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Abstract

Data structures are a fundamental programming tool needed to implement programs. They are
a key target to ensure concurrency properties and guarantee good performance. Our work is
focused on the study of lock-free data structures, in particular the CTries (Concurrent Hash Tries)
data structure, and how memory reclamation can be applied without losing the lock-free property.
To the best of our knowledge, there are no implementations of CTries outside garbage collector
environments. Extending the Ctries design to support lock-free memory reclamation requires
adapting the data structure to achieve efficient memory reclamation with well-defined memory
bounds. To achieve this goal, we study the state-of-the-art memory reclamation methods, their
advantages and known problems, and how CTries can be adapted to support memory reclamation
methods.
Due to the similarities between the CTries and the LFHT data structure, we focused our work
on the memory reclamation method used by LFHT, named HHL (Hazard Hash Level). After
extending CTries to implement the HHL method, we realized that the HHL method does not
guarantee bounded memory usage in this context. To fit our goals, we then adapted HHL in
order to achieve a well-defined memory bounded solution. Experimental results show that our
solution introduces some overheads, mainly in the insert operation, but it is still very competitive
with the current state-of-the-art methods, achieving better results than some of them.

Keywords: Memory Reclamation, Lock-Freedom, Data Structures, Concurrent Hash Tries
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Chapter 1

Introduction

Computers are made of physical components and therefore follow physical laws and limitations. Back
in the days, Moore’s law Moore et al. [1965] defined that CPU clock speed will double every two years.
However nowadays, due to physical limitations like the speed of light and the size of components, processors
are practically stagnated in core speed. These limitations turned engineer’s attention to the number of
cores and the communications between them. As a consequence, the capability of executing multiple
operations at the same time has become very important. This capability is known as parallelism.
Data structures are very important in guaranteeing some properties of programs such as concurrency
properties or memory bounds. Algorithms are implemented to respect data structures’ properties and
definitions. Once algorithms respect data structures principles, data structures assume an important role
in parallelism and can be a key point to achieve better performance.
Programs designed to run in a parallel manner require some sort of primitives to implement synchronization
between the running threads or processes, since otherwise, they can end in incorrect behavior or race
conditions.
Mutual-exclusion locks are probably the most used mechanism for synchronization in programs. Syn-
chronization primitives should be used sparingly since they can introduce a non-negligible overhead on
algorithms, in particular, locks can severely degrade performance as they block data access to other threads.
In order to solve this problem, non-blocking approaches like : (i) lock-freedom, where is guaranteed that
at least one thread make progress in a finite number of steps; (ii) wait-freedom, where every thread makes
progress in a finite number of steps, and (iii) obstruction-freedom, where one thread makes progress in
a finite number of steps if it is the only thread running, gained attention from the community. These
approaches bring some properties to progress like progress guarantee, low latency, and scalability. In this
work, algorithms are designed to execute in a lock-free manner, thus providing to our solution the guarantee
that over a finite number of steps at least one operation will be concluded. To guarantee lock-freedom,
data structures need to ensure progress in a non-blocking manner. Many data structures designed to
accomplish lock-freedom properties rely on garbage collection environments. However, these environments
usually implement memory reclamation schemes that do not guarantee lock-freedom, meaning that the
memory reclamation schemes are not lock-free. This affects the lock-freedom property of the whole system
because, at the moment of reclaiming memory, programs do not run in a lock-free manner.
In this work, we extend the implementation of the Concurrent Hash Tries (CTries) data structure,
as originally proposed by Prokopec et al. [2012] and Prokopec [2018] to support a lock-free memory
reclamation scheme. Although CTries inspired different designs, to the best of our knowledge, no version
of CTries with proper memory reclamation methods exist, since all implementations are supported by a
garbage collector environment.

15



16 Chapter 1. Introduction

A key problem when designing a memory reclamation scheme is to decide when a block of memory can
be safely reclaimed. To be sure about such a decision, we need to guarantee that no other threads are
simultaneously accessing that memory block before reclaiming it.
To understand the challenges and approaches in solving this problem, we started by studying the state-of-
the-art of existing memory reclamation methods for lock-free data structures, like space and time-based
methods. Some memory reclamation methods were not considered since they mostly require atomic
instructions like double-width compare and swap, which are not supported by all processor architectures.
Like CTries, the LFHT data structure Areias and Rocha [2016] is based on a tree-based hierarchy and
has a similar traversal procedure. Due to this similarity, some ideas applied in LFHT can be applied
in CTries too. In order to implement memory reclamation for the CTries data structure, we based our
approach on the HHL proposal for LFHT by Moreno et al. [2019], to achieve efficient memory reclamation.
Without losing lock-freedom, the HHL reclamation scheme guarantees limited bounded memory usage
and scalability. However, the direct application of HHL in CTries resulted in unbounded memory usage,
because HHL can not distinguish between different nodes representing the same hash levels. In order to
guarantee bounded memory usage, we propose an adaption of HHL that can track the hash level collisions.
Experimental results show that HHL achieves very close to optimal results and that our adaption can
introduce significant overheads. Although, our solution achieves very low memory bounds, which is
essential on this type of data structures.
The remainder of this document is organized as follows. First, we present some background in terms of
progress guarantees, lock-free environments, and the impact of data structures in lock-freedom. Then,
we go through the most relevant state-of-art memory reclamation methods and lock-free data structures.
Next, we describe the implementation of the CTrie data structure and explain how it works. Then, we
redesign some aspects of CTrie in order to make it compatible with memory reclamation methods, and
in particular, an adaption of the HHL method is done in order to achieve a memory bounded solution.
Finally, we present experimental results of different methods and compare them. In the end, final remarks
and some guidelines to further work are given to inspire further studies.



Chapter 2

Background

This chapter introduces the key concepts behind our work, namely, what are progress guarantees and
lock-free properties, the theoretical aspects of different lock-free data structures, and the methods used
to do memory reclamation in a lock-free manner. These concepts are crucial to better understand and
handle concurrent algorithms with shared memory.

2.1 Progress guarantees

Parallel programs need some kind of synchronization when accessing shared memory, otherwise, problems
like race conditions can happen. In order to deal with this question, lock-based techniques have been
developed. The use of lock-based primitives is relatively simple and popular, but do not give the guarantee
of progress when a thread suspends, stops, or fails after acquiring a lock. In such cases, we say that
the design approach is blocking. Alternatively to blocking designs, it is possible to have non-blocking
approaches, which can guarantee progress in very different ways. Based on the differences on progress,
algorithms with this properties are classified as wait-free, lock-free, obstruction-free, starvation-free and
deadlock-free. Figure 2.1 show how progress guarantees are classified by minimal or maximal progress,
dependent or independent and blocking or non-blocking, accordingly to Herlihy and Shavit [2011b].
Progress can be classified as dependent or independent. Algorithms with wait-free or lock-free properties
are classified as independent since they do not depend on the OS scheduler. In these algorithms, progress is
guaranteed as long there are threads scheduled to run. Other algorithms are classified as dependent, when
they depend on the OS scheduler to satisfy certain properties. For example, obstruction-free algorithms
require that the scheduler allow each thread to run isolated for a while.
Work done by Herlihy and Shavit [2011b] defend that shared-memory computation should rely on
independent progress conditions.

17



18 Chapter 2. Background

Figure 2.1: Progress guarantees

2.1.1 Obstruction-Freedom

Obstruction-free algorithms follow the idea that a thread progresses in a finite number of steps if it is the
only running thread during that period of time. These algorithms do not require operations to help each
other, which reduces the complexity needed to implement them if compared to the wait-free and lock-free
algorithms.

2.1.2 Lock-Freedom

Lock-free algorithms guarantee system-wide progress whenever a thread executes some finite amount of
steps whether by the thread itself or by some other thread in the process, i.e., when threads are run for a
certain amount of time, at least one of the threads makes progress. This type of algorithm preserves the
system of ending in a deadlock situation or with permanent locks, even if a thread fails. The key idea to
achieve lock-freedom is to avoid any kind of locks since threads waiting on a lock cannot progress for a
while.
To guarantee lock-freedom, threads can help each other in a manner that incomplete operations are
able to mark their state in the shared data structures. This way, any thread can help to complete the
incomplete operations. Lock-freedom is a relevant property to concurrent algorithms as it gives strong
progress guarantees while not being as hard to obtain as wait-freedom due to its more relaxed nature.
Lock-free algorithms are also known to have, in general, very good scalability.
The reclamation of data structures in scenarios of shared memory is a complex task, since any thread may
access any valid memory location at any time.
Atomic directives working with hardware specific instructions that operate atomically on memory locations
seems to be the way to follow. These atomic directives include simple atomic loads or stores or more
complex instructions as atomic exchanges, bitwise operations, compare and swap directives. To our study,
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the most relevant atomic directive are compare and swap directives, which is widely supported in modern
architectures.

2.1.3 Wait-Freedom

A wait-free algorithm guarantees that any thread makes progress in a finite number of steps, independently
of the steps executed by the other threads. Algorithms where the number of steps needed to make progress
depends on the number of threads running are called bounded wait-free.
A data structure is considered wait-free if every operation completes after a finite number of steps, i.e., no
operation will wait indefinitely to complete. Which makes it possible to calculate the worst execution
time for any operation.
This type of approach also needs to ensure that threads do not end in a starvation situation. To achieve
non-starvation, usually, each thread announces its current operation somewhere in memory and, when a
thread makes progress, it periodically checks the announcements of other threads in order to help their
operations to complete. Note that sometimes, excessive helping is not a good thing, since affect performance.

2.2 Lock-Freedom

Lock-freedom is an important property of concurrent algorithms since it brings strong progress guarantees
without the complexity of wait-freedom.
An algorithm is lock-free if all the data structures where the algorithm operates are also lock-free.
Otherwise, the lock-freedom property is not guaranteed somewhere in the system.
Multiple lock-free data structures have been implemented, however, most often they delegate the memory
reclamation task to an independent garbage collector, which does not work in a lock-free manner. As a
result, the system losses the overall lock-freedom property, because the memory reclamation procedure
breaks it.
Implementing memory reclamation methods in a lock-free data structure is a complex task. In order
to ensure lock-freedom on one hand, we need to allow concurrent accesses to all elements in the data
structure, but on the other hand, to reclaim an element we need to guarantee that the element is not being
accessed by other threads when we remove it. The delegation and determination of when reclamation
methods should occur must be carefully designed.

2.2.1 ABA Problem

In our algorithms, we use CAS instructions to commit the work done by a thread. This is done in 3 steps:
(i) First, we read the value we may want to change; (ii) Then we compute all the needed changes; and
(iii) Finally we update the original value with the new one meanwhile computed. The CAS instruction
guarantees that the computed value is only set if the original value in the data structure has not changed
in the meantime. However, if the value can change multiple times and return to the original value when
executing the CAS instruction, the CAS instruction will succeed, which can lead to what is known as the
ABA problem.
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The ABA problem can be seen as a false positive of CAS execution. For example, a thread T1 reads a
value A from a shared variable V, computes all the changes, and stops. Meanwhile, a thread T2 changes
the shared variable V to value B, and after that, a thread T3 changes V again to value A. Thread T1
then wakes up and executes the CAS instruction. The CAS will succeed since V have the same value A,
without noticing that V has changed in the meantime. Thread T1 will act like V has not changed since
the initial read and that is not true.
In some cases, although ABA occurs, the algorithm may not be affected. A classic example is the atomic
add. If thread T1 reads value 10 from the shared variable V and V changes some times and backs to the
value 10, the CAS instruction will give a false positive, but the result is correct.
Some primitives are immune to the ABA problem, like LoadLinked(LL), Validate(VL), and StoreCon-
ditional(SC). However, using these primitives is not the perfect solution since they are only partially
supported on most architectures and because they are too strong they waste performance unnecessarily.
An alternative, to solve this problem is to pack a tag with the shared variable and increment the tag when
changes occur. This way, the CAS instruction will notice that the tag changed although the value is the
same. Still, this is not the perfect solution since it requires the utilization of a double-CAS instruction
and is limited to the tag size, which can easily overflow.
To find the ideal solution to this problem, we should look into the memory reclamation problem. It is
not guaranteed that solving the memory reclamation problem prevent all cases of the ABA problem,
but complete ABA solutions can be constructed by using memory reclamation solutions. In particular,
garbage collection prevents the ABA problem if:

• ABA problem only lead with pointers to blocks;

• the content of a block is immutable while it is reachable by other threads;

• once a block is removed it is not reinserted before going through reclamation.

Fulfilling these requirements, the blocks follow the cycle : inserted->removed->reclaimed->allocated. If
this cycle is respected, the reclamation scheme will prevent the ABA problem.

2.2.2 Persistent Pointer Problem

In some cases, lock-free algorithms require that pointers in removed blocks retain their reference values.
These references are often used in traversal procedures. For example, a simple linked list may need that
the pointers to the next node remain intact. Figure 2.2 shows such an example. Starting from an initial
configuration with nodes N1 to Nt linked in a list ( Fig. 2.2a), consider that a thread T1 stops in N2 and
another thread T2 remove nodes N2, N3, and N4 from the list (Fig. 2.2b). In such a case, the nodes N2,
N3, and N4 can not be reclaimed because when T1 awakes, it will reach those nodes. Reclaim them will
result in a corrupted execution.



2.3. Lock-Free Hash Tries (LFHT) 21

Figure 2.2: Persistent Pointers problem

This approach can lead to unbounded memory usage since a suspended thread can block an unpredictable
number of nodes. To avoid persistent pointers, we need to redesign the algorithm such that pointers in
removed blocks are immediately nullified. This approach makes the traversal procedure more difficult
since we need to double-check if the previous node still points to the current one before moving on to the
next one, and need to be capable of leading with null pointers.
If an algorithm has persistent pointers, it is limited to the solutions/approaches of memory reclamation
that can be used. For example, hazard pointers can not be used in general, because hazard pointers allow
the reclamation of blocks that are indirectly reachable from private references. And although reference
counting and epoch-based solutions can be used, since they do not reclaim blocks that are indirectly
reachable from a private reference, but this can lead to unbounded memory usage with persistent pointers.

2.3 Lock-Free Hash Tries (LFHT)

Lock-Free Hash tries (LFHT), as proposed by Areias and Rocha [2016], are a good starting point for our
work, because of the similarities with our study, and as a fundamental background to understand the
recent solution for memory reclamation presented by Moreno et al. [2019].
LFHT are a tree based data structure and has two types of nodes, hash nodes and leaf nodes. Hash nodes
are used to represent the hierarchy of hash levels, while leaf nodes are used to store the key-value pairs.
Each key is used to compute a hash, and that hash is used to map the key-value pair in the hierarchy.
Each hash node is formed by a bucket array and a reference to the previous level. All bucket entries in a
hash node are initialized with a reference to the hash node itself. During execution, each bucket entry
stores either a reference to a hash node or a reference to a separate chaining mechanism, that deals with
the hash collisions for that entry. Leaf nodes also hold a reference to the next-on-chain leaf node.
To find the value hold by a certain key, we start by computing the corresponding hash. Nodes are inserted
using that hash to map them in the LFHT structure, so if we follow the path given by a hash and if the
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key exists, eventually we will find a leaf node containing that key and will be able to return the value
hold by that node.
The insertion of a key-value pair in LFHT is illustrated in Figure 2.3.

