benefit from the higher number of stack splitting operations when we have

more teams.

Regarding the stack splitting strategies, horizontal splitting seems to have a slightly

advantage over vertical splitting when the number of teams increase. In the case

of 16 workers, the difference starts to be in favor of vertical splitting for configura-

tion Teams(1,16) (14.30 against 14.14) and then for configuration Teams(16,1), the

difference turns in favor of horizontal splitting (13.00 against 12.27).

As we stated earlier, since all teams are running on the same machine these experi-

ments show how teams behave in an optimal scenario, i.e., which allows us to have a

clearer view on the impact of teams in terms of performance. In general, when reading

88 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.4: Speed ups comparing our implementation running in a single machine

against YapOr with one worker

4 workers Teams(1,4) Teams(2,2) Teams(4,1)

Program VS HS VS HS VS HS

arithmetic(10) 2.14 2.20 2.83 2.82 3.86 3.86

cubes(10) 4.17 3.73 3.76 3.48 3.42 3.31

ham(40) 3.82 3.94 3.66 3.77 3.57 3.69

knight move(13) 4.13 4.04 3.70 3.73 3.39 3.51

magic cube 3.50 3.80 3.41 3.69 3.40 3.61

map colouring(46) 4.04 3.92 3.86 3.80 3.76 3.71

nsort(12) 3.97 4.20 3.68 4.03 3.68 3.85

puzzle(4) 3.74 3.70 3.70 3.70 3.61 3.50

queens(14) 4.02 4.07 3.67 3.69 3.23 3.46

send more 3.88 3.97 3.76 3.84 3.68 3.79

Average 3.74 3.76 3.60 3.66 3.56 3.63

8 workers Teams(1,8) Teams(2,4) Teams(4,2) Teams(8,1)

Program VS HS VS HS VS HS VS HS

arithmetic(10) 3.23 3.23 4.57 4.42 6.20 6.11 7.42 7.47

cubes(10) 8.30 7.42 7.74 7.04 7.43 6.85 6.54 6.49

ham(40) 7.57 7.77 7.38 7.46 7.12 7.45 7.03 7.27

knight move(13) 8.22 8.02 7.67 7.62 7.38 7.42 6.79 6.97

magic cube 7.01 7.53 6.76 7.41 6.74 7.18 6.56 7.21

map colouring(46) 8.03 7.77 7.84 7.64 7.76 7.56 7.43 7.31

nsort(12) 7.93 8.28 7.29 7.98 7.29 7.83 7.29 7.67

puzzle(4) : 7.44 7.26 7.30 7.03 7.21 7.06 6.51 6.88

queens(14) 8.04 8.10 7.53 7.71 7.19 7.42 6.73 6.90

send more 7.78 7.89 7.64 7.70 7.48 7.55 7.17 7.51

Average 7.35 7.33 7.17 7.20 7.18 7.24 6.95 7.17

16 workers Teams(1,16) Teams(2,8) Teams(4,4) Teams(8,2) Teams(16,1)

Program VS HS VS HS VS HS VS HS VS HS

arithmetic(10) 3.43 3.58 6.03 6.37 9.53 9.62 11.63 11.80 12.93 13.13

cubes(10) 16.52 14.58 15.60 13.90 15.10 13.68 14.09 13.26 11.61 11.46

ham(40) 14.99 15.24 14.67 14.66 14.56 14.66 12.63 14.16 13.20 13.53

knight move(13) 16.36 15.85 15.38 15.22 15.19 14.94 14.49 14.50 13.20 13.52

magic cube 13.88 14.76 13.24 14.30 13.21 14.55 12.44 14.20 9.57 12.46

map colouring(46) 15.88 15.40 15.60 14.90 15.41 14.92 15.12 14.65 13.45 13.25

nsort(12) 15.64 16.29 14.42 15.76 14.38 15.43 14.38 15.38 14.01 15.04

puzzle(4) 14.84 14.12 14.19 13.63 13.91 13.26 12.67 12.01 9.17 10.94

queens(14) 15.88 16.16 15.21 15.56 14.97 15.29 14.22 14.76 12.97 13.36

send more 15.58 15.42 15.13 14.83 15.02 14.96 14.45 14.71 12.53 13.29

Average 14.30 14.14 13.95 13.91 14.13 14.13 13.61 13.94 12.27 13.00

6.2. PERFORMANCE EVALUATION 89

the results horizontally, we can see that when the number of teams increases the speed

ups show only a slightly decrease we thus argue that our system is well design and

that teams have a small impact in terms of performance.

6.2.3 Teams in Distributed Machines

In real environments, the network latency has a greater impact on the performance of a

distributed program and thus, in this subsection, we want to assess how teams behave

in an environment with higher latencies. Since we had only two parallel machines

available, we tried to emulate the existence of more machines, such that, we could

create scenarios where each team of workers always runs on a separate machines. In

order to do that, we acted in the following way: (i) we configured OpenMPI to use

the loopback interface and the TCP protocol for communications between processes

even if they are in the same machine (by default OpenMPI uses shared memory for

this type of communications); and (ii) we used the tc command to add more 0.06

milliseconds to the 0.02 milliseconds of latency in the loopback interface in order to

simulate the latency that we have observed between the two physical machines, which

is about 0.08 milliseconds.

To assess how teams behave in this environment we have run experiments for 16, 24

and 32 workers with different configurations of teams. As before, teams were created

with the same number of workers but now they were divided equitably between the

two physical machines. For example, consider the case of 24 workers and 4 teams. In

such case, we launch two teams in each machine and each team is then created with

six workers each.

Table 6.5 shows the speed ups results achieved by the different configurations of teams

when compared with the execution of YapOr with a single worker. The table is

divided in three parts: execution with 16, 24 and 32 workers. The columns represent

the configurations of teams tested where the number of teams in which workers are

divided increases from left to right. For each configuration, we show the results for

both vertical and horizontal splitting, columns VS and HS, respectively.

Please note that the experiments with 16 workers were already run in the previous

subsection but in one single machine. By comparing both, we may have a clear view on

how the latency affects the performance. With the workers divided in just two teams,

configurations Teams(2,8), the impact is limited. In Table 6.4, we had on average

speed ups of 13.95 and 13.91 for vertical and horizontal splitting, respectively, and

90 CHAPTER 6. PERFORMANCE ANALYSIS

Table 6.5: Speed ups comparing our implementation running in several machines

against YapOr with one worker

16 workers Teams(2,8) Teams(4,4) Teams(8,2) Teams(16,1)

Program VS HS VS HS VS HS VS HS

arithmetic(10) 6.10 6.08 8.07 8.04 9.91 10.20 8.31 7.79

cubes(10) 14.29 13.31 12.94 12.65 9.82 10.43 5.31 6.45

ham(40) 14.17 14.15 13.49 13.74 6.50 11.60 6.92 6.39

knight move(13) 15.36 14.94 14.86 14.73 13.33 13.30 10.51 10.24

magic cube 12.03 13.95 11.26 12.73 9.00 11.77 4.76 7.32

map colouring(46) 15.17 14.72 14.54 14.06 12.23 12.15 7.11 7.17

nsort(12) 14.24 15.48 13.91 14.76 12.98 13.75 10.23 9.91

puzzle(4) 11.61 12.56 10.02 9.94 7.36 7.62 3.36 4.56

queens(14) 15.00 15.46 14.33 15.03 11.88 14.10 8.09 11.23

send more 14.02 13.97 13.02 13.59 9.87 12.60 5.82 8.36

Average 13.20 13.46 12.64 12.93 10.29 11.75 7.04 7.94

24 workers Teams(2,12) Teams(4,6) Teams(6,4) Teams(12,2) Teams(24,1)

Program VS HS VS HS VS HS VS HS VS HS

arithmetic(10) 6.65 6.56 10.52 10.41 12.02 12.10 11.69 11.72 8.33 8.36

cubes(10) 20.36 19.09 18.61 17.61 16.66 16.59 11.35 12.00 5.54 6.83

ham(40) 20.83 20.49 19.81 20.06 16.86 18.25 6.66 14.33 7.01 6.47

knight move(13) 22.92 22.06 22.07 21.54 21.12 20.49 17.59 17.02 12.68 11.50

magic cube 17.26 20.51 16.20 18.09 14.52 17.04 9.43 13.54 4.11 7.34

map colouring(46) 22.39 20.91 20.79 20.29 20.11 18.58 14.07 13.88 7.44 7.29

nsort(12) 21.02 22.42 20.28 21.58 19.42 20.82 16.78 17.92 11.52 9.88

puzzle(4) 15.34 16.85 13.00 13.78 11.34 11.83 7.71 8.18 3.49 4.76

queens(14) 21.97 23.09 21.30 22.48 20.07 21.83 13.71 20.06 9.95 12.74

send more 19.67 18.84 19.04 18.97 16.91 18.05 12.51 14.84 5.79 8.52

Average 18.84 19.08 18.16 18.48 16.90 17.56 12.15 14.35 7.59 8.37

32 workers Teams(2,16) Teams(4,8) Teams(8,4) Teams(16,2) Teams(32,1)

