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Abstract

Dynamic memory allocation is an important component of most applications. Nowadays, due
to the use of thread-level parallelism by applications, an important requirement in a memory
allocator implementation is the ability to be thread safe. To guarantee thread safety, current
state-of-the-art memory allocators use lock-based data structures. The use of locks has implications
in terms of program performance, availability, robustness and flexibility. As such, current memory
allocators attempt to minimize the effects of locking by using fine-grained locks, by reducing
the frequency of lock operations and by providing synchronization-free allocations as much as
possible through the use of thread-specific caches. An interesting but challenging alternative is
to use lock-free data structures and atomic operations to guarantee thread safety.

We present LRMalloc, a lock-free memory allocator that leverages lessons of modern memory
allocators and combines them with a lock-free scheme. Current state-of-the-art memory allocators
possess good performance but lack desirable lock-free properties, such as, guarantees of system-
wide progress, priority inversion tolerance, kill-tolerance availability, and/or deadlock and livelock
immunity. LRMalloc’s purpose is to show the feasibility of lock-free memory management
algorithms, without sacrificing competitiveness in comparison to commonly used state-of-the-art
memory allocators, especially for concurrent multithreaded applications.

We also present a lock-free best-fit mechanism, capable of lock-free coalescing and splitting
of blocks. To the best of our knowledge, our mechanism is the first lock-free general coalescing
mechanism that supports coalescing and splitting of blocks with arbitrary sizes and does not put
restrictions on how coalescing can be performed. Our mechanism ultimately aims to be used as a
lower-level allocator for LRMalloc or other lock-free memory allocators, allowing them to manage
memory without the assistance of the operating system, potentially improving performance by
reducing the number of system calls.

Keywords: Memory Allocator, Memory Management, Lock-Freedom, Concurrent Data
Structures, Implementation
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Resumo

A alocação dinâmica de memória é uma componente chave para a maioria das aplicações.
Atualmente, a utilização generalizada de paralelismo baseado em threads pelas aplicações leva a
que um requisito importante do alocador de memória seja a sua capacidade de ser thread safe.
Para garantir que são thread safe, os alocadores de memória representativos do estado da arte
utilizam estruturas de dados baseadas em locks. O uso de locks tem implicações em termos do
desempenho, disponibilidade, robustez e flexibilidade da aplicação. Como tal, os alocadores de
memória atuais tentam minimizar esses efeitos através do uso cuidado e de grão fino de locks, ao
reduzirem a frequência de operações de locking tanto quanto possível, e fornecendo alocações
que não precisam de quaisquer operações de sincronização através do uso de thread caches. Uma
alternativa interessante mas desafiadora é usar estruturas de dados lock-free juntamente com
operações atómicas para garantir a capacidade de ser thread safe.

Nesta tese, apresentamos o LRMalloc, um alocador de memória lock-free que reutiliza
conhecimento e aprendizagens conseguidos pelos alocadores de memória modernos e combina-os
com um esquema de gestão de memória lock-free. Apesar dos alocadores de memória atuais
apresentarem bom desempenho, não possuem propriedades desejáveis tais como: garantias de
progresso no sistema, tolerância a inversão de prioridade, tolerância a threads que terminam
prematuramente e/ou imunidade a deadlocks e livelocks. O propósito do LRMalloc é mostrar
a viabilidade de algoritmos lock-free de gestão de memória, sem sacrificar a competitividade
quando comparado com alocadores de memória que são o estado da arte, especialmente para
aplicações multithreaded.

Também apresentamos um mecanismo best-fit que é capaz de gerir memoria de forma lock-free.
No melhor do nosso conhecimento, o nosso mecanismo é o primeiro que é lock-free e capaz de
coalescing e splitting de blocos de memória com qualquer tamanho, sem restrições na forma como
o coalescing é feito. Pretendemos com que o nosso mecanismo seja usado como um alocador de
baixo nível para alocadores de memória lock-free, de forma a que o alocador seja capaz de gerir
memoria sem a assistência do sistema operativo, e de forma potencialmente mais eficiente, ao
permitir a redução do número de chamadas de sistema.

Palavras-chave: Alocador de Memória, Gestão de Memória, Lock-Freedom, Estruturas de
Dados Concorrentes, Implementação
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Chapter 1

Introduction

Dynamic memory allocation is an important component of applications written in languages
that use manual memory management, such as C, C++ and Rust. Manual memory management
requires the programmer to explicitly allocate and then deallocate blocks of memory. The task
of a dynamic memory allocator is to provide blocks of memory for allocation requests and to
internally track and manage memory, as blocks are being continuously allocated and deallocated.
Nowadays, most applications are multithreaded, which requires the memory allocator to be
able to correctly handle concurrent allocation and deallocation requests. In other words, the
memory allocator must be thread safe. The requirement of thread safety naturally complicates
the memory allocator’s design. To guarantee thread safety, current state-of-the-art memory
allocators use lock-based data structures. The use of locks has implications in terms of program
performance, availability, robustness and flexibility. As such, current state-of-the-art memory
allocators attempt to minimize the effects of locking by using fine-grained locks, by reducing
the frequency of lock operations and by providing synchronization-free allocations as much as
possible through the use of thread-specific caches [13, 16].

However, even with only infrequent and fine-grained locking, lock-based memory allocators
are still subject to a number of disadvantages. They are vulnerable to deadlocks and livelocks,
prune to priority inversion and delays due to preemption during locking, and incapable of dealing
with unexpected thread termination. A more challenging but desirable alternative to ensure
thread safety is to use lock-free synchronization. Lock-freedom guarantees system-wide progress
whenever a thread executes some finite amount of steps, whether by the thread itself or by
some other thread in the process [22]. This progress guarantee is by far the most important
advantage of lock-free synchronization and it protects the memory allocator (and therefore the
running application) from reaching a complete halt even in the presence of a subpar operating
system scheduler, or when a very high number of application threads exist when comparing to
machine cores. By definition, lock-free synchronization uses no locks and does not obtain mutual
exclusive access to a resource at any point. It is therefore immune to deadlocks and livelocks.
Without locks, priority inversion and delays due to preemption during locking cannot occur, and
unexpected thread termination is also not problematic.

1



2 Chapter 1. Introduction

Additionally, lock-free algorithms or data structures that need to dynamically allocate memory
cannot be built on top of a lock-based memory allocator without compromising the lock-freedom
property. This is particularly relevant for lock-free data structures or algorithms that use memory
reclamation techniques such as epochs or hazard pointers [20, 39]. As such, competitive lock-free
dynamic memory allocators are essential for the complete implementation of lock-free data
structures and algorithms that reclaim memory.

For lock-free dynamic memory allocators to be viable and become widely used, they have to
match the performance of lock-based dynamic memory allocators. Today’s lock-based dynamic
memory allocators are fast, with allocation and deallocation operations in the order of dozens
of nanoseconds on average, and scalable, allowing for multithreading applications to benefit
from more cores even if they are bound by memory allocator performance. The importance of
efficient memory allocation has been highlighted by recent work [25] by showing that the dynamic
memory allocation consumes nearly 7% of all cycles in warehouse-scale and cloud computing.
The competitiveness of new dynamic memory allocators is thus imperative for their viability and
wide-spread use.

1.1 Thesis Purpose and Contributions

In this thesis, we present the design and implementation of LRMalloc, a lock-free dynamic memory
allocator that leverages lessons of modern allocators to show the feasibility of lock-free memory
management, without sacrificing performance in comparison to commonly used state-of-the-art
allocators. We can identify three main components in LRMalloc’s design: (i) the thread caches,
which provide synchronization-free blocks and are used in the common allocation/deallocation
case; (ii) the heap, a lock-free component that manages superblocks of memory pages; and (iii)
the pagemap, a book-keeping component used to store metadata at the page-level.

Experimental results show that, unlike prior lock-free alternatives, LRMalloc is competitive
with commonly used state-of-the-art memory allocators. This has been achieved by reproducing
similar strategies to the ones used by lock-based memory allocators to avoid performance
degradation due to usage of locks. LRMalloc uses thread caches to reduce the common
allocation/deallocation case to a synchronization-free operation, thus avoiding synchronization
between threads for most allocation and deallocation requests. When synchronization is necessary,
to add/remove blocks to/from a thread cache, LRMalloc attempts to transfer as many blocks
with as little synchronization (i.e., atomic operations) as possible, in an effort to amortize the
cost of those atomic operations through the subsequent allocation and deallocation requests.

We also present a lock-free best-fit mechanism, capable of lock-free coalescing and splitting
of blocks. To the best of our knowledge, our mechanism is the first lock-free general coalescing
mechanism that is able to coalesce and split blocks of arbitrary size, and that does not put
restrictions in how coalescing can be performed. Our mechanism ultimately aims to be used as a
lower-level allocator for LRMalloc or other lock-free memory allocators, allowing them to manage
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memory without the assistance of the operating system, and potentially improving performance
by reducing the number of system calls.

The results and contributions of this work were already published in a national [33] and in
an international [34] event. We have also received an invitation to publish in a special issue of
the journal Concurrency & Computation: Practice & Experience.

1.2 Thesis Organization

This thesis is structured as follows:

• Chapter 1 – Introduction. This chapter.

• Chapter 2 – Classic Memory Allocation. Introduces the subject of memory allocation
along with classical memory allocation research.

• Chapter 3 – Principles of Multithreading. Discusses multithreading and builds a
strong foundation for practical considerations needed for modern concurrent memory
allocators.

• Chapter 4 – Multithreaded Memory Allocation. Discusses challenges of multi-
threaded memory allocation and prior work.

• Chapter 5 – LRMalloc Design and Implementation. Describes the key data
structures and algorithms that support the implementation of LRMalloc.

• Chapter 6 – Experimental Analysis. Discusses experimental results that compare
LRMalloc against other modern and relevant memory allocators.

• Chapter 7 – A Lock-Free Coalescing Mechanism. Describes the design of a novel
lock-free best-fit mechanism capable of coalescing that can be used for managing memory.

• Chapter 8 – Conclusion. Outlines conclusions and discusses further work.





Chapter 2

Classical Memory Allocation

In this chapter, we introduce the subject of memory allocation. We start by discussing the role of
a memory allocator. We then present a summary of memory allocation research starting in the
60s. We describe this research as classical, as it defines long-established mechanisms for memory
allocators that are still in use today.

Throughout this chapter and in the remaining of the document, we use the terms allocator,
memory allocator and dynamic memory allocator interchangeably.

2.1 Role of a Memory Allocator

The duty of a dynamic memory allocator is to keep state of the memory that has been provided
for an application – to track what parts of memory are in use and what parts are free, in order to
be able to fulfill memory requests for an underlying application (or program, or user). Only two
kind of requests can be made: (i) to allocate a block of memory of some specified size; (ii) to free
a previously allocated block. A dynamic memory allocator has no control over what the sequence,
number, or properties of requests that are made by the application. However, it has control over
the data structures, techniques and heuristics used to deal with the stream of memory requests.

In general, a dynamic memory allocator gives the following guarantees to the application:

1. A response to a request is irrevocable – a block supplied to the application cannot be later
changed or reverted;

2. Blocks in use by the application cannot be moved or touched by the allocator;

3. Only freed blocks and unused memory can be managed and touched by the allocator.

On the other hand, the application, program or user has to guarantee that:

1. An allocated block is only freed once;

5



6 Chapter 2. Classical Memory Allocation

2. Once a block is freed, it can not be touched by the application.

The application’s guarantees are easy to understand since, if an application is able to free
an allocated block several times or touch a block after free, the memory allocator is unable to
determine when a memory block can be reused and supplied back to the application. In fact,
violating either of these guarantees may lead to well-known vulnerabilities – violating the first
guarantee may lead to a double-free exploit [11], while violating the second guarantee may lead
to a use-after-free exploit [1].

Please note that, in this document, we are discussing manual memory management and not
garbage collection. Manual memory management and garbage collection are two distinct research
areas. Garbage collectors have a very different set of guarantees provided to the application.
Garbage collectors can, for example, move blocks that are currently in use by the application
while still guaranteeing correct application behavior. In a garbage collected environment, the
application does not have to explicitly deallocate blocks, and the garbage collector is left to
resolve the moment from which the application can no longer access the block, in order to safely
deallocate it. Compared to manual memory management, garbage collection has different design
and performance characteristics [23].

Furthermore, we argue that garbage collectors are more tightly integrated with the specific
language and environment they execute on – a garbage collector’s design depends on the language
constructs and abstract machine model in order to resolve the moment at which blocks of
memory can no longer be accessed. This is bound to be different depending on the type of the
programming language used (e.g., functional vs imperative). The observation that the garbage
collector is an essential and irreplaceable component of the runtime system in languages such
as Haskell or Java, while a dynamic memory allocator is a replaceable library in C/C++/Rust
seems to support our view.

2.2 Fragmentation

Memory allocation as a research topic has a rich history. Starting in the 1960s, and motivated
by the exorbitant cost of main memory, researchers poured effort into the design of allocator
strategies and algorithms that minimized memory fragmentation – a fundamental problem
in memory management that implies needing more memory to satisfy a sequence of memory
requests than the sum of the memory required for those memory requests individually. This
type of research (which we describe as classical) assumes a sequential execution environment and
concerns itself mainly with fragmentation rather than performance. A large number of memory
allocation block placement algorithms (which from now on we will refer to as mechanisms) have
been developed that exhibit different fragmentation and performance behavior [51].

Memory fragmentation is thus a fundamental problem that must be handled by any dynamic
memory allocator. When an application starts, the dynamic memory allocator has a large
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continuous region of memory. As the application requests memory allocations and deallocations,
the memory allocator uses this region to fulfill the requests. Over time, this region becomes
fragmented and made up of smaller continuous blocks of used and freed (available) memory. As
the fragmentation increases, it becomes impossible for the memory allocator to fulfill a memory
allocation request that is larger than any of the available continuous blocks, even if the total of
the sum of these available continuous blocks is larger than the requested block.

Figure 2.1 demonstrates an example of a simple sequence of requests leading to a fragmented
region. In this example, the allocation of blocks A and B with sizes 5 and 3, respectively, and
the subsequent deallocation of A results into a fragmented region that is unsuitable to allocate a
block C with size 6 – even though we can account a total of 10 free blocks available.

Figure 2.1: An example of memory fragmentation

Memory allocation can be seen as a combinatorial problem. In computational complexity
terms, an offline version of memory allocation can be modeled as a modified bin packing problem,
which is known to be NP-hard [12]. Therefore, even an offline algorithm, that has access to the
entire request stream, cannot guarantee minimal or no fragmentation for a non-trivial stream of
requests. A dynamic memory allocator is in essence an online algorithm for the same problem.
An online algorithm has no information about future requests in the request stream and has
to irrevocably fulfill the request. That lack of information inevitably increases the difficulty of
minimizing fragmentation.

Fragmentation is ultimately a result of the block placement decisions of the memory allocator.
In Fig. 2.1, the memory allocator chooses to place a block in the first position where it can be
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placed. A different set of decisions could have resulted in a different fragmentation behavior.

Note however that the stream of requests that a memory allocator has to deal with is not
random by nature – it is a consequence of program behavior. Computer programs exhibit
regularities which can be exploited. Modern CPU architectures exploit temporal and spatial
locality through the use of caches, and specific cache designs further exploit program regularities.
Classical memory allocation research has given origin to a number of memory allocation
mechanisms with different performance characteristic that exploit these regularities with different
effectiveness.

2.3 Memory Allocation Mechanisms

Wilson et al. [51] present a survey that summarizes most memory allocation research prior to
1995. In it, they discuss the importance of the task of block placement. Wilson et al. argue that
a dynamic memory allocator’s functioning can be thought of three parts: strategy, policy and
mechanism. The strategy attempts to exploit regularities in the request stream – the chosen
strategy allows a range of acceptable policies that can be used. A policy is an implementable
decision procedure for placing blocks in memory or, in other words, an action to choose a block.
Finally, a mechanism is an algorithm that implements the desired policy. Wilson et al. [51]
describe and categorize the following memory allocator mechanisms:

• Sequential fits, such as, first-fit, next-fit and best-fit.

• Segregated free lists, such as, simple segregated storage, segregated fits and slabs.

• Buddy systems, most importantly binary buddy systems.

Two techniques for supporting placement policies are splitting and coalescing of free blocks. A
dynamic memory allocator may have to split a large block into two smaller ones in order to fulfill
a memory request. Similarly, a dynamic memory allocator may coalesce (or merge) neighboring
free blocks together in order to fulfill a request for a larger block. Ignoring performance concerns,
coalescing frequently (e.g., after every deallocation) is desirable – a larger block is more useful
than many smaller blocks when fulfilling block requests. One may even view fragmentation as an
overabundance of small blocks that cannot be coalesced. As will be seen later, memory allocator
mechanisms restrict the way in which blocks can be split and coalesced.

Some mechanisms may fulfill allocation requests by providing blocks that are larger than the
requested block size. Fragmentation that is due to the wasted space inside a block that is too large
is called internal fragmentation [45]. All remaining fragmentation is called external fragmentation.
This distinction is important, as will be seen later in this chapter, some mechanisms potentiate
one type of fragmentation but not the other.
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2.3.1 Sequential Fits

Some of the most basic mechanisms used in early memory allocators are called sequential fits,
where the memory allocator uses a single list of free blocks (called a free list) to determine
what block is going to be provided for the next memory allocation request. Note that this list
might be replaced by a more appropriate data structure that allows the allocator to have better
performance characteristics, while behaving fundamentally the same in terms of fragmentation.
Sequential fits include first-fit, next-fit, best-fit and worst-fit.

