
Memory
Reclamation for an
Elastic Lock­free
Hash Trie Map
João Miguel Chamiça Pereira
Masters in Computer Science
Departamento de Ciência de Computadores
2022

Orientador
Ricardo Jorge Gomes Lopes da Rocha, Faculdade de Ciências

Supervisor
Pedro Carvalho Moreno, Faculdade de Ciências

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

Minuta de Declaração de Honra - Mestrado

(Artigo 14.º do Código Ético de Conduta Académica da U.Porto)

DECLARAÇÃO DE HONRA

Eu, João Miguel Chamiça Pereira, natural de Portugal, residente em Portugal, nacional de
Portugal, portador (a) do Cartão de Cidadão nº 15981523, inscrito(a) no Mestrado em
Mestrado em Ciência de Computadores da Faculdade de Ciências da Universidade do Porto
declaro, nos termos do disposto na alínea a) do artigo 14.º do Código Ético de Conduta
Académica da U.Porto, que o conteúdo da presente dissertação Memory Reclamation for an
Elastic Lock-free Hash Trie Map reflete as perspetivas, o trabalho de investigação e as minhas
interpretações no momento da sua entrega.

Ao entregar esta dissertação Memory Reclamation for an Elastic Lock-free Hash Trie Map,
declaro, ainda, que a mesma é resultado do meu próprio trabalho de investigação e contém
contributos que não foram utilizados previamente noutros trabalhos apresentados a esta ou
outra instituição.

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as regras
da atribuição, encontrando-se devidamente citadas no corpo do texto e identificadas na secção
de referências bibliográficas. Não são divulgados na presente dissertação Memory Reclamation
for an Elastic Lock-free Hash Trie Map quaisquer conteúdos cuja reprodução esteja vedada por
direitos de autor.

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito académico.

Assinatura do Autor

Data

26/09/2022

Acknowledgements

This thesis would not have been possible if not for the support and guideance of both my

supervisors Pedro Moreno and Ricardo Rocha.

I would additionally like to thank INESC-TEC for providing financial support during

the INFORUM 2022 conference, in which we published and presented a paper.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

MSc. Computer Science

Memory Reclamation for an Elastic Lock-free Hash Trie Map

by João Miguel Chamiça Pereira

A hash map is elastic if it can expand and compress. Hash maps expand in order to

reduce collisions and compress in order to reduce depth and memory usage. Starting

from a particular elastic lock-free hash map design, called the lock-free hash trie map,

which implements expansion and compression in constant time while maintaining the

high throughput of lock-freedom, we focus on solving the problem of memory reclama-

tion outside garbage collected environments without losing the lock-freedom property.

We propose a lock-free and safe memory reclamation method using hazard pointers that

is compatible with the compression mechanism of this data structure. Experiments show

that our approach obtains results on par with the best state-of-the-art memory reclama-

tion methods, in execution time. On the other hand, our proposed method is capable of

maintaining lower memory consumption than the alternative methods.

mailto:example@fc.up.pt

Contents

Acknowledgements D

Abstract E

Contents G

List of Figures I

List of Tables K

1 Introduction 1

2 Background 3
2.1 Hash tries . 5
2.2 State-of-the-Art Comparison . 7

3 Lock-free Hash Trie Map 9
3.1 Lookup . 9

3.1.1 Average Path Length . 10
3.1.2 Algorithm . 10

3.2 Insertion . 13
3.2.1 Dealing With Collisions . 13
3.2.2 Algorithm . 14

3.3 Expansion . 15
3.3.1 Algorithm . 16

3.4 Removal . 18
3.4.1 Invalidation Step . 18
3.4.2 Memory Reclamation Problem . 19
3.4.3 Delegation Problem . 20
3.4.4 Algorithm . 21

3.5 Compression . 21
3.5.1 Freezing . 22
3.5.2 Counter . 25

3.6 Cost Analysis . 28
3.6.1 Lookup Cost . 28
3.6.2 Insertion Cost . 30
3.6.3 Removal Cost . 30

G

H MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

3.6.4 Expansion Cost . 30
3.6.5 Freeze Compression Cost . 30
3.6.6 Counter Compression Cost . 30
3.6.7 The Cost of Synchronization . 31

4 Memory Reclamation 33
4.1 The Cost Of Synchronization . 34

4.1.1 The Cache . 34
4.1.2 Memory Barriers . 37
4.1.3 Summary . 40

4.2 Memory Life Cycle . 40
4.3 Memory Reclamation Methods . 41

4.3.1 Hazard Pointers . 41
4.3.2 Hazard Hash And Level . 45

4.4 Our Contribution . 46
4.4.1 Number of Hazard Pointers . 50
4.4.2 Other Important Changes . 52
4.4.3 Delegation Problem . 54

5 Experiments 57
5.1 Benchmark Program . 58

5.1.1 Metrics . 58
5.2 Machine Specifications . 59
5.3 Hash Map Parameters . 60

5.3.1 Chain Length . 61
5.3.2 Chunk Size . 61
5.3.3 Memory Allocator . 64

5.4 Compression . 65
5.5 Memory Reclamation . 68

6 Conclusions 73

A SNF - benchmark data 75

B FNF - benchmark data 77

C CNF - benchmark data 79

D SNF (empty map) - benchmark data 81

E FNF (empty map) - benchmark data 83

F CNF (empty map) - benchmark data 85

G FHP - benchmark data 87

H FHPA - benchmark data 89

I HHL - benchmark data 91

List of Figures

2.1 Hash trie map . 5
2.2 Comparison of state-of-the-art designs . 7

3.1 Lookup demonstration for different map configurations 11
3.2 Inserting nodes . 13
3.3 Expanding to reduce the average path length 15
3.4 Demonstration of the complete expansion of a collision chain 17
3.5 Removing node K1 . 18
3.6 Conflicting operations when removing a node 19
3.7 The delegation problem . 20
3.8 Conflicting operations when compressing a hash node 22
3.9 Compression using a freeze node . 23
3.10 Aborting the compression operation . 24
3.11 Compression using a counter field . 26
3.12 Hash trie map with a perfect hash function 29

4.1 Typical multi-core UMA architecture . 35
4.2 Unnecessary CPU stalls due to cache synchronization 37
4.3 The memory reclamation problem . 41
4.4 Solution to the memory reclamation problem using hazard pointers 42
4.5 Hazard pointers applied to the traversal of the LFHT tree 47
4.6 Hazard pointers applied to the traversal of LFHT collision chains 48
4.7 Protecting nodes during lookup (dotted lines represent HP protections) . . 49
4.8 Infinite collision chain traversal . 52
4.9 Not enough hazard pointers when expanding 53
4.10 Unable to protect a parent hash node . 53
4.11 LFHT’s delegation problem . 54

5.1 Overhead caused by gathering additional statistics 59
5.2 Architecture visual description of our benchmark machine 60
5.3 Variable chain length benchmark - 224 nodes; average of 10 samples; chunk

size 4 . 62
5.4 Variable chunk size benchmark - 224 nodes; average of 10 samples; chain

length 4 . 63
5.5 Comparing the original memory allocator with jemalloc 65
5.6 Compression benefits - 224 nodes, average of 10 samples 66
5.7 Compression overheads - 224 nodes, average of 10 samples, chain length

and chunk size of 4 . 67

I

J MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

5.8 Cache misses - 25% of insertions; 25% of removals; 50% of searches 68
5.9 Memory consumption - 25% of insertions; 25% of removals; 50% of searches 69
5.10 Memory reclamation method throughput benchmark - 224 nodes, average

of 10 samples . 71

List of Tables

4.1 Demonstrating the effects of the delegation problem in the reclamation pro-
cedure . 55

A.1 SNF - 25% removals, 25% insertions, 50% searches 75
A.2 SNF - 100% insertions . 75
A.3 SNF - 100% removals . 75
A.4 SNF - 100% searches of inserted keys . 76
A.5 SNF - 100% searches of keys not inserted on the map 76

B.1 FNF - 25% removals, 25% insertions, 50% searches 77
B.2 FNF - 100% insertions . 77
B.3 FNF - 100% removals . 77
B.4 FNF - 100% searches of inserted keys . 78
B.5 FNF - 100% searches of keys not inserted on the map 78

C.1 CNF - 25% removals, 25% insertions, 50% searches 79
C.2 CNF - 100% insertions . 79
C.3 CNF - 100% removals . 79
C.4 CNF - 100% searches of inserted keys . 80
C.5 CNF - 100% searches of keys not inserted on the map 80

D.1 SNF (empty map) - 25% removals, 25% insertions, 50% searches 81
D.2 SNF (empty map) - 100% insertions . 81
D.3 SNF (empty map) - 100% removals . 81
D.4 SNF (empty map) - 100% searches of inserted keys 82
D.5 SNF (empty map) - 100% searches of keys not inserted on the map 82

E.1 FNF (empty map) - 25% removals, 25% insertions, 50% searches 83
E.2 FNF (empty map) - 100% insertions . 83
E.3 FNF (empty map) - 100% removals . 83
E.4 FNF (empty map) - 100% searches of inserted keys 84
E.5 FNF (empty map) - 100% searches of keys not inserted on the map 84

F.1 CNF (empty map) - 25% removals, 25% insertions, 50% searches 85
F.2 CNF (empty map) - 100% insertions . 85
F.3 CNF (empty map) - 100% removals . 85
F.4 CNF (empty map) - 100% searches of inserted keys 86
F.5 CNF (empty map) - 100% searches of keys not inserted on the map 86

K

L MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

G.1 FHP - 25% removals, 25% insertions, 50% searches 87
G.2 FHP - 100% insertions . 87
G.3 FHP - 100% removals . 87
G.4 FHP - 100% searches of inserted keys . 88
G.5 FHP - 100% searches of keys not inserted on the map 88

H.1 FHPA - 25% removals, 25% insertions, 50% searches 89
H.2 FHPA - 100% insertions . 89
H.3 FHPA - 100% removals . 89
H.4 FHPA - 100% searches of inserted keys . 90
H.5 FHPA - 100% searches of keys not inserted on the map 90

I.1 HHL - 25% removals, 25% insertions, 50% searches 91
I.2 HHL - 100% insertions . 91
I.3 HHL - 100% removals . 91
I.4 HHL - 100% searches of inserted keys . 92
I.5 HHL - 100% searches of keys not inserted on the map 92

Chapter 1

Introduction

In recent years concurrent programming has been increasing in relevance as processors

became closer and closer to the physical boundaries of single threaded performance. The

focus was, thus, shifted towards increasing core counts, distributed computing, concur-

rent algorithms, memory hierarchies and parallelism. However, because concurrent ac-

cess to memory can break the semantics of algorithms, we need synchronization mecha-

nisms to ensure correctness.

One of the most popular, studied and intuitive approaches to synchronization was

through the use of locks. On the other hand, locks halt the execution of other threads pre-

venting parallel algorithms from fully exploiting the maximum capacity of the computa-

tional resources available. Furthermore, the operating system can halt the progress of one

thread which may prolong the time other threads remain waiting. Lock-free program-

ming is a possible alternative that guarantees progress even in the event of one thread

halting. Lock-freedom is a non-blocking progress guarantee, as stated by Herlihy and

Shavit [23]. What distinguishes lock-freedom from other non-blocking progress guar-

antees is the fact that, in lock-freedom, threads can obstruct each other’s progress. This

means that a thread can get stuck retrying a CAS operation over and over indefinitely.

Even though this thread is not blocked, it could still have its progress obstructed.

For a program to truly be non-blocking, all its component parts must also be non-

blocking. This includes: memory allocator, the operating system kernel functions, the

standard library functions, and the imported data structures. Unfortunately, a lot of these

tools only have blocking implementations. If we want to design and implement a non-

blocking data structure which uses, as an example, a blocking memory allocator, our data

structure cannot truly be non-blocking because thread progression cannot be guaranteed

1

2 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

when using this memory allocator. If we implement non-blocking versions of these al-

ready existing tools, we can contribute to the performance of novel non-blocking algo-

rithms.

Our goal is to design a lock-free hash trie map capable of dynamically expanding

and compressing using fixed size nodes and persistent memory references. The hash

trie map is a map whose bucket arrays form a tree. To search for keys on a hash trie

map we use the partitioned hashing strategy which will help reduce the overhead of map

expansion and compression. Our design, based on the single width compare and swap (CAS)

operation, is the continuation of the work done by Areias, Rocha and Moreno [37, 38]. It

is implemented in the C language and must be capable of reclaiming memory.