Program VS HS VS HS VS HS VS HS VS HS

arithmetic(10) 6.70 6.63 11.07 10.61 15.47 15.14 13.45 12.69 8.94 8.79

cubes(10) 26.04 22.99 23.59 21.27 19.27 19.65 11.72 12.63 5.61 7.27

ham(40) 26.18 26.65 25.31 26.28 20.13 21.52 6.91 15.36 7.52 7.42

knight move(13) 30.08 28.10 28.97 28.16 26.81 26.16 20.30 18.09 13.39 12.27

magic cube 21.65 26.03 20.28 22.92 15.94 20.81 10.02 14.20 4.57 7.85

map colouring(46) 29.00 25.75 27.46 26.14 23.26 21.96 14.72 14.29 7.88 7.16

nsort(12) 27.80 28.38 26.50 27.23 24.07 25.05 17.56 18.03 11.55 11.24

puzzle(4) 19.95 21.21 15.25 17.73 13.77 13.21 7.77 8.54 3.40 5.05

queens(14) 28.67 30.62 27.55 29.42 23.99 27.99 15.59 23.64 8.74 13.29

send more 24.91 22.99 23.86 23.74 19.93 22.55 12.80 15.98 5.45 8.23

Average 24.10 23.94 22.98 23.35 20.26 21.40 13.08 15.35 7.70 8.86

6.2. PERFORMANCE EVALUATION 91

now in Table 6.5 we have speed ups of 13.20 and 13.46, respectively. As we increase

the number of teams the impact is more clear. For example, in the most extreme

configuration, Teams(16,1), the decrease is from 12.27 to 7.04 in vertical splitting and

from 13.00 to 7.94 in horizontal splitting. The arithmetic(10) which, in the previous

experiment, was the only benchmark to increase the speed ups when increasing the

number of teams now also decreases in configuration Teams(16,1).

For 24 workers, we start with speed ups of 18.84 and 19.08 for vertical and horizon-

tal splitting, respectively, when we divide the workers in two teams, configuration

Teams(2,12), and then the speed ups start decreasing until they reach 7.59 for ver-

tical splitting and 8.37 for horizontal splitting for configuration Teams(24,1). For 32

workers, the speed ups begin in 24.10 for vertical splinting and 23.94 for horizontal

splitting and then they decrease to 7.70 and 8.86, respectively. In general the decrease

seems to be more clear when we have more than 10 teams.

Overall, horizontal splitting achieves better results for distributing work as we increase

the number of teams. This trend is in line with the results from the previous subsection

but now it became even more clear. Another interesting detail is that the coefficient

of variation is now much higher than that we have seen on the previous experiments.

This means that there is a higher flotation among the results obtained in the ten

executions.

6.2.4 Scalability

Looking at the previous results we may draw two conclusions: (i) the configurations

with all workers in the same team (YapOr approach) have the best speed ups on

average; and (ii) the configurations with all workers in different teams (standard stack

splitting approach) clearly show the major scalability problems. For example, for

configuration Teams(16,1) we got speed ups of 7.04 and 7.94 for vertical and horizontal

splitting, respectively, and when we double the number of workers to configuration

Teams(32,1) the speed ups barely increased to 7.70 and 8.86, respectively.

Although the YapOr approach has the best speed ups, it is limited to one machine. On

the other hand, the standard stack splitting solves that limitation but it has scalability

problems. By combining both approaches, our approach has the best of both worlds.

Table 6.6 compares the possible usage of the three or-parallel approaches for different

scenarios of clusters of multicore machines. On the columns, we have the number of

machines per cluster, which increases from left to right and, on the rows, we have the

92 CHAPTER 6. PERFORMANCE ANALYSIS

number of cores per machine, which increases from top to bottom.

Table 6.6: Possible usage of the three or-parallel approaches for different scenarios of

clusters of multicore machines

clusters with clusters with clusters with clusters with

1 machine 2 machines 4 machines 8 machines

4
co

re
s

p
er

m
a
ch

in
e

YapOr(4)

SS(4) SS(8) SS(16) SS(32)

Teams(1,4) Teams(2,4) Teams(4,4) Teams(8,4)

8
co

re
s

p
er

m
a
ch

in
e

YapOr(8)

SS(8) SS(16) SS(32) SS(64)

Teams(1,8) Teams(2,8) Teams(4,8) Teams(8,8)

1
6

co
re

s

p
er

m
a
ch

in
e

YapOr(16)

SS(16) SS(32) SS(64) SS(128)

Teams(1,16) Teams(2,16) Teams(4,16) Teams(8,16)

As mentioned before YapOr is limited to the configurations with a single machine

while standard stack splitting and our team’s approach can run taking advantage of

all the cores available.

In order to compare the three approaches, we used again the simulation method

described in the previous subsection that enable us to simulate different machines

and we run our set of benchmarks for the configurations presented in Table 6.6 that

use at most 32 cores. Tables 6.7 and 6.8 show the results.

Table 6.7 is similar to Table 6.6, the number of machines is represented in the columns

and increases from left to right and the number of cores per machine is represented

in the rows and increases from top to bottom. For the configurations with a single

machine with N cores, it shows the execution times for Teams(1,N) (which is the

equivalent to YapOr(N)). For the other configurations, it shows the ratio between

Teams(1,N)/Teams(T,N). For example, for 2 machines with 4 cores each it shows the

ratio Teams(1,4)/Teams(2,4). So, in practice, we want to see how much the execution

time reduces when we add more machines to the cluster.

We can see that we are able to reduce the execution time significantly by adding more

machines. When we first add one machine we are able to almost double the ratio

for the three types of machine for both vertical splitting and horizontal splitting with

values ranging from 1.70 to 1.88, which is very close to the theoretical optimal linear

6.2. PERFORMANCE EVALUATION 93

Table 6.7: Execution times in milliseconds for the clusters with 1 machine and the

corresponding ratios for the clusters with 2, 4 and 8 machines for the case of machines

with 4, 8 and 16 cores each

1 machine 2 machines 4 machines 8 machines

4
co

re
s

Program VS HS VS HS VS HS VS HS

arithmetic(10) 169.015 164.563 1.90 1.89 3.77 4.38 7.23 6.97

cubes(10) 16.182 18.096 1.78 1.84 3.10 3.67 4.57 5.37

ham(40) 31.791 30.789 1.87 1.86 3.53 3.72 5.03 5.60

knight move(13) 95.698 97.945 1.84 1.87 3.60 3.70 6.39 6.54

magic cube 13.374 12.333 1.83 1.90 3.21 3.83 4.65 5.52

map colouring(46) 44.189 45.600 1.91 1.92 3.60 3.81 5.65 5.60

nsort(12) 102.433 96.799 1.82 1.90 3.51 3.68 6.14 5.98

puzzle(4) 4.688 4.734 1.71 1.81 2.68 3.58 3.45 3.64

queens(14) 137.521 135.580 1.87 1.89 3.57 3.75 6.32 6.93

send more 17.982 17.564 1.88 1.92 3.36 3.77 4.91 5.78

Average 1.84 1.88 3.39 3.79 5.44 5.79

8
co

re
s

Program VS HS VS HS VS HS

arithmetic(10) 111.728 111.740 1.88 1.88 3.42 3.28

cubes(10) 8.130 9.098 1.72 1.79 2.84 2.87

ham(40) 16.050 15.639 1.87 1.82 3.34 3.38

knight move(13) 48.124 49.349 1.87 1.86 3.52 3.51

magic cube 66.88 6.227 1.72 1.85 2.89 3.04

map colouring(46) 22.267 22.995 1.89 1.89 3.42 3.36

nsort(12) 51.213 49.062 1.80 1.87 3.34 3.29

puzzle(4) 2.358 2.415 1.56 1.73 2.05 2.44

queens(14) 68.690 68.155 1.87 1.91 3.43 3.63

send more 8.961 8.828 1.80 1.77 3.07 3.01

Average 1.80 1.84 3.13 3.18

1
6

co
re

s

Program VS HS VS HS

arithmetic(10) 105.305 101.033 1.95 1.85

cubes(10) 4.085 4.629 1.58 1.58

ham(40) 8.102 7.969 1.75 1.75

knight move(13) 24.174 24.957 1.84 1.77

magic cube 3.378 3.176 1.56 1.76

map colouring(46) 11.256 11.604 1.83 1.67

nsort(12) 25.975 24.946 1.78 1.74

puzzle(4) 1.182 1.242 1.34 1.50

queens(14) 34.778 34.177 1.81 1.90

send more 4.474 4.520 1.60 1.49

Average 1.70 1.70

94 CHAPTER 6. PERFORMANCE ANALYSIS

value of 2. When we increase the number of machines to four, we got ratios of 3.39

and 3.79 for vertical splitting and horizontal splitting, respectively, for machines of 4

cores and of 3.13 and 3.18 for machines of 8 cores. For 16 cores machines, we were no

longer able to simulate the 4 machines scenario since it surpases our establish limit

of 32 cores. For the same reason, we only run an experiment with 8 machines with

4 cores. In general the results show that we are able to benefit from the addition of

more machines and benefit from all the cores available which it would not be possible

with YapOr.