First-fit

First-fit searches the free list and provides the first found block that meets the size requirements.
If the block found is not an exact match, it is split, and the smaller remaining block is re-inserted
back into the list. Blocks that have been deallocated or are obtained as a side effect from splitting
may be put: (i) in the front of the free list, commonly called a LIFO (last-in-first-out) first-fit; (ii)
in the back of the free list, called a FIFO (first-in-first-out) first-fit or (iii) in an address-ordered
position in the free list, which is referred to as an address-ordered first-fit. Address-ordered
first-fit encodes the adjacency of free blocks, which can be used to implement faster coalescing.
Worst-case fragmentation for first-fit is well-known [46] and FIFO and address-ordered first-fit
are known to have good fragmentation performance [52].

Next-fit

Next-fit is in essence an attempt to optimize first-fit where the search in the free list begins at the
point at which the search stopped in the last request, in an attempt to decrease average search
times when the free list is implemented as a linear list. However, next-fit ends up changing block
placement significantly in a way that is well distinct from any type of first-fit. Next-fit has been
found to cause more fragmentation than first-fit or best-fit [43].

Best-fit

Best-fit uses the free list to do an exhaustive search looking for the smallest block that can fulfill
the request. The goal of a best-fit mechanism is to minimize the size of resulting fragments from
a split and thus reduce the amount of wasted space. However, this may backfire if best-fit fails
to find perfect matches and instead generates fragments that are too small to be used by future
allocation requests. Best-fit has been found to exhibit good fragmentation performance [52] but
undesirable worst-case fragmentation [46]. Similarly to first-fit, best-fit has FIFO, LIFO and
address-ordered variants. These variants define the chosen free block in case there are several
equal-sized blocks that match a memory allocation request. Address-ordered best-fit has been
found to have particularly good performance [24].
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Worst-fit

Worst-fit is conceptually the opposite of best-fit – it uses the free list to search and use the largest
free block. The reasoning behind worst-fit is that by always using the largest free block, the
remaining block is as large as possible, which should reduce the number of unusable fragments.
In practice, worst-fit tends to work quite badly, as it tends to reduce the number of large blocks
available [48].

2.3.2 Segregated Free Lists

Segregated free lists use several distinct free lists of blocks (often an array of free lists), usually
segregated by size. Allocation requests are serviced by selecting the appropriate free list. To
limit the required number of distinct free lists, various segregated free list schemes aggregate
various block sizes into a size class. Size classes are commonly composed by powers-of-two or
by sums of powers of two. If size classes are used, requests are serviced by rounding up the
requested block size to the nearest size class and then using the appropriate free list. Size classes
are a particularly important concept for modern memory allocators, and the use of size classes
has implications in how the allocator has to deal with lower level details such as alignment and
implications on internal fragmentation, since a block given to the application may include wasted
memory, if the provided block is larger than the requested size.

Note that segregated free lists have distinct free lists, but the blocks in these lists are not
physically segregated. Coalescing and splitting is still possible for adjacent blocks that are in
different free lists, if additional mechanisms are in place. Furthermore, a block of memory (or
any specific memory address) can only belong to a single free list. Segregated free lists include
simple segregated storage, segregated fits and slab allocation.

Simple segregated storage

In simple segregated storage, requests can only be serviced by a single free list. On a allocation
request, if the appropriate free list is empty, there is no attempt to obtain a larger block from
another free list in order to split it. Instead, more memory is obtained from the operating system
in order to assemble blocks to be added to the empty free list. On deallocations, there is no
coalescing of blocks, the block is just added to the corresponding free list or returned along other
free blocks to the operating system (or to a more specific lower-level component).

This lack of splitting and coalescing mechanisms has some severe implications in terms of
fragmentation – since allocation requests can only be serviced by a single free list, some care
must be taken in the management of the amount of free blocks that are kept in these free lists.
The upside of this fragmentation disadvantage is that this scheme requires less memory to do
memory bookkeeping – a single number can be used to track equal-sized blocks in a region (e.g.,
a page), instead of more complicated and costly data structures such as bitmaps or trees that
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are needed when blocks can be coalesced and thus no assumption of the size of blocks in a given
region can be made. Late classical research [24] suggests that, without some care in the chosen
size classes, the increased fragmentation by far exceeds the reduced internal memory overhead.

As will be seen later in Ch. 4, simple segregated storage is by far the most common scheme
used in modern dynamic memory allocators. It possesses good locality properties, as blocks with
the same size are necessarily grouped together, and this ties up nicely with certain properties
that can be explored in regular programs. It offers desirable speed performance, as an allocation
becomes just an array lookup to obtain the correct free list (with the necessary size class
computation operations), followed by an element pop (e.g., the block) from the list.

Figure 2.2 shows an overview of a simple segregated storage. Figure 2.2(a) exemplifies the
free list segregation, where each free list contains blocks of a single size. The free list itself can
be composed using the free blocks’ memory (just enough to contain a pointer). The memory
used to compose the list does not count as actual memory allocator overhead, since it is used to
fulfill a memory allocation request. Therefore, the free list itself can be represented with a single
pointer that acts as the list’s head. Figure 2.2(b) highlights the actual memory layout when
filling a particular free list. Pages (or an equivalent region of memory) will be obtained from the
operating system and then split into several equal-sized blocks. These equal-sized blocks will be
provided sequentially to fulfill memory allocations, with a high degree of spatial locality.

(a) Free list segregation (b) Locality of blocks in the same free list

Figure 2.2: Overview of a simple segregated storage

Segregated fits

Segregated fits differ from simple segregated storage in that blocks can be split and coalesced,
and a search for an appropriate-sized block can visit several free lists. In the allocation case, and
similarly to simple segregated storage, there is a lookup for the free list that corresponds to the
wanted size (if there is a separate list for every possible size, this is called an exact list segregated
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fit). If the free list is not empty, a free block is removed. If empty, an iterative search is made
on the lists with larger sizes until a block is found. The found block is then split if it is large
enough to be split (i.e., such that the remaining block can be added to a list), and the remaining
block is added to the corresponding free list.

When a block is deallocated in a segregated fits scheme, it can be coalesced with neighboring
free blocks. Those neighboring free blocks are removed from their free lists, and the resulting
larger coalesced block is added to the corresponding list. Not all segregated fits schemes choose
to coalesce immediately on block deallocation, some may choose to defer it to a later time in an
effort to improve the deallocation case performance.

Segregated fits can be seen as a form of best-fit or good-fit (a kind of weaker best-fit) with
better performance characteristics because of the free list segregation. Similarly to first-fit and
best-fit, it is known to achieve good performance in practice [24].

Slabs

Slabs (also commonly known as slab allocation) is a particular type of simple segregated storage
that uses object types instead of block sizes to determine which free list is used. Slabs require a
non-standard memory allocator interface that allows allocation of an object of a specific type,
rather than just a size. In slab allocation, there is a free list per object type rather than size or
size class. There can be multiple free lists that store blocks of the same size, as long as they are
providing blocks for objects of different types.

Slab allocation is most prominently used for operating system object allocation [6, 7], but it
can also be used as custom memory allocation for some applications [2, 15]. Slab allocation offers
better locality characteristics than simple segregated storage, as blocks representing objects with
the same type are more closely put together than blocks representing different objects types,
and objects of the same type have more closely tied lifetimes. Variations of slab allocators that
are deeply integrated with the program/application (as in the case in [6]) can also offer object
construction and destruction optimizations.

Slab allocation is less general and program-agnostic than other memory allocation schemes
described so far, but is still generic enough to be called a generic allocation scheme. It cannot
be used with the standard memory allocation interface (which only allows allocation of blocks
of a specific size, not type), but it can be used in strongly typed languages that have extended
memory allocation interfaces that include type information, such as C++.

2.3.3 Buddy Systems

Buddy systems impose a hierarchical structure over an entire region of memory to determine
how it can be logically split/coalesced. Initially, the entire heap is a block that can be split into
two buddies. Each buddy is a block that can be further split into another two buddies, and so
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forth. Each block always has a corresponding buddy – the other block that was produced by the
splitting of the block that is one level up in the hierarchy. Since each block can easily calculate
the corresponding buddy, this offers a very fast and low memory overhead coalescing mechanism.
A block can quickly find its buddy through a simple address computation, and only a single bit
of information is required to determine whether the buddy is free and available for coalescing or
is being used.

The buddy system imposes a structure where blocks can only be split in a deterministic way,
regardless of the requested block size. To find free blocks in the hierarchy, buddy systems use a
segregated fits mechanism, containing one free list per each possible block size. For example,
in a binary buddy system, there is a free list per each power of two. To allocate a block, the
segregated fits mechanism is used to quickly find a block. Allocations are then fulfilled by either
using the found block, if it has the appropriate size, or by recursively splitting it into two buddy
blocks – the first is checked for the appropriate size, the second is added as a free block to the
segregated fits mechanism. Deallocations are fulfilled by finding the buddy of a block and then
by performing recursive coalescing – a block is recursively coalesced with its buddy until a not
free buddy is found. Blocks being coalesced are removed from the corresponding free list in the
segregated fits mechanism, and the resulting coalesced block is added.

The most common and well-known form of buddy systems are binary buddies, where blocks
in the hierarchy use powers of two – a small variation of this type of system is used for managing
pages in the Linux Kernel [37]. There are other more exotic forms of buddy systems that use
Fibonacci series (called Fibonacci buddies) and forms that use specific size class series (called
Weighted buddies). These have been well documented in [51].

In general, buddy systems show good performance characteristics, allowing for fast coalescing
with only a minimal amount of memory needed. However, buddy systems have been found to
have undesirable fragmentation in practice [24], both internal fragmentation due to the limited
number of different block sizes and external fragmentation due to the restricted coalescing that
can be done.

Figure 2.3 shows a allocation and a deallocation example in a binary buddy system that uses
a heap of size 16 (24). Figure 2.3(a) shows the allocation of a block A of size 3. The initial
heap size is too large for this allocation, thus it is split into two blocks (buddies), each one of
size 8. The resulting first block is still too large for the allocation, so it is split once more, into
two buddies of size 4, which are suitable for an allocation of size 3. The resulting first block of
size 4 is then used for the allocation of block A. For a requested allocation of size 3, no better
match could have been made, although the remaining space is unusable and accounted as internal
fragmentation.

Figure 2.3(b) shows the deallocation of a block A in a heap where two blocks A and B have
been allocated. Block A is first deallocated, and immediately after A’s buddy is located and
an attempt is made for coalescing. Next, the buddy of this coalesced block is also located, but
coalescing fails because the buddy is being used to hold block B.
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(a) Allocation of block A with size 3 in an empty heap (b) Deallocation of block A in a heap with a block
B also allocated

Figure 2.3: An example of a binary buddy system

2.4 Program Regularities

Computer programs exhibit patterns of behavior and the regularities they exhibit have been
exploited to design effective hardware. Memory caches, prefetching and branch prediction are all
examples of hardware design features that assume and exploit program regularity. The same
is true for memory allocation – programs exhibit regularities in the stream of requests done to
the memory allocator and these regularities can be exploited in order to obtain more effective
memory allocators, both in terms of speed and fragmentation.

The fact that there are regularities in the stream of requests is well accepted, but most of
earlier classical memory allocation research does not directly address it – mechanisms were not
explicitly designed to exploit specific regularities, some just happen to do so. Wilson et al. [51]
point out that best-fit and address-ordered first-fit mechanisms work well in practice and have
good fragmentation, but the reasons for that were not clear at the time. They argue that past
evaluation of memory allocators has led to this state of affairs, because the performance of
memory allocators and related mechanisms was measured with streams of requests that were
randomly generated, often with unrealistic distributions. A random stream of requests has no
regularities that can be exploited, and thus memory allocators that perform best in this type of
evaluation are not necessarily the same memory allocators that also perform well in practice.
In what follows, we present some regularities that are known and can be exploited by memory
allocators.

Programs allocate only a few block sizes

Most memory allocation requests that a program does are for the same few types of block size.
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Table 2.1, by Johnstone et al. [24], shows the number of distinct block size requests in a given
percentage of all allocations for a set of 8 different programs. On average, 90% of all allocations
are for 6 distinct block sizes, which shows that the majority of the allocations being done is for
a limited number of object types, likely the essential types in the data structures used by the
program.

Table 2.1: Number of different block size requests in a percentage of all allocations
Program 90% 99% 99.9% 100%

GCC 5 12 254 641
Espresso 9 95 308 758

Ghostscript 7 85 344 589
Grobner 12 55 100 139
Hyper 1 2 2 6
LRUsim 1 1 5 21
P2C 4 26 58 92
Perl 10 27 60 96

Average 6 36 141 293

This regularity has some severe implications for mechanisms such as simple segregated
storage, which use size classes and therefore round up allocation sizes, originating some internal
fragmentation. Furthermore, simple segregated storage obtains some memory from the operating
system to fill an empty free list in order to fill it with several blocks – that number of blocks may
end up unused and count as external fragmentation for a good amount of time, especially if a
given size is scarcely used. Therefore, careful consideration is needed to decide how many blocks
must be used to fill an empty free list with memory allocators that use simple segregated storage.

Blocks allocated near in time are also deallocated at similar times

Johnstone et al. [24] have made the observation that blocks that are allocated at similar times
(or near in time) are also deallocated at similar times, often in the same or in reverse order. This
regularity explains in part the low fragmentation of address-ordered first-fit and best-fit, both of
which tend to place blocks that are allocated successively in continuous memory. Johnstone et al.
argue that these address-ordered variants have better fragmentation because new blocks tend to
be allocated from one end of memory, which gives time for blocks that were allocated closer to
the other end of memory to be deallocated and thus allow coalescing to succeed.

2.5 Effects on Program Execution

A program that uses manual memory management requires a dynamic memory allocator to fulfill
the program’s stream of requests. Thus, it is important to know what overhead we can associate
with the dynamic memory allocator and what impact it has on program execution. As will see, a
dynamic memory allocator has impact not only on the program memory usage, but also on the
overall program performance.
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2.5.1 Memory Usage Impact

The most obvious effect of a dynamic memory allocator, and which is the most significant
subject of evaluation in classical memory allocation research, is memory usage, with a focus
on fragmentation. In terms of memory usage, a good memory allocator is one that reduces
the amount of memory required to execute a program. Despite the focus on fragmentation
by earlier memory allocation research, it is not the only source of increased memory usage.
Johnstone et al. [24] have shown that, in practice, if a good memory allocator mechanism is
used, fragmentation is minimal and increased program memory usage can be mainly attributed
to allocator implementation overhead, such as headers and alignment. In summary, we can
accurately account for increased program memory usage in these components:

• Internal fragmentation

• External fragmentation

• Implementation overhead

Internal fragmentation

Internal fragmentation accounts for wasted space in allocated blocks that are larger than the
requested size. This mainly happens when the memory allocator uses size classes, as is the case
of mechanisms like simple segregated storage, segregated fits and buddy systems. This type
of fragmentation can be decreased by increasing the granularity of the size classes, i.e., using
size classes that are closer to each other. The worst-case scenario of this type of fragmentation
is obvious when the available size class are known. For example, the worst-case internal
fragmentation for a mechanism that is using powers-of-two size classes (as is the case of a binary
buddy system) is 50% of the total memory usage.

External fragmentation

In essence, external fragmentation accounts for free blocks of memory that cannot be used for
future requests because of being too small or logically inaccessible. Some memory allocator
mechanisms such as best-fit and first-fit only have external fragmentation in the form of free
blocks that are too small to be used.

Unlike internal fragmentation, worst-case external fragmentation is not known without careful
analysis of the memory allocator mechanism in question. Robson [47] shows that the lower bound
for worst-case fragmentation in any algorithm is M log2 n, where M is the amount of memory
being currently used and n is the ratio between the smallest and the largest block sizes in the
requests.
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Implementation overhead

Dynamic memory allocators need to keep some internal state in order to fulfill their function.
The amount of memory required for a dynamic memory allocator to work depends on the
mechanisms and implementation of the memory allocator. There are data structures that can be
used almost for free, such as the lists of free blocks that use the block’s free memory to assemble
the actual list. However, the pointer to the first free block cannot be avoided and that accounts
as implementation overhead. Mechanisms such as simple segregated lists or segregated fits must
take this into account, as each size class amounts to an instance of a free list that must exist
somewhere in memory.

Coalescing is another source of implementation overhead for memory allocators. To be able
to coalesce blocks, memory allocators have to store information about what blocks are neighbors
and whether those blocks are free and thus available for coalescing. Buddy systems, which impose
a strict hierarchy on the heap address space and severely restrict the way coalescing can be done,
can escape this by only storing a single bit of information per block. Other mechanisms, such as
boundary tags [28], require more memory-intensive methods like having a header field per block.
The header field will occupy at least one processor word (e.g., 8 bytes in a 64 bit machine) and
contains enough information to track prior and next blocks.

Another source of implementation overhead is alignment. Modern CPU architectures such as
x86-64 or ARMv8 require memory operants to be aligned to processor word size. Therefore, the
memory allocator must provide blocks that are aligned at least to processor word size, to ensure
correct program behavior. These alignment requirements force smaller allocations such as 1-byte
to actually occupy at least 8 bytes, because no new block can be placed in the following bytes.

2.5.2 Performance Impact

Unlike memory usage, it is not obvious what impact, if any, a dynamic memory allocator has in
program performance. Ultimately, the memory allocator controls the placement of blocks in the
heap and provides memory to the program so that it can be accessed – and memory access times
may improve or degrade depending on the proximity of the blocks being accessed.

As discussed in Sec. 2.4, programs exhibit regularities that can be exploited not only by
hardware but also by the memory allocator, and such regularities influence fragmentation and
thus program memory usage. But, there are others that can influence the memory allocator’s
impact on program performance. Blocks that were allocated near in time are likely to be accessed
later at similar times. Data structures that use nodes can benefit from improved performance
if nodes are placed together in memory. A memory allocator can thus heuristically improve
performance of such data structures by placing blocks that are of the same size as close to each
other as possible. This is one of the reasons why slab allocation [6] is particularly effective – slabs
group up blocks not only by size, but also by object type. This effectively improves memory
access times.
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On multithreaded programs, the dynamic memory allocator’s placement decisions can also
have severe effects on performance if different blocks are placed in the same cache line and then
given to different threads, on what is called false sharing [4]. This will be discussed further in
Ch. 4.