Our main contributions are as follows:

• The rank of concurrent hash map designs, in Fig. 2.2.

• The compression algorithm, in section 3.5.2.

• The memory reclamation method support for the compression mechanism, in chap-

ter 4.

• Section 5.4 measures the compression mechanisms, now in the C language. In 2021,

Areias and Rocha [37] ran similar tests implemented in Java. We compare the results

of both tests.

• Section 5.5 compares different reclamation methods, applied to the data structure.

In what follows, chapter 2 summarizes the literature related to our work. In chapter 3,

we describe the algorithms for every major operation of the map and analyze the asymp-

totic cost in memory consumption and execution time. Next, in chapter 4, we propose

methods for reclaiming memory in the absence of garbage collectors. Chapter 5 is where

we compare the memory footprint and running time of the newly introduced algorithms

against the original data structure. Finally, chapter 6 contains a summary of the document

as well as proposals for further work.

Chapter 2

Background

Lock-free data structures have a number of advantages over lock based ones. On one

hand, management of locks is unnecessary which prevents deadlocks and livelocks. Fur-

thermore, lock-free data structures are non-blocking meaning that the suspension of one

thread won’t prevent others from progressing, making them suitable for asynchronous

systems and real-time applications, as demonstrated by Herlihy [5, 23].

Without locks, we can reduce the amount of context switches and waiting queues. In

particular, context switches force a processor pipeline to flush, reload TLB entries, save

processor registers, and force the OS scheduler to execute. Context switches also degrade

cache performance, whose lines are invalidated by other threads, as demonstrated by

Mogul and Borg [6] and Li et al. [20]

The main drawback of lockless programming is that it is generally more difficult to

design algorithms and debug. Because there are no critical sections in a lock-free pro-

gram, when a thread resumes execution after preemption by the OS scheduler, the state

of the shared object may have changed in the meantime. In fact, the shared object may

change at any point in time. To aggravate this issue, compilers and CPUs reorder in-

structions presenting yet another challenge. Instruction reordering is intended to reduce

single threaded execution times, but results in inconsistent concurrent access to a shared

object. Thus, when synchronizing threads, it may be necessary to force a specific order of

instructions to solve inconsistent access through the use of memory barriers and synchro-

nization primitives. Knowing when and what barriers to use presents another challenge to

lockless programming. McKenney [31] compiled a list of information regarding computer

architectures and parallel programming.

3

4 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

One of the most used synchronization primitives in lock-free programming is the

compare-and-swap (CAS) instruction, supported by most modern CPUs, having first ap-

peared in the IBM System/370 architecture [3]. Algorithm 1 shows the implicit sequence

of instructions executed atomically by a CAS operation.

Algorithm 1 Compare-and-swap(address M, value E, value N)

1: if Value(M) = E then
2: Value(M)← N
3: return True
4: return False

The CAS operation is usually used in a loop as a way to allow for long transactions

that span multiple instructions. We first observe the state of the shared object and write

all changes to local memory. Then, one single CAS instruction commits such changes to

shared memory, but only if the global state is still coherent with what we initially ob-

served. If the CAS fails, we try the same procedure again.

There are two main issues with CAS-based lock-free implementations. First, the mem-

ory reclamation problem. After removing data from a shared data structure we may want

to free the memory allocated for such data. The process of freeing memory is called mem-

ory reclamation. However, in lock-free programming, it is possible that other threads still

hold a reference to this data even after we remove it from the shared data structure. If we

free it directly, we risk a use-after-free by this other thread. To solve this issue, we need to

design a mechanism for detecting when memory blocks are no longer referenced by any

thread so that they may be reclaimed. In a lock based design, we prevent multiple threads

from using the same memory references which makes this a non issue.

Secondly, the ABA problem. A successful CAS instruction will change the state of the

shared data structure. If a CAS instruction changes a value A to a value B, the shared

data structure transitioned to a second state. Changing the value again from B to A will

change the shared data structure to a third state. Although the shared data structure is

at the third state, a CAS instruction may assume the data structure is still at its first state,

because it observes the initial value: A. Another thread may execute a CAS changing,

for example, A to C without taking into consideration the changes made from the first

to the third state. This problem can break the semantics of an algorithm. Therefore, we

must design a lock-free algorithm with the ABA problem in mind. Typically, a solution to

the memory reclamation problem is sufficient to solve the ABA problem because removed

2. BACKGROUND 5

objects will never have their memory reclaimed when used by multiple threads and, thus,

the change of value from B to A is impossible.

2.1 Hash tries

A trie, as described by Bentley, Knuth and McIlroy [4], represents a set of words and all

prefixes of those words. The method for searching tries uses characters of a string in

succession to select a direction in each level of a k-ary tree hierarchy. Tries have been

used in IP routing protocols [8], peer-to-peer distributed hash tables [12] and scanners for

language parsers [4].

The trie data structure was first introduced in 1959 [1] as a string searching data struc-

ture, baptized by Fredkin [2] (trie as in, “information retrieval”) and later implemented by

Bentley et al. [7], Nilsson et al. [8], and Bagwell [9]. In particular, Bagwell’s implementa-

tion, the array mapped tries, demonstrated higher performance and space efficiency. Later,

Bagwell [10] extended it to support bit strings as opposed to character strings and re-

named it to hash array mapped tries, which our own implementation is based on. The name

hash trie map is used as a synonym of hash array mapped trie, throughout the literature.

Figure 2.1 illustrates a hash trie map. The intermediate nodes that form a trie are

called hash nodes (Hi), each having a fixed number of buckets (Bi). Leaf nodes (Ki) contain

the key-value pairs.

H1

K1

K2

K3 K4

K5

H2

H3

H4

K6 K7

FIGURE 2.1: Hash trie map

As keys are inserted on the hash map, hashes collide forming linked lists of keys. Con-

sequently, it will take more iterations to search for keys on the map, but we can expand

6 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

the map in size in order to reduce hash collisions. A classic hash map design will use a

single monolithic array to store all keys, and, to expand it, we need to allocate a bigger

array and move every key, one by one, from the old array. However, the bigger the hash

map, the longer it will take to expand. An expansion will force all threads to cooperate on

this potentially long operation, hindering their progress. On the other hand, on a hash trie

map, hash nodes have a fixed size allowing expansion to finish in constant time, as stated

by Bagwell [9]. To expand, we add a new fixed size hash node in front of a collision chain,

and move all nodes of the chain to this new hash node, one by one. Moreover, because

expansion will not involve all nodes of the map, only those of a collision chain, threads

can operate on other locations of the map independently without obstruction.

In the context of lockless programming, Harris [11] introduced the first lock-free linked

list based on the single width CAS operation which was improved upon by Michael [13]

to support lock-free memory management methods with bounded memory. Michael also

proposed a lock-free hash table using the aforementioned lists as collision chains. A clas-

sic single array hash table design is used, not a hash trie map. The proposed design, thus,

does not support expansion, because it would hinder progress guarantees. The author

[15] later added support for safe memory reclamation in environments without garbage

collection, using hazard pointers. Then, Shavit and Shalev [19] added support for table

expansion.

Prokopec et al. [25] presented a lock-free version of Bagwell’s hash array mapped trie,

using single-width CAS, called Ctries. Ctries will only allocate memory for populated

buckets to prevent empty buckets from taking space. To add or remove nodes: we clone

the contents of a hash node to local memory, apply all changes to the local copy, and re-

place the original with the cloned hash node in one CAS instruction. Not only is recursive

helping unnecessary, but the number of synchronizations is low compared to our own

design. Moreover, map operations are limited to one single synchronization instruction

making it easier to verify algorithm correctness. The main disadvantage is the overhead

caused by the frequent cloning of hash nodes. Ctries also support lock-free snapshots [25].

On a later date, Prokopek [35] modified this design so as to run operations in expected

constant time, naming this newly designed data structure: Cache Tries. Cache Tries use

an auxiliar data structure other than the hash map in order to speed up map traversal and

other operations.

Areias and Rocha [30] formulated a lock-free version of Bagwell’s hash trie map. Like

2. BACKGROUND 7

with Ctries, the proposed design is also capable of performing lock-free expansion, to re-

duce collisions. Unlike with Ctries, the CAS instructions are applied directly onto each

bucket as opposed to replacing an entire hash node. Then, the authors [32] added sup-

port for sorted keys and, after that, compression of hash nodes [37]. A custom memory

reclamation method with little overhead was proposed by Moreno et al. [38] This is the

data structure we study throughout this document.

2.2 State-of-the-Art Comparison

There have been many concurrent hash map designs over the years, but how do they

compare in performance?

In Fig. 2.2, each implementation is ordered by relative performance in execution time.

A relation A P−→ B means that B was reported to outperform A, in paper P. The citation to

the paper is attached to the arrow. The only paper with artifact checks is the one on cache

tries [35].

Shalev
Blocking

Lea
Blocking

Click
Non-Blocking

Ctries
Lock-Free

Cache Tries
Lock-Free

Areias
Lock-Free

TBB
Blocking

Hopscotch
Blocking

Cuckoo
Lock-Free

Michael
Lock-Free

Harris
Lock-Free

Hopscotch
Lock-Free

[25]

[16], [19]

[25]

[16]
[21]

[35]
[37]

[34]

[26]

[16]

[36]

FIGURE 2.2: Comparison of state-of-the-art designs

8 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

As we will see in chapter 5.5, implementation decisions such as memory reclamation

methods and cache-awareness can turn what was previously a costly design into a faster

implementation. Notably, the Harris Map [16] data structure does not require any memory

reclamation method in order to free memory in an unmanaged language. The Java Virtual

Machine (JVM) applies the same memory reclamation method to all programs. One of

these designs implemented for use with the JVM could outperform the Harris map with

a different reclamation method. Thus, it is not always clear which design is faster, as it

may depend heavily on the execution environment. The dashed line between Shavit and

Lea illustrates this same issue. In Shalev and Shavit [19], the authors demonstrate how

the new design outperforming Lea’s, running in the JVM. Later, Purcell and Harris reim-

plemented both solutions in C, using epoch based memory reclamation, which resulted

in Lea’s design being faster.

TBB, Lea, Click, Shalev, Michael and Harris use the classic linear hashing approach.

Ctries, Cache tries, and Areias designs are based on Bagwell’s hash array mapped tries,

which uses partition hashing. Cuckoo uses cuckoo hashing and Hopscotch mixes cuckoo

hashing, chaining and linear probing.

Although lock-freedom guarantees progress, some threads may still be stuck in a CAS-

loop obstructed by a series of conflicting operations. A common technique to mitigate this

issue is having obstructed threads assist others on completing their tasks. This is called

recursive helping by Fraser [14], and by Herlihy and Shavit [23]. A non-blocking algorithm

in which there is no obstruction of threads is called wait-free. A wait-free data structure,

according to Herlihy and Shavit [23], is a stronger progress guarantee than lock-freedom,

in which every thread makes progress in a finite amount of steps. We have included

the recursive helping technique in our new hash map design. However, we have not

validated whether or not the data structure is wait-free as a whole.

Chapter 3

Lock-free Hash Trie Map

A lock-free hash trie map (LFHT) is accessed through the functions: INSERT, REMOVE

and LOOKUP while the expansion and compression functions are never called directly

by a user. This chapter is dedicated to the analysis of each function: INSERT, REMOVE,

LOOKUP, EXPAND and COMPRESS. Each algorithm is explained before the analysis of

its asymptotic cost. Two alternative strategies are presented for the compression mecha-

nism.

In a LFHT, there are two types of nodes: leaf and hash nodes. Leaf nodes contain

key-value pairs whereas hash nodes are used for traversal in a trie like manner. Each

hash node contains a header and an array of buckets, of fixed size 2W . The chunk size

(W) determines the number of bucket entries of each and every hash node as well as the

number of bits extracted from a hash string for indexing purposes. The chunk of bits

extracted from a hash string will be used to select the appropriate bucket of a hash node.

Additionally to an indicator of the current tree level, all headers may contain a reference

pointing back to their parent hash node. Further, headers may have additional fields

depending on the implementation.