Figure 2.3: Insertion in hash level Areias and Rocha [2016]

As when searching for a node, we follow the path given by the hash of the key we are trying to insert and
add it to the end of the chain hold by the corresponding bucket entry. Note that the insertion of new
nodes is done at the end of the chain and any new node being inserted closes the chain by referencing
back the current hash node.
When the number of nodes in a chain exceeds a given threshold (3 in our example), then the corresponding
bucket entry is expanded with a new hash level and the nodes in the chain are remapped in the new level.
Figure 2.4 illustrates the expansion operation.
When the expansion is triggered by the threshold, the current thread starts by pre-allocating a second
hash level (Hi+1), with all entries referring to that level (Fig 2.4a)). Then, the Hi+1 hash level is used to
implement a synchronization point with the last node on the chain that will correspond to a successful
CAS trying to update Hi to Hi+1 (Fig 2.4b)). From this point, the insertion of new nodes on the bucket
entry will be done starting from the new hash level (Hi+1). The remapping process will then move
nodes to the correct bucket entries in the new level. And the chain of leaf nodes on a hash node (Hi)
will be moved one at a time to the new level (Fig. 2.4c) to Fig. 2.4h)). In order to ensure lock-free
synchronization, we need to guarantee that, at any time, all threads are able to read all the available
nodes and insert new nodes without any delay from the remapping process. To guarantee both properties,
the remapping process is done in reverse order, starting from the last node on the chain.
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Figure 2.4: Expansion Areias and Rocha [2016]

The remove operation includes two steps: making the node invalid (as shown in Fig. 2.5(a)) and then
unreachable (as shown in Fig. 2.5(b)). The invalidation step consists of finding the node to remove and
change its flag from valid (V) to invalid (I). After that, to make the node unreachable, we need to, find
the next valid node A on the chain and traverse the chain until finding a hash node H. If H is the same
hash node we have started from, we continue traversing the chain until finding the last valid node before
the one that we want to remove. Otherwise, if node H is not the same hash node we have started from,
that means that an expansion is happening simultaneously and the process should restart in the next
level. In the next level, we are able to make node unreachable since expansion is completed.
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Figure 2.5: Removal in hash level Areias and Rocha [2016]

This design allows us to do updates and expansions without using the replacement of data structures,
avoiding the need for memory recovery mechanisms.

2.4 Memory Reclamation

As we already mentioned, to truly guarantee lock-freedom, we need to guarantee also the lock-freedom
of the memory reclamation scheme since, in the end, the data structure algorithms and the memory
reclamation algorithms should be combined in order to make progress like expected. If that is not
taken into consideration, our program might consume unbounded memory and lead to a logic lock when
requesting more memory, which is not available. The CTries data structure Prokopec [2018] was initially
defined for an environment where a garbage collection is provided, thus making it unusable in environments
without such support.
The design of a memory reclamation scheme may assume that fair scheduling will not happen and that
operations should progress independently of scheduling. To provide lock-freedom properties on memory
reclamation scheme, at least one thread needs to be able to make progress in a certain number of steps
but, on other hand, lock-freedom permits the starvation of a thread.
When we think about the memory reclamation scheme, we need to be aware that a thread can be suspended
for an undetermined amount of time in a node. While this thread is suspended, that node can not be
reclaimed. This can be a problem if we want to guarantee a memory bound since, eventually, a program
that allocates memory and does not frees it will consume unbounded memory.
Memory reclamation schemes should guarantee that systems have available memory to complete any
operations while running, otherwise will violate the lock-free property. Usually, memory reclamation
requires information from all running threads, which can affect the scalability that lock-free algorithms
usually have.
Most often, data structures are not designed to include memory reclamation methods. Many data structures
are implemented without taking memory reclamation into consideration and need to be modified afterward
in order to combine with memory reclamation methods.
Next, we will explain the most interesting memory reclamation methods.
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2.4.1 Optimistic Reclamation

Optimistic reclamation is based on the low probability of a thread be accessing a memory block that was
removed some time ago.
This approach is theoretical wrong since a thread can continue referring to that memory block. However,
since this method is quite simple and requires minimum synchronization and overhead, can be applied in
practice, as a baseline to compare with other methods.

2.4.2 Grace Period

When a thread accesses shared resources we say that the algorithm is running in a critical section. Critical
sections guarantee that no other threads are interacting with the same shared resource simultaneously.
This introduces two other important notions, the notion of quiescent state and grace period.
When a thread runs outside of any critical section, we say that the thread enters a quiescent state. This
state guarantees that this thread has no access to shared resources, and this, cannot cause problems to
the other threads.
A grace period is a period of time where all threads have been in one or more quiescent states. For example,
consider the case where a node is made unreachable. We know that, when a grace period happens, the
node can be safely reclaimed. The fact that a grace period as passed guarantees that no other thread is
referring to the unreachable node.
Based on this idea, several techniques, which have the objective of determining the temporal order between
events, can be used to efficiently implement memory reclamation.

2.4.2.1 Lamport Clocks

Lamport Clocks is one of the most popular techniques to determine grace periods. In this scheme, all
threads have an internal clock and all threads can read the internal clocks but only the owner thread can
update its internal clock. This internal clock is the key to threads synchronization. When a thread wants
to mark an event, it starts by reading all clocks and by updating its clock to have the maximum value
(max value of all threads + 1).
This way, it is easy to determine which events occur before and after a certain event. If event A is marked
with lower values than event B, we know that event A happens early than event B.
Consider the event that makes node A unreachable, and after that, we try to reclaim the memory
addressing node A. If all threads update their internal clocks when they enter a quiescent state, to know
if a grace period has passed, we only need to read all thread’s internal clocks. If all threads have updated
their clocks to a value indicating a quiescent state after we made node A unreachable, a grace period has
been elapsed and it is safe to reclaim the memory of node A.
This approach can reduce the scalability of programs and lead to more memory consumption since its cost
is proportional to the number of threads.

2.4.2.2 Global Epochs

Global epochs are another way of determining the temporal order between events, which uses a shared
clock that can be updated by all threads. This clock serves the purpose of marking quiescent states and
events and, for that, threads use atomic increments. Since it relies on a shared variable to implement the
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clock, this can degrade the performance of the system.
Moreover, this method does not guarantee progress in the process of memory reclamation, which can lead
to problems with unbounded memory consumption and logic locks.

2.4.3 Hazard Pointers

The Hazard pointers Michael [2004] scheme is one of the most popular lock-free memory reclamation
schemes. Hazard pointers rely on the idea of collecting all memory references that threads are currently
accessing, in a way that such information is sufficient to guarantee that we do not reclaim any memory
currently used by other threads. In practice, hazard pointers are shared variables that store pointers to
the nodes that are currently been used by a thread.
When removing a node, this scheme first marks the node as invalid and then makes it unreachable.
Unreachable nodes are then collected into a local reclamation queue. Nodes will wait in the reclamation
queue until the reclamation procedure starts. When the reclamation procedure executes, all nodes in the
reclamation queue are compared with the references stored in the hazard pointers, and if a node is not
referred by hazard pointers, then no threads are currently accessing him, which means that it can be
safely reclaimed.
Usually, the reclamation procedure is executed when a certain threshold in the reclamation queue is
reached. This permits to adapt the threshold in a way to adjust memory consumption and performance.
We need to be careful about the compatibility of this method with our data structure since it is possible
that hazard pointers can not be applied to some data structures. As an example, consider the Harris-
Herlihy-Shavit linked list Herlihy and Shavit [2011a].
Assume a linked list formed by 4 nodes, connected by numeric order, and a thread searching for key 4, that
is suspended on node 2. While sleeping on node 2, other threads remove nodes 2 and 3 and disconnect
them from the linked list. At this moment, both nodes 2 and 3 are referred to in the reclamation queue.
Since one thread is sleeping in node 2, this node is guarded by its hazard pointers, but node 3 is free to
be reclaimed. If node 3 is reclaimed, and later the thread on node 2 wakes up, an error will occur because
the thread will try to achieve the next node referred to in node 2, that is node 3, which does not exist
anymore.

2.4.4 Drop the Anchor

The Drop the Anchor method is a combination and improvement of grace period methods and hazard
pointers. Drop the Anchor extends the grace period method with a field to mark the removal time, frozen
nodes and store an anchor and the thread state into the thread internal clocks. Two bits of internal clock
pointer are used to mark if a thread is idle, running, stuck or recovered. This allows us to identify the
threads that are in an idle state, and thus ignore that threads clocks during the reclamation process. It
also allows to, mark a thread as stuck if the thread does not make progress for a while, a case in which it
should then call a recovery procedure. The anchor is basically a hazard pointer, updated when certain
nodes are accessed.
The recovery procedure has the task of recovering nodes that can not be reclaimed because a stuck thread
is on it. The recovery scheme replaces the existing nodes with new ones and marks the replaced nodes
as frozen. Now, the remaining threads can ignore the stuck threads and continue to reclaim memory.
Replaced nodes continue frozen until the stuck thread recovers and deal with them.
Then, recovery starts at the anchor referenced by the stuck thread and marks all nodes as frozen, copying
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valid nodes to a new list until the next anchor point. After that, the node previous to the stuck thread’s
anchor reconnects to the new list, the thread’s clock is updated and the thread is remarked as recovered.
To maintain the lock-freedom property, all threads including the stuck ones should be able to assist in
these procedures.
With this method, it is possible to achieve similar to the performance grace period, and at the same time
have bounded memory usage. However, the recovery procedure can degrade performance and that is why
it is so important to decide how and when the recovery procedure should be used.

2.4.5 Hazard Eras

Hazard eras are based on grace periods too, but extend the approach by using a new clock to store the
insertion times. This improvement makes it possible to continue reclaiming memory when a thread delays
or fails.
This method has a global clock that is updated at every remove operation and, in the same way, that
hazard pointers are updated, when a thread reads a new reference, it updates its local clock value to the
global one.
With the extension of the insertion time, we are now able to ignore stuck threads when trying to reclaim
nodes that are created after the stuck thread. Since it is guaranteed that if the thread remains stuck, it
will not be able to access the nodes created after the stuck time.
Hazard eras provide bounded memory usage but imply great memory overhead and performance
degradation.

2.4.6 Interval Based Reclamation

Interval Based Reclamation (IBR) is based on the Hazard Eras method. This method proposed by Wen
et al. [2018] uses a global epoch counter to mark the time. Each block holds a birth epoch, stored when it
is created, and a retire epoch, that marks the epoch when removed. Each thread has a local retirement
list to store retired blocks that will pass through the reclamation scheme. This way, by identifying a finite
range of epochs, the reclamation scheme can detect the blocks and threads whose lifetime’s epochs are
intersected. This guarantees bounded memory usage since the number of blocks between the two epochs
is finite. IBR has some versions according to the data structure being used.
In the case of persistent data structures, where all intermediate pointers are immutable, modifications
on the data structure rely on linking new nodes to unchanged parts of the structure. IBR operations
resemble Epoch based Reclamation, except that instead of reserve all unretired blocks before a given
epoch, reserve only blocks whose lifetimes intersect reserved epochs. Threads reserve the epoch in which
it first reads the root. Read the global epoch and root reference, posts the epoch to a global "tracker"
(global clock) to reserve it, executes a write-read fence, and then double-checks the global epoch to assure
it has not changed. This mechanism guarantees that the root’s content was active during the reserved
epoch. Once persistent data structures have immutable pointers, blocks reachable from the root are also
active during reserved epochs. This way, threads reserve all blocks that could possibly read during the
execution of the current operation.
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2.4.7 HHL

Hazard hashes and levels is the solution proposed by Moreno et al. [2019], to implement memory reclamation
in the LFHT data structure. This design is based on the idea of using hazard hashes to define paths in
the hash hierarchy and hazard levels to protect the level in that hierarchy. Since we can use a hash-level
pair to represent a specific chain of nodes, a hazard pair (hazard hash and hazard level) is enough to
protect a group of nodes .
This is a great advantage comparing with other methods that can only protect a single node per hazard
pointer. This strategy reduces the synchronization overhead without letting memory bounds explode.
To implement this solution, the original LFHT data structure suffered some changes, like adding a hash
flag on bucket entries, and a generation field and a level tag in leaf nodes. With this new scheme, all
threads help to finish all ongoing expansions in a path before inserting new nodes in such a path, ensuring
that only one expansion will occur at the same time in a path.
To prevent single threads from blocking an unlimited number of nodes from being reclaimed, if the number
of nodes blocked from reclamation by a hazard pair exceeds a certain threshold, an expansion is forced on
that chain.
The list of hazard pairs need to be read twice when performing the reclamation procedure, as a node can
be added to a reclamation list before becoming unreachable due to the delegation process.
With this scheme, we have enough information to hold the chains where the node has been during his
lifetime. The reclamation procedure starts by reading twice the list of hazard pairs from all the running
threads, and stores a copy of each one. If a node is not in any of both copies of the list of hazard pairs, it
is safe to reclaim it.
Since this method can count how many nodes each thread is blocking, it guarantees bounded memory
consumption, since just a small gap of memory will be blocked from the reclamation process. Following
this approach, the number of updates required on hazard hashes, and levels remain small as well as the
synchronization overhead.

2.4.8 Memory Reclamation Conclusion

Other solutions exist in the literature, such as, the limbo lists by Kung and Lehman [1980] and the free
access (general lock-free memory-reclamation) scheme proposed by Cohen [2018].
Independently of the solution, in the end, performance, memory usage, and complexity still are the
key aspects when designing a memory reclamation scheme and we need to focus on the ones that are
compatible with our data structure and that can run inside our system limits.
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Concurrent Lock-Free Hash Tries (CTries)

In this chapter, we present our implementation of the concurrent lock-free hash tries (CTries) data
structure, and, for that, we follow the proposal by Prokopec et al. [2012] and Prokopec [2018]. The CTries
map key-value pairs into a tree-based hierarchy. Like in the LFHT data structure, the CTries use the
hash calculated from the key to finding the path leading to the node that holds the corresponding key.
The CTries can include six different types of nodes, as represented in Fig. 3.1 and in Listing 3.1:

• ANodes are used to implement the tree hierarchy. They start as a 4 size array (narrow) and can be
expanded later to a 16 size array (wide). They can hold pointers to any kind of nodes;

• SNodes are the leaf nodes. They guard a key-value pair, the corresponding hash, and a pointer to
save the state of pending operations;

• FNodes are used to mark freezing nodes and they hold a pointer to the frozen node;

• ENodes are expansion nodes and are used to handle the expansion operation;

• CNodes are compact nodes, and are used to mark a compact procedure;

29



30 Chapter 3. Concurrent Lock-Free Hash Tries (CTries)

Figure 3.1: The Ctries type of nodes

The CTries data structure is identified by a root reference. Initially, the root reference points to an empty
ANode of size 16 (wide). Figure 3.2 shows an example of the data structure organization in levels. In
what follows, we describe the behaviour of the data structure for the six basic operations: lookup, insert,
remove, expansion, compaction and freeze.