2.6 Memory Allocation in Practice

To understand the requirements and limitations of a dynamic memory allocator, it is important
to understand how exactly it is used in practice. In particular, manual memory management in
the operating system is fundamentally different from manual memory management in a program
or application. A dynamic memory allocator operating in a program can always fall back to the
operating system to obtain more memory, or even to manage memory.

In practice, a dynamic memory allocator operates in user-space and has access to the operating
system. Unlike what the name suggests, a dynamic memory allocator does not actually have to
manage memory in the real sense of the word, since it does not have to be able to start with the
entire available memory and then manage it to fulfill requests – that duty is left to the operating
system. In fact, some of the memory allocation mechanisms we have described explicitly assume
that there is an operating system (or lower-level allocator) they can resort to, namely simple
segregated storage.

2.6.1 Malloc C API

The most widely used memory allocation interface is the malloc programming interface, which is
a group of functions in the C standard library. A dynamic memory allocator is thus a library
that implements the malloc interface. This interface defines how the program is able to allocate
and deallocate memory. The C standard specifies a group of functions that allow interaction
with the dynamic memory allocator. Listing 2.1 summarizes the malloc interface. There are also
other legacy functions that the memory allocator must support, shown in Listing 2.2.

The semantics and arguments of these functions have a deep impact on how memory allocators
are implemented. The fact that free() does not take in a size argument implies that the memory
allocator must somehow be able to infer the size of the allocation from just the pointer – this
requires the memory allocator to store this information somewhere, which necessarily increases
implementation overhead. Memory allocators that use techniques such as boundary tags can
use the same information for both coalescing and to find the size of a memory allocation.
Mechanisms such as simple segregated storage that do not use coalescing have to explicitly store
size information, often by assuming all blocks in a page (or equivalent region of memory) are
equal-sized and then storing metadata for that page.
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� �
1 // a l l oca t e a block of memory with at l e a s t ’ s i z e ’ bytes
2 void* malloc(size_t size);
3
4 // free a previous ly a l loca ted block of memory
5 void free(void* ptr);
6
7 // a l l oca t e a block of memory with at l e a s t ’n ’ ∗ ’ s i z e ’ bytes
8 void* calloc(size_t n, size_t size);
9

10 // a l l oca t e ’ s i z e ’ bytes , try to use a prior a l l oca t ion
11 void* realloc(void* ptr, size_t size);
12
13 // a l l oca t e a block of memory with spec i f i ed alignment
14 // alignment must be a power of two
15 void* aligned_alloc(size_t alignment, size_t size);
16
17 // obtain the number of usable bytes of b lock pointed to by ptr
18 size_t malloc_usable_size(void* ptr);� �

Listing 2.1: Malloc interface

� �
1 // alignment must be power of two
2 int posix_memalign(void** memptr, size_t alignment, size_t size);
3
4 // al igned to a page
5 void* valloc(size_t size);
6
7 // alignment must be power of two
8 void* memalign(size_t alignment, size_t alignment);
9

10 // same as va l l oc but rounds s i z e of a l l oca t ion to next mult ip le of page s i z e
11 void* pvalloc(size_t size);� �

Listing 2.2: Legacy malloc interface

As discussed earlier in Sec. 2.5.1, alignment is another important aspect that affects the
implementation of memory allocators. Not only there are functions that require the memory
allocator to return a memory block that is explicitly aligned, but there are also minimum
alignment requirements, as specified by the C standard [9].

2.6.2 Role of the Operating System

The operating system has to manage physical memory in order for it to be used by applications
and by the operating system itself. Every operating system does so through manual memory
management and so there is at least one memory allocator. However, the fundamental unit of
memory that the operating system works with is a page, rather than a byte. The Linux Kernel
for example uses a buddy system to manage pages [37]. Additionally, the operating system may
have other memory allocators to fulfill smaller allocations for kernel data structures, as is the
case of the slab allocator [6] in the Linux Kernel, and these use the default page allocator to
obtain their own memory to manage.

The operating system provides ways for programs to obtain memory. In Linux, pages of
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memory can be obtained by using the sbrk() or mmap() system calls. The srbk() system
call changes a single value that controls the end of the program’s heap. When more memory is
needed, the program heap is extended. When memory that is at the end of the program heap
is freed, the program heap is shrunk, and thus memory is freed back to the operating system.
Nomenclatures such as wilderness or wilderness block [29] are used to describe memory that
is at the end of the program heap and are mostly used by dynamic memory allocators that
use srbk() to obtain memory from the operating system, such as dlmalloc [31]. The mmap()
system call, on the other hand, allows to obtain continuous set of pages that can be flexibly
returned to the operating system when they are no longer needed, even partially, with the use of
unmmap(). Another way of returning memory to the operating system is through the use of
madvice(), which can inform the operating system that a set of pages is no longer needed and
can be released, while keeping the page’s address space still valid.

At first sight, it might seem that there is no need to duplicate the role of memory allocation
in both the program and the operating system, with the operating system’s memory allocators
being capable of providing memory needed by programs that use manual memory management.
And while in theory, the operating system could completely handle dynamic memory allocator,
not doing so has a number of benefits. First, interaction with the operating system is done
through system calls, which are slow. A user-space dynamic memory allocator can fulfill memory
requests much more quickly than a system call can come to completion. Second, a system-wide
memory allocator would have to interweave allocations from different programs in memory, and
as we have seen in Sec. 2.5, the dynamic memory allocator has an effect on program performance,
and this interweaving would be detrimental to block locality.

2.6.3 Implications of Virtual Memory

Virtual memory is a memory management technique that allows flexible mapping of physical
memory to a program’s address space. The program is exposed to an entirely virtual address
space, which on memory access is address-translated into the corresponding physical address
through the CPU’s Memory Management Unit (MMU). In practice, pages of physical memory
are mapped to pages of virtual memory, instead of arbitrary byte-to-byte mapping.

It is common to say that “all problems in computer science can be solved by another level of
indirection”1. Virtual memory is a layer of indirection that solves the problem of fragmentation,
as non-continuous pages of physical memory can be transformed into continuous pages of
virtual memory. This is why the Linux Kernel can use a buddy system [37], which is relatively
fragmentation-prune, to manage pages of physical memory. With virtual memory, fragmentation
is not a problem since fragmented pages of physical memory can be made into large continuous
segments of virtual memory to be given to applications or used by the operating system itself.

An important aspect is that pages that have been given to a program by the operating system
do not have to be necessarily backed up by physical memory. When such a page is first accessed

1By David Wheeler, inventor of the subroutine.
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by the program, a page fault (an hardware exception) is raised, which has to be handled by
the operating system. The operating system then maps the page to physical memory, and the
memory access can then continue normally. Pages that maps to physical memory are called
committed. Pages that have no backing of physical memory are called uncommitted. The fact
that the operating system can provide pages that are not mapped yet to physical memory can
complicate the memory allocator design, as pages that have already been used for prior block
allocations become preferable to pages that have never been used before, in other to reduce real
memory usage. Moreover, an operating system providing uncommitted pages has implications in
how the dynamic memory allocator may choose to organize and place internal data structures.
Techniques such as boundary tags lead to interweaving of internal data structures with blocks,
which cause the memory allocator to touch pages that will need to be backed up by physical
memory.

Another important observation is that the operating system’s memory allocator is much
better suited to fulfill large allocations of pages than the program’s dynamic memory allocator, as
the operating system is capable of transforming non-continuous physical memory into continuous
virtual memory. We can understand then that the role of a user-space dynamic memory allocator
can be reduced to managing smaller allocations, that are no larger than a few pages, while larger
allocations can be deferred to the operating system.

The common saying “all problems in computer science can be solved by another level of
indirection” is concluded with “... but that usually will create another problem”. Unfortunately,
this also applies to virtual memory. Besides the operating system complexity and slower overall
memory access due to this extra layer of indirection, the operating system now has an additional
resource to manage – the virtual address space of each program. Managing the virtual address
space of a program is an analogous task to managing memory in a physical device, i.e., it is a
memory allocation problem, and thus must be an additional memory allocator to fulfill this task.
In 64-bit architectures, such as x86-64 or ARMv8, address space is plentiful and thus there are
no particular concerns for managing it. In legacy 32-bit architectures however, there is a real
concern of the scarcity of the address space, and a user-space dynamic memory allocator must
be aware to not induce fragmentation of the address space.

2.7 Chapter Summary

In this chapter, we gave an introduction to the subject of memory allocation, including an
overview of classical research, notions of fragmentation and memory allocation mechanisms. We
also discussed practical issues such as the effects of a memory allocator on program execution,
and the impact of virtual memory in the relationship of the memory allocator with the operating
system.





Chapter 3

Principles of Multithreading

In this chapter, we introduce and discuss multithreading and multiprocessor systems. This
chapter serves to build a strong foundation for Ch. 4, where we discuss multithreaded memory
allocation, which is much more focused on performance than classical memory allocation, and
thus we will spend some time describing important details of memory behavior in modern
multiprocessor systems.

The advent of multiprocessor systems with higher and higher processor counts came at
the same time as memory increased in size and decreased in cost. Both of these changes
had deep implications on memory allocation, as focus shifted to performance and scalability,
often in detriment of fragmentation and memory usage. Multithreaded memory allocation
requires not only dealing with techniques to ensure the correct functioning of the allocator for
concurrent memory requests, but also having a deep understanding of how memory behaves in a
multithreaded environment in order to achieve decent performance.

Multithreaded applications make use of several units of execution, or threads. Threads are
scheduled by the operating system scheduler and can do work in parallel if run on different
processors or cores simultaneously. All threads share the same address space in the application.
In particular, the heap and the data program segments, which contain dynamically and statically
allocated memory, respectively, can be used by all threads in an application. The scheduler can
preempt (e.i., interrupt) any thread at any time and thus interrupt any ongoing work by a thread.
Threads that operate on shared data or data structures that can be modified by other threads
need to employ synchronization primitives in order to ensure correct program behavior since,
otherwise, the use of shared memory without synchronization can lead to problems such as race
conditions [42].

3.1 Memory Access Impact

Modern multiprocessor systems contain several processors (or cores), each capable of running a
thread at a time. Each processor has access to a set of caches, ranging from the small but very
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fast L1 and L2 caches, that are private and used exclusively by the processor, to the slower but
larger L3 cache, which is shared between multiple processors. These caches are used to decrease
the average access time to memory, by fulfilling a large portion of the memory access requests,
as access times to main memory can be an order of magnitude higher than access times to any
of the caches. When the main memory is accessed, data is copied to caches in fixed size blocks
called cache lines, which are 64-byte blocks in most modern multiprocessor systems.

Multiple processors may contain copies of the same data in memory in their private caches.
When one processor updates that data (e.g., writes to memory), the copies in the private caches of
other the processors must be invalidated, or otherwise processors will have conflicting, incoherent
views of memory. Cache coherence protocols [5] ensure that different processors view memory
in a coherent way, at some expense in terms of system complexity and degradation of memory
access times for some memory access patterns. Cache coherence protocols use cache lines as the
fundamental unit of data where coherence is maintained.

3.1.1 Cache Line Contention

A well known memory access pattern that causes performance degradation occurs when simulta-
neous writes to the same cache line are done by several processors, causing the cache coherence
mechanisms to invalidate data in each processor’s private cache and forcing both processors to
communicate. We will refer to this type of performance degradation as cache line contention, for
lack of an existing term that describes this type of cache contention. Figure 3.1 summarizes how
cache line contention occurs. Figure 3.1(a) shows a case where degradation occurs if two threads
running in parallel, T1 and T2, write to the same cache line. The cache coherence mechanism
must order those two writes and invalidate the caches of the processors running T1 and T2.
However, if writes are done to different cache lines, as is the case in Fig. 3.1(b), then degradation
no longer occurs.

(a) Degradation occurs if threads T1 and T2 write to
the same cache line simultaneously

(b) No performance degradation occurs if threads T1
and T2 write to distinct cache lines simultaneously

Figure 3.1: Overview of degradation when writing simultaneously to memory
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3.1.2 False Sharing

A phenomena related to cache line contention is false sharing [49]. False sharing can be
described as performance degradation that occurs due to seemingly independent objects being
unintentionally placed in the same cache line, causing cache line contention if updates are done
to those objects. Figure 3.2 has an example of false sharing occurring due to the placement of
two objects A and B in the same cache line. Simultaneous writes to A and B by different threads
will cause cache line contention.

Figure 3.2: False sharing due to the placement of different objects in the same cache line

Placement of objects in the same cache line is only problematic for shared memory – memory
which can be accessed and written to by multiple threads in the application. False sharing does
not occur when objects are placed in the same cache for read-only data, such as code (which
resides on the text segment), or local data, such as local function variables (which reside on the
stack segment). Therefore, the issue of placement can be reduced to statically and dynamically
allocated objects, on the data and heap segments.

Generally speaking, prevention of false sharing in statically allocated data relies on the
programmer, who has to specify the layout in memory, size and alignment requirements of objects.
False sharing in dynamically allocated data is less clear. The dynamic memory allocator is
responsible for allocating dynamic blocks of data, and may place blocks in the same cache line
and then distribute them to different threads, which will lead to false sharing. An ideal solution
would be for the dynamic memory allocator to never place two blocks on the same cache line,
but as will be seen in Ch. 4, that may come with an unacceptable increase in memory usage.
Another alternative is for the dynamic memory allocator to only give blocks in the same cache
line to the same thread, but false sharing may still occur if the application then has several
threads operating on those blocks, at which point the programmer is once again responsible for
explicitly allocating blocks which will not share a cache line by using memory allocator functions
such as aligned_alloc().
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3.2 Synchronization Primitives

Threads need to use shared data and data structures in order to communicate and coordinate
with other threads. However, the use of shared data presents a challenge, as modern processors
and compilers are optimized for single-threaded applications, and many of these optimizations
manifest themselves by effectively reordering program access to memory. In a multithreaded
environment, due to memory access reordering, an application may no longer work as intended.
Various factors in modern systems may reorder access to memory:

• Compiler

– Register allocation

– Subexpression elimination

– Optimization heuristics

• Processor

– Prefetching

– Speculative execution

– Out-of-order execution

• Cache

– Store buffers

– Private processor caches

Synchronization primitives are in essence operations that stop the reordering of accesses to
memory in order to allow synchronization of data that can be accessed by multiple processors
and that can thus be used to write and reason about multithreaded applications. Synchronization
primitives are fundamentally slower than other native operations, as they prevent memory access
reordering and require inter-processor communication in order to achieve synchronization of what
is stored in the main memory and in the caches of the other processors. There are several types
of synchronization primitives:

• Atomic operations

• Locks (i.e., mutual exclusion)

• Transactional memory

In this document, we will not cover transactional memory [21], as it is not yet a widely
available feature in multiprocessor systems, and software transactional memory is not a sufficiently
high-performance alternative [8].
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3.2.1 Atomic Operations

Atomic operations are instructions that cannot be interrupted by the operating system’s scheduler
and that appear to run instantaneously to the other processors. The available atomic operations
depend on the architecture used by the CPU and not all atomic operations are universally
available. The following instructions are commonly available:

• Compare-and-swap

• Test-and-set

• Fetch-and-add

• Load-link and store-conditional

All the instructions above are atomic read-modify-write operations, i.e., operations which
read a value from memory and write a new value atomically. They operate on a single processor
word. Listing 3.1 shows the pseudo-code for all atomic operations.

� �
1 bool CompareAndSwap(int* address, int expected, int desired) {
2 i f (*address == expected) {
3 *address = desired;
4 return true;
5 }
6 return false;
7 }
8
9 bool TestAndSet(bool* address) {

10 bool value = *address;
11 *address = true;
12 return value;
13 }
14
15 int FetchAndAdd(int* address, int increment) {
16 int value = *address;
17 *address = value + increment;
18 return value;
19 }
20
21 int LoadLinked(int* address) {
22 return *address;
23 }
24
25 bool StoreConditional(int* address, int desired) {
26 i f (address not written to since last LoadLinked) {
27 *address = desired;
28 return true;
29 }
30 return false;
31 }� �

Listing 3.1: Common atomic operations

All the atomic operations in Listing 3.1 can be used to implement higher level synchronization
primitives such as locks. Here, we will focus on the description of the compare-and-swap (CAS)



28 Chapter 3. Principles of Multithreading

and the load-link/store-conditional (LL/SC) instructions, as they are of particular relevance for
non-blocking algorithms and lock-free programming. Furthermore, the other atomic operations
can be efficiently emulated with CAS or LL/SC.

The most relevant atomic instruction is CAS, which is widely supported in just about
every modern architecture either directly or by efficient emulation by using load-link and store-
conditional. CAS takes in three arguments – a memory address, an expected value for that
address and a desired value. CAS updates the address to the desired value and returns true
if upon reading, the address contains the expected value; if the address does not contain the
expected value, CAS returns false and does nothing else. Some instructions implement or expose
a weaker form of CAS, called a weak CAS, which may return false and do nothing even if the
provided address contains the expected value. When a weak CAS fails in this fashion, it is said
to have failed spuriously. CAS is capable of efficiently emulating all other atomic operations,
with the exception of load-link/store-conditional.

LL/SC together make up an atomic read-modify-write operation that can be used to emulate
all of the other atomic operations, including CAS. LL/SC is particularly important for lock-free
constructs, as it solves the ABA problem [10] – a fundamental and challenging problem which
complicates the implementation and design of lock-free data structures and algorithms. An ideal
version of LL/SC works as follows:

1. LL takes a single argument – the address to be read and returned.

2. SC takes two arguments – the address previously provided to LL and a value to be stored.

3. LL/SC work in pairs – a LL must be followed by a SC, and a SC must be preceded by a
LL.

4. SC updates the address to the desired value if the address has not been written to since
the corresponding LL, in which case it returns true; otherwise, it returns false.