In the next experiment, we want to put in perspective our system with the standard

stack splitting approach. For that, in Table 6.8, we present the ratios SS(T*W)/Teams(T,W),

again for the same previous configurations of machines and cores. For example, for two

machines with four cores each, we show the ratio SS(8)/Teams(2,4). The execution

times for standard stack splitting were taken by running our system with all workers in

different teams. However, when using our simulation we can not simulate the situation

where some teams are located in the same machine and others don’t, we are only able

to simulate situations where all teams are in the same machine or all teams are in

different machine. Thus, to present the results for standard stack splitting we have

decided to run it in two different conditions. The first one is using our simulator as we

did before this could lead to worse results if compared to a real situation where we can

have teams in the same machine and thus benefit from the MPI implementation. The

second one is with no simulation at all but also dividing the teams equitably by our

two machines this could lead to better results if compared to a real situation where

we have to pay the cost of having more teams in different machines. In Table 6.8 the

results are presented as an interval [X, Y] where X is related with the ratio obtained

without simulation and Y with the ratio obtained with simulation.

By observing the results in Table 6.8, we can see that our system is significantly faster

than the standard stack splitting approach. Overall, as we expected, standard stack

splitting shows best results when running without simulation. Comparing both stack

splitting strategies, horizontal splitting is the one presenting lower ratios. The biggest

differences between our team approach and stack splitting is seen in the configuration

of 2 machines of 16 cores where we got ratios of [3.06, 3.57] for vertical splitting and

[2.59, 2.85] for horizontal splitting. This is because standard stack splitting can not

benefit from the fact of having 16 cores in the same machine and use shared memory

to synchronize them as in our team approach.

Experimental results showed that our implementation, when compared against YapOr,

achieves identical speed ups for shared memory and, when running on clusters of

6.2. PERFORMANCE EVALUATION 95

T
ab

le
6.

8:
C

om
p
ar

is
on

b
et

w
ee

n
ou

r
ap

p
ro

ac
h

an
d

th
e

st
an

d
ar

d
st

ac
k

sp
li
tt

in
g

ap
p
ro

ac
h

1
m

a
ch

in
e

2
m

a
ch

in
es

4
m

a
ch

in
es

8
m

a
ch

in
es

4cores

P
r
o
g
r
a
m

V
S

H
S

V
S

H
S

V
S

H
S

V
S

H
S

a
ri

th
m

et
ic

(1
0
)

[0
.5

8
,
0
.5

9
]

[0
.6

0
,
0
.6

0
]

[0
.6

6
,
0
.6

5
]

[0
.6

5
,
0
.6

5
]

[0
.8

9
,
0
.9

7
]

[1
.1

9
,
1
.2

3
]

[1
.6

7
,
1
.7

3
]

[1
.7

6
,
1
.7

4
]

cu
be

s(
1
0
)

[1
.3

0
,
1
.3

4
]

[1
.1

7
,
1
.1

9
]

[1
.5

3
,
1
.5

1
]

[1
.2

6
,
1
.3

3
]

[2
.1

5
,
2
.4

4
]

[1
.8

8
,
2
.1

2
]

[3
.1

6
,
3
.4

0
]

[2
.5

1
,
2
.7

6
]

h
a
m

(4
0
)

[1
.1

2
,
1
.1

5
]

[1
.1

2
,
1
.1

4
]

[1
.1

9
,
1
.3

6
]

[1
.1

8
,
1
.3

3
]

[1
.4

7
,
1
.9

5
]

[1
.6

5
,
2
.2

9
]

[1
.9

3
,
2
.5

6
]

[2
.5

8
,
2
.9

8
]

kn
ig

h
t
m

o
ve

(1
3
)

[1
.2

3
,
1
.2

3
]

[1
.1

7
,
1
.1

7
]

[1
.1

7
,
1
.2

1
]

[1
.1

5
,
1
.1

8
]

[1
.3

7
,
1
.4

1
]

[1
.4

1
,
1
.4

6
]

[1
.8

1
,
1
.9

7
]

[2
.1

2
,
2
.1

5
]

m
a
gi

c
cu

be
[1

.1
4
,
1
.1

8
]

[1
.0

8
,
1
.1

0
]

[1
.3

7
,
1
.4

5
]

[1
.1

2
,
1
.1

7
]

[2
.0

8
,
2
.3

7
]

[1
.8

7
,
1
.9

9
]

[3
.2

3
,
3
.5

7
]

[2
.6

3
,
2
.6

7
]

m
a
p

co
lo

u
ri

n
g(

4
6
)

[1
.1

1
,
1
.1

1
]

[1
.0

9
,
1
.1

0
]

[1
.2

5
,
1
.2

8
]

[1
.1

9
,
1
.2

5
]

[1
.7

8
,
2
.0

5
]

[1
.9

3
,
2
.0

8
]

[2
.6

5
,
2
.9

0
]

[2
.7

2
,
3
.0

6
]

n
so

rt
(1

2
)

[1
.1

0
,
1
.1

1
]

[1
.1

1
,
1
.1

1
]

[1
.0

7
,
1
.0

8
]

[1
.0

9
,
1
.1

7
]

[1
.2

6
,
1
.3

6
]

[1
.3

5
,
1
.5

6
]

[1
.9

5
,
2
.1

1
]

[1
.8

9
,
2
.2

3
]

p
u
zz

le
(4

)
[1

.2
3
,
1
.2

8
]

[1
.1

7
,
1
.2

3
]

[1
.6

1
,
1
.9

7
]

[1
.4

1
,
1
.5

9
]

[2
.2

5
,
2
.9

8
]

[2
.3

1
,
2
.9

0
]

[2
.8

7
,
3
.7

9
]

[2
.3

2
,
2
.6

7
]

qu
ee

n
s(

1
4
)

[1
.2

3
,
1
.2

2
]

[1
.1

9
,
1
.1

9
]

[1
.2

2
,
1
.2

9
]

[1
.1

7
,
1
.1

7
]

[1
.4

6
,
1
.7

7
]

[1
.3

4
,
1
.3

6
]

[2
.4

7
,
2
.9

1
]

[1
.9

6
,
2
.1

2
]

se
n
d

m
o
re

[1
.1

5
,
1
.1

4
]

[1
.0

8
,
1
.0

9
]

[1
.3

6
,
1
.4

8
]

[1
.1

5
,
1
.1

7
]

[2
.2

2
,
2
.2

3
]

[1
.7

0
,
1
.7

9
]

[2
.8

3
,
3
.4

9
]

[2
.5

4
,
2
.7

9
]

A
v
e
r
a
g
e

[1
.1

2
,
1
.1

4
]

[1
.0

8
,
1
.0

9
]

[1
.2

4
,
1
.3

3
]

[1
.1

4
,
1
.2

0
]

[1
.6

9
,
1
.9

5
]

[1
.6

6
,
1
.8

8
]

[2
.4

6
,
2
.8

4
]

[2
.3

0
,
2
.5

2
]

8cores

P
r
o
g
r
a
m

V
S

H
S

V
S

H
S

V
S

H
S

a
ri

th
m

et
ic

(1
0
)

[0
.5

2
,
0
.5

1
]

[0
.5

1
,
0
.5

1
]

[0
.6

8
,
0
.7

3
]

[0
.7

5
,
0
.7

8
]

[1
.1

9
,
1
.2

4
]

[1
.2

2
,
1
.2

1
]

cu
be

s(
1
0
)

[1
.7

1
,
1
.6

8
]

[1
.3

6
,
1
.4

4
]

[2
.3

7
,
2
.6

9
]

[1
.8

3
,
2
.0

7
]

[3
.9

1
,
4
.2

0
]

[2
.6

7
,
2
.9

3
]

h
a
m

(4
0
)

[1
.2

6
,
1
.4

4
]

[1
.2

4
,
1
.4

1
]

[1
.5

5
,
2
.0

5
]

[1
.5

9
,
2
.2

1
]

[2
.5

5
,
3
.3

7
]

[3
.0

7
,
3
.5

4
]

kn
ig

h
t
m

o
ve

(1
3
)

[1
.2

6
,
1
.3

0
]

[1
.2

2
,
1
.2

5
]

[1
.4

2
,
1
.4

6
]

[1
.4

1
,
1
.4

6
]