Figure 3.2: Basic CTrie structure in levels

In the CTries each ANode represents a level and each time an ANode has traversed the level increment,
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� �
1 typedef struct {

2 void **array;

3 int size; // 4 or 16 e n t r i e s ( narrow or wide ANode)
4 }*ANode
5
6 typedef struct {

7 size_t hash;

8 size_t key;

9 size_t val;

10 void *pending; // used to annouce pending changes , a l so used to mark the
node as frozen

11 }*SNode;
12
13 typedef struct {

14 ANode cur; // always NULL
15 ANode frozen; // the frozen ANode
16 ANode prev; // the prev ious ANode
17 int prev_pos; // entry of FNode in the prev ious ANode
18 int level; // l e v e l o f FNode
19 }*FNode
20
21 typedef struct {

22 ANode narrow; // the narrow ANode tha t w i l l be expanded
23 ANode wide; // the wide ANode tha t rep lace the narrow one
24 ANode prev; // the prev ious t raversed ANode
25 int prev_pos; // the entry of ENode in the prev ious ANode
26 int level; // the l e v e l o f ENode
27 }*ENode
28
29 typedef struct {

30 ANode cur; // always not NULL
31 ANode prev; // the prev ious t raversed ANode
32 int prev_pos; // the entry of CNode in the prev ious ANode
33 int level; // l e v e l o f CNode
34 }*CNode
35
36 #define IS_SNode(entry) (GET_TAG(entry) == SNODE_TAG)

37 #define IS_ANode(entry) (GET_TAG(entry) == ANODE_TAG)

38 #define IS_ENode(entry) (GET_TAG(entry) == ENODE_TAG)

39 #define IS_CNode(entry) (GET_TAG(entry) == CFNODE_TAG &&

40 ((CNode)UNTAG(entry))->cur != NULL)

41 #define IS_FNode(entry) (GET_TAG(entry) == CFNODE_TAG &&

42 ((CNode)UNTAG(entry))->cur == NULL)� �
Listing 3.1: The fields defining the six different types of nodes.
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Fig. 3.3 demonstrates the level delimitation.

Figure 3.3: The Level delimitation in the CTries

3.1 Algorithms

3.1.1 Lookup

The goal of the lookup algorithm is to find the node associated with a given key and return the associated
value. For that, it needs to be able to follow the path leading to the wanted node. Listing 3.2 shows
the pseudo-code for the lookup_key() procedure that implements the lookup algorithm. The procedure
receives the key it is searching for, the hash associated with the key, and the current level and ANode in
the CTrie structure. In case of success, it returns the corresponding SNode for the given key or NULL in
case of failure. The procedure starts by calculating the position in the ANode array (line 3). The correct
path to follow is obtained by reading the corresponding 4 bits of the hash at each level. This searching
mechanism is the same used by all procedures acting on the data structure. For example, consider that
thread T1 is searching for k0, and that the calculated position for the root level is 0, so, we start by
reading the first entry on the root’s array. If the entry is empty (NULL), so the key we are searching
for is not assigned in the CTrie and the algorithm returns NULL (lines 6-7), representing key not found.
Assume that instead, the lookup algorithm encounters an array node (ANode). The procedure continues
following the respective ANode referenced on the corresponding array entry (lines 13-14). Next, in the
second level, the algorithm finds a leaf node entry (SNode), then it proceeds in order to confirm that this
node has the same key we are looking for (k0). If so, it returns the node (lines 8-11). Otherwise, if the
key is not the same we can assume that the key we are looking for it is not inserted in the data structure
and return NULL (line 12). If lookup encounters one of the special nodes, expansion nodes (ENode),
frozen nodes (FNode), or compaction nodes (CNode), the algorithm proceeds the search using the old
view of data structure, where does not exist pending operations. Finding an ENode, lookup proceeds
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into the stable version with old narrow ANode, that is frozen or will be soon (lines 15-16). If not frozen
yet, the lookup continues normally until finding an empty entry or a SNode. If frozen, the frozen node
permits the lookup to view the old information, information that is being replicated into the new wide
ANode (procedure explained forward). Finding an FNode, we proceed into frozen ANode (lines 17-18).
Finally, if lookup encounters a CNode, representing a Compact node, it follows the same principle as for
the ENodes, looking into the old stable version of nodes (lines 19-20).

� �
1 SNode lookup_key(size_t key, size_t hash, int level, ANode cur){

2 ANode next;

3 int pos = GET_POS(hash, level, cur->size);

4 void *entry = cur->array[pos];

5 void *node = UNTAG(entry);

6 i f (node == NULL) // key not found
7 return NULL;

8 i f (IS_SNode(entry)) { // i f same key , return va lue
9 SNode snode = (SNode)node;

10 i f (snode->key == key)

11 return snode;

12 return NULL;

13 } else i f (IS_ANode(entry)) // continue search
14 next = (ANode)node;
15 else i f (IS_ENode(entry)) // use o ld vers ion
16 next = ((ENode)node)->narrow;
17 else i f (IS_FNode(entry)) // go in s i d e frozen
18 next = ((FNode)node)->frozen;
19 else i f (IS_CNode(entry)) // go in s i d e frozen
20 next = ((CNode)node)->frozen;
21 return lookup_key(key, hash, level+1, next);

22 }� �
Listing 3.2: Pseudo-code for the lookup_key() procedure

We assume that lookup does not need to worry about nodes that are close to being inserted. For example,
if thread T1 starts searching for k1 and meanwhile thread T2 executes an expansion on ANode A1 that
holds k1, T1 will catch the ENode entry and continue the search using the narrow ANode A1. Then,
thread T2 finishes the expansion and removes k1 after that. T1 awakes when T2 finishes, and because T1
is referring to the ANode A1, the node with k1 will be found by T1 although it was removed by T2, but
T2 has removed k1 on wide ANode A2 and not in A1. This is not a problem because, at the moment that
T1 reached A1, the key was assigned to the structure. So in a way, it existed at the moment we search,
but not when we return the value.
Following this implementation, lookup does not help pending operations to complete but guarantees the
lock-free property.
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3.1.2 Insert

The Insert algorithm searches for an ANode, where a new SNode will be inserted, or for a SNode that will
be replaced. Different from lookup, the insert cares about ongoing changes and helps to complete them.
Listing 3.3 shows the pseudo-code for the insert_key() procedure that implements the insert algorithm.
This procedure receives the pair key-value to be inserted and respective hash, the level it is traversing, the
corresponding ANode of that level, and the previous traversed ANode. It returns success if the insert
succeeds. In case of procedure failure, the algorithm restarts again until obtains a successful result.
The insert algorithm follows the same steps to calculate the position of ANode’s entry as in the lookup
procedure (line 2). The Search mechanism is followed until it finds an empty entry or nodes different of
ANode type. In the case of reaching an empty array entry, the SNode with the corresponding key-value
pair is added to the data structure on that entry (lines 5-6). To do that, it calls the insert_snode()
procedure represented in Listing 3.4. Procedure insert_snode() creates on the thread’s local memory a
new SNode with the given key-value pair (line 2) and uses the CAS directive to atomically update the
data structure if the corresponding array entry is still empty (line 4). If other updates have occurred on
that entry and the CAS directive fails (lines 6-7), then the insert_key() algorithm will start again. When
insert_key() algorithm ends up on a SNode entry (lines 11-12), we need to consider different possibilities,
as shown in collision_snode(), represented in Listing 3.5.
First of all, we need to check if the node is not in a frozen state, checking the pending field of SNode
(line 4). Assuming that SNode is not frozen if the algorithm finds another SNode holding the same key
that it is trying to insert, a replacing situation will happen, and a new SNode is created on the thread’s
local memory (line 6). After that, the SNode’s pending field is updated to refer the new SNode created
(line 8). At this point, the new SNode is assigned to be inserted but lookup still does not see it. The
effective change on the structure happens when the entry is replaced by the new SNode (line 9). Every
thread that finds a reference on a SNode’s pending field should proceed in order to help to complete the
operation. For that, threads update the reference hold by previous array entry to the reference hold by
SNode’s pending field. If for some reason, a thread fails a CAS on SNode’s pending field, it reenters on
the previous entry (line 13).
Otherwise, if the array entry reached by the algorithm is occupied by a SNode with a different key, then a
collision is triggered. To treat collisions, the algorithm takes in consideration if the current ANode is wide
or narrow. If the array is fully expanded (wide), then we need to insert a new level at the structure in
order to solve the collision. To do that, we create a new narrow ANode to represent the next level of the
data structure. To create a new level, threads start by creating a new narrow ANode (line 17) and use the
same mechanism as used for the replacement (lines 18-23). i.e., referring the new ANode in the SNode’s
pending field, thus providing sufficient information to the other threads be able to help to complete the
operation. The new Anode is created together with a copy of the old SNode in the corresponding position
calculated by the hash. The algorithm then fails and reenter from the root reference since now the data
structure has one more level on that path, this usually solves the collision. However, this is not the
only collision scenario. Another collision scenario is when the algorithm finds an array that is not fully
expanded, with 4 slots only (lines 14-15). Differently from the previous case, this time, the collision can
be solved without the need of creating new levels in the structure. So, we expand the size of the array
to 16 slots, reducing by 75% the probability of collision. For that, the algorithm calls the expansion()
procedure. This procedure is responsible for the expansion operation and provides the information needed
to other threads to be able to help to complete the procedure. When the expansion is completed, the
data structure will hold the new wide array and we try the insertion again. Consider now that, the thread
finds a frozen node (identified by the pending field), then the thread restart from root reference (line 30).
This process of reentering from the beginning of the "hierarchy" guarantees that the algorithm reaches
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nodes with the necessary information to help the pending changes started by other threads. Following
this protocol, when the algorithm finds pending changes on pending fields, it completes them first in order
to submit the changes to the data structure as soon as possible (lines 26-28).
If insert_key() algorithm reaches an ENode or a CNode entry, completes the pending procedure first,
reenters from the root reference, and then performs insertion (lines 13-17).

� �
1 int insert_key(size_t key, size_t val, size_t hash, int level, ANode cur, ANode

prev) {

2 int pos = GET_POS(hash, level, cur->size);

3 void *entry = cur->array[pos];

4 void *node = UNTAG(entry);

5 i f (node == NULL){

6 i f (insert_snode(key, val, hash, cur, pos))

7 return SUCCESS;

8 return insert_key(key, val, hash, level, cur, prev); // t ry again
9 } else i f (IS_ANode(entry))

10 return insert_key(key, val, hash, level+1, (ANode)node, cur);

11 else i f (IS_SNode(entry))

12 return collision_snode(key, val, hash, level, cur, prev, entry, pos);

13 else i f (IS_ENode(entry))

14 complete_expansion((ENode)node);
15 else i f (IS_CNode(entry))

16 complete_compaction(entry);

17 return FAILURE;

18 }� �
Listing 3.3: Pseudo-code for the insert_key() procedure

� �
1 int insert_snode(size_t key, size_t val, size_t hash, ANode cur, int pos){

2 SNode new_snode = alloc_init_snode(key, val, hash, NULL);

3 new_snode = PUT_TAG(new_snode, SNODE);

4 i f (CAS(cur->array[pos], NULL, new_snode))

5 return SUCCESS;

6 free(UNTAG(new_snode));

7 return FAILURE;

8 }� �
Listing 3.4: Pseudo-code for the insert_snode() procedure

One of the things we should consider is if the insert_key() algorithm should complete a pending compaction
procedure since that will delay the insertion process. Compaction might increase the number of collisions,
and we know that a node can be sooner inserted on that path. The only case that makes this decision be
more efficient is when the node we are trying to insert has the same key like the one in the compaction
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� �
1 int collision_snode(size_t key, size_t val, size_t hash, int level, ANode cur,

ANode prev, void *entry, int pos) {

2 SNode snode = (SNode)UNTAG(entry);
3 void *pending_entry = snode->pending;

4 i f (UNTAG(pending_entry) == NULL){ // no pending changes
5 i f (snode->key == key) { // same key , t ry to update va lue
6 SNode new_snode = alloc_init_snode(key, val, hash, NULL);

7 new_snode = PUT_TAG(new_snode, SNODE);

8 i f (CAS(snode->pending, NULL, new_snode)) { // annouce pending update
9 CAS(cur->array[pos], entry, new_snode); // perform update

10 return SUCCESS;

11 }

12 free(UNTAG(new_snode));

13 return insert_key(key, val, hash, level, cur, prev);

14 } else i f (IS_Narrow(cur)) // d i f f e r e n t keys and narrow ANode , expand
15 expansion(hash, level, cur, prev);

16 else { // d i f f e r e n t keys and wide ANode , i n s e r t new l e v e l
17 ANode new_anode = alloc_init_anode_snode(snode->key, snode->val,

level+1);

18 i f (CAS(snode->pending, NULL, new_anode)) // annouce pending new l e v e l
19 // perform i n s e r t i o n of new l e v e l
20 CAS(cur->array[pos], entry, new_anode);

21 else {

22 free(UNTAG(new_anode));

23 return insert_key(key, val, hash, level, cur, prev);

24 }

25 }

26 } else i f (IS_ANode(pending_entry) || IS_SNode(pending_entry)) {

27 CAS(cur->array[pos], entry, snode->pending);

28 return insert_key(key, val, hash, level, cur, prev);

29 }

30 return FAILURE;

31 }� �
Listing 3.5: Pseudo-code for the collision_snode() procedure

procedure. Since the insert algorithm provides lock-freedom, any operation will complete after a finite
number of steps. In this case, the number of steps depends on the paths that threads will follow. It is
possible that a thread does not find a pending operation and, if that happens, the thread should complete
normally its own operation.

3.1.3 Remove

The remove algorithm follows the same fundamentals of the insert algorithm. Listing 3.6 shows the
pseudo-code for the remove_key() procedure that implements the remove algorithm. It receives the key to
be removed and the respective hash, the level which it is traversing, the current and the previous ANode
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being traversed. Like with the insert, the remove restarts in case of failure until it reaches a successful
result.
If reaching an empty entry, like in lookup, it means that there is no node in the data structure with the
key we are searching for. In such a case, it returns with success (lines 5-6). Since the remove algorithm
helps all pending operations, we have the guarantee that there are no nodes with that key in pending
updates.
If the algorithm reaches an array entry referring to a SNode, a different procedure will be followed
(lines 12-13) as shown in Listing 3.7 that represents the remove_snode() procedure. Regarding the
remove_snode() procedure, consider that SNode holds a different key from the one we are trying to
remove, that key is not present on the structure and, as a result, the algorithm succeeds, because that
key does not exist (lines 3-4). The same occurs if we reach an empty array entry in remove_key() .
Otherwise, if the considered SNode pending field is not empty, indicating pending updates, that thread
should help the operation to complete like explained for the insert algorithm (lines 13-15) and, after that,
restart and try again to remove the key. The same procedure is taken in the case of found an ENode,
indicating an expansion procedure, or a CNode completing a compaction procedure (lines 14-18). In
case the considered SNode is the one that we are trying to remove (lines 6), and no pending operations
are affecting the SNode, so we are able to remove it. For that is used a CAS directive in the previous
array entry (line 7). Next, we need to check if the pending field remains empty since it is possible the
node to change into a frozen state between checking the pending field and the CAS directive. If so, the
algorithm reenters in order to try to catch replications of the node that was de-referenced (lines 8-9).
If no replications are found, the algorithm ends up on an empty entry or on a SNode with a different
key. If found a replication it proceeds in order to remove that one. Every time we remove a node, we
check if the previous array is in a compaction state, i.e, having just one non-empty entry, (this happens
on remove_key() procedure, lines 8-11). If so, we can delete that ANode and try to compact the data
structure. The compaction state is checked through all arrays on the path we performed the removal. This
guarantees that the structure maintains as few levels as possible, reducing the traversal complexity and cost.