5. An arbitrary number of other instructions can be executed between the LL and the SC.

In practice, no computer architecture implements the ideal version of LL/SC described above,
and some architectures do not implement LL/SC at all. No form of LL/SC is available in
widely-used architectures, such as x86 or x86-64, and other architectures only implement weak
or restricted forms of LL/SC, which can fail spuriously or that have restrictions on what or how
many instructions can be executed between LL and SC.

Excessive usage of any atomic operation on a memory address by multiple threads leads to
cache line contention, as described earlier in Sec. 3.1. This type of performance degradation is
added to the overhead that atomic operations have due to the consistency and ordering guarantees
they provide.
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3.2.2 Locks

Mutual exclusion locks are a popular synchronization primitive used in multithreaded applications.
Locks can be used for synchronization by ensuring mutually exclusive access to a resource. A
thread that wants to use the resource protected by a lock has to acquire the lock before being
able to access the resource. Once it has used the resource and no longer needs it, it can then
release the lock, making it available for other threads to acquire it. While the lock is acquired, no
other threads can access the resource. Threads that seek to acquire the lock will block until the
lock can be acquired. How a thread blocks depends on the lock implementation. A spinlock is a
lock that blocks by simply waiting in a loop (spinning) while trying to acquire the lock. Other
lock implementations may instead choose to suspend the acquiring thread.

Locks are a simple and easy-to-use mechanism to ensure synchronized access to data. However,
it is a blocking construct, as threads that wait to acquire a lock will make no progress. The use
of locks, or of any other blocking construct has implications in terms of program performance,
availability, robustness and flexibility. Careless use of locks may lead to deadlocks or livelocks [27],
putting threads permanently waiting to be able to acquire a resource. Deadlocks occur when
threads are simultaneously waiting on each other for access to a resource. Consider the following
situation with two locks L1 and L2 and two threads T1 and T2. T1 and T2 will deadlock if:
T1 has acquired L1, T2 has acquired L2, and T1 and T2 are also trying to acquire L2 and L1,
respectively. Livelocks are similar to deadlocks, but rather than permanently waiting for the
same resource, a thread in livelock undergoes changes after failing to acquire a lock to a resource.

The use of locks can also lead to priority inversion, which are situations where threads that
have been assigned a higher priority can be preempted due to a lower priority thread. If a lower
priority thread holds a lock that a higher priority thread has to acquire, the higher priority
thread will have no progress until the lower priority thread releases the lock. This effectively
subdues the priorities that have been assigned to these two threads. In a similar fashion, threads
that are waiting on a lock held by other thread may suffer arbitrarily delays, until the thread
that is holding the lock releases it. The higher the use of a lock, the more likely are threads to
suffer delays before being able to acquire the lock. This is called lock contention.

Lastly, progress may halt for the entire application if locks are used and a thread unexpectedly
terminates. A thread that is holding a lock and unexpectedly terminates will not release the
lock, and all other threads that later try to acquire it will permanently block.

3.3 Progress Guarantees

Algorithms designed to work in multithreaded environments may be described in terms of progress
guarantees – what guarantees in terms of program progress are given to individual threads or to
the system as a whole when threads are given a time slot to execute by the operating system’s
scheduler. Herlihy et al. [21] list and categorize progress guarantees. We identify progress
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guarantees that we consider important and that can be given by concurrent algorithms:

• Blocking

• Non-blocking

– Lock-free

– Wait-free

Blocking can be described as a lack of progress guarantee rather than a progress guarantee in
itself. Algorithms that use locks are generally blocking. All of the disadvantages associated with
locking that have been described previously in Sec. 3.2 are generalized to blocking algorithms.

Lock-freedom and wait-freedom are both non-blocking forms of progress guarantee. Lock-
freedom algorithms guarantee that there is system-wide progress if at least one thread is executing.
Individual threads may not progress, but only if there is another thread that is actively progressing.
In practice, a large number of efficient lock-free versions of various data structures have been
proposed [3, 38, 41, 50].

Wait-freedom is the strongest form of progress guarantee. A wait-free algorithm has a bounded
number of steps required to achieve completion, i.e., a thread that executes a sufficient number
of steps will always progress. With wait-freedom, individual threads always progress, regardless
of the state of the other threads. Wait-free algorithms, despite owning desirable properties, are
typically inefficiently and not used in practice [14].

Non-blocking algorithms are implemented with atomic operations, but the atomic operations
and data structures used by the algorithm must themselves be non-blocking. A wait-free
algorithm, for example, requires the use of wait-free primitives. In general, atomic operations
that are supported by the processor architecture are wait-free. However, not all atomic operations
are available on all processor architectures. Wait-free algorithms may not be able to use emulated
atomic operations, as they may be lock-free rather than wait free.

Listing 3.2 shows a simple non-blocking function, CountCalls(), which simply counts how
many times it has been called. CountCalls() would be wait-free if the fetch-and-add operation
it uses is wait-free. However, this particular fetch-and-add is emulated using CAS. In the
emulated fetch-and-add, CAS will fail if another thread has modified the counter variable while
the currently executing thread has already read the counter value in line 11 but not yet executed
the CAS on line 13. CAS may fail in this fashion an infinite number of times, in which case the
currently executing thread will never progress. Thus, the emulated fetch-and-add is not wait-free.
But, it is still lock-free, because CAS only fails if another thread in the application has made
progress, thus ensuring system-wide progress.
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� �
1 void CountCalls()
2 {
3 static int count = 0; // global variable
4 FetchAndAdd(&count, 1); // increment counter by 1
5 }
6
7 int FetchAndAdd(int* address, int increment) {
8 // emulate fetch−and−add with compare−and−swap
9 int expected, desired;

10 do {
11 expected = *address; // atomically read old value
12 desired = expected + increment; // prepare new value
13 } while (!CompareAndSwap(address, expected, desired)); // try to swap value
14 return expected;
15 }� �

Listing 3.2: Lock-free emulation of fetch-and-add

Some non-blocking algorithms require the use of load-link/store-conditional, or are otherwise
vulnerable to the ABA problem [10]. In a nutshell, the ABA problem occurs when an algorithm
assumes that when an address is read twice and the value is the same for both reads, then no
changes were made to that address. Situations that can violate this assumption might cause an
ABA problem. Listing 3.3 shows one such example, in an implementation of a lock-free stack
where Push() works correctly, but Pop() is vulnerable to ABA. ABA will occur if a thread T1
halts just before executing CAS in line 24 and another thread T2 removes the nodes represented
by the variables head and next from the stack with two Push() and then adds head back to the
stack with Pop(). When T1 resumes, the CAS at line 24 will succeed, unintentionally adding the
removed node next back to the stack, thus compromising the consistency of this data structure.

� �
1 struct Node {
2 Node* next;
3 };
4
5 struct Stack {
6 Node* head;
7 };
8
9 void Push(Stack* stack, Node* node)

10 {
11 Node* head;
12 do {
13 head = stack->head;
14 node->next = head;
15 } while (!CompareAndSwap(&stack->head, head, node));
16 }
17
18 Node* Pop(Stack* stack) {
19 while (1) {
20 Node* head = stack->head;
21 Node* next = head->next;
22 // an ABA can occur here i f head and next are popped by another thread
23 // and head i s then pushed back into the stack
24 i f (CompareAndSwap(&stack->head, head, next))
25 return head;
26 }
27 }� �

Listing 3.3: Example of a lock-free stack vunerable to the ABA problem
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ABA prevention in algorithms that are prune to ABA can be done with the use of LL/SC
instead of CAS, but in practice, few processor architectures have support for LL/SC and none
with the ideal LL/SC semantics. Other techniques are used instead, such as version tags [18]
(which store a version counter and data in a single processor word) or hazard pointers [39].

3.4 Chapter Summary

In this chapter, we discussed various multithreading topics that are relevant to memory allocation,
such as, synchronization primitives, disadvantages of locking and various forms of performance
degradation. We also discussed progress guarantees, and how lock-freedom offers desirable
properties and is more feasible to be achieved in practice than wait-freedom.

Using the concepts introduced in this chapter, the following chapter introduces and discusses
multithreaded memory allocation.



Chapter 4

Multithreaded Memory Allocation

In this chapter, we discuss memory allocation in multithreaded environments. We start by
discussing how modern memory allocators reduce the cost of synchronization, and then describe
concerns that are specific to multithreaded memory allocation. Next, we list prior work, and
describe some of the concurrent memory allocators that are used in practice.

Multithreaded applications require memory allocators to be capable of dealing with concurrent
memory requests without inconsistency or failure. In particular, memory allocators have to be
thread safe. Compared to serial memory allocators that operate in a single-threaded environment
and can use any of the mechanisms described in Ch. 2, a concurrent memory allocator must
employ the use of synchronization primitives in order to function correctly in the presence of
concurrent memory requests.

Furthermore, modern memory allocators have to prioritize application performance, both in
terms of block placement and in terms of average memory application latency when fulfilling
memory requests. Concurrent memory allocators are expected to be able to scale, e.g., achieve a
higher rate of memory requests as more threads are used by an application. These performance
requirements often come at a cost in memory usage, either through higher fragmentation, or due
to additional memory required by the memory allocator’s internal structures.

4.1 Mitigating Synchronization Costs

A modern memory allocator has to be able to operate in a multithreaded environment and
thus it has to be able to fulfill memory requests concurrently. Serial memory allocators such as
dlmalloc [31] were initially adapted to multithreading environments by simply wrapping the entire
memory allocation logic with a single lock, which preserves the memory allocator’s fragmentation
behavior, but ultimately degrades performance and limits scalability, as lock acquire and release
have to be done on each allocation and deallocation request. With a single coarse lock over the
entire memory allocation mechanism, all the memory management is serialized and no requests
can be fulfilled in parallel.

33
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Some of the memory allocation mechanisms described in Ch. 2 allow multiple fine-grained
locks to be used, each of which can protect a specific part of the mechanism. Classes of mechanisms
such as segregated free lists can use a lock per list. In general, fine-grained locking reduces
lock contention and allows tasks to be done in parallel. In the context of a memory allocator
mechanism, fine-grained lock has somewhat more limited benefits, as applications use only a
few distinct block sizes, which leads to the same data structures in the memory allocator (or
free lists in the case of a segregated free lists mechanisms) being used, thus leading to the same
lock contention and scalability problems described earlier. Nevertheless, use of fine-grain locking
allows for some memory requests to be truly fulfilled in parallel, particularly when different
threads are requesting different block sizes.

An idea explored by some early memory allocators in order to avoid synchronization is to
have a private memory allocator for each thread in an application However, because memory is
shared across all threads, threads can remote free blocks. A remote free is a memory deallocation
that is called by a different thread than the one to which the block was originally allocated to.
Remote frees complicate designs that use a private memory allocator per thread, as it forces some
synchronization on deallocation requests. Berger et al. [4] name this type of memory allocators
pure private heaps and they discuss how some of these designs can cause unbounded memory
usage.

Modern concurrent memory allocators use strategies to decrease the impact of synchronization,
at some expense in terms of memory usage and fragmentation, namely arenas and thread caches.

4.1.1 Arenas

Arenas are a technique to reduce lock contention, at the expense of increased memory overhead
and fragmentation. The term arena was introduced by Evans [13], but earlier works [4, 30] often
refer to it as the use of several heaps. Each arena is conceptually a fully fledged memory allocator
that can handle concurrent memory allocation and deallocation requests done by multiple threads,
which distinguishes it from the notion of a private memory allocator per thread as described
earlier.

Figure 4.1: Multiple threads using several arenas
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The number of threads in an application is not known in advance, and may vary over the
course of the application. As threads are created and destroyed in the application, more or
less threads may be using the same arena simultaneously. The memory allocator must assign
arenas to threads in a way that minimizes lock contention. Various strategies can be used to
determine the arena to be used in an allocation request. We identify some strategies used for
arena assignment:

• The arena identified by hashing the thread’s ID [4, 30];

• The arena with fewer threads assigned to it [13];

• An arena not locked yet [19].

In general, on deallocation requests, there is no arena assignment, as blocks are ideally
returned to the arena they were originally allocated from. This requires the memory allocator
to store and use information that allows it to associate an arena to every block given to the
application.

4.1.2 Thread Caches

Thread caches enable memory allocation and deallocation requests to be serviced without the
use of synchronization. Conceptually, each thread maintains a private list of blocks that it can
use to fulfill requests. Synchronization is only required when transferring blocks from and to the
private list, in cases where the private list is too full or has no block that can fulfill a request.
Thread caches cannot function in isolation, and require the use of a lower-level memory allocation
mechanism that the thread caches can use to obtain and return lists of blocks. Figure 4.2 shows
a logical overview of the use of thread caches. Note that there is a single thread cache per thread,
and that interactions between thread caches and individual threads result in transfers of a single
block, while interaction between thread caches and the rest of the allocator result in transfers of
lists of blocks.

Figure 4.2: Logical overview of an allocator that uses thread caches
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The use of thread caches is largely motivated by the high cost of synchronization primitives.
Even in ideal conditions, without degradation due to cache line contention, synchronization
primitives are much slower than regular instructions and are thus the most significant cost of
servicing a memory request. This leads to the conclusion that synchronization primitives are
too expensive to be used in every memory request, and that is why most allocations need to be
fulfilled without synchronization at all. Thread caches meet these requirements, at some obvious
trade-off in terms of memory usage. Modern concurrent memory allocators make extensive use
of thread caches, as it allows an average allocation and deallocation case that is extremely fast
since it requires no synchronization.

In practice, thread caches are implemented with simple segregated storage, a mechanism
described in Ch. 2. Simple segregated storage is ideal for this purpose, as it presents excellent
performance and locality characteristics and does not support coalescing, which cannot be done
anyway without synchronization due to remote frees. In the context of simple segregated storage,
memory allocations are fulfilled by finding the appropriate free list and then removing the first
block. Deallocations are serviced by adding a block to the appropriate free list. Both of these
operations can be implemented with very few instructions.

Trade-offs can be made in thread caches between performance and memory usage. Higher
performance can be achieved by allowing the thread cache to contain more blocks and by
transferring a large number of blocks whenever synchronization is required. However, this comes
at a cost in terms of memory. Some modern memory allocators such as TCMalloc [16] use
adaptive algorithms to dynamically adjust how many blocks are kept, and some work has been
done in improving these adaptive algorithms [32].

Other trade-offs can result from how free lists in the simple segregated storage mechanism
are implemented. Most commonly, they are implemented as a singly-linked list, by storing a
single processor word which is used as the pointer to the list head, while the rest of the list is
composed by using the blocks’ own memory. This requires minimal memory usage, and allows
for adaptive algorithms to be used without list size limitations. However, it forces the allocator
to touch the blocks of memory beforehand, which leads the operating system to allocate physical
memory for all the pages being used. Furthermore, the push and pop operations used to add and
remove blocks to the singly-linked list have memory dependencies which can stall instruction
execution and affect instruction-level parallelism done by modern CPUs. A recent work [26]
suggests memory hardware acceleration to alleviate this issue and improve throughput. An
alternative by Jemalloc [13] is to use a fixed-size array of pointers to compose the list. This
limits adaptive algorithms, as the array has a maximum size, and requires more memory than a
single pointer. However, it allows the allocator to manage blocks without touching them (thus
not forcing the operating system to allocate physical memory), and removing/adding a block
from the array has no memory dependency, which represents a slight performance gain.
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4.2 Performance and Fragmentation Concerns

Memory allocation in a multithreaded environment has to deal with some additional concerns
when compared to a serial execution. Berger et al. [4] describe and highlight a couple of problems
that are unique to memory allocation in multithreaded environments, namely false sharing and
blowup.

4.2.1 Allocator Induced False Sharing

As detailed in Ch. 3, false sharing is a performance degradation phenomena that occurs in
multiprocessor systems when seemingly independent objects used by different processors are
unintentionally placed on the same cache line, causing cache line contention.

A concurrent memory allocator may cause false sharing by interleaving memory allocations
that are given to different threads. Berger et al. classify false sharing induced by memory
allocators into two categorizes: active false sharing and passive false sharing. Memory allocators
are said to actively induce false sharing if they distribute blocks that are in the same cache line
to different threads, regardless of properties in the program’s request stream. Active false sharing
was common among early concurrent memory allocators which were built using a serial memory
allocator (such as dlmalloc [31]) with a synchronization primitive on top.

Concurrent memory allocators can passively induce false sharing if they distribute blocks
that are in the same cache line to the same thread and, then, the program performs remote frees.
In modern concurrent memory allocators, passive false sharing generally happens because of
caching mechanisms. For example, consider an allocator with a cache per thread that can store
a limited number of blocks, where allocation is done by removing a block from the cache, and
deallocation is done by adding a block to the cache. Suppose now that a thread T1 allocates two
blocks B1 and B2, which are on the same cache line. Later, if thread T1 passes block B1 to a
thread T2, there will be false sharing, albeit not induced by the allocator. Moreover, if thread
T2 also deallocates block B1, the next allocation by T2 may be fulfilled with block B1 due to the
cache, which will cause false sharing, this time induced by the memory allocator.