[1
.9

9
,
2
.1

6
]

[2
.2

6
,
2
.2

9
]

m
a
gi

c
cu

be
[1

.4
9
,
1
.5

8
]

[1
.1

7
,
1
.2

2
]

[2
.2

2
,
2
.5

3
]

[1
.7

9
,
1
.9

1
]

[4
.0

2
,
4
.4

4
]

[2
.8

8
,
2
.9

2
]

m
a
p

co
lo

u
ri

n
g(

4
6
)

[1
.2

9
,
1
.3

3
]

[1
.2

3
,
1
.2

9
]

[1
.8

5
,
2
.1

3
]

[1
.9

0
,
2
.0

5
]

[3
.1

8
,
3
.4

9
]

[3
.2

4
,
3
.6

5
]

n
so

rt
(1

2
)

[1
.1

7
,
1
.1

9
]

[1
.1

4
,
1
.2

1
]

[1
.3

0
,
1
.3

9
]

[1
.3

6
,
1
.5

6
]

[2
.1

3
,
2
.2

9
]

[2
.0

5
,
2
.4

2
]

p
u
zz

le
(4

)
[1

.8
7
,
2
.2

9
]

[1
.5

2
,
1
.7

2
]

[2
.6

0
,
3
.4

6
]

[2
.1

9
,
2
.7

5
]

[3
.4

0
,
4
.4

9
]

[3
.0

6
,
3
.5

1
]

qu
ee

n
s(

1
4
)

[1
.3

1
,
1
.3

9
]

[1
.2

3
,
1
.2

3
]

[1
.5

2
,
1
.8

5
]

[1
.3

5
,
1
.3

8
]

[2
.6

8
,
3
.1

5
]

[2
.0

4
,
2
.2

1
]

se
n
d

m
o
re

[1
.4

5
,
1
.5

7
]

[1
.1

9
,
1
.2

2
]

[2
.3

9
,
2
.4

1
]

[1
.5

9
,
1
.6

7
]

[3
.5

5
,
4
.3

8
]

[2
.6

3
,
2
.8

8
]

A
v
e
r
a
g
e

[1
.3

3
,
1
.4

3
]

[1
.1

8
,
1
.2

5
]

[1
.7

9
,
2
.0

7
]

[1
.5

8
,
1
.7

8
]

[2
.8

6
,
3
.3

2
]

[2
.5

1
,
2
.7

6
]

16cores

P
r
o
g
r
a
m

V
S

H
S

V
S

H
S

a
ri

th
m

et
ic

(1
0
)

[0
.3

8
,
0
.4

1
]

[0
.4

1
,
0
.4

1
]

[0
.7

2
,
0
.7

5
]

[0
.7

6
,
0
.7

5
]

cu
be

s(
1
0
)

[2
.7

4
,
3
.1

1
]

[1
.8

3
,
2
.0

1
]

[4
.3

1
,
4
.6

4
]

[2
.8

9
,
3
.1

6
]

h
a
m

(4
0
)

[1
.6

4
,
2
.1

7
]

[1
.7

8
,
2
.0

5
]

[2
.6

3
,
3
.4

8
]

[3
.1

1
,
3
.5

9
]

kn
ig

h
t
m

o
ve

(1
3
)

[1
.5

1
,
1
.5

6
]

[1
.2

7
,
1
.2

9
]

[2
.0

7
,
2
.2

5
]

[2
.2

5
,
2
.2

9
]

m
a
gi

c
cu

be
[2

.5
6
,
2
.9

2
]

[1
.8

5
,
1
.8

8
]

[4
.2

9
,
4
.7

4
]

[3
.2

7
,
3
.3

1
]

m
a
p

co
lo

u
ri

n
g(

4
6
)

[1
.9

4
,
2
.2

3
]

[1
.9

1
,
2
.1

5
]

[3
.3

6
,
3
.6

8
]

[3
.1

9
,
3
.6

0
]

n
so

rt
(1

2
)

[1
.4

2
,
1
.5

3
]

[1
.2

3
,
1
.4

5
]

[2
.2

3
,
2
.4

1
]

[2
.1

4
,
2
.5

3
]

p
u
zz

le
(4

)
[3

.3
2
,
4
.4

1
]

[2
.4

4
,
2
.8

0
]

[4
.4

4
,
5
.8

7
]

[3
.6

6
,
4
.2

0
]

qu
ee

n
s(

1
4
)

[1
.6

1
,
1
.9

6
]

[1
.1

2
,
1
.2

2
]

[2
.7

9
,
3
.2

8
]

[2
.1

2
,
2
.3

0
]

se
n
d

m
o
re

[2
.6

6
,
2
.6

7
]

[1
.7

1
,
1
.8

7
]

[3
.7

1
,
4
.5

7
]

[2
.5

4
,
2
.7

9
]

A
v
e
r
a
g
e

[1
.9

8
,
2
.3

0
]

[1
.5

5
,
1
.7

1
]

[3
.0

6
,
3
.5

7
]

[2
.5

9
,
2
.8

5
]

96 CHAPTER 6. PERFORMANCE ANALYSIS

multicores, is able to increase speed ups as we increase the number of workers per

team, thus taking advantage of the maximum number of cores in a machine, and

to increase speed ups as we increase the number of teams, thus taking advantage of

adding more machines to a cluster. Furthermore, it has the advantage of not being

limited to only a single machine, as it happens with YapOr, and it does not suffers

from scalability problems like a pure stack splitting approach. We thus argue, that

our approach combines the best of both worlds.

Chapter 7

Conclusions

In this last chapter, we summarize the main contributions of this thesis and we

highlight possible directions for further research aiming to bring new functionalities

and improvements to our system.

7.1 Main Contributions

This thesis proposes and discusses the implementation of a new computational model

designed to explore implicit or-parallelism in clusters of multicore. Next, we summarize

the main contributions of this work:

Novel computational or-parallel model. We have proposed a new layered com-

putational model combining techniques for shared and distributed memory ap-

proaches with the aim of running Prolog code efficiently in clusters of multicores.

To the best of our knowledge, this is the first model specially designed to explore

such combination. In our proposal, we have introduced concepts and presented

algorithms that may be used as guidelines to others willing to implement a

similar model. Next we enumerate the most relevant contributions of the new

model:

• The concept of teams which was borrowed from previous and/or-parallel

systems but redefined by us in order to be able to combine techniques for

shared and distributed memory approaches;

97

98 CHAPTER 7. CONCLUSIONS

• Scheduling algorithms and sharing protocols to efficiently distribute work

between teams;

• A distributed termination algorithm that ensures the complete execution

of the program;

• A protocol that allows answers to be fetched during the execution of the

program.

Implementation of our or-parallel model. We showed all the important and rel-

evant details about how we have extended YapOr with an extra layer combining

the existing shared memory approach with the new distributed one and how MPI

was used for launching the teams of workers and to enable the communication

between those teams.

A new syntax. Set of built-in predicates designed to allow the user, to manage and

interact asynchronously with an or-parallel engine in our model.

Performance study. We have tested the system implementing the new computa-

tional model with several different configurations and under different conditions.

From the results obtained, the following conclusions can be enumerated:

• The overheads added to YapOr by the new model (i.e., when running

with configurations with just one team) are insignificant. Our experiments

showed that they range from 1% to 3%.

• Our experiments also show that we are able to increase speedups when

we increase the number of machines involved in the computation, thus

taking advantage of the totality of cores that are available. This is a clear

advantage over YapOr, that was built for running shared memory thus

being limited to the cores present in a single machine.

• Although the standard stack splitting approach is also able to take ad-

vantage of the cores in more than one machine, our results show that our

approach incurs in less overhead, thus being significantly faster.

Our model showed that it is able to seamlessly combine shared and distributed

approaches and take advantage of the best of both worlds. In what follows

we discuss possible paths of further research regarding other functionalities and

improvements to our system.

7.2. FURTHER WORK 99

7.2 Further Work

The implementation of our model has reached its primary goal of being able of taking

advantage of the combination of shared memory with distributed memory. Even

though, it lacks some important features that may limit its usage in some realistic

applications. We hope that these limitations could result in further improvements

and further research in this area, such as:

More experimentation. It would be important to test our implementation more

intensively and with a wider range of benchmarks so that we have a more clear

view on how to tune some scheduling parameters and refine the system as a

whole. In addition to that, it would be also important to assess how our system

behaves when some network parameters, such as bandwidth and latency, change.

Scheduling strategies. In our system the stack splitting technique is only used to

distribute work between teams. It would be interesting to allow workers to

share work inside the team also using stack splitting as proposed by Vieira

et al. [48]. Furthermore, we could also implement alternative stack splitting

splitting strategies, such as diagonal and half splitting [49], for team scheduling

of work.