The only case where the remove procedure completes with "out-dated" information is when comes from a
frozen empty entry. We do not check the updated state of the structure or even help to complete pending
changes, because the only way for that entry become occupied is if another thread completes an insertion
of that node. But even there, the insertion only occurs after the changes are concluded, so it is safe to
assume that the data structure does not has that key assigned.

3.1.4 Expansion

The goal of the expansion procedure is to replace a narrow ANode (4 slots) with a wide one (16 slots), i.e.,
change the small array into an array that represents the full level capacity for that path. This procedure
is called as a result of a collision situation and the current level is represented by a narrow ANode. Listing
3.8 shows the pseudo-code for the expansion() procedure that implements the expansion algorithm. It
receives the hash of the operation calling it, the level where it happened, and the corresponding current
and previous ANode. As a result, it returns the wide ANode that has replaced the narrow one.
The algorithm starts by calculating the previous position, which represents the entry where the narrow
ANode is referred (line 2). Then, it creates an ENode in the thread’s local memory (line 3). This ENode
serves to signal the other threads that an expansion is happening and provides the needed information to
the other threads be able to help to complete the procedure. The ENode also permits that threads access
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� �
1 int remove_key(size_t key, size_t hash, int level, ANode cur, ANode prev){

2 int pos = GET_POS(hash, level, cur->size);

3 void *entry = cur->array[pos];

4 void *node = UNTAG(entry);

5 i f (node == NULL)

6 return SUCCESS;

7 else i f (IS_ANode(entry)) {

8 int status = remove_key(key, hash, level+1, (ANode)entry, cur);

9 i f (status && prev != NULL && is_compactable(cur))

10 compaction(hash, level, cur, prev);

11 return status;

12 } else i f (IS_SNode(entry))

13 return remove_snode(key, hash, level, cur, prev, (ANode)entry, pos);

14 else i f (IS_ENode(entry))

15 complete_expansion(node);

16 else i f (IS_CNode(entry))

17 complete_compaction(node);

18 return FAILURE;

19 }� �
Listing 3.6: Pseudo-code for the remove_key() procedure

� �
1 int remove_snode(size_t key, size_t hash, int level, ANode cur, ANode prev,

void *entry, int pos){

2 SNode snode = (SNode)UNTAG(entry);
3 i f (snode->key != key) // d i f e r e n t key , nothing to remove
4 return SUCCESS;

5 void *pending_entry = snode->pending;

6 i f (UNTAG(pending_entry) == NULL){ // same key and no pending changes
7 i f (CAS(cur->array[pos], entry, NULL)) {

8 i f (IS_FNode(pending_entry)) // node froozen in the meantime
9 return FAILURE;

10 return SUCCESS;

11 }

12 return remove_key(key, hash, level, cur, prev);

13 } else i f (!IS_FNode(pending_entry)) // pending change
14 // perform pending change
15 CAS(cur->array[pos], entry, snode->pending);

16 return FAILURE;

17 }� �
Listing 3.7: Pseudo-code for the remove_snode() procedure
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the old narrow ANode in order to perform lookups and complete ongoing changes. In the continuation,
we are able to update the entry of the previous array with a CAS to point to ENode, which contains the
reference to the new wide ANode (line 5). If CAS fails, that means that some change happened on this
node and probably the expansion is already ongoing or will not be needed. In such cases, the procedure
tries again (line 10). After ENode is settled, all other threads that travel through that path will be able to
complete the expansion procedure. To do that, threads call the complete_expansion() sub-routine, that is
shown in Listing 3.9. The complete_expansion() procedure consists of freezing all the array entries in the
narrow ANode held by ENode, in order to stop further changes (line 2). When all entries are frozen, they
are copied and re-mapped in a new wide ANode (line 3). Entries will not collide since the mapping is
done by bits, and basically each previous position is now mapped into four (4*4=16). At this moment, it
assigns the new ANode into the ENode, providing to all running threads the knowledge that this step of
expansion is completed. If CAS fails, meaning that another thread has completed the procedure, it reads
the wide ANode that is committed on ENode (lines 4-6). Finally, the new ANode is set in the previous
entry that refers to ENode (line 10).
Figure 3.4 illustrates how this procedure is done for a data structure with two ANodes levels and two
SNodes.
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Figure 3.4: Expansion in CTries

As we can see in Fig. 3.4, this process turns the previous ANode unreachable, which will require some
form of memory reclamation. This will be discussed further in section 4.

3.1.5 Compaction

Compaction is used to remove levels from the data structure. This characteristic of being resizable allows us
to save memory space and reduce the number of traversal steps to reach the stored nodes. This procedure
may be unseemly from a performance point of view since like the expansion it introduces overheads.
However, it can reduce significantly the memory space usage. Listing 3.10 shows the pseudo-code for
the compaction() procedure that implements the compaction algorithm. The compression operation is
very similar to the expansion one, and like there, it includes a complete_compaction() that allows other
threads to help to complete the compaction procedure. Like the expansion, the compaction receives the
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� �
1 ANode expansion(size_t hash, int level, ANode cur, ANode prev){

2 int prev_pos = GET_POS(hash, level-1, prev->size);

3 ENode enode = alloc_init_enode(cur, NULL, prev, prev_pos, level);

4 void *enode_entry = PUT_TAG(enode, ENODE);

5 i f (CAS(prev->array[prev_pos], cur, enode_entry)){ // ass ign enode to c t r i e
6 complete_expansion(enode);

7 return enode->wide;

8 }

9 free(enode); // CAS f a i l e d , f r e e enode
10 return cur;

11 }� �
Listing 3.8: Pseudo-code for the expansion() procedure

� �
1 void complete_expansion(ENode enode){

2 freeze(enode->narrow);

3 ANode wide = alloc_init_wide_anode(enode->narrow, enode->level);

4 i f (!CAS(enode->wide, NULL, wide)) { // i f wide a lready ass igned
5 free(wide);

6 wide = enode->wide; //read wide
7 }

8 int prev_pos = enode->prev_pos;

9 void* enode_entry = PUT_TAG(enode, ENODE);

10 CAS(enode->prev->array[prev_pos], enode_entry, wide);

11 }� �
Listing 3.9: Pseudo-code for the complete_expansion() procedure

hash, the level, the ANode corresponding to that level, and the previous ANode that was traversed. This
procedure ends up in a successful or failure state.
The compaction routine starts by calculating the previous position holding the current ANode (line 2).
After creating the CNode (that will mark the operation), it follows the same principle as in expansion
procedure, to mark that procedure is happening, by getting the newly created CNode with a CAS in the
previous entry referring ANode (line 5). Now, all threads can call the complete_compaction() subroutine,
to complete the compaction procedure. The complete_compaction() is represented in Listing 3.11. It
starts by freezing all the array entries, which should be mainly composed by empty entries (line 3). This
allows other threads to know that an operation is running on that ANode and prevent further changes.
When all the array entries are frozen and are guaranteed that no updates will happen on that array, we
go through all entries (lines 5-6) and if a SNode is found, we save that reference to further replicate the
node (lines 7-8). If another SNode is found that means that insertion occurred between the start of the
compaction procedure and of freezing, and ANode is not anymore in a compaction state. In such cases, a
copy of ANode has been created on thread local memory (lines 16-17). Threads finish the procedure by
setting the local SNode or the copied local ANode with a CAS in the previous entry referring CNode
(line 20). In both cases, threads have all the needed information to complete the operation. To better
understand this procedure, Fig. 3.5 shows an example for the data structure state during a compaction
procedure.
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Figure 3.5: Remove and Compaction in CTries

� �
1 int compaction(size_t hash, int level, ANode cur, ANode prev){

2 int prev_pos = GET_POS(hash, level-1, prev->size);

3 CNode cnode = alloc_init_cnode(cur, prev, prev_pos, level);

4 void *cnode_entry = PUT_TAG(cnode, CNODE);

5 i f (CAS(prev->array[prev_pos], cur, cnode_entry))

6 return complete_compaction(cnode);

7 free(cnode);

8 return FAILURE;

9 }� �
Listing 3.10: Pseudo-code for the compaction() procedure

3.1.6 Freeze

Freezing a SNode is done by marking it’s his pending field as frozen. On the other hand, an ANode
is frozen by creating a frozen node (FNode) that holds a reference to the frozen ANode. Freezing a
node prevents subsequent updates by other threads on the entry holding that node. Like on the other
procedures, steps are different depending on the type of node. Listing 3.12 shows the pseudo-code for the
freeze() procedure that implements the freeze algorithm for a given ANode. It should freeze the entire
ANode to avoid further changes on that level. The freeze routine goes through all array entries of ANode
and freezes the respective entries. On empty entries, it just tags the entry with an FNode tag (lines 6-8).
This prevents other threads succeed doing the CAS directive. If found a SNode, first it checks if pending
changes are set in the pending field. If so, it helps pending changes before freezing (lines 16-17). Although
freeze presents a mechanism to stop future updates on the data structure, it needs to complete ongoing
changes to guarantee that no changes will be lost meanwhile. Otherwise, if a pending field is empty, it
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� �
1 int complete_compaction(CNode cnode){

2 ANode anode = (ANode)cnode->cur;
3 freeze(anode);

4 void *compact = NULL;

5 for (int i=0; i < anode->size; i++) {

6 void *node = anode->array[i];

7 i f (IS_SNODE(node) && (compact == NULL))

8 compact = node;

9 else i f (UNTAG(node) != NULL){

10 compact = anode;

11 break;
12 }

13 }

14 i f (IS_SNode(compact)) { // only one SNode found
15 compact = alloc_duplicate_snode(compact);

16 } else i f (IS_ANode(compact) { // at l e a s t two SNodes or another node found
17 compact = alloc_duplicate_anode(compact);

18 }

19 void *cnode_entry = PUT_TAG(cnode, CNODE);

20 CAS(cnode->prev->array[cnode->prev_pos], cnode_entry, compact);

21 return ((compact == NULL) || IS_SNode(compact));

22 }� �
Listing 3.11: Pseudo-code for the complete_compaction() procedure

executes a CAS in order to mark that field as frozen (lines 13-15). After this CAS, we guarantee that
other threads will be aware that SNode is frozen. On ANodes, we create an indirection to mark the frozen
state, basically, we create an FNode that holds the ANode reference and set him in the previous ANode
entry (lines 18-21). The algorithm reenters on that reference, which now marks an FNode, and recursively
freezes all entries (lines 22-23). If a CNode entry is found, threads perform complete_compaction in order
to complete any pending changes (lines 26-27).

Since freezing replaces ANode’s entries one by one, it is possible that a thread adds a node during this
process, if the corresponding entry is not yet frozen. However, this is not a problem, since the goal is to
guarantee that no future updates will happen and not fresh updates. This behavior comes with a handoff
when a thread performs the compaction procedure because it is possible that compaction will be not
needed anymore. In such cases, the freeze routine completes all pending changes and retries to freeze that
entry after. Since the algorithm helps all other pending changes before freezing, it guarantees that the
frozen state will be mostly updated at that moment.

3.2 Problems

CTries achieve good performance and can be easily adapted to better accomplish program requirements.
However, its implementation outside of a garbage collection environment, will not reclaim memory. The
usage of memory can be exponential, leading the program to become unbearable for the system. Due to
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� �
1 void freeze(ANode cur){

2 int i=0;

3 while (i < cur->size) {

4 void *entry = cur->array[i];

5 void *node = UNTAG(entry);

6 i f (entry == NULL) // i f NULL, tag i t as f rozen
7 i f (CAS(cur->array[i], entry, PUT_TAG(NULL, FNODE)))

8 i++;

9 else i f (IS_SNode(entry)){

10 SNode snode =(SNode)node;
11 void *pending_entry = snode->pending;

12 void *pending = UNTAG(pending_entry);

13 i f (pending_entry == NULL) // SNode without pending changes , tag
pending f i e l d

14 i f (CAS(snode->pending, NULL, PUT_TAG(NULL,FNODE)))

15 i++;

16 else i f (!IS_FNode(pending_entry)) // pending change
17 CAS(cur->array[i], entry, snode->pending);// perform pending change
18 } else i f (IS_ANode(entry)){

19 FNode fnode = alloc_init_fnode(NULL, entry, cur, i, cur->level+1);

20 fnode = PUT_TAG(fnode, FNODE)

21 CAS(cur->array[i], entry, fnode);

22 } else i f (IS_FNode(entry) && (node != NULL))

23 freeze((FNode)node->frozen);
24 } else i f (IS_ENode(entry)){

25 complete_expansion(node);

26 else i f (IS_CNode(entry))

27 complete_compaction(node);

28 }

29 }� �
Listing 3.12: Pseudo-code for the freeze() procedure

the dynamic size property and the immutable nodes of CTries, it can produce unreclaimable memory
not only on remove operations. Indeed the insertion of just one node, in a situation that triggers an
expansion procedure, makes the level obsolete, and all that nodes become garbage. Note that, in this
section, when we are talking about removing a node it is not considered the reclamation operation of that
piece of memory. That is because, in this design, we are assuming that memory reclamation is a task of
the garbage collector. As discussed previously, this delegation can affect the lock-freedom property of the
data structure as a whole.
This version of CTries also suffers from the ABA problem, and a memory reclamation scheme should
fix this problem by design. If a reference is not reclaimed until it is guaranteed that no other thread
is accessing it, the problem is solved, since the block will not be reused. Because of the persistent
pointers problem, algorithms become limited in memory reclamation solutions. The restricted reuse (no
reclamation) can not be used, because of the possibility of immediate reuse. Hazard pointers and other
pointer solutions can not be used too, because they allow the reclamation of blocks that are indirectly
reachable from private references. To use pointer based techniques, it is essential to solve the persistent
pointer problem. The main problem with memory reclamation is to know if a node can be safely reclaimed,
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this is, have the knowledge that if at a given time it is possible to reclaim that piece of memory, i.e. if no
other threads are accessing that memory position.





Chapter 4

CTries and Memory Reclamation

In this chapter, we describe our approach of applying the current state-of-art memory reclamation methods
to the CTries data structure. We start by discussing the application of the HHL method and why it does
not fit with our goals. Then, we present how we adapted it to the CTries. This new method is closely
integrated with the base implementation and exploits the CTries structure to achieve optimal memory
bounds.