In general, multithreaded applications can always induce false sharing by moving blocks
between threads. Concurrent memory allocators can only prevent overall false sharing by ensuring
that no two blocks are ever in the same cache line, effectively increasing the minimum block
size to a cache line. However, this is an unacceptable cost in terms of fragmentation, and may
increase memory usage dramatically, with small 8 and 16 byte blocks increasing to 64 bytes,
the most common cache line size. To the best of our knowledge, there is no concurrent memory
allocator that deals with false sharing in this manner, only custom memory allocation tools such
as cache_aligned_allocator<T> in Intel TBB [44],
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4.2.2 Blowup

Blowup is a particular type of fragmentation only present in concurrent memory allocators.
Blowup is defined as the ratio between the maximum memory usage by a given concurrent
memory allocator in a multithreaded environment divided by the maximum memory usage by an
ideal serial memory allocator. Berger et al. [4] have shown that some early concurrent memory
allocators have blowup that range from P (the number of processors) to unbounded memory
consumption.

Unbounded blowup occurs in schemes where each thread has a private memory allocator.
This type of scheme can be used to service allocations and deallocations with no synchronization.
However, deallocations of blocks originally allocated by other threads is troublesome, since such
blocks need to be returned to the correct private memory allocator, which uses no synchronization.
A solution is to defer the deallocation of a block by placing it in a temporary list place from
where the original thread can remove, and deallocate it. However, this may lead to unbounded
memory consumption in scenarios where a thread T1 repeatedly allocates blocks and passes them
to thread T2, which deallocates them, adding ever more blocks to the temporary list. This type of
scenario is known to happen in practice with programming patterns such as producer-consumer.

To prevent unbounded blowup, concurrent memory allocators must ensure that a bounded
maximum number of free blocks can be kept in any component of the memory allocator at all
times.

4.3 Concurrent Memory Allocators

This section provides short summaries on some of the existing concurrent memory allocators. For
some memory allocators, especially those used in practice, we base ourselves on the analysis of the
source code, due to the lack of available documentation on any academic work. However, memory
allocators are non-trivial pieces of software, and thus we cannot guarantee the correctness of our
analysis. Memory allocators are implemented as a library, and aspects such as the use of thread-
specific storage, dynamic loading and cross-platform portability (not only different hardware
architectures but also different operating systems) complicate not only the implementation but
also the overall comprehension.

Furthermore, we present no taxonomy of concurrent memory allocators, as none exists
that appropriately describes existing mechanisms and techniques. We do not present our own
taxonomy either, as creating one that better describes the current state-of-the-art is a work in
and of itself. There are some taxonomies presented in prior works [4, 17], but we argue that they
fail to describe advances made in concurrent memory allocation in the last decade.
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4.3.1 Hoard

Hoard is a concurrent memory allocator, introduced by Berger et al. [4], which highlights the
importance of avoiding blowup and false sharing in a setup that attempts to reduce contention
costs.

Hoard uses a number of heaps. There is a global heap, from which all memory is obtained
from, and then there is one heap per processor. Heaps manage and own superblocks, which are
continuous sets of pages used to carve out blocks, to be given to the application to satisfy an
allocation request. Superblocks are created in the global heap, and transferred between the
global heap and the processor heaps. Superblocks contain equal-sized blocks, belonging to a
single size class. Memory allocations are fulfilled by accessing a heap (by hashing the current
thread’s ID) and finding a free block with the appropriate size in a superblock. Deallocations
are fulfilled by finding the superblock that the provided block belongs to, and adding it to the
superblock’s free block list. Hoard maintains some statistics to ensure that no heap has too much
free memory, thus bounding blowup to O(1).

Hoard achieves decreased synchronization costs by employing an arena strategy, where each
heap is an independent concurrent memory allocator. Although not described in the original
paper, recent versions of Hoard make use of thread caches1.

4.3.2 Ptmalloc2

Ptmalloc2 [19] is the standard memory allocator distributed with glibc, and thus the most
commonly used memory allocator in Linux systems. It is a modified thread-safe version of
Doug Lea’s memory allocator [31], a fragmentation-focused memory allocator that uses a best-fit
mechanism with a deferred coalescing scheme. For coalescing, ptmalloc2 uses boundary tags
to store metadata per block, causing every memory allocation to cost at least one additional
processor word in memory overhead.

Ptmalloc2 has been updated over time with features to improve its multithreaded performance,
such as the use of arenas and thread caches2. Each arena has an associated lock that must be
held before performing any operation on the arena. Ptmalloc2 has an unique arena selection
strategy – on allocation, an arena that is not yet locked is chosen, and if none is found, a new
arena is created so that it may be used to allocate memory. With this strategy, ptmalloc2 can
have a varying number of arenas at runtime.

Overall, ptmalloc2 is a concurrent memory allocator that prioritizes low memory usage and
fragmentation along with portability (hence why it is used as the default glibc memory allocator),
rather than performance and scalability.

1Thread caches in Hoard are called Thread Local Allocation Buffers (TLABs). Curiously, this term is also used
to describe a mechanism akin to thread caches in the JVM’s garbage collector.

2In ptmalloc2, thread caches are disabled by default, so whether thread caches are actually used will depend on
the glibc compilation options.
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4.3.3 Jemalloc

Jemalloc [13] is a state-of-the-art memory allocator that focuses on fragmentation avoidance and
scalable concurrency support. It is the default memory allocator on the FreeBSD operating system
and is widely used in numerous multithreaded applications. Jemalloc was initially designed with
the use of arenas, and more recent versions also use thread caches.

At application start, Jemalloc creates a number of arenas equal to 4 times the number of
CPUs in the system in an effort to minimize lock contention. Threads are assigned to arenas in
round-robin fashion, i.e., new threads are assigned to the arena that has the lowest number of
assigned threads. Jemalloc’s thread caches are a simple segregated storage mechanism that uses
size classes. To obtain blocks for the thread caches, Jemalloc carves out slabs (a set of pages used
for equal-sized blocks) from extents (a region of memory that can hold several slabs or larger
allocations). Arenas manage extents, and extents contain logical blocks that can be coalesced.

Jemalloc achieves very good segregation between application data and memory allocator data.
In fact, Jemalloc is the only concurrent memory allocator that implements thread caches with
arrays of pointers to blocks instead of assembling a linked list with the blocks’ free memory itself,
presumably to avoid touching the free blocks’ memory. This ties up nicely with the rest of the
allocator, which also does not touch memory, and thus Jemalloc is particularly well suited for
applications which request memory that they do not use. Furthermore, Jemalloc also explicitly
tracks regions of memory that are being reused, and leverages that information to reuse existing
physical memory rather than to give blocks in pages that might still be uncommitted.

In practice, Jemalloc achieves state-of-the-art performance with good memory usage char-
acteristics, and can be considered an ideal concurrent memory allocator for multithreaded
applications.

4.3.4 TCMalloc

TCMalloc [16] is a state-of-the-art concurrent memory allocator with a focus on thread caching.
Unlike other allocators, it does not use arenas to decrease contention on shared data structures.
Instead, it uses a strategy of fine-grained locking to decrease contention, and employs a number
of adaptive cache management algorithms.

TCMalloc has three main components: (i) the thread caches, a synchronization-free component
implemented with simple segregated storage and using the free blocks’ memory to compose
singly-linked lists that make up each free list; (ii) the central cache, a synchronized component
that keeps lists of blocks that can be quickly transferred between individual thread caches and
the central cache; and (iii) the page heap, which maintains spans, TCMalloc’s nomenclature
for continuous pages in memory that can be used to carve lists of blocks. The page heap is
implemented with a segregated fits mechanism, capable of coalescing and is the component that
obtains and returns memory to the operating system.
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TCMalloc’s implementation of thread caches have been subject to further study in academic
works. Improved adaptive cache management algorithms [32] as well as hardware acceleration [26]
have been proposed to further improve cache performance.

4.3.5 Michael’s Lock-Free Allocator

Michael’s Lock-Free Allocator (MLFA) [40] is an academic lock-free memory allocator, which
only uses widely available and portable CAS operations for lock-free synchronization. MLFA
presents a simple lock-free memory management mechanism somewhat akin to simple segregated
storage.

MLFA uses superblocks, continuous set of pages which can be used to carve out equal-sized
blocks. Superblocks only contain blocks of a specific size class, and contain no metadata.
Metadata for superblocks is instead stored on descriptors. Descriptors are unreclaimable objects
(i.e., once allocated, they can never be returned to the operating system) that contain superblock
metadata and that compose lock-free shared data structures used in MLFA. Each descriptor
contains an anchor, an object small enough to fit inside a processor word that can describe the
superblock’s state, namely the number of free blocks, the first free block available (the remaining
of the list is assembled using the free blocks’ memory), and a state.

In MLFA, superblocks can be in one of four states: (i) full, if the superblock has no free block
available; (ii) empty, if all of the blocks in the superblock are free, at which point the superblock
can be returned to the operating system; (iii) partial, if the superblock has at least one free
block; and (iv) active, if the superblock is not empty and is currently used by a processor heap
to satisfy memory requests. Superblocks are managed by the processor heap, a component that
contain one active superblock and a lock-free list of partial blocks (which we will refer to as
partial list) per each size class. The partial list is composed by descriptors.

Allocations are fulfilled by removing a block from the currently active superblock, which
is done by updating the anchor with a CAS in the superblock’s descriptor. If that superblock
becomes empty, it is removed as the active superblock, and one partial superblock is removed
from the partial list, and installed as active. If there is no partial superblock that can be installed,
a new superblock is obtained from the operating system. Deallocations are fulfilled by finding
the block’s superblock and associated descriptor, and adding it to the free list of blocks.

Note that unlike other concurrent memory allocators described so far, MLFA requires the
operating system to do some of the memory management, as MLFA itself cannot do coalescing
and splitting in order to allocate and deallocate superblocks.

Overall, MLFA is predictably slow as it needs to use at least one CAS per allocation and
deallocation. However, it is lock-free, and the author highlights that a lock-free memory allocator
provides better guarantees to user applications than lock-based memory allocators, namely the
guarantees of system-wide progress, immunity to deadlocks, livelocks, priority inversion and
delays due to preemption during locking, as well as tolerance to arbitrary thread termination.
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4.3.6 NBMalloc

NBMalloc [17] is an academic lock-free memory allocator inspired by Hoard’s architecture. It
uses flat sets, a novel lock-free data structure that allows the lock-free transfer of blocks between
different flat sets.

Similar to Hoard, NBMalloc uses superblocks, which are continuous sets of pages from which
equal-sized blocks can be obtained. Superblocks contain a free list of blocks, and a header that
contains metadata. To manage superblocks, NBMalloc uses per-processor heaps, which stores
superblocks in flat sets, and a global heap from which all memory is obtained. The use of flat
sets allows the lock-free transfers of superblocks between per-processor heaps and the global
heap. On allocation, a processor heap is selected and a superblock with some free blocks is
obtained, so that a block may be removed from it. If the block obtained was the last free block
in the superblock, the superblock is removed from the corresponding flat set in the processor
heap. On deallocation, the block is added to the free list of its superblock, and if the superblock
is completely free, it is returned to the operating system.

NBMalloc uses a substantial number of lock-free operations per allocation and deallocation,
making it particularly slow when compared to modern concurrent memory allocators.

4.4 Chapter Summary

This chapter discussed memory allocation in a multithreaded environment. We described
various techniques used to mitigate synchronization costs, such as arenas and thread caches,
and concerns specific to multithreaded memory allocation, such as blowup. We then described
various concurrent memory allocators, both lock-based and lock-free.
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LRMalloc Design and Implementation

This chapter describes the design and implementation of LRMalloc, a lock-free memory allocator
that we presented in [33, 34]. LRMalloc leverages lessons of modern memory allocators and
combines them with a lock-free scheme. We assume implementation on a 64-bit system
architecture (e.g., x86-64) and, for the sake of brevity, we only show C-like code for the key
implementation routines.

LRMalloc aims to show the feasibility of lock-free memory allocators for multithreaded
applications, by emphasizing that a lock-free memory can be competitive with state-of-the-art
lock-based memory allocators that are currently used in practice. Lock-based memory allocators
are subject to a number of disadvantages: they are vulnerable to deadlocks and livelocks, prune
to priority inversion and delays due to preemption during locking, and incapable of dealing
with unexpected thread termination. Lock-free algorithms deal with those disadvantages, while
also providing a guarantee that there is progress in the system if there is at least one thread
executing. A lock-free memory allocator therefore has properties that are desirable in a modern
memory allocator. Moreover, LRMalloc is highly portable, as it only uses CAS operations for
synchronization, rather than LL/SC or transactional memory.

5.1 High-Level Overview

From a high-level perspective, LRMalloc is divided into three main components: (i) the thread
caches, one per thread; (ii) the heap; and (iii) the pagemap. Figure 5.1 shows the relationship
between these three components, the application and the operating system.

Similarly to other memory allocators, the thread caches are a thread-specific component that
allows memory allocations and deallocations to be done without synchronization. One thread
cache exists per thread. Our implementation of thread caches is a simple segregated storage
mechanism that uses stacks to store a finite number of free blocks that are available for each size
class. The thread cache interacts with the heap to obtain lists of blocks. When the thread cache
is empty, lists of blocks are transferred from the heap to fill it. When it is full, lists of blocks are
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transferred back to the heap, so that they may be re-used by other threads or used to return
memory to the operating system.

Figure 5.1: Overview of LRMalloc

The heap and the pagemap are lock-free components that can be accessed concurrently by
multiple threads. The heap manages superblocks from which it carves lists of blocks to be used
by thread caches. Superblocks are continuous set of pages, which may either be used to carve up
blocks of the same size class or for a single large allocation. Similarly to other memory allocators,
in LRMalloc, large allocations are allocations larger than the largest size class. As previously
discussed in Ch. 2, large allocations are better handled by the operating system due to the
operating system’s control over virtual memory. The pagemap stores metadata for pages used by
superblocks. Its raison d’être is to find out metadata of a given block, such as the size class and
superblock the block belongs to. Therefore, the pagemap is merely a bookkeeping component,
kept up to date by the heap. The pagemap stores metadata on a per-page basis instead of a
per-block basis. This reduces the amount of memory used for bookkeeping, avoids interleaving of
allocator data with application data in superblocks and increases the locality of blocks provided
to the application.

5.2 Size Classes

LRMalloc, like many other state-of-the-art allocators, uses simple segregated storage for its
thread caches and there is one free list for each possible block size. The number of distinct block
sizes guides some of the memory usage characteristics of the memory allocator. A large number
of distinct block sizes will increase the amount of memory needed for internal data structures, but
reduce internal fragmentation. A small number of block sizes has the opposite effect, increasing
internal fragmentation and reducing memory overhead for internal data structures. The different
block sizes chosen by the memory allocator are called size classes. In LRMalloc, size classes are
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generated according to the following series (series also adopted by Jemalloc [13]):

1. 2X

2. 2X + 2(X−2)

3. 2X + 2(X−1)

4. 2X + 2(X−1) + 2(X−2)

5. 2(X+1) (repeat, same as first case)

Not all values generated by the series are valid due to alignment requirements on the C
standard [9], and thus those are removed. Without those cases, the above series limits internal
fragmentation to a maximum of 25% of the allocated memory.

Table 5.1: LRMalloc size classes
Size Class Formula Block Size (in bytes)

1 23 8
0 23 + 21 10
0 23 + 22 12
0 23 + 22 + 21 14
2 24 16
0 24 + 22 20
3 24 + 23 24
0 24 + 23 + 22 28
4 25 32
5 25 + 23 40
6 25 + 24 48
7 25 + 24 + 23 56
8 26 64
9 26 + 24 80
10 26 + 25 96
11 26 + 25 + 24 112
12 27 128
...

...
...

37 213 8192
38 213 + 211 10240
39 213 + 212 12288
40 213 + 212 + 211 14336
41 214 16384

Table 5.1 shows the size classes used by LRMalloc. Size classes in gray-filled rows are invalid
size classes due to alignment requirements – block sizes must be multiple of word size (in this
case, 64 bits, or 8 bytes). The largest size class is equal to 16 kilobytes, or 4 pages. Larger size
classes make little sense since the operating system can naturally provide allocations that are a
multiple of a page, which guarantees that allocations larger than 4 pages will have, at most, 25%
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internal fragmentation, same value as the smaller allocations that use size classes. Furthermore,
the larger the size of a block given to the application, the more it makes sense to simply defer
that work to the operating system, given that the operating system is fundamentally better
suited to answer large block requests, as was described earlier in Ch. 2.

In LRMalloc, small allocations are allocations small enough to use a size class and are fulfilled
by the thread cache, while large allocations do not use a size class, are rounded up to a multiple
of page size and are fulfilled by the operating system.

5.3 Thread Caches

Thread caches are the component that allows memory allocation and deallocation to be serviced
without the use of synchronization. A thread cache exists per each thread in the application.
Thread caches are implemented using simple segregated storage, which has excellent performance
and locality properties. Simple segregated storage uses several free lists, as many as there are
size classes. Each free list is conceptually a stack, where blocks are added through a push
operation and removed through a pop operation. In modern memory allocators, these stacks are
implemented in two ways: (i) singly-linked list that uses the memory of the free blocks, thus
only needing a single pointer per singly-linked list to store the head; or (ii) as a fixed-size array
of pointers to blocks. Each of these implementations has advantages and disadvantages in terms
of memory usage and performance, as described earlier in Ch. 4.

LRMalloc implements thread caches with singly-linked lists, since despite performance
disadvantages, singly-linked lists allow the transfer between the thread cache and the heap of
any number of blocks with a constant number of atomic operations. Furthermore, the use of
singly-linked lists is consistent with the remaining components, namely the heap, which uses
singly-linked lists to store free blocks. Figure 5.2 shows an overview of thread caches in LRMalloc
and the layout of free lists.

Figure 5.2: LRMalloc thread cache
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Ultimately, the thread caches’ goal is to provide extremely fast, synchronization-free memory
allocations and deallocations. It does so by ensuring that most malloc() calls are just simple
stack pops, and that most free() calls are stack pushes. This simple and speed-efficient average
case is needed to amortize the costs of synchronization that is necessary to transfer blocks to and
from the thread caches, when a stack is empty and has no blocks, or is full and has too many
blocks.