Support for full Prolog. Our system does not support the cut predicate, order

sensitive predicates (such as the assert and retract predicates) and side-effects

(such as the write predicate). Regarding the cut predicate, at the team level,

we already have all the data structures and mechanisms to support it since

they were inherited from YapOr. In YapOr when a cut is performed, the tree

formed by the or-frames is used to know which workers are on the scope of a

given cut. In a distributed system that is not possible since we do not have a full

representation of the or-tree and auxiliary mechanisms to maintain a description

of each worker would have to be studied and implemented. The order sensitive

predicates and side-effects do not prune branches of the or-tree but they also

require information about the position of the other workers in the or-tree since

they need to be executed in the way they would be in a sequential system. To

implement side-effect predicates, it would be also required to support concurrent

updates to the internal database.

Support dynamic code compilation. By default Yap generates indexing code dy-

namically during execution [38]. If we allow Yap to generate dynamic code during

100 CHAPTER 7. CONCLUSIONS

the execution, such behaviour constitutes a problem when sending work from one

team to another since the stacks may be pointing to code that was not generated

in the receiving team. To bypass this limitation, in our current implementation,

we begin by running the program sequentially in the master worker of each team

to ensure that all the indexing code is generated and accessible to everyone. Only

after that we run the code in parallel. This situation is a clear limitation of our

system. Solving this problem is not trivial and it would involve creating an

internal database that guarantees that each team may generate its own dynamic

code without interfering with the code generated by other teams. When the

sharing process occurs this database would also need to be copied. An easier

alternative is to disable dynamic indexing code generation, but we have chosen

to avoid such alternative.

Support for incremental copy between teams. Incremental copying is a tech-

nique that allows to reduce the total amount of memory to be copied during the

sharing work operation by avoiding to copy the common parts of the stacks [4].

Incremental copying between workers of the same team is already supported as it

was inherited from YapOr and it has showed to have a positive impact in terms of

performance. This technique was also implemented in distributed systems such

as YapDSS [34] and PALS [49]. In these systems, when sharing work, information

about the relative position of the workers in the or-tree is exchanged and based

on that information, that the incremental copying algorithm then decides which

parts of the stacks must be copied. We think that this approach could be adapted

to our model too.

7.3 Final Remark

The research work we have presented in this thesis is based on the work developed by

the parallel Prolog community during many years. Unfortunately, in the recent past

years, the work in these research field suffered a substantial decline. With this thesis,

we hope to bring a new breath to the field.

Appendix A

Results

101

102 APPENDIX A. RESULTS

Table A.1: Execution times in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.4

4 workers Teams(1,4) Teams(2,2) Teams(4,1)

arithmetic(10) 169.015 0.01 127.770 0.00 93.708 0.00

cubes(10) 16.182 0.00 17.933 0.00 19.745 0.00

ham(40) 31.791 0.00 33.214 0.00 34.001 0.00

knight move(13) 95.698 0.00 106.854 0.00 116.809 0.00

magic cube 13.374 0.00 13.761 0.00 13.790 0.00

map colouring(46) 44.189 0.00 46.279 0.00 47.537 0.00

nsort(12) 102.433 0.00 110.379 0.00 110.512 0.00

puzzle(4) 4.688 0.01 4.744 0.00 4.856 0.02

queens(14) 137.521 0.00 150.458 0.00 170.737 0.00

send more 17.982 0.00 18.546 0.00 18.923 0.00

8 workers Teams(1,8) Teams(2,4) Teams(4,2) Teams(8,1)

arithmetic(10) 111.728 0.00 79.118 0.00 58.271 0.01 48.715 0.01

cubes(10) 8.130 0.00 8.718 0.00 9.082 0.00 10.329 0.01

ham(40) 16.050 0.00 16.455 0.00 17.062 0.01 17.277 0.01

knight move(13) 48.124 0.00 51.608 0.00 53.582 0.00 58.272 0.00

magic cube 6.688 0.00 6.933 0.00 6.951 0.00 7.142 0.01

map colouring(46) 22.267 0.00 22.802 0.01 23.031 0.01 24.063 0.01

nsort(12) 51.213 0.00 55.750 0.00 55.699 0.00 55.721 0.00

puzzle(4) 2.358 0.01 2.403 0.00 2.432 0.01 2.695 0.04

queens(14) 68.690 0.00 73.334 0.00 76.864 0.00 82.082 0.00

send more 8.961 0.00 9.125 0.00 9.311 0.01 9.724 0.02

16 workers Teams(1,16) Teams(2,8) Teams(4,4) Teams(8,2) Teams(16,1)

arithmetic(10) 105.305 0.00 59.912 0.01 37.946 0.02 31.086 0.02 27.953 0.03

cubes(10) 4.085 0.00 4.328 0.00 4.471 0.02 4.791 0.02 5.813 0.08

ham(40) 8.102 0.00 8.276 0.00 8.339 0.01 9.613 0.05 9.197 0.04

knight move(13) 24.174 0.00 25.723 0.00 26.041 0.00 27.301 0.01 29.961 0.01

magic cube 3.378 0.01 3.540 0.01 3.548 0.01 3.767 0.04 4.896 0.08

map colouring(46) 11.256 0.01 11.459 0.01 11.596 0.03 11.819 0.01 13.288 0.03

nsort(12) 25.975 0.00 28.183 0.00 28.253 0.00 28.258 0.00 29.007 0.02

puzzle(4) 1.182 0.01 1.236 0.02 1.261 0.02 1.384 0.05 1.913 0.08

queens(14) 34.778 0.00 36.310 0.00 36.893 0.01 38.830 0.01 42.573 0.01

send more 4.474 0.00 4.607 0.00 4.638 0.01 4.822 0.01 5.562 0.06

103

Table A.2: Execution time in seconds and coefficient of variation for the horizontal

splitting results used in Table 6.4

4 workers Teams(1,4) Teams(2,2) Teams(4,1)

arithmetic(10) 16.456 0.00 128.114 0.00 93.666 0.00

cubes(10) 18.096 0.00 19.409 0.00 20.407 0.00

ham(40) 30.789 0.00 32.209 0.00 32.890 0.00

knight move(13) 97.945 0.00 106.063 0.00 112.788 0.00

magic cube 12.333 0.01 12.701 0.01 12.984 0.01

map colouring(46) 45.600 0.00 47.030 0.00 48.225 0.00

nsort(12) 96.799 0.00 100.879 0.00 105.522 0.00

puzzle(4) 4.734 0.01 4.738 0.01 5.009 0.01

queens(14) 135.580 0.00 149.495 0.00 15.9845 0.00

send more 17.564 0.00 18.128 0.01 18.367 0.00

8 workers Teams(1,8) Teams(2,4) Teams(4,2) Teams(8,1)

arithmetic(10) 111.740 0.00 81.777 0.01 59.127 0.01 48.379 0.01

cubes(10) 9.098 0.00 9.595 0.00 9.848 0.02 10.409 0.01

ham(40) 15.639 0.00 16.290 0.01 16.296 0.01 16.705 0.01

knight move(13) 49.349 0.00 51.924 0.00 53.339 0.00 56.758 0.00

magic cube 6.227 0.01 6.326 0.02 6.524 0.01 6.505 0.03

map colouring(46) 22.995 0.00 23.386 0.00 23.655 0.01 24.445 0.01

nsort(12) 49.062 0.00 50.930 0.00 51.879 0.00 52.975 0.00

puzzle(4) 2.415 0.01 2.494 0.01 2.485 0.01 2.548 0.02

queens(14) 68.155 0.00 71.666 0.00 74.411 0.00 80.029 0.00

send more 8.828 0.00 9.049 0.01 9.224 0.02 9.276 0.02

16 workers Teams(1,16) Teams(2,8) Teams(4,4) Teams(8,2) Teams(16,1)

arithmetic(10) 101.033 0.00 56.718 0.01 37.588 0.02 30.641 0.03 27.536 0.04

cubes(10) 4.629 0.01 4.858 0.01 4.933 0.01 5.090 0.02 5.890 0.05

ham(40) 7.969 0.00 8.286 0.01 8.284 0.01 8.574 0.02 8.977 0.05

knight move(13) 24.957 0.01 25.994 0.00 26.475 0.01 27.277 0.00 29.268 0.02

magic cube 3.176 0.01 3.278 0.01 3.222 0.01 3.301 0.01 3.762 0.03

map colouring(46) 11.604 0.01 11.994 0.01 11.981 0.02 12.200 0.00 13.484 0.02

nsort(12) 24.946 0.00 25.786 0.01 26.324 0.01 26.412 0.01 27.021 0.02

puzzle(4) 1.242 0.01 1.287 0.03 1.323 0.02 1.460 0.07 1.603 0.08

queens(14) 34.177 0.00 35.496 0.00 36.116 0.00 37.422 0.00 41.353 0.01

send more 4.520 0.00 4.699 0.02 4.658 0.01 4.738 0.01 5.245 0.02

104 APPENDIX A. RESULTS

Table A.3: Execution time in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.5