3.1 Lookup

To traverse the LFHT, subsequent chunks of a hash are used in a hashing strategy called

partitioned hashing. This is achieved through bit-wise shifts and masks. The traversal

is done depth-first so each hash node we advance to belongs to a deeper level of the

hierarchy. The level field of the header selects the correct chunk from the hash which is, in

9

10 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

turn, used to index the hash node’s bucket array. An empty bucket points back to its own

hash node.

In Fig. 3.1, the LOOKUP function is demonstrated for two different map configura-

tions. A small hash size is used for simplification. If the total length of the hash in bits is

not divisible by the chunk size, the last chunk will be zero-filled. Note, however, that the

hierarchy will only be built after expansion to reduce collisions of keys.

Every map operation depends on the LOOKUP function. To add a node, we first need

to check if it is already present, so we call LOOKUP. The same is done when removing

or finding a node. Thus, the performance of this operation has a significant impact in all

others.

3.1.1 Average Path Length

A crucial part in the analysis of the LOOKUP function is understanding the impact of

the average path length. Traversing the tree requires a number of successive hops before

reaching the leaves. Moreover, as we will see in the next section, leaves can form linked

lists which will further increase the number of hops.

The metric of average path length denotes how many hops a LOOKUP function per-

formed on average. A high average path length can be one of the main causes for slow-

downs. Conversely, reducing the average path length will lead to positive performance

results as will be shown and discussed in later experiments. However, memory accesses

with high latency due to synchronization are the biggest issue when it comes to perfor-

mance in throughput, as we will explore in greater detail later.

3.1.2 Algorithm

The LOOKUP(H, h) function, as illustrated by Alg. 2, traverses the tree starting from the

hash node H and returns the node associated with the hash h, if it exists. The traversal

begins at the root of the tree hierarchy. The chunk size (W) is a preemptively config-

ured global variable and does not change at runtime. The array notation H[i] denotes the

content of the ith bucket of hash node H. This bucket may either point to a leaf node,

to another hash node, or, if it’s empty, back to hash node H. The function returns: iter,

which is the node with hash h, or nil if it is not present on the map; the parent hash node

H of the collision chain where the key-value pair would be inserted; the node before iter,

3. LOCK-FREE HASH TRIE MAP 11

H2H1

B01

B10

B00

B11

B01

B10

B00

B11

H3

B01

B10

B00

B11

H4

B01

B10

B00

B11 K0

W = 2
2W = 4
K0 = 00000111

H1

B0001

B0010

B0000

B0011

K0

W = 4
2W = 16
K0 = 00000111

B0101

B0110

B0100

B0111

B1001

B1010

B1000

B1011

B1101

B1110

B1100

B1111

H2

B0001

B0010

B0000

B0011

B0101

B0110

B0100

B0111

B1001

B1010

B1000

B1011

B1101

B1110

B1100

B1111

FIGURE 3.1: Lookup demonstration for different map configurations

12 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

or the last node of the collision chain if iter is not present; the length of the collision chain,

up until iter.

Algorithm 2 LOOKUP(HashNode H, KeyHash h)

1: i← GETCHUNK(h, H.level, W)
2: iter ← H[i]
3: if iter is a freeze/unfreeze node then
4: iter ← iter.next
5: prev← H
6: len← 0
7: while iter 6= H do
8: if iter is a hash node then
9: return LOOKUP(iter, h)

10: len← len + 1
11: nxt← iter.next
12: if iter is valid then
13: if iter.hash = h then
14: return 〈iter, H, prev, len〉
15: prev← iter
16: iter ← nxt
17: return 〈nil, H, prev, len〉

From lines 1-2, the bucket is selected using bit-wise shifts and masks. The chunk of W

bits is selected from the hash string h, which indexes the bucket array of our current hash

node H.

Lines 3-4 are only necessary when implementing the compression mechanism using

freeze nodes. Two adjacent hash nodes may have a freeze node in between. This node is

skipped at line 4 when traversing the tree.

During traversal, we keep track of additional variables necessary for the insertion and

removal functions. The prev variable keeps track of the node directly before our iterator.

The prev variable will have the value of the last node of a collision chain, if the key we

are looking for (h) is not present on the map. len keeps track of the length of the collision

chain, which is useful, for example, when keeping track of hazard pointers.

At the beginning of the loop at line 7, prev points to the parent hash node, while our

iterator iter points to a leaf node in bucket i. The loop terminates when our iterator points

back to its parent hash node.

On lines 8-9, we move to a new hash node down the tree hierarchy. The remaining

lines of the loop, 10-16 are dedicated to verifying our iterator and advancing to the next

node on the collision chain. We do not keep track of invalid nodes (line 12). If iter has

3. LOCK-FREE HASH TRIE MAP 13

the hash we were looking for (h), the LOOKUP function returns its value. If the node we

were looking for does not exist, we reach the end of the collision chain and return at line

17.

3.2 Insertion

To add a new key-value pair we first need to locate the target bucket with LOOKUP.

Then, the reference to the new leaf node is written directly to the bucket through the use

of compare-and-swap, as demonstrated in Fig. 3.2. Again, if this CAS operation fails, the

process is restarted.

The field V will be mentioned and explained in section 3.4, which documents the

REMOVE function.

prev

Bx

prev

By

Hi Hi+1

Bz

(A) Traversing the tree until we find the corresponding
bucket

prev

Bx

prev

By

Hi Hi+1

K1 V

Bz

(B) Inserting K1 to the bucket

prev

Bx

prev

By

Hi Hi+1

K1 V K2 V

Bz

(C) Appending K2 to K1

prev

Bx

prev

By

Hi Hi+1

K1 V K2 V

K3 VBz

(D) Inserting K3

FIGURE 3.2: Inserting nodes

This version does not support updates of already inserted keys. Thus, if the target key

is already inserted, the operation will return the already inserted value.

3.2.1 Dealing With Collisions

Leaves will collide when inserting in an already populated bucket. Collisions are toler-

ated to a certain degree by chaining multiple leaves together in a Harris [11] singly linked

14 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

list. The LOOKUP function will traverse collision chains until the tail end is reached to

which we may append the new nodes. The nodes at the tail end of the list point back to

their parent hash node. As the number of inserted nodes increases, however, so do the

number of collisions and so does the average path length. Section 3.3 explains how to

mitigate this issue.

If chains increase the average path length, why tolerate collisions in the first place?

In short, expansion comes with a cost. Expanding the map right as two hashes collide

would increase the overhead of the average insert operation, as demonstrated in later

section 5.3.1. In fact, some versions of the hash trie map do not tolerate collisions such as

Prokopek’s ctries [25] and cache tries [35] (although newer versions do support them [25]).

3.2.2 Algorithm

The INSERT(H, h, v) function, illustrated by Alg. 3, appends the key-value pair 〈h, v〉 to

the tail end of the tree, starting from hash node H.

Algorithm 3 INSERT(HashNode H, KeyHash h, Value v)

1: 〈node, H, prev, len〉 ← LOOKUP(H, h)
2: if node 6= nil then
3: return
4: if prev is freeze/unfreeze node and UNFREEZE(H, h) fails then
5: return INSERT(H.prev, h, v)
6: if len = EXPANSION_THRESHOLD then
7: H ← EXPAND(H, h, prev)
8: return INSERT(H, h, v)
9: N ← NEWLEAFNODE(H, h, v)

10: if CAS(prev.next, H, N) fails then
11: return INSERT(H, h, v)

The LOOKUP call at line 1 has multiple purposes. The first is to detect whether a leaf

node with h is already inserted (lines 2-3). The second is to get the tail end of the target

collision chain, i.e. the one we want to append the new node to.

Lines 4-5 make use of prev, also returned by LOOKUP, which is the node before the

tail. Lines 4-5 deal with the compression mechanism discussed later on in this chap-

ter. If prev is a compression node, then we try to cancel the ongoing compression with the

UNFREEZE function. This is required for compatibility with the compression operation,

which we will explain in section 3.5.1. Finally, the length of the target collision chain, len,

is later used in lines 6-8 to trigger an expansion, if the expansion threshold was reached.

3. LOCK-FREE HASH TRIE MAP 15

The remaining lines create a new leaf node, N, and an attempt is made at appending this

node to the collision chain. If the attempt fails, we retry the INSERT function from the

start.

3.3 Expansion

As nodes are inserted, collision chains get longer, increasing the average number of hops

performed per LOOKUP, i.e. average path length. To reduce the average path length,

nodes of a chain are distributed through a new hash node. This process is called expan-

sion. The advantage of expansion is demonstrated by Fig. 3.3. Note, however, that the

distribution of nodes is not necessarily even. In the average case, the number of hops

decreases, but nodes may still collide when expanding to a new hash node. This does not

prove to be advantageous when reaching for K0 and K1. However, if we do not impose a

maximum length to collision chains, the average path length would be bigger.

prev

Bm

Hi

K1 V K2 VK0 V

hops = 3

(A) The longer the collision chain, the larger the aver-
age path length

prev

Bm

prev

Bo

Hi Hi+1

K1 V

K2 VBp

K0 VBn

hops = 2

(B) New levels reduce the average length of collision
chains

FIGURE 3.3: Expanding to reduce the average path length

To uphold the lock free property, the expansion process must discard locks completely

and we must take into consideration that other threads can interfere with the procedure

at any point. Figure 3.4 illustrates the whole process. The expansion procedure will start

due to an insertion of a key in an already saturated collision chain. Let’s assume our chain

threshold is 3. The expansion procedure starts by appending a new hash node to the tail

of the collision chain. From here on out, threads will travel down the chain and insert

new nodes to the new hash node, Hi+1, instead of appending nodes to the chain.

16 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

To complete the expansion of a collision chain, we move each leaf node of the collision

chain to the new hash node. This process is called rehashing, and is illustrated in Fig. 3.4c-

3.4e. Nodes of a collision chain must be rehashed in reverse order, i.e. from the tail to

the head. If we rehash node K0 before K1 in Fig. 3.4c, K1 will be temporarily unreachable

from the hash map. Because this is a lock-free algorithm, threads could bump against this

collision chain at any point in time, even during an expansion. Thus, in order to guarantee

the correctness of the algorithm, we must make sure nodes are reachable at all times and,

to do so during an expansion, we must rehash chains from the tail to the head.

3.3.1 Algorithm

The EXPAND(H, h, tail) function, illustrated in Alg. 4, adds a new hash node to a path, in

front of H. The new hash node H′ will be appended to the tail end of the chain, tail, such

that all nodes of the chain remain visible throughout the expansion process. Finally, each

leaf node of the chain will be adjusted to the new level.

Algorithm 4 EXPAND(HashNode H, KeyHash h, Value tail)

1: H′ ← CREATENEWHASHNODE(H)
2: if CAS(tail.next, H, H′) then
3: return HELPEXPAND(H, h, H′)
4: seen← tail.next
5: if seen is not a hash node or seen = H or seen is invalid then
6: return H
7: return HELPEXPAND(H, h, seen)

If the CAS at line 2 is successful, the new hash node H′ was appended to the target

collision chain. The HELPEXPAND function (lines 3 and 7) will perform the expansion

of the nodes on the collision chain to the new hash node (H′). The chunk size (W) is a

preemptively configured global variable and does not change at runtime. If the CAS at

line 2 fails, it must be because some other thread tempered with the tail of the chain. In

line 4 we load the reference next to the tail and proceed to verify whether or not it is a

new hash node, at line 5. Line 6 will occur if the conditions for a new expansion have not

been fulfilled. Line 7 starts the HELPEXPAND procedure with the new hash node, seen,

created by another thread. Threads that reach line 7 will help the expansion started by the

thread whose CAS at line 2 was successful.

First, we load the head of the collision chain in lines 1-2. If head is not a leaf node, then

it is either a hash node or a compression node. If head is not a leaf node, the expansion

3. LOCK-FREE HASH TRIE MAP 17

prev

Bm

Hi

K0 V K1 V

(A) We want to add K2 but the collision chain has
reached its maximum length, in this case, 2

prev

Bm

prev
Hi Hi+1

K0 V

Bo

K1 V
Bn

(B) A new level, Hi+1 is added

prev

Bm

prev
Hi Hi+1

K0 V

Bo

K1 VBn

(C) Nodes from the collision chain are moved
from tail to head to the new level

prev

Bm

prev
Hi Hi+1

K0 V

Bo

K1 VBn

(D) Before moving the next node, we point it to
the new level Hi+1

prev

Bm

prev
Hi Hi+1

K0 VBo

K1 VBn

(E) Node K0 moved

prev

Bm

prev
Hi Hi+1

K0 VBo

K1 VBn

(F) Commit expansion

prev

Bm

prev
Hi Hi+1

K0 VBo

K1 VBn

K2 V

(G) Inserting K2

prev

Bm

prev
Hi Hi+1

K0 VBo

K1 VBn

K2 V

(H) Insertion concluded

FIGURE 3.4: Demonstration of the complete expansion of a collision chain

process must have already terminated (lines 3-4). Line 5 is where each leaf node of the

collision chain, from tail to head, one by one, is moved to the new hash node H′. After

REHASHNODES terminates, the bucket H[i] points to the head of the collision chain we

expanded. To commit the expansion, we set the bucket’s reference to the new hash node

H′ (line 6).