Note that the stacks used by the thread caches will only store a limited number of blocks, and
when a free() adds a block that exceeds that limit, a list of blocks will be transferred back to
the heap. This is needed to avoid unbounded blowup, as otherwise a producer-consumer pattern
could cause a thread cache to store an unlimited number of blocks that cannot be used by other
threads, eventually leading to expected program termination

Listing 5.1 shows the malloc() (allocation) and free() (deallocation) high-level routines.
These make up the interactions between the application and the memory allocator, and are in
essence single-block transfers that occur between the application and the memory allocator.

� �
1 void* malloc(size_t size) {
2 size_t scIdx = ComputeSizeClass(size);
3 i f (scIdx == 0) // large allocation
4 return AllocateLargeBlock(size);
5 Cache* cache = GetCache(scIdx);
6 i f (CacheIsEmpty(cache))
7 CacheFill(scIdx, cache);
8 return CachePopBlock(cache);
9 }

10
11 void free(void* ptr) {
12 size_t scIdx = GetSizeClassFromPageMap(ptr); // get metadata
13 i f (scIdx == 0) // large allocation
14 return DeallocateLargeBlock();
15 Cache* cache = GetCache(scIdx);
16 i f (CacheIsFull(cache))
17 CacheFlush(scIdx, cache);
18 CachePushBlock(cache, ptr);
19 }� �

Listing 5.1: High-level allocation and deallocation routines

Memory allocation starts by computing the size class corresponding to the requested size.
For large allocations, LRMalloc does not use the thread cache and instead creates a superblock
with the appropriate size in number of pages through mmap(). When a large allocation is
free()’d, the corresponding superblock is munmap() and thus returned to the operating system.
Large allocations are identified with a size class equal to 0. If the allocation is not large, the
thread cache is used and the stack corresponding to the size class is accessed and checked. In the
common case, the cache will not be empty and thus a block will be fetched from the cache with
a pop operation. Note that the common case does not require synchronization, and it consists
essentially in popping a block from a stack, a simple and fast operation. In the uncommon case,
the cache is empty and thus it must be filled with CacheFill(), which requires interaction with
the heap and thus some synchronization.
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Memory deallocation also starts by finding out the size class of the provided allocation. This
is the step where the pagemap component becomes relevant, as it keeps metadata about all
blocks. As before, blocks obtained from large allocations are handled differently, in that they
are dealt directly by the operating system, and for blocks obtained from small allocations the
corresponding cache is accessed. In the common case, the cache will not be full and thus the block
will just be added to the cache. Once more, the common case does not require synchronization
and consists of pushing a block to a stack, a simple and fast operation. In the uncommon case,
the cache is full and thus CacheFlush() must be called to reduce the number of blocks in the
cache, before the deallocated block can be added to the cache.

Caches are thread-specific objects and thus all operations using the cache need no synchroniza-
tion. In the allocation and deallocation algorithms, only the CacheFill() and CacheFlush()
routines require synchronization. Both routines are described in more detail next. For the sake
of brevity, we omit the GetCache(), CacheIsEmpty(), CacheIsFull(), CachePopBlock()
and CachePushBlock() subroutines, which are trivially implemented.

5.4 Heap

Due to its lock-free nature, the LRMalloc’s heap component is by far the most complex component
of the allocator. It is based on Michael’s lock-free memory allocation algorithm [40] but adapted
with a number of improvements to work with the presence of thread caches. The heap manages
superblocks through descriptors. Superblocks are continuous sets of pages that are cut into
equal-sized blocks that can be used by the application. Superblocks contain no metadata of their
own. Instead, metadata is stored in descriptors.

5.4.1 Descriptors

Descriptors are unreclaimable but reusable objects used by the heap to track superblocks.
Descriptors contain the superblock’s metadata, such as, where the superblock begins, the size
class of its blocks and the number of blocks it contains. It also includes an anchor, an inner
structure that describes the superblock’s state and is small enough to fit inside a single processor
word (e.g., 64 bits) to be atomically updated with CAS instructions. Listing 5.2 presents the
anchor and descriptor struct definitions. The Anchor.avail field refers to the first available
block in the superblock. A free block then points to the next free block on the chain.

The exact number of bits used by the Anchor.avail and Anchor.count fields (31 in the
current implementation) are implementation dependent and can be adjusted to how large
superblocks can be and to how many blocks at most they can have. In our proposal, and unlike
Michael’s original algorithm, the anchor does not need a ABA prevention tag.
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� �
1 struct Anchor {
2 size_t state : 2; // may be FULL = 0, PARTIAL = 1 or EMPTY = 2
3 size_t avail : 31; // index of first free block
4 size_t count : 31; // number of free blocks
5 };
6
7 struct Descriptor {
8 Anchor anchor;
9 char* superblock; // pointer to superblock

10 size_t blocksize; // size of each block in superblock
11 size_t maxcount; // number of blocks
12 size_t scIdx; // size class of blocks in superblock
13 };� �

Listing 5.2: Anchor and descriptor structures

5.4.2 Superblocks

Superblocks are continuous sets of pages that are cut into equal-sized blocks. Individual blocks
in a superblock are in one of 3 possible situations: (i) in use by the application; (ii) in use in
a thread cache; (iii) in the superblock’s free list. A superblock can be in 3 different states: (i)
full, if every block in the superblock is being used by a thread cache or by the application, in
which case the superblock is said to be full of used blocks; (ii) partial, if a superblock has some
used blocks and some free blocks remaining; (iii) empty, if the superblock has only free blocks, in
which case the superblock can just be returned back to the operating system.

Figure 5.3 shows an example of a partial superblock. The associated descriptor contains a
pointer to the superblock, and the descriptor’s anchor describes the superblock’s state. The
presented superblock contains a list of 3 free blocks, whereas all other blocks are in use either
by the application or by a thread cache – neither descriptor nor superblock contain enough
information to distinguish either case.

Figure 5.3: Example of a partial superblock
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The superblock’s states can be used to describe the superblock’s lifetime and interaction
with the rest of the heap, as highlighted in Fig. 5.4. Superblocks are constructed with memory
obtained from the operating system, and are immediately used to fill a thread cache with all of
its blocks, at which point the superblock becomes full. When full, a superblock may become
partial if some blocks become free, or empty if all blocks become free. When partial, a superblock
has some free blocks. If more blocks are added to the superblock’s free list, the superblock either
remains partial, if there are still used blocks, or empty otherwise. The superblock may transition
from partial to full if used to fill a thread cache, in which case all blocks are removed from the
free list. When empty, a superblock is returned to the operating system.

Figure 5.4: Superblock state machine

5.4.3 Filling and Flushing Caches

The heap interacts with the operating system to obtain memory with which it constructs
superblocks and descriptors. The descriptors are used to manage superblocks. The superblocks
contain lists of free blocks that can be transferred from and to thread caches, through the use of
CacheFill() and CacheFlush().

Cache Fill

Listing 5.3 describes the CacheFill() algorithm. By default, the algorithm tries to reuse a
partially free superblock by calling CacheFillFromPartialSB(), which corresponds to start
by trying to get a descriptor from a lock-free stack (HeapGetPartialSB() in line 10). The
resulting descriptor cannot be immediately used and has to be checked, as it may refer to a
superblock where all blocks have since then been freed, in which case the superblock has been
returned to the operating system and is no longer usable. In this case, the descriptor can be
safely reused and is put into a global recycle list by calling (DescriptorRetire() in line 17) and
the algorithm is repeated. Otherwise, all available blocks in the superblock are reserved, with
a CAS that updates the anchor (line 23), and then added to the thread’s cache (lines 24–29).
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Note that in the absence of contention, this single CAS along the other atomic operations
used to remove the descriptor from the lock-free stack can transfer up to N − 1 blocks to the
thread caches, where N is the number of blocks the superblock can contain. Furthermore, no
ABA-prevention tag is needed on this CAS, because the only change that can happen to the
underlying superblock is that more blocks become available, thus updating Anchor.avail and
Anchor.count, which would fail the CAS. This is opposed to Michael’s original algorithm,
where blocks in the superblock can concurrently become used and free due to active superblocks.
This is important for our bit math described earlier, as having a ABA counter can limit the
maximum number of blocks that a superblock may have.

� �
1 void CacheFill(size_t scIdx, Cache* cache) {
2 // try to f i l l cache from a s ing l e par t i a l superblock . . .
3 bool res = CacheFillFromPartialSB(scIdx, cache);
4 // . . . and i f that f a i l s , create a new superblock
5 i f (!res)
6 CacheFillFromNewSB(scIdx, cache);
7 }
8
9 bool CacheFillFromPartialSB(size_t scIdx, Cache* cache) {

10 Descriptor* desc = HeapGetPartialSB(scIdx);
11 i f (!desc) // no partial superblock available
12 return false;
13 Anchor newAnc, oldAnc;
14 do {
15 oldAnc = desc->anchor;
16 i f (oldAnc.state == EMPTY) {
17 DescriptorRetire(desc);
18 return CacheFillFromPartialSB(scIdx, cache); // retry
19 }
20 newAnc.state = FULL;
21 newAnc.avail = desc->maxcount;
22 newAnc.count = 0;
23 } while (!CAS(&desc->anchor, oldAnc, newAnc));
24 char* block = desc->superblock + oldAnc.avail * desc->blockSize;
25 size_t blockCount = oldAnc.count;
26 while (blockCount-- > 0) {
27 CachePushBlock(cache, block);
28 block = *(char**)block;
29 }
30 return true;
31 }
32
33 void CacheFillFromNewSB(size_t scIdx, Cache* cache) {
34 Descriptor* desc = DescriptorAlloc();
35 DescriptorInit(desc, scIdx); // initialize with size class info
36 Anchor anc;
37 anc.state = FULL;
38 anc.avail = desc->maxcount;
39 anc.count = 0;
40 desc->anchor = anc;
41 desc->superblock = mmap(...);
42 for (size_t idx = 0; idx < desc->maxcount; ++idx) {
43 char* block = desc->superblock + idx * desc->blockSize;
44 CachePushBlock(cache, block);
45 }
46 PageMapRegisterDescriptor(desc); // update pagemap
47 }� �

Listing 5.3: CacheFill routine

If there are no available partial superblocks for the size class at hand, a new superblock must
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be allocated and initialized. This is done in CacheFillFromNewSB(), which allocates a new
superblock from the operating system and assigns a descriptor to it. The assigned descriptor is
provided by DescriptorAlloc(), which accesses a global lock-free list of recycled descriptors.
All blocks in the newly allocated superblock are then added to the thread’s cache (lines 42–45 in
Listing 5.3). Because all of the blocks in the superblocks are immediately given to a thread cache,
a superblock that was just allocated from the operating system is full, and will only become
partial/empty as blocks are flushed from thread caches.

Cache Flush

Flushing a cache is a less straightforward procedure. When a cache is full, several blocks must
be returned to their respective superblocks, which requires updating the superblocks’ associated
descriptors. If blocks were returned to their respective superblocks one at a time, at least a CAS
per block would be required, which is not only inefficient but would be a source of contention.
Instead, it is best to group up blocks according to descriptor as best as possible, in order to be
able to return several blocks back to the same superblock in a single CAS. Listing 5.4 shows
LRMalloc’s cache flushing algorithm.

CacheFlush() starts by popping a block from the cache and by forming an ad-hoc singly-
linked list with all next blocks in cache that belong to the same superblock (lines 4 –16). Recall
that blocks that belong to the same superblock share the same descriptor. The pagemap stores
not only the size class, but also descriptors and thus it can be used to find the descriptor of the
superblock that the block belongs to. We use CachePeekBlock() to inspect the first block in
the cache without popping it. The ad-hoc list is then appended to the corresponding superblock’s
free block list and the anchor updated accordingly (lines 19–30). At this stage, the CAS only fails
if blocks were added to the free block list due to other blocks are being simultaneously flushed
from other caches, or if the free block list just became empty due to all free blocks removed
for a cache fill. At the end, if these are the first blocks to be freed, the superblock is added to
the lock-free stack of partial superblocks (line 33). Otherwise, if all blocks are made free, the
pagemap is updated to reflect the change and the superblock returned to the operating system
(lines 35–38). The pagemap must be updated before the superblock is returned to the operating
system, because otherwise the pagemap update might affect a new superblock that was just
allocated on the same memory.

While our cache flush algorithm is simple and has an obvious worst-case scenario (interleaved
blocks from different superblocks will lead to a CAS operation being needed per each block), we
find that in practice this algorithm works well and succeeds in transferring a large number of
blocks with a single CAS from the thread cache to the heap. As described earlier in Ch. 2, real
program behavior exhibit regularities exploitable by memory allocators. One regularity observed
is that blocks that are allocated close in the request stream tend to have similar lifetimes, and
thus they tend to be deallocated close in the deallocation request stream. This is especially true
when those allocations are close or equal in size. In our case, as we provide blocks from the same



5.4. Heap 53

superblock (e.g., close in the request stream), we can expect those blocks to have similar expected
lifetimes and thus to return to the thread cache at similar times, grouped together. As such,
interleaved blocks from different superblocks becomes an unlikely and uncommon occurrence.

� �
1 void CacheFlush(size_t scIdx, Cache* cache) {
2 while (!CacheIsEmpty(cache)) {
3 // form a l i s t of b locks to return to a common superblock
4 char* head, tail;
5 head = tail = CachePopBlock(cache);
6 Descriptor* desc = PageMapGetDescriptor(head);
7 size_t blockCount = 1;
8 while (!CacheIsEmpty(cache)) {
9 char* block = CachePeekBlock(cache);

10 i f (PageMapGetDescriptor(block) != desc)
11 break;
12 CachePopBlock(cache);
13 ++blockCount;
14 *(char**)tail = block;
15 tail = block;
16 }
17
18 // add l i s t to descr iptor and update anchor
19 char* superblock = desc->superblock;
20 size_t idx = ComputeIdx(superblock, head);
21 Anchor oldAnc, newAnc;
22 do {
23 newAnc = oldAnc = desc->anchor;
24 *(char**)tail = superblock + oldAnc.avail * desc->blockSize;
25 newAnc.state = PARTIAL;
26 newAnc.avail = idx;
27 newAnc.count += blockCount;
28 i f (newAnc.count == desc->maxcount) // can free superblock
29 newAnc.state = EMPTY;
30 } while (!CAS(&desc, oldAnc, newAnc));
31
32 i f (oldAnc.state == FULL)
33 HeapPutPartialSB(desc);
34 else i f (newAnc.state == EMPTY) {
35 // unregis ter metadata from pagemap . . .
36 PageMapUnregisterDescriptor(superblock, scIdx);
37 // . . . and re lease superblock back to OS
38 munmap(superblock, ...);
39 }
40 }
41 }� �

Listing 5.4: CacheFlush routine

When a cache flush completely empties a superblock (line 34), note that the corresponding
descriptor cannot be returned to the operating system since other threads can be potentially
holding a reference to it. Moreover, it cannot be recycled also as there may still be a reference to
it in the list of partial superblocks, and guaranteeing its correct removal is a non-trivial task.
In our approach, a descriptor is only recycled when a thread removes it from the list of partial
superblocks (line 17 in Listing 5.3).
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5.5 Pagemap

The pagemap component stores allocation metadata per page based on the observation that
most allocations are much smaller than a page, and that blocks in the same page are in the
same superblock, thus sharing the same size class and descriptor. Storing metadata per page
instead of per allocation has several advantages. First, it is more memory efficient, as equal
metadata is not kept for every distinct block in a page. Second, it helps separating memory
allocator memory from application memory, which ultimately improves application data locality,
as memory allocator and application memory are no longer interleaved.

The pagemap can be implemented in a number of different ways. With an operating system
that allows memory overcommitting, it can be a simple array, where the size depends on the
size of the valid address space and how much memory is needed for each page’s metadata. For
example, assuming that a single processor word is enough for metadata, and that the address
space can only have 248 bytes (common for 64 bit architectures), then this array requires 248−12

words, or about 512GB. Of course, the actual physical memory is bounded by the number of
pages required for user applications. LRMalloc uses this type of implementation. A cheaper
solution in terms of virtual memory would be to use a lock-free radix tree, at the cost of some
performance and additional complexity.

Unlike the heap, the pagemap is a mostly read-only component, only used to track block
size and corresponding superblock. It is kept up to date by the heap, when a new superblock
is created in CacheFillFromNewSB() or a superblock becomes empty in CacheFlush() and
is thus given back to the operating system. Between these two points, data on the pagemap is
read-only, and used whenever a block metadata lookup is required.

5.6 Interaction with the Operating System

Dynamic memory allocators operate in user-space and have access to the operating system.
A user-space memory allocator cannot obtain memory to manage and satisfy requests from
anywhere other than the operating system, so interaction with the operating system is mandatory.
System calls are notoriously slow, more than synchronization primitives, so there is value in
discussing how often we need to interact with the operating system.

The heap obtains memory from the operating system to construct superblocks that are needed
to carve out lists of blocks. Memory used for superblocks is returned to the operating system
once all the blocks in a superblock are free. The frequency of requests to the operating system is
going to depend directly on the size of superblocks. Larger superblocks will satisfy more memory
allocation requests, and allow larger caches to be filled. In our implementation, LRMalloc uses
2MB superblocks for all size classes, an ad-hoc value large enough to reduce operating system
contention but small enough to avoid excessive memory usage. Memory is obtained and returned
to the operating system through the use of mmap() and munmap().
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One interesting thing to note is that LRMalloc cannot operate without the presence of an
operating system, and the same is true with all the other lock-free memory allocators described
before [17, 40]. They all require the operating system to obtain and release superblocks or the
equivalent to superblocks, and the operating system is effectively a synchronization layer that
allows memory to be reused by different threads. In all these cases, the operating system could
be replaced by another lower-level allocator that is capable of directly managing memory.