4.1 State-of-the-Art Methods

Current reclamation methods usually rely on the remove operation in order to guarantee that removed
nodes become unreachable. However, since the CTries removes nodes in several procedures than remove,
that guarantee needs to be applied to various operations. As we mentioned early, hazard pointers can not
be applied to the CTries without modifications due to the persistent pointers problem. On the other hand,
methods that rely on nodes age, like hazard eras or interval based reclamation, can be applied since the
reclamation procedure protects all the nodes inside that period of time. A satisfying memory reclamation
scheme, should solve by design the ABA problem and provide bounded memory usage. To apply memory
reclamation methods, the data structure needs to be adapted in order to:

• know when a node becomes unreachable;

• adjust all needed operations to provide that guarantee;

Because of the immutable property of CTries, we decided to adjust all needed operations, since once nodes
are detached from the structure, they will not be assigned again, before they pass throw the reclamation
process.
To adjust the CTries to memory reclamation methods, we need to change some aspects:

• To reclaim nodes:

– Nodes need to be modified to include hash and level fields;

– Adjust the traversing procedure to protect nodes;

– Track the thread id during procedures;

• To solve the persist pointer problem:

47
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– When removing nodes, nullify pointers;

– Algorithms need to be modified to deal with NULL pointers;

• To solve the ABA problem:

– Adjust all operations to guarantee that the reclamation cycle is followed;

Every time a node is retired from the structure, due to an insertion or a remove, that node now passes
through the reclamation procedure. This guarantees that the reclamation cycle is followed and that the
ABA problem is solved. The first step of the reclamation procedure is to nullify all pointers of a node.
This step is needed to solve the persistent pointer problem. When one node is removed from the structure,
all child nodes are removed too, meaning that we need to add all child nodes to the reclamation list
too. All methods should do these steps in order to be correctly adapted. The way that reclamation is
controlled depends on the method itself. Methods will need to adapt the traversal procedure of algorithms
in order to guarantee that nodes become protected before being accessed in the traversal step. Figure 4.1
shows the nodes life cycle for the new CTries with memory reclamation.

Figure 4.1: Nodes life cycle.

Nodes are initially created with normal allocation in threads local memory, and then they are assigned
into the CTrie data structure. After that, nodes can be read by the other threads, but before reading a
node, threads need to somehow protect the node. During their lifetimes, nodes can be later deassigned
from the data structure for different reasons. After that, the node is retired, by nullifying all pointers to
the other nodes. If a node is not protected, it can be safely reclaimed and its memory is returned to the
OS. Different reclamation methods mainly vary in the way that they protect nodes.
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4.2 Adaption of HHL

The LFHT and CTries data structures are both tree based and have two major groups of nodes, leaf nodes,
and nodes with references to other nodes. In both LFHT and CTries, the nodes’ locations are tracked
by the hash and level fields. Each group of four bits in the hash represent the node position at each
level. This similarity made the HHL reclamation method a good base option for memory reclamation in
Ctries. However, HHL can not be directly adapted because the protection is only guaranteed to leaf nodes.
In LFHT, there is no problem with that, since the structure does not vary so much and the hierarchy
nodes are never removed. On the other hand, CTries is constantly allocating new nodes and replacing a
significant amount of intermediate nodes, becoming essentially important the reclamation of this type of
nodes.
As we saw, to implement memory reclamation we need to change the traversal procedure of data structure,
to ensure that a node is protected by a hazard pair before accessing it. In LFHT, the protection only
occurs in leaf nodes, since the level where a thread is in the data structure is only updated when reaching
a leaf node. However, in CTries, all nodes need to be protected to consequently be reclaimed. So, in the
CTries context, a single hazard pair may protect more than one node. For example, ANodes need to stay
protected while any child SNode is protected. To guarantee that protection, algorithms need to update
the thread’s level every time they move in the data structure, instead of just when finding leaf nodes.
Since otherwise, the following problem shown in Fig 4.2 can happen. Consider that thread T1 is inserting
a leaf node S2 and stops on AW2 before updating its level. At this moment, another thread T2 removes
the last SNode in AW2 and AW2 enters in a compaction situation. T2 successfully performs compaction
and AW2 goes through the reclamation procedure. The hazard pair hash/level of T1 is (S2, 0) , which
does not protect AW2. So, if AW2 is reclaimed, when T1 wakes up it is referring to invalid memory and
may crash.

Figure 4.2: Problem if not updating the level as a thread moves in the data structure
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As mentioned before, the reclamation procedure of CTries needs to be able to reclaim different types of
nodes. In order to do that with HHL, it is needed to adapt to the reclamation rule. Nodes can only be
reclaimed if the hash of a node does not match (until the node’s level - 1) with the hazard pairs of any
thread. We need to protect all nodes of the same level due to the procedures of CTries that traverse all
layers of a level.
Another problem is that a direct application of HHL does not guarantee a bounded memory usage, as
Fig. 4.3 illustrates. If thread T1 is traversing AN2, the hazard pair protects AN2 from reclamation. The
problem appears if another thread T2 performs an expansion from AN2 to AW2. T2 will not reclaim
AN2 because T1 is protecting it. That is correct, however, if T2 continues performing operations and now
AW2 is in a compaction situation when T2 removes AW2 and tries to reclaim it, the hazard pair of T1
(that is still sleeping in AN2), matches with the hazard pair that protects AW2, and thus AW2 will not be
reclaimed, this is the care although there is no thread referring AW2 and thus it can be reclaimed. The
problem is that due to the resizable property of CTries, a hazard pair (hash, level) is not unique to each
node, and can block all future nodes in the same level.

Figure 4.3: Memory unbounded problem
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To guarantee bounded memory usage, we need to be able to track the difference between two equals
hazard pairs at the same level.
To achieve a bounded memory reclamation solution, and implement a satisfying solution, we have modified
the HHL method in the following way:

• all Nodes have been modified to include a blocking list;

• a new global array "Stuck Array", marks threads on outdated states;

• a new per thread clock num_op is used to distinguish equals hazard pairs over time;

Listing 4.1 shows the changes done to the data structures that compose CTries, and Figure 4.4 shows how
the new structures , defined on Listing 4.2, are organized to implement our solution.

Figure 4.4: Structs that implement Reclamation Solution

4.2.1 Main Idea

As we mentioned before, the application of HHL may result in unbounded memory usage. To solve that,
it is crucial to distinguish between two equals hazard pairs that protect different nodes. This can be
achieved in different ways, for example, it is possible to distinguish equals hazard pairs of different nodes
following a pointer based solution, like adding a pointer to the current node in the hazard pair. However,
pointer based solutions add some unwanted overhead since in every traversal step the pointer needs to
be updated. Our approach uses a per thread clock "num_op" that tracks the number of times that a
thread has entered the data structure by the root reference, i.e, this clock is incremented every time a
thread passes through the root reference. Since the clock is local to each thread, it allows us to track if a
certain thread remains stopped or is traversing new nodes. Note however that this clock is not a global
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� �
1
2 typedef struct {

3 size_t key;

4 size_t val;

5 void *pending;

6 size_t hash;

7 int level;

8 BlockingList block_list; // hold threads tha t b l ock node from reclamation
9 } *SNode;

10
11 typedef struct {

12 void **array;

13 int size;

14 size_t hash;

15 int level;

16 BlockingList block_list; // hold threads tha t b l ock node from reclamation
17 } *ANode
18
19 typedef struct {

20 ANode narrow;

21 ANode wide;

22 ANode prev;

23 int prev_pos;

24 int level;

25 size_t hash;

26 BlockingList block_list; // hold threads tha t b l ock node from reclamation
27 } *ENode
28
29 typedef struct {

30 ANode cur;

31 ANode prev;

32 size_t hash;

33 BlockingList block_list; // hold threads tha t b l ock node from reclamation
34 } *CNode
35
36 typedef struct {

37 ANode cur;

38 ANode frozen;

39 ANode prev;

40 int prev_pos;

41 int level;

42 size_t hash;

43 BlockingList block_list; // hold threads tha t b l ock node from reclamation
44 } *FNode� �

Listing 4.1: Changed structures.
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� �
1 typedef struct {

2 int tid;

3 size_t num_op;

4 int level;

5 BlockingList next;

6 } *BlockingList
7
8 typedef struct {

9 void *node;

10 size_t hash;

11 int level;

12 size_t num_op;

13 ReclaimList next;

14 } *ReclaimList
15
16 typedef struct hazard_entry {

17 size_t hash;

18 int level;

19 size_t num_op;

20 int reclaim_size;

21 ReclaimList reclaim_list;

22 } HazardEntry;
23
24 typedef HazardEntry* HazardArray;
25
26 HazardArray HA; // shared hazard array
27 HazardArray LOCAL_HA, LOCAL_HA2; // two l o c a l p r i va t e array per thread
28 HazardEntry** STUCK_HA; // to keep track of the suspended threads� �

Listing 4.2: New structures.

clock, so it is not possible to distinguish between two equals hazard pairs, although this provides sufficient
information to make it possible, as we will explain later. In order to guarantee that a node will not be
blocked from reclamation by threads who have the same hazard pair but have entered after the node was
retired from the structure, nodes in a reclamation list now have an associated blocking_list. The goal of
this list is to mark the threads that, after the removal of the node from the structure, are blocking that
node from being reclaimed. This also guarantees that threads with equal hazard pairs will not interfere
with the reclamation of a node that is out of structure at the moment they have entered the structure. A
Blocking list is set when nodes pass through the retirement process. As said, the goal of blocking_list is
to mark the threads that can hold references to the newly retired nodes. Once the Blocking list is only set
after nodes be retired from the structure, threads do not have complications in time of set blocking_list,
because only that thread do that work. The blocking list contains the tid (thread id), level, and num_op
of the threads that can have a reference to the node. This guarantee that threads that will collide in the
same hazard pairs in the future will not interfere in the reclamation process of a node already removed.
The threads that can block a node from reclamation are all marked in the node’s blocking_list. So, at the
time of reclamation, we only need to consider those threads. If the current hazard pair of a thread is the
same as the one saved on the node’s blocking_list, the thread is still blocking that node from reclamation.
If not, that means that the thread has moved and is no longer blocking the node from reclamation. For
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example, in the expansion routine, when an expansion node is removed, the expansion node and the old
narrow ANode, pass through the retirement procedure that creates the node’s blocking_list, this way
threads that enter on the new wide node after the retirement procedure will not block the reclamation of
that nodes.
However, in the end, this solution is still unbounded, since threads that stop before a node is created
are still blocking the reclamation of that node. Following Fig. 4.3, consider that thread T1 stops in
AN2, meaning that its hazard triplet is (hash=h1, level=1, num_op=1). Meanwhile, thread T2 performs
expansion from AN2 to AW2. When T2 retires AN2, T1 is added to its blocking_list. At this point,
there is no problem since T1 actually blocks the reclamation of AN2. However, when AW2 goes through
retirement, T1 will block its reclamation too. Indeed, T1 will block the reclamation of all future nodes in
that level, because threads do not know if T1 is traversing the node or remains stopped in old nodes. In
order to know if a thread is stuck before a node is assigned to the structure, we use a global array named
(stuck array). The stuck array is a global array, multi-writer multi-reader, that holds immutable hazard
triplets (hash, level, num_op). The goal of the stuck array is to mark the threads that stay stopped in
old outdated nodes, that are no longer part of the CTrie data structure.
In order to get bounded memory, we update the stuck array when inserting a new level, in order to mark
the threads that are still in the old ANodes that exist on that level. When an ANodes passes through the
compaction procedure, threads that are in the stuck array and remain with the same hazard pair, and the
hazard pair matches with the node hazard pair, that thread will not be added into the blocking_list of
that ANode. This guarantees that when an ANode was inserted, the stopped threads are marked on the
stuck array, if at the moment of ANode retirement, the threads num_op is the same as in the stuck array,
then that thread stay stopped the entire life of ANode and should not interfere with the reclamation of
that ANode.
The stuck array only cares about new levels, we do not need to mark the threads that are stuck between
expansion. This is because, the ENode used in the expansion procedure, holds a reference to both the
narrow and wide ANodes. These two hazard triplets will not be distinguished, since threads in a narrow
ANode should also protect wide ANode. This indirect control of the compaction procedure is enough to
achieve a bounded solution.
With this solution, when a thread is inserting a new level ANodes (narrow), it starts by reading the
hazard triplets of all threads, keeping a copy of them. After that, it assigns the narrow ANodes to the
data structure and checks if any thread is in the position of the newly added node. If a thread has the
same hazard triplet as in copy before the node was assigned, it is impossible that the thread sees the
newly added node. In such a case, the threads on that position will become outdated, since a new node
was entered on that position. The stuck array is updated if copies are equal, i.e., the hazard pairs match
with each other and the num_op is the same as the HA num_op. Therefore marking that these threads
are in an old position. To update the stuck array we re-check if the hazard triplets are still the same,
guaranteeing that threads do not move meanwhile, by updating the stuck array with CAS. The update to
the stuck array only happens if num_op present there is lesser than the new one.
However, if some thread is stopped on one level, the thread will block all nodes at that level. If nodes are
inserted and removed from that level without trigger compaction, the thread block an infinite amount of
nodes. To guarantee that this never happens, we force a replacement of that level. During replacement,
the Stuck array is updated and nodes in the new level will not be blocked by that thread. This forced
replacement induces the threads that are in that level into an outdated state.
To better show how this solution achieves bounded memory, consider the example in Fig. 4.5. The Figure
represents different states of the Ctries where new levels are created and removed from the structure.
Consider that, in the state (i), threads T1 and T2 are traversing narrow ANode AN2, and no other thread
is on that path. At this point, the hazard array of T1 and T2 protect AN2. Somewhere between state
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(i) and (ii), AN2 passes through an expansion procedure, and as explained before, the reclamation will
not distinguish between threads that protect AN2 or threads that protect the new AW2, this is because
during expansion threads need to protect both nodes since both are reachable from the expansion node.
Consider now that, T2 has performed this expansion and starts the reclamation procedure of ENode and
AN2. When AN2 enters the reclamation, his blocking_list is set. At this point, the stuck array is empty,
so T1 is added to the blocking_list since it is protecting the node. Then consider that, T1 removes a
SNode and AW2 becomes compactable, and T1 starts the compaction procedure. At state (ii), T2 is
stopped and its hazard array is still protecting AW2. In the compaction routine, when nodes pass through
the retirement process, if a thread is protecting nodes in the hazard array, and the hazard triplet is not in
the stuck array, the thread is marked in the node’s blocking_list. If the stuck array has the same hazard
triplet, we do not mark that thread on the node’s blocking_list. This way, the blocking_list of AW2 is T1
hazard pair. In state (iii), T1 and T2 remain stopped, and T3 reads S2. Between state (iii) and (iv), T4
inserts a new level (AN3). Before inserting AN3, it reads the hazard array, assigns AN3, and reads again
the hazard array. If both reads are the same and match to that node, that threads are in outdated states.
To mark that, we update the stuck array with that hazard pairs. Remember that, the stuck array is only
updated if num_op of hazard triplet is greater than the one on the stuck array. At that point of state
(iv), the stuck array has the hazard triplet of T1 and T2. T3 does not enter in the stuck array because it
is in the previous level. After, if AN3 enters on a compact state (iv), reclamation is done like in state (ii).
When T4 retires CNode, blocking list of AN3 and other nodes on that level, only add threads that hazard
array match and is not in the stuck array. In this case, T1 and T2 will not block nodes of that level from
reclamation. In state (vi), when node S4 is retired, thread T3 will block its reclamation, since the hazard
array of T3 protects S4 too. This is needed because T3 can be referring to S2 or S4. In state (vii), AW1
was replaced by the AW7, this way, T3 is updated on the Stuck array and will not block the reclamation
of S5.
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Figure 4.5: Bounded Reclamation Solution

This guarantee that stopped threads will not block new nodes from reclamation. This solution maintains
the reclamation cycle show in Fig. 4.6 and guarantees that the ABA problem does not happen.
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Figure 4.6: Bounded Reclamation Scheme Cycle

On other hand, the Blocking list guarantees that when a node will be reclaimed, threads that are traversing
the structure after the node’s lifetime will not interfere in the reclamation of that node. On other hand,
the stuck array guarantees that when a node will be reclaimed, threads that were traversing the structure
before the node’s level lifetime, will not interfere in the reclamation of that node. In the end, only threads
that are traversing the structure during the node’s level lifetimes will be considered in the reclamation
procedure.