18 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Algorithm 5 HELPEXPAND(HashNode H, KeyHash h, HashNode H′)

1: i← GETCHUNK(h, H.level, W)
2: head← H[i]
3: if head is not a leaf node then
4: return H
5: REHASHNODES(H′, head)
6: if CAS(H[i], head, H′) then
7: return H′

8: return H

3.4 Removal

To remove a node, we must first locate it, again, using the LOOKUP function. Harris [11]

designed the removal operation in a lock free list as a two step process. First, we mark the

target node as invalid (represented by the I field in Fig. 3.5) as a way to warn other threads

of its eventual removal. Only then can we disconnect it from the list, as illustrated in Fig.

3.5, effectively making it unreachable.

K1 VK0 V K2 V

(A) Grab reference of K1

K1 IK0 V K2 V

(B) Invalidate K1

K1 IK0 V K2 V

(C) Disconnect K1

FIGURE 3.5: Removing node K1

Why is the first step necessary? Is there an issue with detaching the node, right away?

The remainder of this section answers these questions.

3.4.1 Invalidation Step

The first step is necessary in order to prevent insertions of new nodes in front of already

removed ones. Consider the following history of conflicting operations, illustrated by Fig.

3.6:

1. Thread T1 wants to remove K2 from the list;

3. LOCK-FREE HASH TRIE MAP 19

2. Thread T2 wants to add node K3 after the list’s tail, K2;

3. Thread T1 disconnects K2 from the list;

4. Thread T2 adds K3 in front of K2.

As a result, the new node is also disconnected from the list.

K1 VK0 V K2 V

(A) T1 and T2 grab the reference of K2, one for removal
other for insertion purposes

K1 VK0 V K2 V

(B) T1 disconnects K2 from the list

K1 VK0 V K2 V K3 V

(C) T2 appends a new node K3 to the already removed
one K2

FIGURE 3.6: Conflicting operations when removing a node

Likewise, removing two adjacent nodes may also cause one of the removed nodes to

be reinserted due to a race.

To prevent any further insertions, removed nodes must be made immutable. One

possible way of implementing this is to set the lowest significant bit of the .next field,

forcing foreign CAS operations to fail. Since allocated structures are memory aligned, the

lowest significant bit of a pointer is always zero. The .next field of an invalid node is still

addressable, nonetheless, but cannot be overwritten.

Any CAS instruction applied to an immutable field will fail, making invalid nodes

suitable for removal without conflicts. When encountering invalid nodes, threads must

either skip them by traversing to the next neighbor or attempt to remove them (helping).

The latter case is only necessary in some cases. For example, as will be mentioned later

on, when implementing a hazard pointer based memory reclamation method.

3.4.2 Memory Reclamation Problem

Even after a node is made unreachable, it may still have its reference visible to other

threads. Because of this, we are unable to free its memory after removal, unlike with lock

20 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

K1 V

prev

Bm

prev
Hi Hi+1

BnK0 V

(A) T1 checks that K1 is valid

K1 I

prev

Bm

prev
Hi Hi+1

BnK0 V

(B) T2 invalidates and removes K1

K1 I

prev

Bm

prev
Hi Hi+1

BnK0 V

(C) T1 rehashes K1, making it reachable

prev

Bm

prev
Hi Hi+1

BnK0 V

(D) T1 confirms that K1 is invalid and removes it

FIGURE 3.7: The delegation problem

based implementations. The act of safely freeing memory is called memory reclamation.

This was not a problem in a garbage collected environment such as the JVM which has its

own ways of detecting exactly when an object can be freed. When implementing the LFHT

in an unmanaged language, such as C, we must implement our own memory reclamation

mechanism, which we will discuss in great length in Chapter 4.

3.4.3 Delegation Problem

During the expansion procedure, nodes of a collision chain are moved to a new hash

node, one by one, from tail to head. But what if nodes are removed from the collision

chain during an expansion? An ongoing expansion will check if a node is invalid before

moving it to a newer level. However, there is a race condition in which the node will be

invalidated and removed right after it being confirmed valid, by the expanding thread,

and right before it is moved by an expansion. We call this the delegation problem. This

problem is illustrated in Fig. 3.7.

One of the early solutions to this problem forced threads which were performing ex-

pansions to double check whether the moved nodes were valid or not. These nodes would

then be removed a second time from the map, as illustrated by Fig. 3.7d. The name delega-

tion refers to the fact that the removal of a node during an expansion would be delegated

to the thread responsible for expansion. Hence, the name, delegation problem. However,

3. LOCK-FREE HASH TRIE MAP 21

this solution will lead to concurrency hazards when trying to implement a memory recla-

mation method. We will look at this problem’s impact on memory reclamation in a later

chapter, and propose another solution.

3.4.4 Algorithm

The REMOVE(H, h) function, illustrated by Alg. 6, removes the node with hash h from

the tree and attempts to compress its parent hash node.

Algorithm 6 REMOVE(HashNode H, KeyHash h)

1: 〈node, prev, len〉 ← LOOKUP(H, h)
2: if node = nil then
3: return
4: if node is valid and node.next is a hash node and node.next 6= H then
5: H ← HELPEXPAND(H, h, node.next)
6: return REMOVE(H, h)
7: if TRYINVALIDATE(node) fails and node is valid then
8: return REMOVE(H, h)
9: if CAS(prev, node, node.next) succeeds then

10: COMPRESS(H, h)

The first line searches for the node matching the target hash h, the one we wish to

remove. If the node does not exist we return from the function (lines 2-3).

Lines 4-6 prevent the delegation problem. The TRYINVALIDATE function at line 7 will

perform a CAS to the node in order to invalidate it. Therefore, we try to set the least

significant bit of its .next field to 1. This masked pointer will still point to the same node

in memory. If the node invalidation step fails and the node is still valid, it must mean

that the next neighbor of our target node changed in the meantime and we must retry the

removal operation from the beginning (lines 7-8).

Note how multiple threads may try to remove the same node after it has been invali-

dated. Whoever can detach it from the collision chain at line 9 is the one responsible for

compressing the hash node (line 10). The compression operation is discussed in the next

few sections.

3.5 Compression

After the removal of leaf nodes, a hash node may become empty. In that case, the hash

node is not only taking up unnecessary space in memory but also adding an additional

22 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

level on the tree hierarchy, causing longer LOOKUP times.

Compression is the mechanism for removing hash nodes. However, this process is

not as simple as detaching the hash node in one step, since other threads may attempt to

insert keys to the already detached hash node. Figure 3.8 illustrates a history of conflict-

ing instructions which we need to take into consideration when designing the lock-free

compression algorithm.

prev

Bm

prev
Hi Hi+1

K0 VBn

(A) T1 wants to remove the last leaf K0 of hash
node Hi+1

prev

Bm

prev
Hi Hi+1

Bn

(B) Because Hi+1 is now empty, T1 will compress
it, but T2 grabs the reference of Hi+1 beforehand

prev

Bm

prev
Hi Hi+1

Bn

(C) T1 disconnects Hi+1 from the tree

prev

Bm

prev
Hi Hi+1

Bn K0 V

(D) T2 inserts K1 on an already compressed hash
node, Hi+1, making K1 also unreachable

FIGURE 3.8: Conflicting operations when compressing a hash node

This problem is identical to the one explored in the removal operation. Thus, a pos-

sible solution is to mark the hash node as immutable, preventing further modifications.

Unlike with leaf nodes, hash nodes have multiple bucket entries which may be overwrit-

ten at any point in time. The next sections explore different ways to issue a hash node for

removal.

3.5.1 Freezing

In section 3.4, we discussed the removal operation which is capable of marking a leaf

node as invalid, effectively making it immutable. We can borrow this concept to mark

each bucket of the hash node, one by one, as immutable with a series of CAS calls. In

the following example, Fig. 3.9, one by one, each bucket is redirected to a special freeze

3. LOCK-FREE HASH TRIE MAP 23

type node. Once neighbor threads detect this node, they should skip it and attempt to

complete their work concurrently.

prev

Bm

prev
Hi Hi+1

Bn

Bo

Bp

Bq

(A) Hi+1 is empty and we wish to compress it

prev

Bm

prev
Hi Hi+1

Bn

F Bo

Bp

Bq

(B) A freeze node is placed before Hi+1

prev

Bm

prev
Hi Hi+1

BoF

Bn

Bp

Bq

(C) With every bucket frozen, we can now dis-
connect Hi+1

prev

Bm

prev
Hi Hi+1

BoF

Bn

Bp

Bq

(D) Hi+1 is now unreachable from the tree and
compression was successful

FIGURE 3.9: Compression using a freeze node

From here on out, the word “freezing” refers to the successful replacement of a field,

using compare-and-swap, to a special freeze type node. Likewise, “unfreezing” refers to the

successful replacement of a field to an unfreeze type node.

Only empty hash nodes can be compressed. The compression procedure will be re-

verted if one of the buckets is populated in the meantime.

When inserting a node we can cancel an ongoing compression to the target hash node.

To cancel the compression, we must unfreeze the bucket pointing to the target hash node,

as illustrated in Fig. 3.10. If the replacement of the freeze node is successful, it must mean

that the compression process was canceled before terminating. In practice, this case rarely

occurs. While gathering benchmarks, unfreezing would only take place during tests with

high degrees of contention which hash functions prevent.

3.5.1.1 Algorithm

The COMPRESS(H, h) function removes hash H, detaching it from its parent hash H′. H′

is at level l. The INSERT, LOOKUP and REMOVE functions must be changed to detect

and skip freeze F or unfreeze U nodes at the start of any chain. The chunk size (W) is a

24 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

prev

Bm

prev
Hi Hi+1

BoF

Bn

Bp

Bq

(A) Compression of the hash node Hi+1 is ongo-
ing

prev

Bm

prev
Hi Hi+1

BoF

Bn

Bp

Bq

U

(B) We cancel the compression of Hi+1 by placing
an unfreeze node before it

prev

Bm

prev
Hi Hi+1

BoF

Bn

Bp

Bq

U

(C) One by one, we point each bucket back to
Hi+1

prev

Bm

prev
Hi Hi+1

Bo

F

Bn

Bp

Bq

U

(D) The compression procedure is reverted by
pointing the parent hash node to our target, once

again

FIGURE 3.10: Aborting the compression operation

preemptively configured global variable and does not change at runtime. Moreover, if the

INSERT function detects a freeze node F it must try to unfreeze the hash node H.

Algorithm 7 COMPRESS(HashNode H, KeyHash h)

1: prev← H.prev
2: if prev = nil or ISNOTEMPTY(H) then
3: return
4: F ← NEWFREEZENODE(H)
5: i← GETCHUNK(h, prev.level, W)
6: if CAS(prev[i], H, F) fails then
7: return
8: for j← 0; j < W; j← j + 1 do
9: if CAS(H[j], H, F) fails then

10: return
11: H.prev← nil
12: if CAS(prev[i], F, prev) then
13: return COMPRESS(prev, h)

Algorithm 7 illustrates the compression procedure. First, we verify if H is the root

hash node. The root hash node is the entry point of our map, so we must not remove it

(lines 2-3). The root hash node is the only one with no previous neighbors (its prev field

is set to nil).

3. LOCK-FREE HASH TRIE MAP 25

The ISNOTEMPTY function iterates all buckets of our target node H. If one such

bucket is populated with any node, we abort the compression procedure (line 3) because

we only wish to compress empty hash nodes.

At line 4, NEWFREEZENODE allocates a freeze node pointing to our target H. This

freeze node is placed in between H and its parent hash node (prev) at line 6.