In Ch. 2, we have described early memory allocation schemes that are capable of managing
memory without an operating system by being able to coalesce and split blocks of memory. A
lock-free lower-level mechanism that is able of coalesce and split blocks could be used to reduce
the amount of requests done to the operating system.

5.7 Chapter Summary

In this chapter, we have presented the components, data structures and techniques used by
LRMalloc, a lock-free memory allocator that aims to be competitive with current state-of-the-art
memory allocators.

The following chapter will present our experimental analysis of LRMalloc, comparing it
against other memory allocators using standard benchmarks.





Chapter 6

Experimental Analysis

In this chapter, we present an experimental analysis of our work. We compare LRMalloc against
other modern and relevant memory allocators using a variety of well-established benchmarks
that have been used to evaluate prior work.

Our experimental analysis focuses on memory allocator latency and scalability, rather than
memory usage and fragmentation. We highlight a few reasons for this. First, for multithreaded
applications, performance and scalability has a higher value than memory usage. All modern
concurrent memory allocators use techniques that explicitly trade-off better performance and
scalability at the expense of memory usage, such as arenas and thread caches. Second, there are
plenty of standard benchmarks for measuring performance and scalability, but none for measuring
memory usage as far as we know. Methodologies used by authors to measure memory usage are
not always clear. Often, authors do not state if they are measuring physical memory that is
being used by an application, or are otherwise accounting for memory that has been reserved
but is not actually yet in use (e.g., uncommitted pages). Very little is also said about how the
memory usage data is collected, so it is not clear if memory usage was collected by periodically
polling the operating system for process statistics, or if applications themselves were modified to
collect memory usage at precise moments.

Of course, that is not enough to argue that memory usage is irrelevant for concurrent memory
allocators. At least, they must have bounded blowup, or otherwise can cause unexpected
application termination. In any case, the development of an effective methodology to measure
memory usage and fragmentation, the selection of sample applications to be used as benchmarks,
and the thorough analysis of memory usage for existing concurrent memory allocators a very is
demanding task, one that we have not done in this document.

6.1 Methodology

To measure memory allocator performance and scalability, we used standard benchmarks
commonly used in the literature [4, 40], namely the Linux scalability [35], Threadtest and
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Larson [30] benchmarks. To measure active false sharing and passive sharing, we use the cache-
thrash and cache-scratch benchmarks [4]. All of these benchmark applications take in a number
of threads as an argument along some other parameters, and report execution time or throughput
at completion. Data was collected by running these benchmark applications using different
memory allocators with a varying number of threads. To run a benchmark with a specific memory
allocator, we use the LD_PRELOAD mechanism to dynamically load the library corresponding
to the desired memory allocator at execution time. None of the benchmarks are statically linked
with any memory allocator at compilation.

The environment for our experiments was a dedicated x86-64 multiprocessor system with
four AMD SixCore Opteron TM 8425 HE @ 2.1 GHz (24 cores in total) and 128 GBytes of main
memory, running Ubuntu 16.04 with kernel 4.4.0-104 64 bits.

Benchmarks

Linux scalability is a benchmark used to measure memory allocator latency and scalability.
It launches a given number of independent threads, each of which runs a batch of 10 million
malloc() requests allocating 16-byte blocks followed by a batch of identical free() requests.
Blocks are deallocated in the same order that they were allocated, and they are not touched after
being allocated. This benchmark measures memory allocator throughput in a best case scenario,
with each thread behaving independently and without remote frees. Because this benchmark
does not actually touch the blocks it allocates, memory allocators which do not touch blocks
may have an advantage, as fewer physical pages are needed, thus reducing the amount of work
done by the operating system.

Threadtest is similar to Linux scalability with a slightly different allocation profile. It also
launches a given number of independent threads, each of which runs batches of 100 thousand
malloc() requests followed by 100 thousand free() requests. Each thread runs 100 batches in
total. Blocks in this benchmark are deallocated in the same order that they were allocated. This
benchmark measures memory allocator throughput in a scenario with alternating allocations and
deallocations.

Larson simulates the behavior of a long-running server process. It repeatedly creates threads
that work on a slice of a shared array. Each thread runs a batch of 10 million malloc() requests
with sizes uniformly distributed between 16 and 128 bytes and the resulting allocations are
stored in random slots in the corresponding slice of the shared array (each thread’s slice includes
1000 slots). When a slot is occupied, a free() request is first done to release it. At any given
time, there is a maximum limit of threads running simultaneously. Only one thread has access
to a given slice of the shared array at any given time, and slices are recycled as threads are
created and destroyed. To summarize, this benchmark does memory allocations with varying
sizes, memory deallocations that are done in random order, and allocations interleaved with
deallocations. There are some remote frees, as slices are recycled and a new thread can call
free() on blocks that were allocated by another thread. Like Linux scalability and Threadtest,
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this benchmark does not touch allocated blocks.

Cache-thrash measures whether the memory allocator induces active false sharing. It creates
a number of independent threads, each of which allocates a 16 byte block, followed by 100
thousand writes to that block, followed by a deallocation. Each thread does a total of 600
memory allocations. By having all threads allocating blocks smaller than a cache line, this
benchmark tests whether the allocator induces active false sharing.

Cache-scratch measures whether the memory allocator induces passive false sharing. It starts
by making several 16 byte block allocations in the main thread, which are to be passed to the
other threads. It then creates a number of independent threads, each of which deallocates a 16
byte block received from the main thread. Next, each thread allocates a 16 byte block, followed
by 100 thousand writes to that block, followed by a deallocation. Each thread does a total of 600
memory allocations and deallocations. This benchmark tests passive false sharing by performing
a remote free on each thread and by checking whether that thread re-uses that block in a later
allocation.

Memory Allocators

We compared LRMalloc against two groups of memory allocators: (i) previous lock-free memory
allocators, namely Michael’s allocator [40] and NBMalloc [17]; (ii) lock-based state-of-the-art
memory allocators, namely Hoard [4], Ptmalloc2 [19], Jemalloc-5.0 [13] and TCMalloc [16].
Source code for all the memory allocators used is publicly available. Since some of these memory
allocators are ongoing work, when possible, we state version and git commit:

• Michael’s allocator is available at https://github.com/ricleite/lrmichael. This is our
own implementation of Michael’s allocator, significantly more efficient than the existing
implementation at https://github.com/scotts/michael. We used the version at commit
184650bfacd0f80f8dc06a1aed258fb87182e4e4.

• NBMalloc is available at http://www.cse.chalmers.se/research/group/dcs/nbmalloc.html.
We used version 0.6.0, the latest available at the time of writing.

• Hoard is available at http://hoard.org. We used version 3.12.0, specifically commit
a0e46aa1b7719c9a84a5fc66beb7286811c4aedc.

• Ptmalloc2 is available at http://www.malloc.de/en. We used the version distributed with
glibc in Ubuntu 16.04, which is the default memory allocator in the system.

• Jemalloc is available at http://jemalloc.net. We used version 5.0, specifically commit
c834912aa9503d470c3dae2b2b7840607f0d6e34.

• TCMalloc is available at https://github.com/gperftools/gperftools. We used version 2.7,
commit 9608fa3bcf8020d35f59fbf70cd3cbe4b015b972.

https://github.com/ricleite/lrmichael
https://github.com/scotts/michael
http://www.cse.chalmers.se/research/group/dcs/nbmalloc.html
http://hoard.org
http://www.malloc.de/en
http://jemalloc.net
https://github.com/gperftools/gperftools
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• Lastly, our memory allocator, LRMalloc is available at https://github.com/ricleite/lrmalloc.
The version used in this document is at commit bec52c8cfce6284255735a21faf0d58e495622b7.

6.2 Performance & Scalability

Figures 6.1 and 6.2 present experimental results for the Linux scalability, Threadtest and Larson
benchmarks when using the different memory allocators with configurations from 1 to 32 threads.
The results presented are the average of 5 runs.

Figure 6.1(a) shows the execution time, in seconds (log scale), for running the Linux scalability
benchmark. In general, the results show that LRMalloc is very competitive, being only overtaken
by Jemalloc as the number of threads increases. Jemalloc’s behavior can be explained by the fact
that it creates a number of arenas equal to four times the number of cores in the system. Multiple
threads may be mapped to the same arena but, with so many arenas, collisions are unlikely and
thus little contention happens on shared data structures. On the other hand, LRMalloc’s heap
has no arena-like multiplexing, and thus there is a greater potential for contention as the number
of threads increases. In particular, shared data structures such as the descriptor recycle list and
the lists containing partial descriptors become bottlenecks are the number of threads increases.

Figure 6.1(b) shows the execution time, in seconds (log scale), for running the Threadtest
benchmark. Again, the results show that LRMalloc is very competitive and only surpassed
by Jemalloc by a small margin. In particular, for a small number of threads, LRMalloc is
slightly faster than Jemalloc and, as the number of threads increases, LRMalloc keeps an
identical tendency as Jemalloc. Note that in both these benchmarks, the other lock-free memory
allocators, Michael’s and NBMalloc are an order-of-magnitude worse than LRMalloc.

Figure 6.2 shows the number of operations per second (log scale), for running the Larson
benchmark. Unlike prior lock-free memory allocators, LRMalloc consistently achieves increased
throughput as the number of threads approaches the number of cores available, while carrying
out over a order-of-magnitude more throughput. LRMalloc also performs similarly to all other
state-of-the-art allocators, with a small performance degradation as the number of threads
increases. Presumably, this degradation has a couple of factors. First, the cache flushing
mechanism is triggered every-time a thread exits, which lowers memory fragmentation but, for
the kind of programs which create a huge number of threads during its lifetime (as is the case
with this benchmark), it can incur in some extra overhead. This can be improved by recycling
cache structures when a thread exits, in order to allow them to be reused by new spawning
threads. Second, the Larson benchmark does deallocations in a random order. This may cause
interweaving of blocks that belong to different superblocks in the thread caches, thus leading to
some additional contention on cache flush due to the nature of our cache flush algorithm.

In general, the three benchmarks show that LRMalloc is in toe with the other state-of-the-
art concurrent memory allocators, and far superior to prior lock-free memory allocators. We
highlight however that LRMalloc has some flaws, namely in the lack of multiplexing that is done

https://github.com/ricleite/lrmalloc
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(a) Linux scalability

(b) Threadtest

Figure 6.1: Execution time results in log scale comparing LRMalloc, Michael’s allocator,
NBMalloc, Hoard, Ptmalloc2, Jemalloc-5.0 and TCMalloc for the Linux scalability and Threadtest
benchmarks with configurations from 1 to 32 threads
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Figure 6.2: Throughput results in log scale comparing LRMalloc, Michael’s allocator, NBMalloc,
Hoard, Ptmalloc2, Jemalloc-5.0 and TCMalloc for the Larson benchmark with configurations
from 1 to 32 threads

with shared data structures, namely the descriptor recycle list and the lists containing partial
descriptors. Multiplexing these structures will lead to lower overall contention, thus improving
LRMalloc’s scalability.

Another interesting observation in the Linux scalability and Threadtest benchmarks is that
TCMalloc performs quite badly. Since we have tout TCMalloc as a modern concurrent memory
allocator used in practice, we investigated further what caused this behavior. We have found that
the version of TCMalloc used does an overwhelming amount of calls to the operating system,
asking only a few pages of memory at a time, which causes a significant amount of contention at
the operating system level, thus explaining its low performance.

6.3 Active & Passive False Sharing

Figure 6.3 presents experimental results for the cache-thrash and cache-scratch benchmarks when
using the different memory allocators with configurations from 1 to 32 threads. Again, the results
presented are the average of 5 runs.

Figure 6.3(a) shows the execution time, in seconds (log scale), for running the cache-thrash
benchmark. We remind that this benchmark attempts to detect whether the memory allocator
induces active false sharing. Results clear show that Michael’s allocator and TCMalloc suffer
from performance degradation for more than 1 thread, and thus we can conclude that they
exhibit active false sharing. All the remaining allocators, including LRMalloc, behave normally
and seem to not induce active false sharing.
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(a) Cache-thrash

(b) Cache-scratch

Figure 6.3: Execution time results in log scale comparing LRMalloc, Michael’s allocator,
NBMalloc, Hoard, Ptmalloc2, Jemalloc-5.0 and TCMalloc for the cache-scratch and cache-
thrash benchmarks with configurations from 1 to 32 threads
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Figure 6.3(b) shows the execution time, in seconds (log scale), for running the cache-scratch
benchmark, which attempts to measure whether the memory allocator induces passive false
sharing. Results show that a number of existing allocators suffer from performance degradation
and thus induce passive false sharing. These include LRMalloc, Michael’s allocator, Hoard
and TCMalloc. Three memory allocators do not seem to suffer from performance degradation,
Jemalloc, Ptmalloc2 and NBMalloc. We found these results particularly surprising for Jemalloc,
since it uses thread caches, but must somehow invalidate them or track individual blocks that
were obtained from other threads.

6.4 Chapter Summary

In this chapter, we have presented an experimental analysis of LRMalloc, a lock-free memory
allocator that we have developed. We have compared LRMalloc against other concurrent memory
allocators using established benchmarks, and found it to be competitive against state-of-the-art
memory allocators, and clearly superior to prior lock-free memory allocators.
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A Lock-Free Coalescing Mechanism

In this chapter, we present a lock-free address-ordered best-fit mechanism. Our mechanism
supports lock-free coalescing and splitting of blocks with arbitrary sizes, unlike existing lock-free
buddy systems, and is equivalent to the address-ordered best-fit mechanism presented in Ch. 2,
which has very desirable low fragmentation characteristics.

7.1 Motivation

Existing lock-free memory allocators assume and require the presence of the operating system to
perform memory management. This is true for prior lock-free allocators, as the ones presented
in Ch. 4, but also for LRMalloc, the lock-free memory allocator we have presented in Ch. 5. All
the lock-free memory allocators discussed so far require a lower-level allocator that is capable of
providing regions that contain an arbitrary number of continuous pages, so that those regions
may be used to construct superblocks or other similar objects. In order to be effective, this
lower-level allocator has to be capable of coalescing and splitting to fulfill requests with low
fragmentation, either through the use of a mechanism, as discussed in Ch. 2, or through the
use of virtual memory, as is the case in the operating system. At the moment, the operating
system fills the role of the lower-level allocator we have described, usually through the use of
the mmap() and munmap() system calls. As such, existing lock-free memory allocators are
fundamentally incapable of operating in a environment where no operating system exists, or
where the operating system only provides a single region of memory that has to be managed.

In practice, memory allocators can assume the existence of an operating system, and as such
the fact that the lock-free memory have no mechanism to split and coalesce sets of pages is not
problematic. However, interaction with the operating system is slow, and a lock-free lower-level
allocator capable of providing arbitrarily-sized blocks is worth pursuing if it allows avoiding some
of that cost.

To summarize, we argue that a lock-free mechanism that is capable of managing a region of
memory by coalescing/splitting blocks has value in the context of user-space lock-free memory

65



66 Chapter 7. A Lock-Free Coalescing Mechanism

allocators, and academic interest for usage in embedded systems and in environments where a
single region of memory has to be managed.

7.2 Related Work

There is little research regarding lock-free coalescing mechanisms. There are some lock-free buddy
systems, one used by the Linux Kernel to manage pages [37], and a lock-free binary system in a
recent work [36]. However, buddy systems are known to cause high fragmentation in practice [24].
This occurs in part due to: (i) the use of size classes, that leads to internal fragmentation; and
(ii) the hierarchical structure that buddy systems impose and that restricts how coalescing can
be performed.

To the best of our knowledge, there are no lock-free versions of general coalescing mechanisms –
mechanisms that do not restrict the way in which coalescing can performed nor cause internal
fragmentation due to the use of size classes, such as various sequential fits and segregated fits
mechanisms that have been described in Ch. 2.

7.3 Coalescing with Boundary Tags

Consider that we have a block that has been deallocated and we want to coalesce it with its
neighbors in a lock-free manner. To perform coalescing, the block needs to provide information
allowing to locate its neighbors and their state. For this, let us assume we are using boundary
tags [28], such that all blocks have a header and a footer that can be used to find neighbors and
navigate, as Fig 7.1 shows. The header contains information about the block, namely its size
and its state (whether it is currently allocated or free). The footer contains a back pointer to the
header of the same block that it belongs to.

Figure 7.1: A block with the information necessary to perform coalescing

Every block has two neighbors that it might be able to coalesce with, the one that precedes
it in memory, the previous block, and the one that follows it in memory, the next block. As
Fig. 7.2 shows, given a block B, we can locate the previous block by reading the memory that
immediately precedes B’s header, which corresponds to the previous block’s footer. We can
then follow the footer’s back pointer, which gives us the previous block’s header, where state



7.3. Coalescing with Boundary Tags 67

information is stored. Similarly, we can locate the next block by using B’s size to locate B’s
footer, and then read the memory that follows it, which corresponds to the next block’s header.

(a) Locating the previous block

(b) Locating the next block

Figure 7.2: Locating previous and next blocks for coalescing

Once we have located a block, we can begin to attempt to coalesce. Coalescing is the merging
of two continuous blocks to form a single (larger) block. With boundary tags, that corresponds to
constructing a new block with a header and a footer. We name the process of a block coalescing
with the previous and the next block, as backward coalescing and forward coalescing, respectively.
In the case of backward coalescing, as shown in Fig. 7.3, with a block B being coalesced with a
previous block P to form a new coalesced block C, P’s header becomes C’s header, B’s footer
becomes C’s footer, and P’s footer along B’s header become irrelevant. Analogously, in forward
coalescing, where a block B coalesces with a next block N to form a new coalesced block C,
B’s header becomes C’s header, N’s footer becomes C’s footer, and B’s footer along N’s header
become irrelevant. In both backward and forward coalescing, C’s header and footer have to be
updated and adjusted to C’s size, and thus they store different information than the original
blocks.