16 workers Teams(2,8) Teams(4,4) Teams(8,2) Teams(16,1)

arithmetic(10) 59.293 0.01 44.802 0.02 36.474 0.05 43.471 0.11

cubes(10) 4.724 0.02 5.218 0.04 6.872 0.11 12.720 0.15

ham(40) 8.568 0.02 9.004 0.03 18.672 0.20 17.541 0.09

knight move(13) 25.759 0.01 26.619 0.01 29.674 0.04 37.631 0.07

magic cube 3.895 0.01 4.162 0.05 5.207 0.11 9.857 0.13

map colouring(46) 11.784 0.01 12.291 0.02 14.616 0.04 25.138 0.08

nsort(12) 28.525 0.00 29.218 0.01 31.294 0.04 39.713 0.11

puzzle(4) 1.510 0.05 1.750 0.07 2.384 0.12 5.218 0.12

queens(14) 36.829 0.01 38.550 0.02 46.500 0.07 68.270 0.12

send more 4.972 0.03 5.353 0.04 7.063 0.11 11.963 0.15

24 workers Teams(2,12) Teams(4,6) Teams(6,4) Teams(12,2) Teams(24,1)

arithmetic(10) 54.328 0.01 34.359 0.02 30.065 0.04 30.917 0.11 43.412 0.14

cubes(10) 3.315 0.05 3.628 0.04 4.053 0.06 5.948 0.14 12.187 0.13

ham(40) 5.831 0.02 6.130 0.04 7.205 0.06 18.248 0.12 17.334 0.11

knight move(13) 17.260 0.01 17.925 0.02 18.735 0.02 22.486 0.05 31.188 0.08

magic cube 2.716 0.04 2.894 0.05 3.227 0.09 4.968 0.15 11.395 0.16

map colouring(46) 7.984 0.02 8.597 0.03 8.886 0.05 12.702 0.04 24.014 0.09

nsort(12) 19.330 0.01 20.038 0.01 20.918 0.03 24.220 0.07 35.269 0.11

puzzle(4) 1.143 0.06 1.349 0.15 1.546 0.10 2.275 0.10 5.029 0.11

queens(14) 25.137 0.01 25.926 0.01 27.518 0.03 40.291 0.11 55.514 0.16

send more 3.543 0.03 3.659 0.04 4.121 0.06 5.572 0.13 12.042 0.22

32 workers Teams(2,16) Teams(4,8) Teams(8,4) Teams(16,2) Teams(32,1)

arithmetic(10) 53.960 0.01 32.656 0.02 23.358 0.05 26.873 0.08 40.425 0.11

cubes(10) 2.592 0.05 2.862 0.06 3.503 0.12 5.762 0.11 12.032 0.16

ham(40) 4.639 0.03 4.799 0.04 6.032 0.07 17.570 0.13 16.153 0.11

knight move(13) 13.152 0.02 13.656 0.02 14.754 0.03 19.486 0.08 29.539 0.09

magic cube 2.165 0.03 2.311 0.08 2.941 0.11 4.680 0.15 10.258 0.22

map colouring(46) 6.163 0.04 6.508 0.03 7.685 0.06 12.144 0.05 22.682 0.07

nsort(12) 14.617 0.01 15.330 0.02 16.883 0.05 23.140 0.13 35.180 0.11

puzzle(4) 879 0.09 1.150 0.16 1.274 0.07 2.258 0.12 5.160 0.09

queens(14) 19.264 0.02 20.046 0.02 23.023 0.07 35.420 0.10 63.219 0.13

send more 2.797 0.04 2.921 0.05 3.497 0.09 5.444 0.13 12.783 0.13

105

Table A.4: Execution time in seconds and coefficient of variation for the horizontal

splitting results presented in Table 6.4

16 workers Teams(2,8) Teams(4,4) Teams(8,2) Teams(16,1)

arithmetic(10) 59.493 0.01 44.951 0.01 35.444 0.06 46.403 0.12

cubes(10) 5.070 0.03 5.338 0.02 6.469 0.08 10.473 0.14

ham(40) 8.582 0.02 8.841 0.03 10.473 0.06 18.998 0.10

knight move(13) 26.479 0.01 26.861 0.01 29.743 0.04 38.632 0.07

magic cube 3.360 0.05 3.681 0.02 3.981 0.03 6.404 0.05

map colouring(46) 12.144 0.01 12.713 0.01 14.708 0.03 24.934 0.06

nsort(12) 26.251 0.01 27.524 0.02 29.538 0.03 40.981 0.15

puzzle(4) 1.396 0.05 1.764 0.05 2.302 0.09 3.843 0.10

queens(14) 35.723 0.00 36.752 0.01 39.177 0.01 49.190 0.04

send more 4.988 0.03 5.129 0.03 5.530 0.04 8.335 0.06

24 workers Teams(2,12) Teams(4,6) Teams(6,4) Teams(12,2) Teams(24,1)

arithmetic(10) 55.072 0.02 34.715 0.02 29.868 0.03 30.830 0.07 43.235 0.15

cubes(10) 3.536 0.05 3.834 0.05 4.068 0.04 5.624 0.06 9.881 0.16

ham(40) 5.927 0.03 6.053 0.02 6.655 0.05 8.476 0.07 18.784 0.06

knight move(13) 17.934 0.02 18.363 0.02 19.306 0.02 23.237 0.08 34.399 0.11

magic cube 2.285 0.03 2.591 0.03 2.750 0.04 3.461 0.06 6.390 0.04

map colouring(46) 8.548 0.04 8.809 0.02 9.619 0.03 12.879 0.05 24.523 0.09

nsort(12) 18.122 0.02 18.824 0.01 19.516 0.02 22.674 0.08 41.140 0.14

puzzle(4) 10.41 0.12 1.273 0.05 1.482 0.07 2.145 0.14 36.81 0.19

queens(14) 23.916 0.01 24.567 0.01 25.299 0.01 27.535 0.03 43.349 0.04

send more 3.699 0.07 3.673 0.04 3.861 0.03 4.695 0.06 8.179 0.05

32 workers Teams(2,16) Teams(4,8) Teams(8,4) Teams(16,2) Teams(32,1)

arithmetic(10) 54.519 0.01 34.065 0.03 23.874 0.04 28.485 0.08 41.096 0.11

cubes(10) 2.936 0.09 3.173 0.03 3.436 0.05 5.345 0.10 9.291 0.13

ham(40) 4.557 0.02 4.621 0.02 5.642 0.08 7.906 0.08 16.366 0.16

knight move(13) 14.078 0.02 14.049 0.01 15.122 0.02 21.870 0.06 32.237 0.17

magic cube 1.801 0.07 2.045 0.03 2.252 0.06 3.300 0.05 5.970 0.06

map colouring(46) 6.941 0.05 6.838 0.03 8.140 0.06 12.510 0.08 24.956 0.05

nsort(12) 14.315 0.04 14.923 0.01 16.222 0.06 22.539 0.17 36.153 0.16

puzzle(4) 827 0.12 989 0.07 1.328 0.09 2.054 0.15 3.472 0.13

queens(14) 18.034 0.01 18.769 0.01 19.729 0.01 23.357 0.04 41.566 0.05

send more 3.031 0.04 2.935 0.04 3.090 0.03 4.360 0.02 8.466 0.08

106 APPENDIX A. RESULTS

Table A.5: Execution times in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.7 and Table 6.8

1 machine 2 machines 4 machines 8 machines

4 cores Team(1,4) Team(2,4) Team(4,4) Team(8,4)

arithmetic(10) 169.015 0.01 88.735 0.01 44.802 0.02 23.363 0.05

cubes(10) 16.182 0.00 9.087 0.01 5.218 0.04 3.543 0.05

ham(40) 31.791 0.00 17.002 0.01 9.004 0.03 6.315 0.11

knight move(13) 95.698 0.00 51.969 0.00 26.619 0.01 14.975 0.03

magic cube 13.374 0.00 7.298 0.02 4.162 0.05 2.874 0.08

map colouring(46) 44.189 0.00 23.102 0.00 12.291 0.02 7.822 0.05

nsort(12) 102.433 0.00 56.291 0.00 29.218 0.01 16.692 0.06

puzzle(4) 4.688 0.01 2.735 0.03 1.750 0.07 1.360 0.08

queens(14) 137.521 0.00 73.595 0.00 38.550 0.02 21.745 0.04

send more 17.982 0.00 9.546 0.02 5.353 0.04 3.660 0.12

8 cores

arithmetic(10) 111.728 0.00 59.293 0.01 32.656 0.02

cubes(10) 8.130 0.00 4.724 0.02 2.862 0.06

ham(40) 16.050 0.00 8.568 0.02 4.799 0.04

knight move(13) 48.124 0.00 25.759 0.01 13.656 0.02

magic cube 6.688 0.00 3.895 0.01 2.311 0.08

map colouring(46) 22.267 0.00 11.784 0.01 6.508 0.03

nsort(12) 51.213 0.00 28.525 0.00 15.330 0.02

puzzle(4) 2.358 0.01 1.510 0.05 1.150 0.16

queens(14) 68.690 0.00 36.829 0.01 20.046 0.02

send more 8.961 0.00 4.972 0.03 2.921 0.05

16 cores

arithmetic(10) 105.305 0.00 53.960 0.01

cubes(10) 4.085 0.00 2.592 0.05

ham(40) 8.102 0.00 4.639 0.03

knight move(13) 24.174 0.00 13.152 0.02

magic cube 3.378 0.01 2.165 0.03

map colouring(46) 11.256 0.01 6.163 0.04

nsort(12) 25.975 0.00 14.617 0.01

puzzle(4) 1.182 0.01 879 0.09

queens(14) 34.778 0.00 19.264 0.02

send more 4.474 0.00 2.797 0.04

107

Table A.6: Execution times in seconds and coefficient of variation for the horizontal