From lines 7 to 10, each bucket of H is pointed to the freeze node, one by one. Line

11 is for memory reclamation purposes. Setting the prev field of a hash node prevents a

memory reclamation conflict which will be discussed next chapter. Finally, line 12 will

commit the compression by completely detaching H from the tree. Hash node H was

removed from its parent, prev, possibly leaving it empty. Therefore, we must also try to

compress the parent.

Every removal operation emptying a bucket will trigger the compression operation.

After removing the last node of a chain, a thread must check if all buckets of the hash node

are empty. Only then can the compression procedure begin. We can reduce the frequency

of verification by marking one of the hash’s buckets. A thread who empties the chain of a

marked bucket is the only one responsible for compressing the hash node.

3.5.2 Counter

A second method of marking a hash node as immutable is to keep a counter of populated

buckets updated in each hash node. Figure 3.11 illustrates this idea. This version requires

changes to the insertion procedure, adding extra synchronization to it. When removing

a node which leaves the bucket empty, the counter must be decremented. If the counter

reaches 0, no thread can add further nodes, effectively preventing further modifications

to the hash node.

Note that the counter is incremented before the insertion of a node, using a CAS op-

eration. This prevents any thread from adding a node to an already detached hash, and

prevents the following conflict of operations:

1. T1 adds node K0 to an empty bucket Bx.

2. T1 is interrupted by the operating system scheduler.

3. T2 appends node K1 to K0.

4. Because K0 was already in Bx, T2 is not responsible for increasing the counter of the

hash node, but T1 is still asleep.

26 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Bm

Hi Hi+1

K0 V

c = 1

prev prev

c = 1

Bn

(A) We want to remove node K0

Bm

Hi Hi+1

c = 1

prev prev

c = 1

Bn

(B) K0 is removed

Bm

Hi Hi+1

c = 1

prev prev

c = 0

Bn

(C) Decrementing the counter of hash node Hi+1

Bm

Hi Hi+1

c = 1

prev prev

c = 0

Bn

(D) Hi+1 is empty because its counter is 0, so we
remove it from Hi

Bm

Hi Hi+1

c = 0

prev prev

c = 0

Bn

(E) Decrementing the counter of hash node Hi

FIGURE 3.11: Compression using a counter field

5. T3 compresses the hash node, even though Bx is not empty, because T1 has yet to

increase the counter.

6. Nodes K0 and K1 are now unreachable.

Before inserting a node to an empty bucket, we increase the counter. If multiple threads

try to insert to the same empty bucket, only one of them will succeed. This means a

counter may, in fact, exceed the actual number of non-empty buckets. A thread which

fails the insertion procedure must decrement the counter, balancing its value. In other

words, during the insertion procedure, we increment the counter in order to prevent the

compression of the hash node.

3. LOCK-FREE HASH TRIE MAP 27

3.5.2.1 Algorithm

The COMPRESS(H, h) function removes hash H, detaching it from its parent hash H′.

Algorithm 8 illustrates the alternative compression function, using counters. H′ is at level

l. The chunk size (W) is a preemptively configured global variable and does not change at

runtime. Changes to both INSERT and REMOVE procedures must also be made. In fact,

INSERT suffers a significant cost penalty due to the additional synchronization required

when updating a counter.

Algorithm 8 COMPRESSION(HashNode H, KeyHash h)

1: prev← H.prev
2: if prev = nil or H.counter 6= 0 then
3: return
4: i← GETCHUNK(h, prev.level, W)
5: H.prev← nil
6: if CAS(prev[i], H, prev) fails then
7: return
8: if prev.prev = nil then
9: return

10: count← ATOMICDECREMENT(prev.counter)
11: if count 6= 0 then
12: return
13: return COMPRESSION(prev, h)

Lines 2-3 return if the target hash node H is the root or if it is not empty, indicated by

the greater than zero counter. Like previously mentioned, line 5 prevents threads from at-

tempting to compress a hash node with its memory already reclaimed. Line 6 will detach

hash node H from the tree. From line 8 to 10, the thread which successfully compressed

H will have to decrement its parent’s counter. If this counter is equal to 0, we must try to

compress the parent hash node prev (lines 11-13).

Algorithm 9 shows the changes applied to the aforementioned INSERT function to

ensure the correctness of this compression method, using a counter. INSERT(H, h, v) must

preemptively increment the counter of hash node H to prevent its compression during an

insertion. counter is the number of populated buckets of H.

The insert function is similar to the original one, from lines 1 to 6, with the exception

of the freeze/unfreeze node handling which is now unnecessary. In lines 7-12, we check

whether the hash node H has already been issued for compression, by verifying if its

counter is 0 (all hash nodes start with counters greater than 0). Lines 13-15 we append our

new node N to the target collision chain. The counter represents the number of populated

28 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Algorithm 9 INSERT(HashNode H, KeyHash h, Value v)

1: 〈node, H, prev, len〉 ← LOOKUP(H, h)
2: if node 6= nil then
3: return
4: if len = EXPANSION_THRESHOLD then
5: H ← EXPAND(H, h, prev)
6: return INSERT(H, h, v)
7: observed← H.counter
8: if observed = 0 then
9: COMPRESS(H, h)

10: return INSERT(RootHashNode, h, v)
11: if prev = H then
12: while CAS(H.counter, observed, observed + 1) fails do
13: if H.counter = 0 then
14: COMPRESS(H, h)
15: return INSERT(RootHashNode, h, v)
16: N ← NEWLEAFNODE(H, h, v)
17: if CAS(prev.next, H, N) fails then
18: ATOMICDECREMENT(prev.counter)
19: return INSERT(H, h, v)

buckets of H. Therefore, if the tail of the chain is a leaf node, then the bucket is already

occupied and the counter is not incremented. In the remaining lines we try to increment

the counter. If the CAS at line 18 fails, it means some other thread tempered with the

counter and we must check if it was left at 0 or not. If that’s the case, we must reinsert the

node N (lines 19-23).

We must change the REMOVE function to perform ATOMICDECREMENT(counter)

after detaching a node and leaving its chain empty. The ATOMICDECREMENT function

will decrement the given field, by one, and return the new value of the field atomically.

3.6 Cost Analysis

3.6.1 Lookup Cost

The time complexity of the LOOKUP procedure is determined by the maximum height L

of the tree and the maximum length C of collision chains. In other words, L is the maxi-

mum number of recursive calls to LOOKUP and C is the number of maximum iterations

of the collision chain traversal loop. The maximum height is determined by the chunk

3. LOCK-FREE HASH TRIE MAP 29

size, W, and the maximum length of the hash, h.

max(L) = d#h
W
e

Thus, a path to a leaf can be shorter but no longer than L + C, making the worst case

O(L + C).

On an x64 machine, the length of a hash would be 64 bits, resulting in a constant max-

imum height of the tree. For example, the longest path possible on an x64 machine, using

chunks of 4 bits, would be max(L) = 64
4 = 16. For any theoretical machine, however, it

could be much longer (#h < +∞).

Consider a hypothetical ideal hash function which avoids collisions whenever possi-

ble. Figure 3.12 illustrates this case. The letter n represents the amount of keys currently

inserted on the map. For every n inserted keys, the height of the tree is at most logW(n).

This is the conclusion Bagwell [9] reached, when proposing the data structure, and which

constitutes the best case for cost. The hash functions we use in practice cannot consis-

tently perform this perfectly even distribution of keys on hash nodes. However, the cost

of traversing the tree is still logarithmic on average. Although the LOOKUP function of

hash trie map is more costly than that of a classic hash map, the trade-off is a lower cost

of expansion and compression. And, on average, the asymptotic cost of LOOKUP is still

constant.

B10

B00
B01

B11

B10

B00
B01

B11

n = 16

K1 v

B10

B00
B01

B11

K2 v
K3 v
K4 v

B10

B00
B01

B11

K5 v
K6 v
K7 v
K8 v

B10

B00
B01

B11

K9 v
K10 v
K11 v
K12 v

K13 v
K14 v
K15 v
K16 v

B10

B00
B01

B11

n = 4

B10

B00
B01

B11

n = 0

K1 v
K2 v
K3 v
K4 v

FIGURE 3.12: Hash trie map with a perfect hash function

30 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

In Chapter 4, we will see that the LOOKUP algorithm will suffer a number of costly

modifications.

3.6.2 Insertion Cost

In regards to space and time complexity, the cost of the algorithm is determined by the

cost of the EXPAND and LOOKUP functions.

It is possible, although very unlikely, that a thread could loop infinitely in a CAS-loop.

This is caused by a form of starvation, where threads keep conflicting with one another

and, as a result, one of the threads gets stuck in retrial. However, a good hash function

will prevent retrials, by spreading keys evenly throughout the map, separating points of

conflict. Despite all this, the average case is equal to that of the LOOKUP function.

3.6.3 Removal Cost

The asymptotic analysis in execution time of the removal function is identical to that of

the insert function, described in section 3.6.2.

3.6.4 Expansion Cost

To expand, a traditional hash map allocates an array with double the entries to which all

inserted nodes are moved to. Thus, typically, the cost for expansion is Θ(n).

The main advantage of the hash trie map is that expansions will only involve a fixed

number of nodes. Each expansion is targeted at a specific collision chain. All nodes of the

chain will be moved to a new hash node. Thus, the cost of expansion is Θ(C) = Θ(1), C

being the constant length of a collision chain.

3.6.5 Freeze Compression Cost

In theory, the iteration of all buckets gives a cost of Θ(2W) = Θ(1). In practice, however,

2W writes to shared memory are required to successfully freeze a hash node. Thus, this

compression function is slower than the one presented in section 3.5.2.

3.6.6 Counter Compression Cost

Only two writes to shared memory are required to successfully compress a hash node.

On the other hand, the INSERT function suffers a higher number of CAS instructions for

3. LOCK-FREE HASH TRIE MAP 31

every retrial. Additionally, the counter is another contention point. Thus, the synchro-

nization load of the compression mechanism is moved to the much more frequent insert

operation.

3.6.7 The Cost of Synchronization

We have studied the asymptotic cost of algorithms based on the amount of iterations

performed. However, on modern CPUs, the cache takes a big load off a portion of these

algorithm iterations, namely while traversing lists or a tree.

The main culprit behind slowdowns is synchronization because it forces CPUs to halt

progress. Cache synchronization protocols, the flushing of write buffers and accesses

to a higher level in the memory hierarchy are examples of mechanisms which can halt

progress. Frequently relying on synchronization decreases the efficiency of the algorithm

and worsens performance. Unfortunately, synchronization is necessary for ensuring algo-

rithm correctness in concurrent programming. If we are able to reduce synchronization as

much as possible while maintaining correctness, we can greatly improve the performance

of our algorithm.

Memory reclamation methods typically demand more frequent synchronization. There-

fore, memory reclamation methods are an integral part of algorithm optimization. Some-

times we can exploit certain characteristics of the algorithm to reduce the amount of syn-

chronization needed to reclaim memory. Some algorithms may not even require memory

reclamation methods, namely Harris and Purcell’s hash map [16]. In garbage collected

environments every process gets the same reclamation method which hinders the perfor-

mance of potentially faster algorithms, like the aforementioned hash map.

Next chapter is dedicated to the implementation and analysis of memory reclamation

methods to the LFHT.

Chapter 4

Memory Reclamation

Outside garbage collected environments, we may not be able to free memory right after

removal of nodes from the LFHT data structure. After removing a leaf node we are not

sure whether some other thread has a local reference to it. In the worst case, if we free the

memory of this leaf node, we risk a use after free problem like the following:

1. Thread T1 stops amidst of traversing through node N1.

2. T2 removes and frees the memory of N1.

3. T2 allocates a new node N2 calling malloc. The reference given by the allocator points

to the exact same memory block of the previously deleted node N1. N2 is inserted

in a completely different place on the hash map.

4. T1 traverses through N2, which has the same reference as the deleted N1. T1 has

moved to another location in the structure.

Therefore, we need to manually implement a mechanism capable of determining when

a pointer is no longer in use by any thread. This is called a memory reclamation method and

there are a number of alternatives, some of which were experimented by Moreno et al.

[34] for the LFHT data structure. In the end, a custom memory reclamation method was

designed exclusively for use with LFHT called hazard hash and level (HHL) which was able

to outperform other state of the art methods. However, the HHL is not compatible with

the compression mechanism of LFHT. The ABA problem can be an additional problem

associated with CAS-based lock-free programs.