Performing coalescing in a sequential environment with the boundary tag mechanism presented
above is trivial. It is similarly trivial in a multithreaded environment, if a lock is used to serialize
coalescing operations. Current state-of-the-art lock-based memory allocators mentioned in Ch. 4
perform coalescing of blocks in a given region by employing a single lock. Concurrent coalescing
can occur through the use of multiple regions.

Compared to lock-based alternatives, lock-free coalescing presents a number of challenges.
First, we cannot guarantee that no other threads changes the state of neighbor blocks, that we
are trying to coalesce with, at some given point. Second, using boundary tags, we have two
pieces of information that ideally would have to be kept coherent – the header and the footer
of each block. However, as seen previously in the coalescing procedure, the physical location
of the header and the footer is important, so we cannot use a single processor word to store
both, and thus we cannot use a single CAS to update both the header and the footer of a block
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Figure 7.3: Overview of backward coalescing

to keep them coherent. Lastly, the region of memory we are managing is finite, thus not all
blocks have neighbors in both directions. Furthermore, such region might mutate over time,
increasing and decreasing in size. When we read the memory that precedes a block, with the
intention of reading the previous block’s footer, we might be reading invalid memory that we
are not managing. In a sequential or a serialized multithreaded execution it is trivial to check
the current dimension of a region to assert whether we can read memory that precedes a block.
However, in a lock-free coalescing mechanism, nothing ensures that the dimensions of a region do
not change between the moment at which we read those dimensions, and the moment at which
we read the memory that precedes a block, thus potentially reading invalid memory.

Consider the following example in Fig. 7.4 to better understand the difficulty of lock-free
coalescing. In a region with three adjacent blocks, B1, B2 and B3, blocks B1 and B3 are
deallocated simultaneously and attempt to coalesce with B2, which sits between B1 and B3
and is not allocated, thus available for coalescing. Suppose that this coalescing mechanism uses
boundary tags, and that the header and footer can be updated with a single atomic operation.
Coalescing is done by locating the header of the neighbor block, checking whether the neighbor
is free for coalescing, and then by atomically updating the header, then the footer, for the new
coalesced block. As seen in Fig. 7.4(a), both B1 and B3 can reach B2’s header to attempt
coalescing. However, because constructing a new coalesced block is a two-step process, B1 can
locate B2, begin coalescing, update the header for the new coalesced block C1 (which is B1’s
header), and then B3 can locate B2 (through B2’s footer) and successfully coalesce and create
block C2 before B1 has a chance to update B2’s footer. The result of this simultaneous coalescing
are two incorrect overlapping blocks C1 and C2, as shown in Fig. 7.4(b).

Note that so far, we have only discussed how coalescing is done once we have a block that
has been deallocated and that we wish to coalesce with its neighbors. We have not discussed
how free blocks are tracked nor how blocks are allocated in the first place. The use of additional
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(a) Blocks B1 and B3 simultaenously locate block B2 to attempt coalescing

(b) Blocks B1 and B3 can both succeed with a specific order of operations, creating
blocks C1 and C2, which overlap

Figure 7.4: Simultaneous coalescing of two blocks with a shared neighbor

data structures needed to find and allocate blocks naturally complicate the goal of obtaining a
lock-free coalescing mechanism.

7.4 Proposal

Our proposal for a lock-free best-fit mechanisms consists of two logical data structures: (i) the
map, which represents the physical layout in memory and is needed in order to perform coalescing,
and (ii) the tree, a ordered set-like data structure that will be used to obtain blocks in a best-fit
fashion and that is needed for block allocation.

In our proposal, all blocks include a header and footer, to be managed by the map. The
header contains the block’s size and the footer contains a pointer to the block. Neither header
nor the footer contain information on whether the block is allocated or free. Instead, the tree
is the authority used to assert whether a block is allocated or free. The tree is simultaneously
used to satisfy allocations, but also to determine whether coalescing can be done. Before using
a block for coalescing or to fulfill an allocation, the tree is used to ensure that a single thread
obtains the block’s ownership, Indeed, the main insight of our proposal, is that the data structure
used to find free blocks must also be used to coordinate coalescing, since otherwise if state is
kept elsewhere (i.e., in the header or footer or other auxiliary data structures) the mechanism to
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determine whether a block is free for coalescing inevitably becomes unable to keep both the data
structure and the referred state coherent with each other as coalescing occurs.

The Map

The map represents the physical layout in memory, and allows a block to find its neighbors in
order to perform coalescing. Each block logically has a footer and a header that can be accessed
by neighboring blocks. However, to allow the mechanism to manage varying amounts of memory
and to avoid invalid accesses to memory as discussed earlier, a block does not physically contain
its header and its footer. In essence, header and footer become akin to descriptors, and are
objects whose memory cannot be reclaimed, only recycled and reused. The operations that the
map needs to support are shown in Listing 7.1.

� �
1 struct Header {
2 size_t size;
3 };
4
5 struct Footer {
6 void* ptr;
7 };
8
9 // used as an aux i l iary structure that descr ibes a b lock

10 struct Block {
11 size_t size;
12 void* ptr;
13 };
14
15 // update header for provided block
16 void UpdateBlockHeader(Block b, Header h);
17
18 // update footer for provided block
19 void UpdateBlockFooter(Block b, Footer f);
20
21 // get b lock header corresponding to provided address
22 Header GetBlockHeader(void* ptr);
23
24 // get b lock footer corresponding to provided address
25 Footer GetBlockFooter(void* ptr);� �

Listing 7.1: Map operations and definitions

Both the header and footer are small enough to fit inside a single processor word, and
thus they can be atomically updated through CAS or other atomic operations. Therefore,
both UpdateBlockHeader() and UpdateBlockFooter() are equivalent to an atomic write
operation, while GetBlockHeader() and GetBlockFooter() are equivalent to atomic reads.

The map can be implemented using an array that uses uncommitted memory (similar to
LRMalloc’s pagemap), or using a lock-free radix tree. It needs to be able to store two processor
words (header and footer) per page (if the smallest block being managed is a page), so that we
can have one page blocks.
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The Tree

The tree is an indexing data structure that contains free blocks. In order to implement address-
ordered best-fit, it sorts blocks by size, and blocks with the same size by address. The tree has
to support the operations shown in Listing 7.2.

� �
1 // inser t a b lock in the tree
2 void InsertBlock(Block b);
3
4 // remove a block from the tree
5 bool RemoveBlock(Block b);
6
7 // remove the leas t−ordered block from the tree that s a t i s f i e s requested s i z e
8 Block RemoveBlockWithAtLeast(size_t size);� �

Listing 7.2: Tree component operations

The tree is implemented with a lock-free indexed data structure. Because it relies on a
lock-free data structure, we felt the need to describe each operation, its expected behavior and
requirements, without which our coalescing scheme will not work as intended:

• InsertBlock() – adds a block to the tree, that must be available for removal when the
function returns. This function can assume that the block does not exist in the tree.

• RemoveBlock() – if the provided block is in the tree, it removes it and returns true;
otherwise returns false. The removal must be complete when the function returns, such
that the same block can be added by InsertBlock().

• RemoveBlockWithSize() – removes and returns the least-ordered block from the tree
that satisfies the requested size. This function has the same removal requirements as
RemoveBlock(). If no block has been found, it returns an invalid block starting at
address 0 and with 0 size.

7.4.1 High-level Allocation and Deallocation

Listing 7.3 shows the high-level allocation and deallocation routines. Allocation starts by removing
a block with sufficient size from the tree with RemoveBlockWithAtLeast() in line 2. If no
adequate block is found, more memory has to be obtained from the operating system and a block
constructed with it. Otherwise, if a block is found, it can be used to fulfill the memory request.
To eliminate internal fragmentation, the block is split if it is larger than what has been requested.
Splitting (shown in lines 10–18) is simple, and consists of updating header and footer for the
original and remaining block, and then adding the remaining block to the tree, so that it may be
used to fulfill further memory allocation requests or for coalescing.

Deallocation starts by finding out the size of the provided block. Since the header stores
the block’s size, the map can be used for this purpose. Then, we can attempt to coalesce this
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block with both neighbors (lines 29–30). Coalescing is further detailed in CoalesceBackward()
and CoalesceForward(), explained next. After we have attempted to coalesce, we can add the
resulting block to the tree (line 33).

� �
1 void* Alloc(size_t size) {
2 Block b = RemoveBlockWithAtLeast(size);
3 i f (b.ptr == NULL) { // no block has been found
4 ... // obtain more memory from the operating system
5 }
6
7 i f (b.size > size) { // block is too large, split
8 // block has been removed from the tree
9 // so that i t i s owned by us and can be manipulated sa f e l y

10 Block s = { b.ptr, size };
11 SetBlockHeader(s, { s.size });
12 SetBlockFooter(s, { s.ptr });
13 // remaining block
14 Block r = { b.ptr + size, b.size - size };
15 SetBlockHeader(r, { r.size });
16 SetBlockFooter(r, { r.ptr });
17 // inser t remaining block in the tree , so that i t becomes ava i l ab l e
18 InsertBlock(r);
19 }
20
21 return b.ptr;
22 }
23
24 void* Dealloc(void* ptr) {
25 Header h = GetBlockHeader(ptr);
26 // at t h i s point we own the block and i t i s not in the tree
27 Block b = { h.size, ptr };
28
29 b = CoalesceBackward(b); // attempt backward coalescing
30 b = CoalesceForward(b); // attempt forward coalescing
31
32 // add the coalesced block to the tree
33 InsertBlock(b);
34 }� �

Listing 7.3: High-level allocation and deallocation

7.4.2 Coalescing

Coalescing only occurs when a block has been deallocated, which means that the block is not yet
present in the tree. To coalesce a deallocated block, we have to locate its neighbors with the
map, and then attempt to remove each of those neighbors from the tree. If we can remove a
neighboring block from the tree, we have acquired ownership of it, and thus we can use it for
coalescing. Both backward and forward coalescing operate in the same manner, by attempting
to remove the previous/next block from the tree, and then performing coalescing.

Listing 7.4 shows the backward and forward coalescing routines. Backward coalescing begins
by locating the previous block through its footer (line 2). A noteworthy detail, shown in line 3,
is that the footer is sufficient to obtain the size of the previous block, thus avoiding the need to
read the previous block’s header. Once the previous block has been located, we can attempt to
remove it from the tree with RemoveBlock(), shown in line 5. Note that the tree stores blocks
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not only by address, but also by size. This is important, as we could otherwise be removing
a block that starts at the previous block’s address, but has a different size (thus not sharing
a boundary with our block). If the removal of the previous block is successful, we can finally
perform coalescing, and update the headers and footers stored in the map (lines 8–11).

The forward coalescing routine starts on line 15. The next block is located through its header
(line 16), and then we attempt to remove it from the tree. If the removal succeeds, the provided
block can be coalesced with the next block (lines 22–25).

� �
1 Block CoalesceBackward(Block b) {
2 Footer f = GetBlockFooter(b.ptr - 1); // get footer of previous block
3 Block p = { f.ptr - b.ptr, f.ptr}; // compute size using block addresses
4
5 i f (!RemoveBlock(p))
6 return; // previous block is not free
7
8 // can coalesce , update map to r e f l e c t change
9 b = { b.size + p.size, p.ptr };

10 SetBlockHeader(b, b.size);
11 SetBlockFooter(b, b.ptr);
12 return b;
13 }
14
15 Block CoalesceForward(Block b) {
16 Header h = GetBlockHeader(b.ptr + b.size); // get header of next block
17 Block n = { h.size, b.ptr + b.size }; // compute block address using size
18
19 i f (!RemoveBlock(n))
20 return; // next block is not free
21
22 // can coalesce , update map to r e f l e c t change
23 b = { b.size + n.size, b.ptr };
24 SetBlockHeader(b, b.size);
25 SetBlockFooter(b, b.ptr);
26 return b;
27 }� �

Listing 7.4: Backward and forward coalescing

7.4.3 Implementation

For testing and development purposes, we have implemented a simple concurrent memory
allocator that allocates pages using our lock-free best-fit design. In our implementation, the
map is implemented with a simple array made of uncommitted pages (similar to LRMalloc’s
pagemap), and the tree is implemented using a lock-free binary tree as proposed by Natarajan et
al. [41].

Integrating our coalescing mechanism into a lock-free memory allocator, such as LRMalloc, is
on-going work, as is the performance evaluation of this mechanism, which is important to assert
whether this mechanism can be used in practice to replace the operating system as a lower-level
allocator.
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7.4.4 Caveats

There are a number of caveats with our proposal that we would like to point out.

Our design cannot guarantee that coalescing always occur. Consider an example with two
neighboring blocks, B1 and B2, operated by thread T1 and T2, respectively. If T1 and T2
deallocate B1 and B2 simultaneously, T1 will try to remove B2 from the tree, and T2 will try to
remove T1, and both will fail. Then T1 will add B1 to the tree and T2 will add B2 to the tree.
We thus end up with two blocks, B1 and B2, which are free and adjacent to each other, but not
coalesced. This can be mitigated by performing recursive coalescing, e.g., continue coalescing
forward or backward until it fails. In the context of the example, that ensures that both B1 and
B2 will be coalesced when another neighbor block is deallocated and attempts to coalesce.

The failure of coalescing reveals an interesting property – as contention increases and more
threads operate on the same space with a small number of blocks, the more likely it is that
coalescing fails. We leave as an open problem whether this property can be formally described,
and what guarantees our solution of recursive coalescing offers.

Another caveat is that the tree is implemented by a lock-free data structure that likely uses
internal nodes that have to be dynamically allocated. In particular, the data structure we have
chosen in our implementation is vulnerable to the ABA problem and requires the use of a memory
reclamation method such as epochs or hazard pointers [20, 39]. Dynamically allocating memory
for a data structure in a memory allocator is naturally tricky, as is the use of memory reclamation
techniques. Both of these requirements are problematic and complicate the design of the memory
allocator. For our design to be used as a lower-level allocator in a production memory allocator
such as TCMalloc or Jemalloc, the tree component would preferably not need to dynamically
allocate memory. We leave it as another open problem whether there is a lock-free data structure
that is better suited to this context.

7.5 Chapter Summary

This chapter presented the first known lock-free address ordered best-fit mechanism, capable
of coalescing and splitting of blocks with arbitrary sizes. We have discussed the mechanism’s
utility, quirks, implementation difficulties and challenges.
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Conclusion

This chapter, summarizes the main contributions of this work, proposes directions for future
work and wraps up with some final remarks.

8.1 Main Contributions

We have presented LRMalloc, a lock-free memory allocator designed to fulfill important and
desirable properties in a memory allocator, such as, immunity to deadlocks and livelocks, tolerance
to arbitrary thread termination and priority inversion, and a strong guarantee that there is
progress in the memory allocator if there is at least one thread executing, regardless of scheduling.
It is our belief that future progress in memory allocators would involve the adoption of lock-free
strategies as a way to provide these behavior properties to user applications.

Our experiments showed that LRMalloc’s current implementation is already quite competitive
and comparable to other modern state-of-the-art memory allocators. In particular, it has much
better performance characteristics than prior lock-free memory allocators such as Michael’s
allocator or NBMalloc. We believe that our work clearly shows that a next iteration of state-
of-the-art memory allocators can not only keep current performance characteristics but also
acquire lock-freedom, in order to provide better properties to user applications. To achieve such,
future lock-free memory allocators must effectively employ thread caches in order to amortize
the cost of atomic operations throughout several allocation and deallocation requests, as well
as a lock-free component that can effectively transfer lists of blocks to and from threads caches
with a small number of atomic operations.

We have also devised a lock-free best-fit mechanism that is capable of lock-free coalescing and
splitting. To the best of our knowledge, this is the first lock-free general coalescing mechanism – it
does not need to use size classes, nor puts restrictions on how coalescing can be performed. Our
mechanism ultimately aims to be used as a lower-level allocator for lock-free memory allocators,
allowing them to manage memory without the assistance of the operating system, and potentially
improving performance by reducing the number of system calls.

75
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8.2 Future Work

Nevertheless, there are a number of possible extensions that we plan to study which could further
improve LRMalloc’s performance. A first example is the support for multiple arenas as a way
to reduce allocation contention as the number of threads increases, thus improving scalability.
Another good example is the usage of improved cache management algorithms, as the ones
implemented by TCMalloc [32], as a way to reduce the average memory allocator latency and
reduce overall memory usage. LRMalloc currently also induces passive false sharing, which can
lead to performance degradation in multithreaded applications.

LRMalloc’s current implementation uses a lock-free scheme which relies on the operating
system to provide continuous pages of memory, which we use to construct superblocks. We plan
to integrate our best-fit coalescing mechanism with LRMalloc, in order to replace the roll of the
operating system as a lower-level allocator.

We also have a number of open problems regarding our lock-free best-fit coalescing mechanism.
A sample implementation we have made uses a lock-free binary tree for our mechanism, which
we have found is not ideal due to concerns with memory reclamation and ABA prevention. We
intend to find a lock-free data structure that is better suited for our mechanism. Furthermore,
our mechanism fails to perform coalescing if several threads attempt simultaneously attempt
to coalesce neighboring blocks. The failure of coalescing reveals an interesting properly – as
contention increases, the more likely it is that coalescing fails. We would like to formally describe
this property, and what guarantees the solution we have proposed (recursive coalescing) provides.

Lastly, the subject of concurrent memory allocation currently lacks a comprehensive survey
that describes the existing mechanisms and techniques. Chapters 3 and 4 in this document
aim to fill part of that gap, but it still lacks a through and up-to-date taxonomy of concurrent
memory allocators.

8.3 Final Remarks

LRMalloc is available from https://github.com/ricleite/lrmalloc, licensed under MIT license. It
fully implements the C11 and POSIX malloc interface.

https://github.com/ricleite/lrmalloc
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