4.3 Limitations

Our solution to the memory reclamation problem is an adaptation of the HHL method to the Ctries,
which can work in data structures that present a tree based hierarchy. Generally, if the data structure
can map nodes into a pair of hash and level, our method should work. Depending on the data structure
properties, the method can even be optimized.
However, this method only works inside some restrictions. Since we use a num_op value to track the
different operations in the same thread, the solution only works correctly if num_op does not overflow.
In our implementation, since we are using size_t variable, this puts a limit per thread operations at the
maximum of 0xffffffffffffffff (64 bits). If this maximum is reached, it will overflow and the stuck array will
not update properly and the bounded memory is not guaranteed. Another limitation is the size of the
hash value (again of size_t). Some implementations of Ctries lead with hash collisions by attaching nodes
in a list on the last level, thus the direct application of this method in that situation will preserve the
bounded memory usage since one thread stuck on the last level only blocks that list from reclamation.
This method is not depending on how much nodes are on one level, and on how much levels the data
structure has, so there are no limitations on that. However, this directly influences the bound of memory



58 Chapter 4. CTries and Memory Reclamation

usage and performance.

4.4 Guarantees

Our solution provides a memory bounded usage for the Ctries data structure without the loss of the
lock-free properties. The memory bound is achieved by hazard pairs (hash, level, num_op) and by tracking
the threads inside the structure. To define the memory bound limit, we need the following variables:

• the number T of threads;

• the maximum number N of nodes in a single level;

• the threshold TE for invoking the reclamation procedure.

This way, our solution presents the following memory bounded equation:

T × max(TE, N × T ) (4.1)

4.5 Algorithms

4.5.1 Reclaim Node

The reclaim_node() procedure is responsible for the application of the memory reclamation method.
Listing 4.3 shows the pseudo-code for the reclaim_node() procedure. This procedure runs right after a
node is being removed from the data structure.
The first step of this procedure is to call the retire_node() procedure (line 2). Nodes are then added to a
linked list (reclaim_list), this list is local to each thread (line 3). In other words, each thread reclaims the
nodes that it has previously removed. Because the reclamation procedure is in some way expensive, nodes
are only reclaimed after the reclamation list exceeds some threshold in the number of nodes (line 4). If
the threshold is reached, we read all the hazard pairs from the global hazard array (line 5). Next, we
go through all the reclaim_list, and on each node, we check if the node is in condition to be reclaimed
with check_blocking_list (lines 6-18). If check_blocking_list returns SUCCESS, the node is reclaimed.
Otherwise, if returns FAILURE, that node cannot be reclaimed. In that case, we check how many SNodes
the reclamation list has at the same level, by the check_nodes() procedure. If the number of SNodes
(in the same level and path) in the reclamation list passes a threshold, return as SUCCESS and the
force_replacement() is called (lines 14,15). The force_replacement() routine follows the same idea as the
expansion, and assign a copy of the current ANode.

The blocking_list is set in add_to_reclaim_list procedure, as shown in Listing 4.4, when nodes are
already detached from the structure.

4.5.2 Retire Node

The retire_node procedure, as shown in Listing 4.5, is called every time one node is removed from the
data structure. The goal of this procedure is to nullify the pointers present on a node, in such a way that
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� �
1 void reclaim_node(void *node_entry, int tid ){

2 retire_node(node_entry, tid);

3 add_to_reclaim_list(node_entry, tid);

4 i f (HA[tid].reclaim_size >= RECLAIM_THRESHOLD) { // s t a r t rec lamation
5 copy_ha(LOCAL_HA, tid); // copy hazard pa i r s
6 ReclaimList *ptr = &(LOCAL_HA[tid].reclaim_list);

7 while (*ptr) { // go through reclamation l i s t and f r e e nodes
8 i f (check_blocking_list((*ptr)->node, tid)) {

9 ReclaimList *tmp = *ptr;

10 *ptr = (*ptr)->next;

11 free_reclaim_list_structure(tmp);

12 HA[tid].reclaim_size--;

13 } else { //go to next node
14 i f (check_nodes(ptr)) // check i f need to force a replacement
15 force_replacement(ptr);

16 ptr = &((*ptr)->next);

17 }

18 }

19 }

20 }� �
Listing 4.3: Pseudo-code for the reclaim_node() procedure

threads that can be in that node will not continue traversing it and will be forced to reenter from the root
node. The nullify of pointers informs those threads that they are in outdated versions of the structure.
The nullify of pointers also block threads from removing the same nodes again, thus avoiding the double
reclamation of nodes. Due to the immutable property of the data structure, when a node is removed, all
the nodes reachable from that node (i.e., lower in the hierarchy) are removed too. This means that, when
a node is added to the reclaim list, other nodes might be added too.

4.5.3 Check blocking list

The goal of this procedure, as shown in Listing 4.6, is to tell the reclaim procedure if a node can be
reclaimed or not. This method starts by reading the head of the blocking list of a specific node (line
2). Then, it goes through the list, and for each thread associated with the current block, it checks if its
hazard pair is still the same, which means that the thread does not advance meanwhile (line 8). And the
node can not be reclaimed, returning as a failure (lines 9-10). If the blocking list of one node is empty,
or all blocking threads have advanced meanwhile, that node can be safely reclaimed, and the routine
return successfully (lines 15-16). The set_block_list() has the goal of resetting the blocking list. In case
of failure and before returning, we guarantee that the blocking list remains only with threads that still
blocking the node (line 7). This avoids rechecking the threads that have already moved.

The set_list() procedure, shown in Listing 4.7, has the goal of setting the blocking list. When a thread
adds the nodes into the reclaim_list, fills the node’s blocking list with the threads that are protecting the
node from reclamation. In this step, we guarantee that the blocking list is only composed of threads that
protect node after their assignment to CTrie, and after his retirement, the threads that start protect node
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� �
1 void add_to_reclaim_list(void *entry, int tid){

2 size_t hash, int level;

3 void* node = UNTAG(entry);

4 i f (node == NULL)

5 return NULL;

6 i f (IS_SNode(entry)){

7 SNode snode = node;

8 hash = snode->hash;

9 level = snode->level;

10 snode->block_list = set_list(hash, level, tid);

11 } else i f (IS_ANode(entry)){

12 ANode *anode = node;

13 hash = anode->hash;

14 level = anode->level;

15 anode->block_list = set_list(hash, level, tid);

16 } else i f (IS_ENode(entry)){

17 ENode *enode = node;

18 hash = enode->hash;

19 level = enode->level;

20 enode->block_list = set_list(hash, level, tid);

21 } else i f (IS_FNode(entry)){

22 FNode *fnode = node;

23 hash = fnode->hash;

24 level = fnode->level;

25 fnode->block_list = set_list(hash, level, tid);

26 } else i f (IS_CNode(entry)){

27 CNode cnode = node;

28 hash = cnode->hash;

29 level = cnode->level;

30 cnode->block_list = set_list(hash, level, tid);

31 }

32 ReclaimList new_reclaim = alloc_init_reclaim_list(entry, hash, level);

33 new_reclaim->next = HA[tid].reclaim_list;

34 HA[tid].reclaim_list = new_reclaim;

35 HA[tid].reclaim_size++;

36 }� �
Listing 4.4: Pseudo-code for the add_to_reclam() procedure

will not be considered in the reclamation procedure.

4.5.4 Check for Stucks

This procedure, shown in Listing 4.8, uses two copies of hazard pairs, one taken before and another taken
after the corresponding ANode was retired. We check if both copies are equal, meaning that we only want
to consider threads that are stopped in the same place (ANode) in the data structure (line 3). Next, we
check which copied hazard pairs match with the hazard pair that represents the node being inserted (line
4) and, if they match, we check if the corresponding thread was there before the node was attached or



4.5. Algorithms 61

� �
1 void retire_node(void *entry, int tid){

2 void* node = UNTAG(entry);

3 void* freeze_entry = PUT_TAG(NULL, FNODE);

4 i f (IS_ANode(entry)){

5 ANode anode = node;

6 for (int i=0; i<anode->size; i++){

7 void *node_entry = anode->array[i];

8 i f (CAS(anode->array[i], node_entry, freeze_entry))

9 i f (UNTAG(node_entry) != NULL)

10 reclaim_node(node_entry, tid); // reclaim nodes r e c u r s i v e l y
11 }

12 } else i f (IS_SNode(entry)){

13 SNode snode = node;

14 CAS(snode->pending, NULL, freeze_entry);

15 } else i f (IS_ENode(entry)){

16 ENode enode = node;

17 void *node_entry = enode->narrow;

18 i f (CAS(enode->narrow, node_entry, freeze_entry))

19 reclaim_node(node_entry, tid); // reclaim nodes r e c u r s i v e l y
20 } else i f (IS_FNode(entry)){

21 FNode fnode = node;

22 void *node_entry = fnode->frozen;

23 i f (CAS(fnode->frozen, node_entry, freeze_entry))

24 reclaim_node(oldtg, tid); // reclaim nodes r e c u r s i v e l y
25 } else i f (IS_CNode(entry)){

26 CNode cnode = node;

27 void *node_entry = cnode->cur;

28 i f (CAS(cnode->cur, node_entry, freeze_entry))

29 reclaim_node(oldtg, tid); // reclaim nodes r e c u r s i v e l y
30 }

31 }� �
Listing 4.5: Pseudo-code for the retire_node() procedure

after. For that, we compare the num_op present on the copy and the one in HA (line 5). If both are
equal, that means that the thread remained stopped in that position, so we update the stuck array to
mark that thread (line 6).

4.5.5 Update Stuck Array

The stuck array is only updated to reflect more recent values, as shown in Listing 4.9. This is guaranteed
by checking if the value to be updated has a greater num_op value than the one currently in the stuck
array (line 6). Otherwise, the stuck array will be updated to older states that become outdated because
the thread is no more in that situation.

The in_stucks() procedure, shown in Listing 4.10, serves the purpose of knowing if a certain thread is in
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� �
1 int check_blocking_list(void *node, int tid){

2 BlokingList cur_block = get_block_list(node);

3 while (cur_block) {

4 int block_tid = cur_block->tid;

5 size_t num_op = cur_block->num_op;

6 int level = cur_block->level;

7 BlockingList next_block = cur_block->next;

8 i f ((num_op == LOCAL_HA[block_tid].num_op) && (tid != block_tid)) {

9 set_block_list(node, cur_block);

10 return FAILURE; // in b l ock ing l i s t and same num_op, node i s pro tec ted
11 }

12 free(cur_block);

13 cur_block = next_block;

14 }

15 HA[tid].reclaim_size--;

16 return SUCCESS;

17 }� �
Listing 4.6: Pseudo-code for the check_blocking_list() procedure

� �
1 BlockingList set_list(size_t hash, int level, int tid){

2 BlockingList header;

3 for (int i = 0; i < NUMBER_THREADS; i++) {

4 i f ((i != tid) && match_hash(level-1, hash, LOCAL_HA[i].hash) &&

(!in_stucks(LOCAL_HA[i].num_op, level, i)))

5 add_to_blocking_list(header, i, LOCAL_HA[i].num_op, level);

6 }

7 return header;

8 }� �
Listing 4.7: Pseudo-code for the set_list() procedure

� �
1 void check_for_stucks(size_t hash, int level, int tid) {

2 for (int i = 0; i < NUMBER_THREADS; i++) {

3 i f ((i != tid) && equal_local_hazard_copies(i))

4 i f (match_hash(level-1, LOCAL_HA2[i].hash, hash) &&

5 (LOCAL_HA2[i].num_op == HA[i].num_op))

6 update_stuck_entry(i);

7 }

8 }� �
Listing 4.8: Pseudo-code for the check_for_stucks() procedure
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� �
1 void update_stuck_entry(int tid){

2 size_t num_op = 0;

3 HazardEntry* stuck_entry = STUCK_HA[tid];

4 i f (stuck_entry)

5 num_op = stuck_entry->num_op;

6 i f (num_op < LOCAL_HA2[tid].num_op) {

7 HazardEntry* new_stuck_entry = alloc_init_hazard_entry(LOCAL_HA2[tid]);

8 i f (CAS(STUCK_HA[tid], stuck_entry, new_stuck_entry))

9 free(stuck_entry);

10 }

11 }� �
Listing 4.9: Pseudo-code for the update_stucks() procedure

the stuck array and, consequently, in an outdated state.

� �
1 int in_stucks(size_t num_op, int level, int tid){

2 HazardEntry* stuck_entry = STUCK_HA[tid];

3 i f (stuck_entry)

4 i f ((stuck_entry->num_op == num_op) && (stuck_entry->level == level))

5 return SUCCESS;

6 return FAILURE;

7 }� �
Listing 4.10: Pseudo-code for the in_stucks() procedure

4.5.6 All Together

As we mention before, nodes start by being allocated on memory, and then they pass through the insertion
process where they are assigned to the data structure. Next, they are eventually removed from the
structure by the remove procedure where they pass through the reclamation process. This life cycle
is essential to guarantee some properties and the correct behavior of our solution. In this section, we
present again the algorithms that implement this life cycle, as initially presented in section 3.1 but now
including the code to support the reclamation process. Remember that now, all these procedures have a
new argument that represents the thread id (tid), and the nodes have the new fields described in Listing
4.1. In the case of the lookup_key() and insert_key() procedures, we need to protect the nodes while
traversing the CTrie. Listings 4.11 and 4.12 show the changes done to both procedures, which basically
update the level being traversing in the hazard array in order to mark nodes that the thread can reach
(line 2).