splitting results presented in Table 6.7 and Table 6.8

1 machine 2 machines 4 machines 8 machines

4 cores Team(1,4) Team(2,4) Team(4,4) Team(8,4)

arithmetic(10) 164.563 0.00 86.898 0.01 37.588 0.02 23.601 0.03

cubes(10) 18.096 0.00 9.826 0.01 49.33 0.01 3.372 0.07

ham(40) 30.789 0.00 16.509 0.00 8.284 0.01 5.494 0.07

knight move(13) 97.945 0.00 52.490 0.00 26.475 0.01 14.982 0.04

magic cube 12.333 0.01 6.501 0.01 3.222 0.01 2.236 0.06

map colouring(46) 45.600 0.00 23.747 0.00 11.981 0.02 8.144 0.06

nsort(12) 96.799 0.00 51.072 0.01 26.324 0.01 16.183 0.06

puzzle(4) 4.734 0.01 2.610 0.03 1.323 0.02 1.302 0.10

queens(14) 135.580 0.00 71.590 0.00 36.116 0.00 19.570 0.02

send more 17.564 0.00 9.164 0.01 4.658 0.01 3.038 0.05

8 cores

arithmetic(10) 111.740 0.00 59.493 0.01 34.065 0.03

cubes(10) 9.098 0.00 5.070 0.03 3.173 0.03

ham(40) 15.639 0.00 8.582 0.02 4.621 0.02

knight move(13) 49.349 0.00 26.479 0.01 14.049 0.01

magic cube 6.227 0.00 3.360 0.05 2.045 0.03

map colouring(46) 22.995 0.00 12.144 0.01 6.838 0.03

nsort(12) 49.062 0.00 26.251 0.01 14.923 0.01

puzzle(4) 2.415 0.00 1.396 0.06 989 0.07

queens(14) 68.155 0.00 35.723 0.00 18.769 0.01

send more 8.828 0.00 4.988 0.03 2.935 0.04

16 cores

arithmetic(10) 101.033 0.00 54.519 0.01

cubes(10) 4.629 0.01 2.936 0.09

ham(40) 7.969 0.00 4.557 0.02

knight move(13) 24.957 0.01 14.078 0.02

magic cube 3.176 0.01 1.801 0.07

map colouring(46) 11.604 0.01 6.941 0.05

nsort(12) 24.946 0.00 14.315 0.04

puzzle(4) 1.242 0.01 827 0.13

queens(14) 34.177 0.00 18.034 0.01

send more 4.520 0.00 3.031 0.04

108 APPENDIX A. RESULTS

Table A.7: Execution times in seconds and coefficient of variation for the vertical

splitting results presented in Table 6.8 using standard stack sppliting

4 workers 8 workers 16 workers 32 workers

with simulation SS(4) SS(8) SS(16) SS(32)

arithmetic(10) 99.390 0.01 57.424 0.04 43.471 0.11 40.425 0.11

cubes(10) 21.739 0.03 13.680 0.09 12.720 0.15 12.032 0.16

ham(40) 36.611 0.03 23.148 0.04 17.541 0.09 16.153 0.11

knight move(13) 117.789 0.00 62.633 0.02 37.631 0.07 29.539 0.09

magic cube 15.755 0.04 10.557 0.14 9.857 0.13 10.258 0.22

map colouring(46) 49.112 0.01 29.547 0.05 25.138 0.08 22.682 0.07

nsort(12) 113.310 0.01 60.990 0.03 39.713 0.11 35.180 0.11

puzzle(4) 6.013 0.07 5.399 0.12 5.218 0.12 5.160 0.09

queens(14) 168.330 0.01 95.185 0.05 68.270 0.12 63.219 0.13

send more 20.497 0.03 14.083 0.07 11.963 0.15 12.783 0.13

without simulation

arithmetic(10) 98.082 0.03 58.600 0.07 40.068 0.08 38.981 0.09

cubes(10) 20.971 0.11 13.867 0.12 11.212 0.21 11.182 0.14

ham(40) 35.599 0.04 20.177 0.04 13.251 0.11 12.214 0.16

knight move(13) 117.381 0.03 60.770 0.01 36.600 0.08 27.161 0.11

magic cube 15.240 0.05 9.994 0.04 8.663 0.09 9.291 0.14

map colouring(46) 48.903 0.03 28.813 0.05 21.856 0.06 20.723 0.05

nsort(12) 113.100 0.02 60.046 0.03 36.947 0.05 32.583 0.11

puzzle(4) 5.778 0.09 4.417 0.09 3.929 0.13 3.906 0.16

queens(14) 168.869 0.03 89.985 0.03 56.135 0.10 53.687 0.13

send more 20.728 0.09 12.987 0.10 11.906 0.16 10.376 0.20

Table A.8: Execution times in seconds and coefficient of variation for the horizontal

splitting results presented in Table 6.8 using standard stack sppliting

4 workers 8 workers 16 workers 32 workers

with simulation SS(4) SS(8) SS(16) SS(32)

arithmetic(10) 98.885 0.01 56.511 0.04 46.403 0.12 41.096 0.11

cubes(10) 21.467 0.02 13.075 0.06 10.473 0.14 9.291 0.13

ham(40) 35.232 0.02 22.009 0.08 18.998 0.10 16.366 0.16

knight move(13) 114.568 0.00 61.814 0.04 38.632 0.07 32.237 0.17

magic cube 13.565 0.02 7.590 0.05 64.04 0.05 5.970 0.06

map colouring(46) 50.316 0.01 29.707 0.05 24.934 0.06 24.956 0.05

nsort(12) 107.131 0.01 59.610 0.04 40.981 0.15 36.153 0.16

puzzle(4) 5.827 0.07 4.150 0.11 3.843 0.10 3.472 0.13

queens(14) 161.024 0.00 83.973 0.01 49.190 0.04 41.566 0.05

send more 19.146 0.01 10.765 0.05 8.335 0.06 8.466 0.08

without simulation

arithmetic(10) 97.957 0.01 56.880 0.05 44.640 0.11 41.581 0.17

cubes(10) 21.262 0.01 12.383 0.03 9.281 0.08 8.476 0.11

ham(40) 34.429 0.01 19.448 0.05 13.646 0.10 14.164 0.11

knight move(13) 115.053 0.00 60.223 0.02 37.431 0.05 31.687 0.14

magic cube 13.362 0.02 7.306 0.04 6.020 0.06 5.881 0.05

map colouring(46) 49.518 0.01 28.309 0.04 23.101 0.06 22.160 0.08

nsort(12) 107.702 0.00 55.916 0.01 35.593 0.10 30.620 0.14

puzzle(4) 5.530 0.06 3.681 0.13 3.060 0.17 3.026 0.17

queens(14) 161.222 0.00 83.590 0.01 48.396 0.03 38.304 0.03

send more 18.994 0.01 10.502 0.03 7.918 0.05 7.711 0.06

References

[1] Open MPI: Open Source High Performance Computing. http://www.open-

mpi.org.

[2] H. Aı̈t-Kaci. Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT

Press, 1991.

[3] K. Ali and R. Karlsson. Full Prolog and Scheduling OR-Parallelism in Muse.

International Journal of Parallel Programming, 19(6):445–475, 1990.

[4] K. Ali and R. Karlsson. The Muse Approach to OR-Parallel Prolog. International

Journal of Parallel Programming, 19(2):129–162, 1990.

[5] K. Ali, R. Karlsson, and S. Mudambi. Performance of Muse on Switch-Based

Multiprocessor Machines. New Generation Computing, 11(1 & 4):81–103, 1992.

[6] L. Araujo and J. Ruz. A Parallel Prolog System for Distributed Memory. Journal

of Logic Programming, 33(1):49–79, 1997.

[7] J. Barklund. Parallel Unification. PhD thesis, Uppsala University, 1990.