Our end goal is to implement a memory reclamation method for LFHT compatible

with the compression mechanism. In what follows, we discuss in detail the impact of

33

34 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

synchronization primitives and memory barriers in the performance of any program.

McKenney [31] is the main source which supports these first sections. An in-depth un-

derstanding of synchronization will be necessary in the interpretation of the results given

later in Chapter 5. Next, we describe in detail two already existing memory reclamation

methods (Section 4.3), namely the Hazard Pointers method and the afore mentioned HHL.

Moreover, in sub-section 4.1.2.1, the concept of asymmetric memory barriers is introduced

which will be pivotal in optimizing our memory reclamation method, later on.

4.1 The Cost Of Synchronization

Synchronization primitives, atomic operations and memory barriers are some of the more

costly operations. If we understand in detail how synchronization is implemented in a

shared-memory multi-core system (SMP), we are able to optimize its use and speedup

our programs.

In the first few sections, we will go over the architecture of an SMP. In the last few

sections we will describe how memory barriers work, the different types of barriers and

their cost.

4.1.1 The Cache

Overtime, manufactured CPUs have become faster while memory units more spacious.

However, memory access latency has not been able to keep up with the execution speed

of CPUs. Thus, every time a CPU performs an access to memory it must stall its execution

during which it could have already executed hundreds of instructions. CPU stall hinders

the progress guarantees of a lock-free algorithm.

It is important to define what characteristics contribute to higher latency of RAM ac-

cess. They are as follows:

• Access must go through the slow system bus;

• RAM uses cheaper (albeit slower) registers than other memory units;

• Virtual memory address translation.

First, RAM and CPU must communicate through the slowest bus on the system. They

share this interconnect with other I/O devices and must synchronize its access through a

controller, one at a time.

4. MEMORY RECLAMATION 35

Secondly, because manufacturers focus on producing spacious RAMs, they need to

take into consideration the higher cost of manufacturing. After all, more transistors are

required to build a larger memory. To reduce the manufacturing costs, each RAM register

must contain less transistors than a CPU or cache register, as explained by Null et al. [27].

Registers with a higher number of transistors are faster than RAM registers, which further

contributes to the disparity of latency.

Finally, as evidenced by Aiken et al. [17], virtual memory address translation does

have an impact on access latency. After all, performing one read of RAM requires multiple

memory accesses to manage and inspect translation lookaside buffer entries. However, it is

hard to determine exactly how much virtual memory contributes to access latency.

Bus

Controller System Bus

CPU1 CPU2

Cache Cache

Cache
Network

Card

HDDRAM

FIGURE 4.1: Typical multi-core UMA architecture

Caches are smaller and faster memory units which mitigate these latency issues and

minimize CPU stall. They share a private interconnect with CPUs and have faster regis-

ters. Figure 4.1 illustrates an example architecture of a shared memory multi-core system

(SMP). Each CPU has a cache memory which it has exclusive access to. Caches form a

hierarchy in which the smaller caches are closer to CPUs and larger caches closer to RAM.

When the CPU reads from memory, caches fetch multiple contiguous bytes of memory

from RAM at once. This group of bytes is called a cache line or cache block. Although

fetching from RAM is slow, subsequent accesses to the cached blocks of memory will be

retrieved without needing to access RAM, preventing the CPU from stalling.

36 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

In the context of the LFHT data structure, once the tree hierarchy is built, many hash

nodes will be cached. Thus, traversing the tree from root to leaves will have a negligible

overhead since it will require little to no RAM access. What really hinders the perfor-

mance of our concurrent data structure is cache synchronization and an abundance of cache

misses, due to the synchronization between threads.

4.1.1.1 Cache Miss

The cache miss is an expensive event performed whenever the CPU requests to read a

memory location not present in cache memory. It is expensive because it stalls the CPU

while a number of contiguous memory blocks of RAM are loaded into cache. One way

to reduce the amount of cache misses, we must reduce the number of writes to memory

locations shared by multiple threads.

4.1.1.2 Cache Coherence Protocol

A low number of cache miss is not necessarily an indicator of higher throughput. Some-

times, the CPU may stall due to cache synchronization which may not involve high num-

bers of cache misses.

CPUs write to their own caches concurrently, which may cause concurrency hazards.

For example, if two CPUs write to the same shared memory location on their respective

caches, we are unsure which of the two values to push to memory. To ensure the correct-

ness of our programs, caches must always have the most up to date versions of shared

memory blocks. Cache coherence protocols give this guarantee, but with a cost. Caches

communicate with message passing through the system interconnects in order to inform

others of modified blocks. Caches send requests and wait for other caches to respond.

This period of waiting for a response will stall the CPU, yet again, but will not register as

a cache miss since no new memory blocks are cached.

Before writing to a block, a cache must guarantee exclusive rights to modify it. Figure

4.2 illustrates the exchanged messages in this case, where both CPUs 0 and 1 execute

instructions from top to bottom. CPU 0 sends invalidate requests for other caches to

discard the target block and waits for their responses, during which it cannot execute

further instructions. The cache hierarchy was built in order to prevent the CPU from

stalling, but, at the end of the day, the cache synchronization protocol will force CPUs to

do just that anyway.

4. MEMORY RECLAMATION 37

CPU 0

Write

CPU 1

Invalidate

AcknowledgeSt
al

l

FIGURE 4.2: Unnecessary CPU stalls due to cache synchronization

To mitigate this issue, store buffers and invalidate queues are attached to each individual

CPU. Before modifying a block, a CPU sends invalidate requests and pushes the modified

block to the store buffer. Then, the CPU may progress even before receiving all acknowl-

edgements, after which it pushes the changes of the buffer to the cache. The CPU may

queue up multiple blocks on the buffer and may read directly from it to ensure it gets the

most up to date blocks.

If the store buffer is full, the CPU must flush it by attending to each modification,

waiting for the acknowledgements and pushing the changes onto the cache. That said,

because store buffers have little space, CPU stalls will still be commonplace.

When a CPU receives an invalidate request, it tries to invalidate the cache block. How-

ever, because the cache may be busy, it may take long before it can send an acknowledge-

ment. The delayed arrival of acknowledgements may cause store buffers to fill quickly.

To mitigate this issue, therefore preventing constant store buffer flushing, caches place

invalidate requests in the invalidate queues of other caches. This way, we do not need to

wait for acknowledgements since we guarantee the block will eventually be discarded by

others.

4.1.2 Memory Barriers

Cache coherence protocols ensure us that any write to cache on a shared memory multi-

processing system is visible to all CPUs and, ultimately, by RAM. However, store buffers

38 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

and invalidate queues make it such that modifications to memory may appear out of or-

der. Furthermore, compilers and CPUs may perform deliberate reordering of instructions

to save clock cycles and speed up execution.

Memory barriers are directives that inform compilers, CPUs and caches to guarantee

a specific order of modifications to memory in a concurrent program. For caches, read

memory barriers flush the invalidate queues while write memory barriers flush store buffers

which will force the CPU to stall. Another term used for memory barriers is: memory

fences. We will use the word “barriers” interchangeably with memory barriers.

Additionally, barriers prevent compilers and CPUs from reordering instructions passed

that barrier, yet another reason to use barriers sparingly.

Some operations require both types of barriers to ensure correctness, such as the CAS

synchronization primitive. When a single barrier uses both read barrier and write barrier

semantics, we call it a strong memory barrier. Thus, we must minimize the amount of CAS

calls to prevent CPU stall.

4.1.2.1 Asymmetric Memory Barriers

Sometimes, it is necessary to use strong barriers in frequently called functions (common

code paths) to prevent concurrency hazards. However, this will have a negative impact

on the program’s performance, in throughput.

Asymmetric barriers mitigate this issue by replacing strong barriers, in common code

paths, with weaker barriers. We use the adjectives weak and strong to refer to barriers

which, respectively, cause less CPU stall or cause more CPU stall. In other words, a

stronger barrier will force CPUs to stall for longer periods of time, but will limit the pos-

sible order of instructions which, in turn, may help prevent concurrency conflicts. In

exchange, an asymmetric barrier is used in an uncommon code path. Asymmetric barri-

ers are stronger than strong symmetric barriers, so they should only be used if there is a

disparity of execution time between functions.

1 _Atomic(int) c;

2

3 A(int tid) {

4 if (tid == 0) atomic_store (&c, *c + 1); // strong barrier

5

6 work();

7 }

4. MEMORY RECLAMATION 39

8

9 B(int tid) {

10 int obs = atomic_load (&c); // strong barrier

11

12 doOtherWork(obs);

13 }

LISTING 4.1: Program which can be optimized using asymmetric barriers

A potential use case of asymmetric barriers is shown in Listing 4.1. Variable c is a

single-writer multiple-reader location only modified by thread with tid of 0, read by other

threads at line 10. If most of the time is spent calling function A (common code path), and

only rarely function B, T0 is suffering the consequences of the strong barrier at line 4

needlessly. Note that the memory barriers at lines 4 and 10 ensure that the most up-to-

date value of c is visible to all threads. We are able to mitigate this issue using asymmetric

barriers, as shown in Listing 4.2.

1 _Atomic(int) c;

2

3 A() {

4 // weak barrier

5 if (tid == 0) atomic_store_explicit (&c, *c + 1, memory_order_relaxed);

6

7 work();

8 }

9

10 B() {

11 asymmetric_barrier ();

12 int obs = atomic_load (&c);

13

14 doOtherWork(obs);

15 }

LISTING 4.2: Using asymmetric barriers for optimization

At line 5, thread T0 now uses a relaxed memory barrier preventing the CPU and com-

piler from reordering instructions, but does not force its cache buffers to flush. In ex-

change, threads at line 11 will have to execute an expensive barrier. The trade-off is worth

it because function B is rarely executed.

Upon encountering memory barriers, processors are forced to flush their own private

store buffers and invalidate queues. Thus, stalling the CPU while guaranteeing that the

40 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

thread’s changes are made available to other processors. An asymmetric barrier, on the

other hand, will send signals to all other processors forcing them to flush their buffers.

This way, caches are synchronized on demand. However, an asymmetric barrier is heavier

than strong memory barriers, so it should only be used in uncommon code paths. With

asymmetric barriers we prevent the CPU from stalling frequently in common code paths.

4.1.3 Summary

In sum, the more modifications we make to shared memory locations the higher the

amount of cache misses, because modifying a cache block will force other caches to in-

validate this same block, specially if this is a frequently read block by all caches.

On the other hand, the use of memory barriers hinders the performance of our con-

current programs. Frequent use of memory barriers will force cores to flush store buffers

and invalidate queues which will stall the CPU and prevent compilers and CPUs from

optimizing instruction order. Frequent use of memory barriers prevents us from taking

advantage of the hardware optimizations available to our architecture. Asymmetric mem-

ory barriers can mitigate the effects of frequently used barriers, only in specific situations.

An optimal parallel program must: minimize the number of writes to memory; use

memory barriers sparingly; and use the right types of barriers, all of this while guaran-

teeing algorithm correctness.

4.2 Memory Life Cycle

Before delving into concrete reclamation methods it is useful to describe the life cycle of

allocated memory. We will refer to allocated memory blocks we want to free as “nodes”.

A node is unallocated before its creation. After being assigned a memory location a

node becomes allocated and eventually becomes reachable once added to the data struc-

ture. Logically removing a node will make it unreachable.

This node is then placed in a reclamation queue where references of nodes are main-

tained until they can be freed. A node is retired after it has been logically removed from

the data structure and placed in the reclamation queue. The reclamation function consists

of iterating the queue and identifying which nodes may be reclaimed. A node may only

be reclaim if no other thread possesses a reference to such node. After freeing a node’s

memory, it becomes reclaimed.

4. MEMORY RECLAMATION 41

4.3 Memory Reclamation Methods

Figure 4.3 illustrates an example of the memory reclamation problem, applied to our hash

map. Thread T1 is traversing a collision chain, and is on its way to node K3, as it is put

to sleep by the operating system scheduler. Thread T2, then, removes K2. Ordinarily, this

would have been fine, since T1 can get back on track to the collision chain by following the

.next reference of K2. However, T2 reclaims the memory of K2 and, so, T1 will eventually

try to access an already reclaimed memory block.

H

K1 K2 K3
T1

(A) T1 is on its way to K3

H

K1 K2 K3
T2

(B) T2 starts traversing the same
collision chain

H

K1 K2 K3
T2

(C) T2 reaches K2

H

K1

K2

K3

T2

(D) T2 removes K2

H

K1

K2

K3

T2

free()

(E) T2 reclaims the memory of K2

H

K1

K2

K3

T1

use after free!