Listing 4.13 shows the modifications to the collision_snode() procedure. In this new version, when a
non-empty entry is disassigned from the CTrie (lines 9, 22, 34, 40), the reclaim_node() procedure is now
called (lines 10, 25, 37, 41) to perform the reclamation steps of that node. Moreover, before and after the
assignment of an ANode entry, a copy of the hazard array HA is done by the copy_ha() procedure and
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� �
1 SNode lookup_key(size_t key, size_t hash, int level, ANode cur, int tid){

2 update_level(level, tid);

3 ANode next;

4 ...

5 }� �
Listing 4.11: Pseudo-code for the lookup_node() procedure

� �
1 int insert_key(size_t key, size_t val, size_t hash, int level, ANode cur, ANode

prev, int tid) {

2 update_level(level, tid);

3 int pos = GET_POS(hash, level, cur->size);

4 ...

5 }� �
Listing 4.12: Pseudo-code for the insert_key() procedure

then the stuck array is updated if any thread is in an outdated state, work done by check_for_stuck()
procedure.

Listing 4.14 and 4.15 show the changes done to the remove routine. In remove, we also need to protect
the nodes before reading them (line 2). Since we can call recursively the remove routine because of the
compaction strategy (lines 5-10), we need to update the hazard level at any time we traverse levels (line
7). In the remove_snode procedure, we reclaim nodes after disassigning them (lines 9, 12, 25), and when
the algorithm assigns a pending ANode, we need to check_for_stucks, since a new level was assigned to
the structure (lines 17-23).

Listing 4.16 and 4.17 show the changes done to the complete_expansion() and complete_compaction()
procedures. In both, we start by protecting the corresponding ENode or CNode and the nodes at that
level (line 2). Like before, when an ENode is disassigned from the structure, the nodes pass through the
reclamation procedure (line 12). The same happens for the CNodes (line 22);

Listing 4.18 shows the changes done to the freeze() procedure. In freeze(), we start by protecting the
nodes in that level, since freeze can traverse various levels (line 3). Again, when a pending change is
assigned, the old node is reclaimed (line 24). If that pending node is an ANode, a new level will be
assigned, so we also update the stuck array (lines 17-23). Since freeze traverses recursively through the
levels, we update the level when the routine returns (line 29).
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� �
1 int collision_snode(size_t key, size_t val, size_t hash, int level, ANode cur,

ANode prev, void *entry, int pos, int tid) {

2 SNode snode = (SNode)UNTAG(entry);
3 void *pending_entry = snode->pending;

4 i f (UNTAG(pending_entry) == NULL){ // no pending changes
5 i f (snode->key == key) { // same key , t ry to update va lue
6 SNode new_snode = alloc_init_snode(key, val, hash, NULL);

7 new_snode = PUT_TAG(new_snode, SNODE);

8 i f (CAS(snode->pending, NULL, new_snode)) { // annouce pending update
9 i f (CAS(cur->array[pos], entry, new_snode)) // perform update

10 reclaim_node(entry, tid);

11 return SUCCESS;

12 }

13 free(UNTAG(new_snode));

14 return insert_key(key, val, hash, level, cur, prev);

15 } else i f (IS_Narrow(cur)) // d i f f e r e n t keys and narrow ANode , expand
16 expansion(hash, level, cur, prev);

17 else { // d i f f e r e n t keys and wide ANode , i n s e r t new l e v e l
18 ANode new_anode = alloc_init_anode_snode(snode->key, snode->val,

level+1);

19 copy_ha(LOCAL_HA, tid);

20 i f (CAS(snode->pending, NULL, new_anode)) // annouce pending new l e v e l
21 // perform i n s e r t i o n of new l e v e l
22 i f (CAS(cur->array[pos], entry, new_anode)){

23 copy_ha(LOCAL_HA2, tid);

24 check_for_stucks(snode->hash, level+1, tid);

25 reclaim_node(entry, tid);

26 }

27 else {

28 free(UNTAG(new_anode));

29 return insert_key(key, val, hash, level, cur, prev);

30 }

31 } else {

32 else i f (IS_ANode(pending_entry){

33 copy_ha(LOCAL_HA, tid);

34 i f (CAS(cur->array[pos], entry, snode->pending)){

35 copy_ha(LOCAL_HA2, tid);

36 check_for_stucks(snode->hash, level +1, tid);

37 reclaim_node(entry, tid);

38 }

39 } else i f (IS_SNode(pending_entry))

40 i f (CAS(cur->array[pos], entry, snode->pending))

41 reclaim_node(entry, tid)

42 return insert_key(key, val, hash, level, cur, prev);

43 }

44 return FAILURE;

45 }� �
Listing 4.13: Pseudo-code for the collision_snode() procedure
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� �
1 int remove_key(size_t key, size_t hash, int level, ANode cur, ANode prev, int

tid){

2 update_level(level, tid);

3 int pos = GET_POS(hash, level, cur->size);

4 ...

5 else i f (IS_ANode(entry)) {

6 int status = remove_key(key, hash, level+1, (ANode)entry, cur);

7 update_level(level, tid);

8 i f (status && prev != NULL && is_compactable(cur))

9 compaction(hash, level, cur, prev);

10 return status;

11 } ...

12 }� �
Listing 4.14: Pseudo-code for the remove_key() procedure

� �
1 int remove_snode(size_t key, size_t hash, int level, ANode cur, ANode prev,

void *entry, int pos, int tid){

2 SNode snode = (SNode)UNTAG(entry);
3 i f (snode->key != key) // d i f e r e n t key , nothing to remove
4 return SUCCESS;

5 void *pending_entry = snode->pending;

6 i f (UNTAG(pending_entry) == NULL){ // same key and no pending changes
7 i f (CAS(cur->array[pos], entry, NULL)) {

8 i f (IS_FNode(pending_entry)){ // node froozen in the meantime
9 reclaim_node(entry, tid);

10 return FAILURE;

11 }

12 reclaim_node(entry, tid);

13 return SUCCESS;

14 }

15 return remove_key(key, hash, level, cur, prev);

16 } else i f (!IS_FNode(pending_entry)) // pending change
17 i f (IS_ANode(pending_entry))

18 copy_ha(LOCAL_HA, tid);

19 // perform pending change
20 i f (CAS(cur->array[pos], entry, snode->pending)){

21 i f (IS_ANode(pending_entry)){

22 copy_ha(LOCAL_HA2, tid);

23 check_for_stucks(key, level+1, tid);

24 }

25 reclaim_node(entry, tid);

26 }

27 return FAILURE;

28 }� �
Listing 4.15: Pseudo-code for the remove_snode() procedure
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� �
1 void complete_expansion(ENode enode, int tid){

2 update_level(enode->level, tid);

3 freeze(enode->narrow);

4 ANode wide = alloc_init_wide_anode(enode->narrow, enode->level);

5 i f (!CAS(enode->wide, NULL, wide)) { // i f wide a lready ass igned
6 free(wide);

7 wide = enode->wide; //read wide
8 }

9 int prev_pos = enode->prev_pos;

10 void* enode_entry = PUT_TAG(enode, ENODE);

11 i f (CAS(enode->prev->array[prev_pos], enode_entry, wide))

12 reclaim_node(enode_entry, tid);

13 }� �
Listing 4.16: Pseudo-code for the complete_expansion() procedure

� �
1 int complete_compaction(CNode cnode, int tid){

2 update_level(cnode->level, tid);

3 ANode anode = (ANode)cnode->cur;
4 freeze(anode);

5 void *compact = NULL;

6 for (int i=0; i < anode->size; i++) {

7 void *node = anode->array[i];

8 i f (IS_SNODE(node) && (compact == NULL))

9 compact = node;

10 else i f (UNTAG(node) != NULL){

11 compact = anode;

12 break;
13 }

14 }

15 i f (IS_SNode(compact)) { // only one SNode found
16 compact = alloc_duplicate_snode(compact);

17 } else i f (IS_ANode(compact) { // at l e a s t two SNodes or another node found
18 compact = alloc_duplicate_anode(compact);

19 }

20 void *cnode_entry = PUT_TAG(cnode, CNODE);

21 i f (CAS(cnode->prev->array[cnode->prev_pos], cnode_entry, compact))

22 reclaim_node(cnode_entry, tid);

23 return ((compact == NULL) || IS_SNode(compact));

24 }� �
Listing 4.17: Pseudo-code for the complete_compaction() procedure
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� �
1 void freeze(ANode cur, int tid){

2 int i = 0;

3 update_level(cur->level, tid);

4 while (i < cur->size) {

5 void *entry = cur->array[i];

6 void *node = UNTAG(entry);

7 i f (entry == NULL) // i f NULL, tag i t as f rozen
8 i f (CAS(cur->array[i], entry, PUT_TAG(NULL, FNODE)))

9 i++;

10 else i f (IS_SNode(entry)){

11 SNode snode =(SNode)node;
12 void *pending_entry = snode->pending;

13 void *pending = UNTAG(pending_entry);

14 i f (pending_entry == NULL) // SNode without pending changes , tag
pending f i e l d

15 i f (CAS(snode->pending, NULL, PUT_TAG(NULL,FNODE)))

16 i++;

17 else i f (!IS_FNode(pending_entry)){ // pending change
18 copy_ha(LOCAL_HA, tid);

19 i f (CAS(cur->array[i], entry, snode->pending)){ // perform pending
change

20 i f(IS_ANODE(pending_entry)){
21 copy_ha(LOCAL_HA2, tid);

22 check_for_stucks(snode->hash, snode->level+1, tid);

23 }

24 reclaim_node(entry, tid);

25 }

26 }

27 } else i f (IS_FNode(entry) && (node !=NULL)){

28 freeze((FNode)node->frozen);
29 update_level(level, tid);

30 } else i f (IS_ENode(entry))

31 complete_expansion(node);

32 else i f (IS_CNode(entry))

33 complete_compaction(node);

34 }

35 }� �
Listing 4.18: Pseudo-code for the freeze() procedure



Chapter 5

Experimental Results

In this chapter, we explain how benchmarking was done. We also present the experimental results of such
benchmarking over the different versions and discuss the results.

5.1 Methodology

We have implemented various versions of the API to support and manage the data structure. To make use
of the API, we used the benchmark tool proposed by Moreno et al. [2019]. This tool compiles the version
of the API that will be used, wrapped with a module responsible to control the execution environment.
Our benchmark tool receives as input 6 parameters:

• The number T of threads to be used;

• The number N of operations to be performed;

• The percentage Pi of N that correspond to insert operations;

• The percentage Pr of N that correspond to remove operations;

• The percentage Psf of N that correspond to search found operations;

• The percentage Psnf of N that correspond to search not found operations.

Figure 5.1 represents the benchmark tool, in which the controller receives the 6 parameters and
communicates with the CTries through the specific API. The benchmark tool can be divided into
different stages. In the beginning, the benchmark tool prepares the execution environment, this step
depends on the API version that will be executed. For example, our proposal starts by creating the CTrie
root reference, the Hazard array, and the Stuck array. Next, the tool runs the given number of threads
T to insert beforehand on data structure the values that will be searched or removed. Each thread is
responsible to perform the same number of operations, this way, the number of operations to perform
(N) should be divisible by the number of threads (T). Threads also had a pre-defined seed to use in the
pseudo-random number generator (PRNG). This PRNG is responsible for the keys generation. The key
range is divided in a way that matches the percentages of operations. This means that a key generated
by PRNG also includes the operation that will be performed. In the next stage, the tool executes the
benchmarks itself. The thread’s seeds are reset to the pre-defined values and start counting the execution

69



70 Chapter 5. Experimental Results

Figure 5.1: Benchmark Tool Diagram

time. Like in the previous stage, each thread executes the operations corresponding to the generated
PRNG values. The final step of this stage is to present the execution time. After all, threads have
completed their operations. There is also a third stage that performs inspections on the data structure
and alerts if something is not accordingly to what is supposed to be. This stage is optional since it works
like a debugging tool since the benchmark itself was already done. Like in the previous stages, the tool
resets the seed array to the pre-defined values. In this final stage, the threads only perform searching
operations. Such searches will give us the information if the operations done in the previous stage were
correctly done. If a thread performs a search over a key that belongs to the remove range, this search
should return a not found result. Otherwise, if the key is in the insert range, the search should return
the respective value. This step provides a strong way to test if the API is working properly. Figure 5.2
represents how keys are divided into the threads and the respective operations.

Figure 5.2: Key Distribution into threads and operations

The pseudo-random number generator (PRNG) used is the nrand48_r from the C standard library.
This function uses the linear congruential algorithm that is represented by Eq. 5.1. The value of a is
25214903917, the value of c is 11 and the value of m is 248.
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f(n + 1) = (a × f(n) + c) mod m (5.1)

Because of the natural property of the randomly generated values, the percentages Pi, Pr, Psf, and Psnf
of operations to perform may not be precisely hit in some benchmark runs. However, as the nrand48_r
function presents good properties and the number of operations is large enough, the deviation can be
considered negligible. In these experiments, we have implemented the following versions of the CTries
data structure:

• NF (No Free): Version based on Prokopec [2018] and Prokopec et al. [2012] , like explained in
section 3.1, where no memory is reclaimed;

• OF (Optimistic Free): As explained in section 2.4.1, this version takes an optimistic approach,
where each thread has a reclamation ring buffer that holds the nodes to be reclaimed. At the time
of reclaiming a node, threads go around the buffer and reclaim the node in that position before
assigning the newly retired one. This is theoretically wrong but can be implemented in practice
since the buffer is big enough in a way that nodes that are being reclaimed are too old to be referred
by any thread. This version provides a great baseline for comparison purposes since it achieves the
best performance of all memory reclamation schemes;

• HE (Hazard Eras): This version is an implementation of the idea presented in section 2.4.5, on top
of our base version of the CTries. It uses a global clock and an array of thread’s local clocks. When
nodes are assigned to the data structure, they save the current global era (insertion time). Threads
can reclaim nodes whose insertion time is greater than the threads eras. When a thread reads a
new reference, it updates its local clock with the value of the global one. Since CTries produce
memory garbage in the insert operations, the global clock should be incremented not just on the
remove operations but also in the insert operations. This way, the threads that stop before the
node was created, do not block the node from being reclaimed.

• IBR (Interval Based Reclamation): Section 2.4.6 explain the different approaches to implement this
method, we used the persistent data structure version because it is the most compatible approach
to our data structure. This method is based on the HE method but instead of just reserving all the
unretired nodes before a given era, it reserves only the nodes whose lifetimes eras were reserved.
This approach saves on the nodes the inserted era (the global era when the node is inserted) and
the remove era (the global era when the node is removed). This way, if there are no threads in that
lifetime, nodes can be reclaimed.

• HHL (Hazard Hash and Level): This version is the direct implementation of the method proposed
by Moreno et al. [2019] with some little differences due to the data structure, as explained in section
4.2. This method has a global hazard array which marks the paths the threads are traversing. This
approach does not provide bounded memory in our case, but it is interesting to note the overhead
compared to our adaption (HHL_BS) to achieve bounded memory. It is also a good approach to
compare the LFHT HHL with the CTries HHL since the same machine and benchmark tool was
used to run the experiments.