[8] A. Beaumont, S. Raman, P. Szeredi, and D. H. D. Warren. Flexible Scheduling

of OR-Parallelism in Aurora: The Bristol Scheduler. In Conference on Parallel

Architectures and Languages Europe, number 506 in LNCS, pages 403–420.

Springer-Verlag, 1991.

[9] J. Briat, M. Favre, C. Geyer, and J. Chassin de Kergommeaux. OPERA: Or-

Parallel Prolog System on Supernode. In Implementations of Distributed Prolog,

pages 45–64. Wiley & Sons, 1992.

[10] A. Calderwood and P. Szeredi. Scheduling Or-parallelism in Aurora – the

Manchester Scheduler. In International Conference on Logic Programming, pages

419–435. The MIT Press, 1989.

109

110 REFERENCES

[11] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un Système de

Communication Homme–Machine en Francais. Technical report cri 72-18, Groupe

Intelligence Artificielle, Université Aix-Marseille II, 1973.

[12] J. S. Conery and D. F. Kibler. Parallel Interpretation of Logic Programs. In

Conference on Functional Programming Languages and Computer Architecture,

pages 163–170. ACM, 1981.

[13] M. Correia, F. Silva, and V. Santos Costa. The SBA: Exploiting Orthogonality in

And-Or Parallel Systems. In International Logic Programming Symposium, pages

117–131. The MIT Press, 1997.

[14] I. C. Dutra. A Flexible Scheduler for the Andorra-I System. In ICLP Workshop

on Parallel Execution of Logic Programs, pages 70–82, 1991.

[15] G. Gupta. Parallel Execution of Logic Programs on Multiprocessor Architectures.

PhD thesis, Department of Computer Science, University of North Carolina, 1991.

[16] G. Gupta, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel Execution of

Prolog Programs: A Survey. Research report, Laboratory for Logic, Databases

and Advanced Programming, New Mexico State University, 1997.

[17] G. Gupta, V. Santos Costa, and E. Pontelli. Shared paged binding array: A

universal datastructure for parallel logic programming. In NSF/ICOT Workshop

on Parallel Logic Programming, pages 94–4, 1994.

[18] G. Gupta and B. Jayaraman. Analysis of Or-parallel Execution Models. ACM

Transactions on Programming Languages, 15(4):659–680, 1993.

[19] G. Gupta and E. Pontelli. Stack Splitting: A Simple Technique for Implementing

Or-parallelism on Distributed Machines. In International Conference on Logic

Programming, pages 290–304. The MIT Press, 1999.

[20] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel

Execution of Prolog Programs: A Survey. ACM Transactions on Programming

Languages and Systems, 23(4):472–602, 2001.

[21] G. Gupta, E. Pontelli, M. V. Hermenegildo, and V. Santos Costa. ACE: And/Or-

parallel Copying-based Execution of Logic Programs. In International Conference

on Logic Programming, pages 93–109. The MIT Press, 1994.

REFERENCES 111

[22] M. V. Hermenegildo and K. Greene. The &-Prolog System: Exploiting

Independent And-Parallelism. New Generation Computing, 9(3-4):233–257, 1991.

[23] M. V. Hermenegildo and F. Rossi. Strict and Nonstrict Independent And-

Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time

Conditions. The Journal of Logic Programming, 22(1):1 – 45, 1995.

[24] L. V. Kalé. The Reduce-Or Process Model for Parallel Execution of Logic

Programs. The Journal of Logic Programming, 11(1&2):55–84, 1991.

[25] R. Kowalski. Predicate Logic as a Programming Language. In Information

Processing, pages 569–574. North-Holland, 1974.

[26] R. Kowalski. Logic for Problem Solving. Artificial Intelligence Series. North-

Holland, 1979.

[27] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[28] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren,

A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski,

and B. Hausman. The Aurora Or-Parallel Prolog System. In International

Conference on Fifth Generation Computer Systems, pages 819–830. Institute for

New Generation Computer Technology, 1988.

[29] E. Pontelli and G. Gupta. Implementation Mechanisms for Dependent And-

Parallelism. In International Conference on Logic Programming, pages 123–137.

The MIT Press, 1997.

[30] E. Pontelli, G. Gupta, and M. V. Hermenegildo. A High-Performance Parallel

Prolog System. In International Parallel Processing Symposium, pages 564–571.

IEEE Computer Society, 1995.

[31] E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. V. Hermenegildo. Improving

the Efficiency of Nondeterministic Independent And-Parallel Systems. Journal of

Computer Languages, 22(2/3):115–142, 1996.

[32] E. Pontelli, K. Villaverde, Hai-Feng Guo, and G. Gupta. Stack splitting:

A technique for efficient exploitation of search parallelism on share-nothing

platforms. Journal of Parallel and Distributed Computing, 66(10):1267–1293,

2006.

112 REFERENCES

[33] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle.

Journal of the ACM, 12(1):23–41, 1965.

[34] R. Rocha, F. Silva, and R. Martins. YapDss: an Or-Parallel Prolog System for

Scalable Beowulf Clusters. In Portuguese Conference on Artificial Intelligence,

volume 2902 of LNAI, pages 136–150. Springer-Verlag, 2003.

[35] R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog

System Based on Environment Copying. In Portuguese Conference on Artificial

Intelligence, volume 1695 of LNAI, pages 178–192. Springer-Verlag, 1999.

[36] V. Santos Costa. COWL: Copy-On-Write for Logic Programs. In International

Parallel Processing Symposium, Held Jointly with the Symposium on Parallel and

Distributed Processing, pages 720–727. IEEE Computer Society, 1999.

[37] V. Santos Costa, I. Dutra, and R. Rocha. Threads and Or-Parallelism Unified.

Journal of Theory and Practice of Logic Programming, International Conference

on Logic Programming, Special Issue, 10(4–6):417–432, 2010.

[38] V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System. Journal of

Theory and Practice of Logic Programming, 12(1 & 2):5–34, 2012.

[39] V. Santos Costa, R. Rocha, and F. Silva. Novel Models for Or-Parallel Logic

Programs: A Performance Analysis. In EuroPar 2000 Parallel Processing, number

1900 in LNCS, pages 744–753. Springer-Verlag, 2000.

[40] V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog

System that Transparently Exploits both And- and Or-Parallelism. In ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages

83–93. ACM, 1991.

[41] K. Shen. Exploiting Dependent And-parallelism in Prolog: The Dynamic

Dependent And-Parallel Scheme (DDAS). In Joint International Conference and

Symposium on Logic Programming, pages 717–731. The MIT Press, 1992.

[42] K. Shen. Studies of AND/OR Parallelism in Prolog. PhD thesis, University of

Cambridge, 1992.

[43] F. Silva and P. Watson. Or-Parallel Prolog on a Distributed Memory Architecture.

Journal of Logic Programming, 43(2):173–186, 2000.

REFERENCES 113

[44] R. Sindaha. Branch-Level Scheduling in Aurora: The Dharma Scheduler. In

International Logic Programming Symposium, pages 403–419. The MIT Press,

1993.

[45] P. Szeredi. Performance Analysis of the Aurora Or-Parallel Prolog System. In

North American Conference on Logic Programming, pages 713–732. The MIT

Press, 1989.

[46] Hans Tebra. Optimistic and-parallelism in Prolog, volume 259 of LNCS, pages

420–431. Springer-Verlag, 1987.

[47] R. Vieira, R. Rocha, and F. Silva. On Comparing Alternative Splitting Strategies

for Or-Parallel Prolog Execution on Multicores. In Proceedings of the 12th

Colloquium on Implementation of Constraint and LOgic Programming Systems,

CICLOPS’2012, pages 71–85, 2012.

[48] R. Vieira, R. Rocha, and F. Silva. Or-Parallel Prolog Execution on Multicores

Based on Stack Splitting. In International Workshop on Declarative Aspects and

Applications of Multicore Programming. ACM Digital Library, 2012.

[49] K. Villaverde, E. Pontelli, H. Guo, and G. Gupta. PALS: An Or-Parallel

Implementation of Prolog on Beowulf Architectures. In International Conference

on Logic Programming, number 2237 in LNCS, pages 27–42. Springer-Verlag,

2001.

[50] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A Platform for Constraint

Logic Programming. Technical report, IC-Parc, Imperial College, 1997.

[51] D. H. D. Warren. Applied Logic – Its Use and Implementation as a Programming

Tool. PhD thesis, Edinburgh University, 1977.

[52] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI

International, 1983.

[53] D. H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog –

Abstract Design and Implementation Issues. In International Logic Programming

Symposium, pages 92–102. IEEE Computer Society, 1987.

[54] D. S. Warren. Efficient Prolog Memory Management for Flexible Control

Strategies. In International Logic Programming Symposium, pages 198–203. IEEE

Computer Society, 1984.