(F) T1 tries to access the memory
of K2

FIGURE 4.3: The memory reclamation problem

In this section we describe two memory reclamation methods applied to the LFHT:

Hazard Pointers and Hazard Hash and Level, which can solve the problem described above.

4.3.1 Hazard Pointers

In the hazard pointers method, proposed by Michael [15], each thread maintains a num-

ber of single-writer multiple-reader pointers, called hazard pointers, which are used to

42 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

prevent objects from having their memory reclaimed.

First, we need to identify what objects of our shared data structure can be removed and

reclaimed. Then, before accessing the memory of one such object, we store its reference

in one of the hazard pointers. This way, we prevent its memory from being reclaimed

while our thread is using it. We say that a hazard pointer is protecting an object, when

the reference of the object is stored in the hazard pointer. The thread will eventually stop

using the object and, as such, will discard its hazard pointer protection. An object can

have its memory reclaimed if and only if no hazard pointer is protecting it.

H

K1 K2 K3
T1
HP

(A) T1 is on its way to K3

H

K1 K2 K3
T2
HP

(B) T2 starts traversing the chain and
reaches K2

H

K1

K2

K3

T2

HP

(C) T2 removes K2 but cannot reclaim
its memory

H

K1

K2

K3

T1

HP

(D) T1 resumes execution

H

K1

K2

K3
T1
HP

(E) T1 protects and moves to K3

H

K1

K2

K3
T1
HP

T2

free()
(F) T2 reclaims the memory of node K2

FIGURE 4.4: Solution to the memory reclamation problem using hazard pointers

Figure 4.4 illustrates the solution to the problem previously shown in Fig. 4.3. If thread

T1 protects K2 before accessing it, using a hazard pointer, T2 will not be able to free the

4. MEMORY RECLAMATION 43

memory of K2. Only after T1 moves the hazard pointer to the next node on the collision

chain (K3) can T2 reclaim the memory of the now unprotected K2.

Protecting an object with a hazard pointer is a bit more complicated than merely set-

ting one field. The code Listing 4.3 describes all necessary steps in order to protect a node.

1 _Atomic(void*)* hazard_pointers;

2

3 int hp_protect(int tid , void* node , _Atomic(void*) location) {

4 // Get this thread 's own hazard pointer.

5 _Atomic(void*) hp = hazard_pointers[tid];

6

7 // hp = node;

8 atomic_store (&hp , node); // strong barrier

9

10 // Was "node" removed in the meantime?

11 void* observed = atomic_load (& location);

12

13 // The protection of "node" will only succeed , if the

14 // node remains in place during this function.

15 //

16 // If observed != node , someone has removed "node" in

17 // the meantime , and could have already reclaimed its

18 // memory

19 return observed == node;

20 }

LISTING 4.3: Hazard pointer protection

The variable location is the memory location where node is attached to on the map.

For example, it could be the .next field of the previous node on a collision chain, or it

could be a bucket slot of a hash node. After setting the reference of the node to a hazard

pointer owned by our thread (line 8), we must perform an additional safety check to make

sure node was not removed and reclaimed in the meantime (lines 11 and 19). We read

the value on location and check if it still points to our target node. Otherwise, we risk

suffering the consequences of a race condition wherein node is removed and reclaimed

before our protection is made visible, at line 8.

Listing 4.4 illustrates the memory reclamation function. When an object is removed

by a thread, it is first placed into the thread’s private reclamation list (lines 6-7). When this

list reaches a certain length (line 10), the thread tries to free the memory of each node of

44 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

the list (lines 14-24). A node can only have its memory reclaimed if and only if it is not

protected by any hazard pointer (line 15).

1 _Atomic(void*)* hazard_pointers;

2 LinkedList ** reclamation_list;

3

4 void hp_reclaim(int tid , void* node) {

5 // Get this thread 's own reclamation list.

6 LinkedList* list = reclamation_list[tid];

7 list_add(list , node);

8

9 // Reclamation threshold can be adjusted.

10 // In our case , we use 10000.

11 if (list_length(list) < RECLAMATION_THRESHOLD) {

12 return;

13 }

14

15 atomic_thread_fence(memory_order_acquire);

16

17 for_each(void* elem: list) {

18

19 if(is_node_protected(hazard_pointers , elem)) {

20 // Node is currently in use.

21 //

22 // Node will remain on reclamation list

23 // and its reclamation will be postponed.

24 continue;

25 }

26 list_remove(list , elem);

27 free(elem);

28 }

29 }

LISTING 4.4: Hazard pointer reclamation function

After setting the hazard pointer field, we must call a strong memory barrier to make

sure the most up-to-date version of all hazard pointers are propagated to other chaches

(line 8 of Listing 4.3). Without this barrier, other threads could remove and reclaim the

node even after our thread successfully returns from the function hp_protect. Without

barriers, the instructions at line 15 of Listing 4.4, during the reclamation function, could

4. MEMORY RECLAMATION 45

observe outdated values in cache of other thread’s hazard pointers and, consequently,

reclaim a protected node.

The overhead caused by these barriers can be mitigated using asymmetric barriers,

as described in Section 4.1.2.1. As a matter of fact, Dice et al. [29] applied asymmet-

ric barriers to the hazard pointers memory reclamation method and obtained significant

performance improvements. As discussed previously, the common code path will be

adapted to use weak memory barriers instead. In this case, the common code path is

the function hp_protect as illustrated in line 8 of Listing 4.3. As a result, the reclamation

function will need to call an asymmetric barrier before checking any hazard pointers, in

function hp_reclaim (line 13). This asymmetric barrier will force other threads to propa-

gate their most up-to-date values of their respective hazard pointers to the calling thread.

Asymmetric barriers are heavy operations which stall CPUs for long, but, in this case,

they will only be called after a number of removed nodes indicated by the RECLAMA-

TION_THRESHOLD (we used a value of 10000 in our implementation).

4.3.2 Hazard Hash And Level

In the hazard pointers method, we protect one node at a time with one synchronized write

to memory. On the other hand, the Hazard Hash and Level (HHL) method, proposed by

Moreno et al. [38], is a specific memory reclamation method capable of protecting entire

collision chains with only two synchronized writes to memory. However, this method is

not compatible with the compression of hash nodes, meaning only leaf nodes may have

their memory reclaimed and hash nodes will be left intact.

Each thread maintains a pair of fields called a hazard pair made of a hazard hash and a

hazard level. The hazard hash identifies a path, and the hazard level selects a collision chain

from that path. The hazard hash is set to the hash of the node currently being targeted.

The hash of a node represents the path taken from the root of the tree to the node itself.

Thus, with the hazard hash we can identify the path containing the group of leaf nodes

we wish to protect. In a single path, though, there could be multiple collision chains due

to an ongoing expansion. Therefore, the hazard level selects the appropriate chain from

the path we want to protect. Leaf nodes will have their memory reclaimed if and only

if they do not belong to a collision chain currently under protection. We must mark leaf

nodes with the level they were first inserted, since nodes are moved to newer collision

chains after expansion.

46 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

After a number of retired leaf nodes exceed a given threshold, the reclamation function

starts. First, the hazard pairs of all threads are loaded into local memory. Then, we check,

for every node in the reclamation queue, if the node was not removed from a collision

chain currently under protection.

This memory reclamation method is able to exploit the specific characteristics of the

hash map to obtain better performance, in throughput, compared to the hazard pointers

method.

4.4 Our Contribution

To remedy HHL’s lack of support for map compression, we propose a lock-free and safe

memory reclamation method based on hazard pointers that is compatible with the com-

pression mechanism. The key goals of our approach are to:

• Fully support compression, which includes the ability to reclaim memory from re-

moved hash nodes and removed leaf nodes;

• Maintain the lock-freedom property;

• Guarantee fixed memory bounds.

In our approach, a hazard pointer can be used to protect the individual reference of

either a hash node or a leaf node. Before traversing through a hash or leaf node, we must

protect its reference. This is because leaf nodes can be removed directly by threads, and

hash nodes can be removed due to compression.

All necessary hazard pointer protections will be performed during the LOOKUP func-

tion. Thus, while traversing the tree, we protect each hash node on the hierarchy or leaf

node on a collision chain before accessing it. Figure 4.5 illustrates the steps needed to

traverse the tree hierarchy.

The root hash node, H1, is never compressed. Thus, we do not need to protect it be-

forehand. Every hash node henceforth needs to be protected with a hazard pointer. After

we select the appropriate bucket, in the case of Fig. 4.5a, Bm, we protect the hash node H2

by setting its reference to a hazard pointer, illustrated by the dotted lines surrounding the

whole memory block. As we have mentioned in previous section 4.3.1, we must perform

an additional safety check to determine if H2 was removed and reclaimed in the mean-

time. Because Bm still points to H2, the protection was successful, and we may proceed

4. MEMORY RECLAMATION 47

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp
T1

(A) T1 protects hash node H2 and performs safety check on Bm

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp
T1

(B) T1 advances to H2

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp
T1

(C) T1 protects hash node H3 and performs safety check on Bn

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp
T1

(D) T1 advances to H3

FIGURE 4.5: Hazard pointers applied to the traversal of the LFHT tree

with the traversal (Fig. 4.5b). Now, to protect H3 we need a separate hazard pointer (Fig.

4.5c). If we reuse the hazard pointer currently protecting H2, we risk having the memory

of hash node H2 reclaimed during our additional safety check on bucket Bn. Thus, we

need at least two separate hazard pointer fields per thread in order to traverse the tree

hierarchy.

The protection of leaf nodes is similar to that of hash nodes. This is illustrated in

Fig. 4.6. The main difference is that all leaf nodes of the collision chain are protected by

a separate hazard pointer. We want to prevent any leaf node from having its memory

reclaimed while moving the collision chain to a new level, during an expansion, such

as the one illustrated in the figure, represented by H4 on the tail of the chain. We have

omitted the intermediate steps between Fig. 4.6b and 4.6c. The omitted steps are similar

to those first illustrated in Fig. 4.6a and 4.6b, for each node on the chain, one at a time.

48 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp
T1

(A) T1 protects K1 and performs safety check on Bo

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp

T1

(B) T1 moves to K1

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp

T1

(C) T1 protects the whole chain, one node at a time

H1

Bm

H2 H3

K1

H4

K2 K3Bn Bo Bp

T1

(D) T1 protects H4 before starting the expansion

FIGURE 4.6: Hazard pointers applied to the traversal of LFHT collision chains

Figure 4.7 represents a particular case in which the removal of nodes on a collision

chain may conflict with hazard pointer protection. Consider that thread T1 is traversing

the collision chain starting from bucket Bp, manages to protect the nodes K0 and K1, and

is now trying to follow the chain from K1 to K2. Consider also that, concurrently, thread

T2 removes K1 and K2 from the hash map. We know that K1 will not have its memory

reclaimed because it is protected by T1. However, since K2 is unprotected, it can be re-

claimed by any thread. Hence, to not risk accessing the potentially freed memory block

of K2, T1 must restart traversing from bucket Bp. Whenever threads fail to protect nodes

on a collision chain, the lookup procedure must be restarted from the last bucket.

Algorithm 10 summarizes the use of hazard pointers for the LOOKUP procedure,

4. MEMORY RECLAMATION 49

prev

Bo

prev
Hi+2 Hi+3

K1 I

K0 VBp

prev

Bn

Hi+1

prev

Bm

Hi

K3 V

K2 I

FIGURE 4.7: Protecting nodes during lookup (dotted lines represent HP protections)

given a hash node H and a hash h. The chunk size (W) is a preemptively configured

global variable and does not change at runtime. At the start, we determine the index of

the bucket at level H.level, using bit-wise shifts and masks to select a chunk of W bits from

the hash h (line 1). Then, we load the contents of the bucket of hash node H, using the

index, and try to protect the observed reference read from this bucket (lines 2–3). The HP-

PROTECT procedure sets the reference of the first argument to one of the thread’s hazard

pointers and performs the protection safety check by re-reading the second argument. If

the protection safety check fails, HPPROTECT will return false, and we should restart the

algorithm from the beginning (line 4).