• HHL_BS (Hazard Hash and Level with Blocking list and Stuck array): This version represents
the implementation of our solution, as proposed in chapter 4 , that provides bounded memory
usage. This method uses a blocking list on the nodes and a global Stuck array, to transform the
HHL solution into a bounded one. Due to the lack of time, some aspects of this solution are not
considered, like the case of hash collision at the last level of the structure.
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All these versions were tested with a reclamation threshold of 256 nodes and different percentages of
operations. To compare the results obtained in our experiments, we use the benchmarks proposed by
Moreno et al. [2019]. Experiments were executed with a hash function equivalent to the identity (h(x)=x),
in order to minimize possible differentiating factors and thus reduce the overall overhead. Note that
the keys are already random and the way the key space is divided already prevents interferences. All
experiments were run 5 times and the results presented are the average of such runs.

5.2 Results and Discussion

The machine used to run our experiments was a NUMA with two AMD Opteron Processor 6274 and
32GiB of ECC RAM. The memory allocator used was jemalloc Evans [2006] version 5.0 as it showed good
results and was able to scale with all the cores used without generating contention in the kernel. However,
ideally, we would like to use a lock-free memory allocator. The experiments showed next use a fixed size
of 106 operations but with a varying percentage of insert, remove, and search operations. Appendix A
shows the execution time results for all the experiments done.

5.2.1 Baseline

Figures 5.3 to 5.7, present the comparison between the NF and OF versions. In terms of the execution
time, in seconds, required to execute the 106 operations on 5 different benchmarks. The insert and the
remove operations are the ones in which the reclamation procedure is triggered, and this is clear in Figs.
5.3, 5.4 and 5.6, which show the major impact of the reclamation procedure. The searching operations
remain almost without overhead since lookups do not call the reclamation procedure, this is shown in
Fig. 5.5. Figure 5.7 shows the impact of the reclamation in a more general run that somehow tries to
simulate a closer approach to a real application of the data structure, with all the operations represented.
The overhead of the memory allocator is almost minimal because of the use of the thread’s local caches
implemented in modern memory allocators like jemalloc. These local caches permit that the allocator
presents minimal synchronization between the threads since allocations and deallocations remain equals
and interleaved enough.
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Figure 5.3: Execution time, in seconds, for a dataset with 100% inserts (106 operations in total)
for the NF and OF versions

Figure 5.4: Execution time, in seconds, for a dataset with 100% removes (106 operations in total)
for the NF and OF versions
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Figure 5.5: Execution time, in seconds, for a dataset with 50% found and 50% not found searches
(106 operations in total) for the NF and OF versions

Figure 5.6: Execution time, in seconds, for a dataset with 50% inserts and 50% removes (106

operations in total) for the NF and OF versions
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Figure 5.7: Execution time, in seconds, for a dataset with 25% inserts, 25% removes, 25% found
and 25% not found searches (106 operations in total) for the NF and OF versions

5.2.2 Memory Reclamation Impact

Now, we compare our baseline OF with the different reclamation methods implemented (HE, IBR, HP,
HHL and HHL_BS). To better compare the overhead of each memory reclamation method, all results
are normalized to our baseline (OF). Next, Figs. 5.8 to 5.12 compare the results of the different memory
reclamation methods on the same 5 benchmarks used before.
Figure 5.8 represents the benchmark with 100% insert operations. In inserts operations, HHL_BS and IBR
show heavy degradation because these methods need additional steps not just on the reclamation scenario
but also when inserting nodes. The HHL_BS has the most overhead due to the Stuck array management
and the double read of the hazard array each time a level is inserted. In fact, the insert procedure should
be the main focus to improve once the double read of the hazard array and the management of the Stuck
array is the main cause of the overhead of our solution. The insertion time of IBR has some overhead in
insertion too due to the management of the global clock and, when a node is created, the global clock
needs to be read in order to set it on the node.
The HHL behavior is very close to ideal, however, it is important to remember that this solution does not
provide bounded memory. The HE and the HP have similar results, they both have overhead just on the
reclamation scenario and do not have any special care when inserting nodes.
In the case of remove operations, the HHL_BS and the IBR, recover some of the time spent on the
insertion of nodes. Figure 5.9 demonstrates that both methods present better performance than the HE
and the HP. The HE has heavy degradation in this benchmark because the reclamation list of threads
grows very fast, and the traversal of that list consumes some of the time in the reclamation procedure.
This happens because, since all threads are just doing removes, they are inside the lifetimes of the nodes
in the structure. Meanwhile, as the threads update the Era, the nodes start being reclaimed. This is one
of the problems of the large bounded memory that permits that threads have large reclamation lists.
In the search operations, represented by Fig. 5.10, we can notice a greater degradation of the performance
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in all methods, comparing with our baseline. This happens because the OF does not need any kind
of additional steps in the search operations, while the other methods need to protect the nodes being
traversed, therefore adding overhead to all the operations and not just the ones that reclaim nodes.
Figure 5.11 that represents 50% of inserts and 50% of removes, we can see how the different approaches
become closer to each other, with the exception of the IBR, which we believe can be related with the bad
choice of the internal thresholds. As this method and the HE should present similar results.
Figure 5.12 represents the general scenario with all operations. In overall, the results show that the HHL
is the most closely to ideal approach, however, our bounded solution HHL_BS shows overheads that
make it similar to the other bounded reclamation methods. In these experimental results, all versions
use the same thresholds, but they provide different bounded limits. If thresholds had been adapted to
approximate the different bounds, maybe the experimental results will be more closely to the baseline.

Figure 5.8: Execution time, normalized to OF, for a dataset with 100% inserts (106 operations
in total) for the MR methods
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Figure 5.9: Execution time, normalized to OF, for a dataset with 100% removes (106 operations
in total) for the MR methods

Figure 5.10: Execution time, normalized to OF, for a dataset with 50% found and 50% not found
searches (106 operations in total) for the MR methods
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Figure 5.11: Execution time, normalized to OF, for a dataset with 50% inserts and 50% removes
(106 operations in total) for the MR methods

Figure 5.12: Execution time, normalized to OF, for a dataset with 25% inserts, 25% removes,
25% found and 25% not found searches (106 operations in total) for the MR methods
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5.2.3 Comparison with LFHT

Next, we compare our runs with the HHL results obtained by Moreno et al. [2019] for the LFHT data
structure. In Fig. 5.13 are represented the runs only with searching operations. Both data structures
show similar performance for the searching operations, but the LFHT shows slightly better results. This
might happen due to the need for the hazard pairs in CTries to be updated on every level. LFHT reduces
this overhead since it only updates the level when reaching a leaf node. Overall, the LFHT presents
significantly better performances, however, it is important to note that both structures have different
properties. The CTries reclaims all different types of nodes and, most often, more than one node at a
time, bringing overheads that are not presented in the LFHT data structure. This is shown in Figs. 5.14
and 5.15.

Figure 5.13: Execution time, in seconds, for a dataset with 100% searches (106 operations in
total) for the LFHT and CTries versions using HHL
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Figure 5.14: Execution time, in seconds, for a dataset with 50% inserts and 50% removes (106

operations in total) for the LFHT and CTries versions using HHL

Figure 5.15: Execution time, in seconds, for a dataset with 25% inserts, 25% removes and 50%
searches (106 operations in total) for the LFHT and CTries versions using HHL



Chapter 6

Conclusion

In this chapter, we resume our work, the main contributions provided by the thesis and we propose
further research directions. This thesis started with the purpose of reclaiming memory from the CTries
data structure, providing the possibility of a truly lock-free implementation outside garbage collection
environments. We started by studying the current state-of-the-art memory reclamation methodologies
and the different versions of the CTries. We also studied the LFHT data structure as a way to better
understand the relationship between memory reclamation methods (and in specific the HHL method)
and data structures. After that initial knowledge about memory reclamation methods and lock-free data
structures, we understood that, due to CTries properties, some changes need to be done in order to
implement a reclamation method on top of the base implementation. Otherwise, the ABA problem and the
persistent pointers problem could happen and lead the data structure to incorrect behaviors. At this point,
we redesign some aspects of the data structure to guarantee that nodes follow the correct reclamation cycle
and support different implementations of memory reclamation methods. The implementation of HHL
could also be done, however, we notice that it does not fit our goals since it does not guarantee memory
bounded usage in this context. In order to guarantee bounded memory, an adaption of HHL was designed
and implemented. Comparing both versions of HHL, it is clear that our adaption comes with some extra
overhead and performance degradation. This can be explained with the procedures that run at the time
of creating and removing nodes, or because of not optimal threshold interval. Our experimental results
show that HHL is the most efficient method in our data structure, however, our approach to making it
bounded approximate this method with other state-of-the-art methods. In general, the HHL_BS solution
provides a bounded adaption of the HHL that is very competitive with the other state-of-the-art methods.
We expect that the work done in this thesis will inspire others in order to improve other solutions in this
area. Further work can include the following tasks:

More experiments. Further experiments would promote a deeper analysis of the memory usage of
CTries. The memory reclamation method can be optimized to be better integrated with CTries.
For example, the insert procedure should be the main focus to improve as the double read of hazard
array and the management of the Stuck array are an important cause of overhead. One idea should
be to only update the Stuck array when some threshold is passed, and not every time a level is
inserted.

Different approaches to make HHL bounded. As we saw, our adaption of HHL introduces over-
heads in order to guarantee bounded memory usage. Different ideas and approaches can achieve
different overheads, and possibly better designs can be achieved.
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Adding CTries features. There are various versions of CTries, and several extra features can be
integrated, which will require specific integration with the memory reclamation methods. Specific
solutions can be designed to fit with those extra features and thus provide special characteristics to
each version of the data structure.

Extension to similar data structures A different direction is to try to apply our proposes to similar
data structures, mainly data structures with a tree based hierarchy. A more general goal is to try
to apply it to other different data structures.



Appendix A

Tables

This appendix serves to show execution time in seconds for all tested configuration. The execution times
shown are the average of five runs.
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Threads NF OF HE IBR HP HHL HHL_BS
1 1.179947 1.246026 1,574332 1,389182 1,497708 1,610107 2,478408
2 0.595134 0.661269 0,931164 0,920878 1,323149 0,943471 1,944268
4 0.308740 0.370016 0,560513 0,672386 0,79689 0,494294 1,278514
8 0.169650 0.195026 0,382554 0,791959 0,498448 0,271381 0,859786
12 0.125330 0.142640 0,347023 0,800658 0,391836 0,207141 0,714524
16 0.100467 0.113492 0,323992 0,80787 0,345535 0,162084 0,677074
20 0.087116 0.097352 0,329697 0,661433 0,319452 0,140749 0,644036
24 0.079503 0.089106 0,325553 0,555147 0,319251 0,122329 0,642913
28 0.070740 0.075207 0,311021 0,512366 0,289133 0,112542 0,636168
32 0.074712 0.079085 0,322162 0,501802 0,278853 0,104588 0,645142

Table A.1: 106 operations, 100% inserts, 0% removes, 0% searches found, 0% searches not found

Threads NF OF HE IBR HP HHL HHL_BS
1 1,01942 1,44432 1,863192 1,623745 1,747102 1,714518 2,523039
2 0,597755 0,914247 1,375272 0,855117 1,988008 1,316728 1,650772
4 0,309407 0,539304 0,908286 0,489852 1,384402 0,587165 0,979394
8 0,160076 0,286751 0,718293 0,430924 0,852909 0,337157 0,598082
12 0,109543 0,199567 0,641665 0,418557 0,685013 0,248002 0,423082
16 0,092026 0,164973 0,637728 0,450699 0,614425 0,200798 0,356845
20 0,076208 0,137769 0,656976 0,366525 0,562232 0,172306 0,297688
24 0,069365 0,120454 0,658319 0,28978 0,529908 0,150107 0,258392
28 0,059068 0,109101 0,668425 0,229929 0,509606 0,136058 0,228267
32 0,056663 0,100488 0,608779 0,227961 0,486839 0,125151 0,205014

Table A.2: 106 operations, 0% inserts, 100% removes, 0% searches found, 0% searches not found

Threads NF OF HE IBR HP HHL HHL_BS
1 0,025355 0,025504 0,577404 0,571528 0,538662 0,51221 0,540607
2 0,01518 0,015686 0,350756 0,353807 0,493073 0,320518 0,363626
4 0,008989 0,010024 0,188169 0,176203 0,239563 0,161979 0,190831
8 0,005124 0,005701 0,091106 0,101067 0,116199 0,084176 0,11041
12 0,004056 0,004509 0,06183 0,088422 0,081339 0,058946 0,074612
16 0,003244 0,003508 0,048253 0,089719 0,063664 0,045216 0,061263
20 0,003098 0,003962 0,041657 0,074961 0,052976 0,040105 0,050561
24 0,003327 0,003693 0,041105 0,065647 0,049551 0,033435 0,048279
28 0,003191 0,003442 0,03809 0,061454 0,042861 0,039303 0,042844
32 0,003057 0,003917 0,042325 0,060672 0,040497 0,034923 0,040558

Table A.3: 106 operations, 0% inserts, 0% removes, 50% searches found, 50% searches not found
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Threads NF OF HE IBR HP HHL HHL_BS
1 0,979464 1,10811 1,616719 1,378471 1,625252 1,505195 2,109905
2 0,563698 0,67226 1,174917 1,295736 1,606053 0,989785 1,830908
4 0,282967 0,37682 0,700362 1,143773 0,994426 0,536256 1,092953
8 0,149428 0,18962 0,518031 1,249326 0,613909 0,305245 0,699929
12 0,099514 0,131907 0,482986 1,291899 0,489888 0,222273 0,552669
16 0,085831 0,106289 0,456552 1,30381 0,424576 0,180473 0,504164
20 0,073375 0,08739 0,46614 0,986503 0,391364 0,152962 0,466326
24 0,062827 0,075312 0,466825 0,806655 0,378067 0,132268 0,443196
28 0,059803 0,070357 0,461819 0,679102 0,356549 0,120556 0,431449
32 0,060898 0,072484 0,444129 0,632555 0,343243 0,109467 0,426096

Table A.4: 106 operations, 50% inserts, 50% removes, 0% searches found, 0% searches not found

Threads NF OF HE IBR HP HHL HHL_BS
1 0,507283 0,561739 1,117574 0,906577 1,127342 1,023411 1,506965
2 0,288584 0,342363 0,723766 0,772438 1,139357 0,656463 1,395611
4 0,145661 0,192172 0,444908 0,63488 0,636743 0,348993 0,756392
8 0,075624 0,099098 0,313913 0,731477 0,361936 0,194579 0,473533
12 0,054053 0,067417 0,288859 0,710946 0,298505 0,138787 0,365078
16 0,044422 0,054698 0,279754 0,705547 0,255728 0,114718 0,330131
20 0,039409 0,051586 0,268257 0,5355 0,236392 0,095713 0,296723
24 0,035681 0,046696 0,266284 0,437523 0,230921 0,083854 0,286854
28 0,032899 0,038329 0,272719 0,374377 0,213657 0,075247 0,276719
32 0,035821 0,040982 0,252037 0,350099 0,205614 0,068299 0,270334

Table A.5: 106 operations, 25% inserts, 25% removes, 25% searches found, 25% searches not
found
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