Next, if the bucket points to a freeze node, we try to skip it and move to the next

node (lines 5–11). Then, if the freeze node or the bucket point to a new hash node, we

traverse down a level of the tree (lines 14–15) performing LOOKUP recursively on this

new found hash node. Otherwise, we traverse through the collision chain (lines 16–25).

We must always try to protect the reference of the next node (lines 23–24) before moving

to it (line 25) and, if we find an invalid leaf node, we must attempt to remove it using

the REMOVE procedure (line 17). We will explain in more detail this last step on section

4.4.2. If the removal is successful, the removed node goes to the thread’s reclamation list

and we may proceed. If the removal fails, we must restart the lookup (line 18). Finally, if

we find the node with the given hash h, we return successfully (lines 21–22).

50 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Algorithm 10 Lookup(H, h)

1: index ← GetChunk(h, H.level, W)

2: iter ← H[index]

3: if HPPROTECT(iter, H[index]) fails then

4: return LOOKUP(H, h)

5: if iter is a freeze node then

6: nxt← iter.next

7: if HPPROTECT(nxt, iter.next) fails then

8: return LOOKUP(H, h)

9: if nxt = H then

10: return LOOKUP(RootH, h)

11: iter ← nxt

12: prev← H

13: while iter 6= H do

14: if iter is a hash node then

15: return LOOKUP(iter, h)

16: nxt← iter.next

17: if iter is invalid and REMOVE(iter, h) fails then

18: return LOOKUP(H, h)

19: else if iter is valid then

20: prev← iter

21: if iter.hash = h then

22: return TRUE

23: if HPPROTECT(nxt, prev.next) fails then

24: return LOOKUP(H, h)

25: iter ← nxt

26: return FALSE

4.4.1 Number of Hazard Pointers

As mentioned previously, each thread requires at least two hazard pointers to protect

pairs of subsequent hash nodes, plus as many hazard pointers as the maximum length of

4. MEMORY RECLAMATION 51

a collision chain, to protect leaf nodes. In what follows, we give more details about the

reason for these numbers.

First, why do we need to protect more than one hash node at a time? After setting a

hazard pointer to protect a hash node, the node can still be removed by another thread just

before we are able to protect it. To prevent this, we must perform an additional protection

safety check to verify if the protection was successful and, if the safety check fails, we

must restart the operation. To perform a safety check, we need one hazard pointer to

protect the parent hash node and another to protect the child. This is necessary to prevent

the parent hash node from having its memory reclaimed during the protection of the child

hash node. Thus, to traverse any list or tree, we need at least two hazard pointers.

For the leaf nodes, however, due to the expansion procedure, we must protect every

node of the collision chain with a separate hazard pointer. This is necessary because,

when rehashing nodes to a new level (expanding), we rehash each leaf node from the

tail to the head of the collision chain. However, since leaf nodes lack a reference to the

previous node on the collision chain, we cannot protect leaf nodes during expansion and

we must protect all nodes before starting the expansion.

During lookup, a thread may need to traverse an infinite amount of leaf nodes. This is

illustrated in Fig. 4.8 where a previous node on the chain, K0, is concurrently removed and

a new node, K3, is appended to the chain. To solve this issue, we must count the number

of hops when traversing collision chains. If the number of hops exceeds the maximum

length of a collision chain, we must go back to the beginning of the chain.1

In conclusion, we need at most 2 + L hazard pointers per thread (L being the maxi-

mum length of the collision chain). Bounded memory is guaranteed because only at most

(2 + L) × T references (T being the maximum number of threads in execution) can be

protected at any instant.

1For the sake of simplicity, this is omitted in Algorithm 10

52 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

prev

Bm

Hi

K0 V K1 V K2 V
T1

(A) T1 is traversing through the collision chain

prev

Bm

Hi

K0 I

K1 V K2 V
T1

K3 V

(B) K0 is removed and K3 is added, concurrently

prev

Bm

Hi

K0 I

K1 V K2 V
T1

K3 V

(C) T1 moves to the next node, K2

FIGURE 4.8: Infinite collision chain traversal

4.4.2 Other Important Changes

To completely ensure the correctness of our approach, the following changes were also

applied (we discuss each one in more detail next):

• Threads must remove invalid nodes during lookup;

• Threads must cooperate in an ongoing expansion before proceeding;

• After compression, the prev field of a hash node must made invalid.

In Fig. 4.7, we have already illustrated an example where a thread needs to restart

traversing from the head of a collision chain if an invalid node N is found since, otherwise,

it would not be possible to protect the next node on the chain. However, if the thread

responsible for removing N is blocked for long, other threads will continuously loop back

4. MEMORY RECLAMATION 53

to the head of the chain. Therefore, to prevent obstruction, threads must detach invalid

nodes from the collision chain.

prev

Bn

prev
Hi+1 Hi+2

Bo

prev

Bm

Hi

K3 V

Bp

K0 V K1 V K2 V

FIGURE 4.9: Not enough hazard pointers when expanding

During expansion, leaf nodes are moved to a new level L. If other threads insert new

nodes in L concurrently, the thread responsible for expanding may need to protect these

newly inserted nodes but may not have more hazard pointers available. This situation

is illustrated in Fig. 4.9. Dotted lines represent the nodes protected with hazard pointers

by the expanding thread T and node K3 represents a node inserted by another thread.

Because T has no more available hazard pointers, it would need to discard one already

in use in order to protect K3, which may not be possible. To prevent this kind of situa-

tion, threads cooperate in an ongoing expansion, before adding new nodes. With this, K3

would never be inserted before all nodes were rehashed.

prev

Bo

Hi+2

prev

Bn

Hi+1

prev

Bm

Hi

FIGURE 4.10: Unable to protect a parent hash node

Every hash node has a reference to its parent in a field called prev. This field is an

important part of the compression mechanism since, when a hash node is successfully

compressed, we follow prev’s reference to also attempt to compress the parent hash node.

However, since the prev field never changes its value, the hazard pointer safety check

54 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

is useless. The prev field will still point to the parent even after the parent has been re-

claimed. In Fig. 4.10, thread T compresses Hi+2 and then tries to protect Hi+1 before

starting its compression. However, in the meantime, some other thread completely re-

moves Hi+1 and frees its memory. Because the prev field of Hi+2 remains unchanged, T

cannot use it as a way to protect Hi+1. To make it possible to protect the parent hash node

from the prev field, we must therefore change its value to null before removing the child

hash node. And before modifying it to null, we protect the parent hash node.

4.4.3 Delegation Problem

During expansion, if a thread T1 only sees a node N as invalid after moving it to the next

hash level (because concurrently another thread T2 marked N as invalid), T1 will become

responsible for making N unreachable. The process of transferring this responsibility to

the expanding thread is called delegation. One flaw with this process, called the delegation

problem, is illustrated in Fig. 4.11.

When rehashing a collision chain into a new hash node, if the tail of the collision chain

is removed concurrently, the tail may be reinserted on the new level during the ongoing

expansion. This is because of a race condition where the expanding thread captures the

reference of the tail and, before rehashing it, other thread invalidates and detaches the

node from the collision chain.

K1 V

prev

Bm

prev
Hi Hi+1

BnK0 V

(A) T1 checks that K1 is valid

K1 I

prev

Bm

prev
Hi Hi+1

BnK0 V

(B) T2 invalidates and removes K1

K1 I

prev

Bm

prev
Hi Hi+1

BnK0 V

(C) T1 rehashes K1 and T3 protects K1

prev

Bm

prev
Hi Hi+1

BnK0 V

(D) T1 removes K1 and T2 incorrectly reclaims its
memory because it does not see T3’s protection

FIGURE 4.11: LFHT’s delegation problem

4. MEMORY RECLAMATION 55

Table 4.1 demonstrates how just one check of all hazard pointers leads to the illegal

reclamation of a node, in this case, K1. Thread T2, the one responsible for the removal of

K1, is looping through all thread’s hazard pointers, checking if any pointer matches node

K1, which T2 wishes to reclaim. During the first iteration, t = 1, T2 checks for T3’s hazard

pointer, which is not protecting K1. On the last iteration, t = 3, T3 has protected K1 due

to the reinsertion and T1 has released its protection. Thus, T2 will reclaim the memory of

the node, even though it is in possession of T3. By performing a second pass through all

thread’s hazard pointers, this problem is solved. This is the solution implemented in the

HHL method.

T3 T2 T1
t = 1 - - K1
t = 2 K1 - K1
t = 3 K1 - -

TABLE 4.1: Demonstrating the effects of the delegation problem in the reclamation pro-
cedure

The solution implemented in the HHL method for the delegation problem is to check

all hazard pointers twice during the reclamation procedure [38].

Notice how only nodes at the tail of a collision chain can suffer from this problem.

If we invalidate a node before the tail, this invalidation will be visible to the expansion

procedure when time comes to move this node to the new level. Therefore, our approach

to solving this problem is to verify if the node we wish to remove is pointing to a new

hash node. Before we remove a node, we must assist with an ongoing expansion. Once

the expansion is finished, we may remove the node. This way, we do not need to check

all hazard pointers twice to ensure correctness.

Chapter 5

Experiments

In this chapter, we compare the performance, in throughput, of the proposed features of

LFHT. First, we compare both compression designs documented in the previous chapters,

one of which uses a counter and another which uses freeze control nodes. Then, we mea-

sure the overhead of the memory reclamation method relative to implementations with

no support for memory reclamation.

Bellow is the list of implementations we want to compare and their acronyms:

• SNF, static no free, which does not implement compression and does not reclaim

memory;

• FNF, elastic no free, with compression using freeze control nodes but no memory

reclamation (presented in Section 3.5.1);

• CNF, elastic no free, with compression using counter fields but no memory recla-

mation (presented in Section 3.5.2);

• FHP, elastic with hazard pointers, an elastic version using freeze nodes with mem-

ory reclamation using hazard pointers;

• FHPA, same as above but uses asymmetric barriers with hazard pointers instead;

• HHL, static with the hazard hash and level memory reclamation method, as pro-

posed by Moreno et al. [38].

We start the chapter with a brief explanation of the program used to perform the

benchmarks (section 5.1). Then, we describe the specifications of the server hardware

used (section 5.2). Next, we determine the optimal configuration values for the LFHT,

57

58 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

such as: the length of collision chains, or the memory allocator to use (section 5.3). In

the two last sections, 5.4 and 5.5, we compare each version of LFHT, with and without

compression and memory reclamation.

5.1 Benchmark Program

We have implemented benchmarks in order to compare the performance in throughput

of the different versions of LFHT. The program will gather a number of measurements

throughout the experiments, such as: the number of hash nodes traversed, or the number

of collision chains expanded.

Before each test begins, the hash map is filled with a number of keys. This is done to

make sure that each function call successfully modifies the map. For example, it is impos-

sible to remove keys, if the map is empty at the start of the benchmark. To mitigate this

issue, we preemptively add all keys which will be issued for removal during the bench-

mark. The same thing is done for the keys we want to search. To guarantee that threads

insert keys successfully we must make sure the map does not contain any keys which we

plan on inserting, during the benchmark. During the test, threads will concurrently call

a combination of the following map functions: insert, remove and search for keys on the

map. The test terminates when all threads successfully called a predetermined number of

map functions.

Keys are generated using a pseudorandom number generator (PRNG). Using a PRNG

as a key generator will make it such that threads often operate in different locations on

the map simultaneously, reducing the contention and improving throughput, but will not

prevent threads from generating the same keys from time to time.

We want to understand how the throughput will grow when increasing the number

of cooperating threads. A test will be partitioned into even work loads each attributed to

a thread. Thus, the more threads we add, the more we can divide the total work of the

test to be performed in parallel and, thus, finish each test more quickly.

5.1.1 Metrics

Each thread has a set of local counters which it updates during the experiments. Each

counter can contain useful information in the analysis of the performance of the different

implementations. Each thread keeps track of the number of expansions performed during

5. EXPERIMENTS 59

the experiments, the average path length, the maximum depth of the map traversed, the

number of retrials due to a CAS failure, the number of hash nodes compressed, and the

number of compressions aborted.

Because each thread has its own private ownership to a counter, no synchronization

is needed to update measurements. However, if counters are placed in a shared cache

line (in this case, the same 64 byte block) along with hash node references, it may cause

a false sharing problem. That is, when a thread updates a counter it will affect other’s

caches needlessly. To prevent this, counters should be allocated in their own contiguous

memory block and aligned to the size of a cache line, one per thread.

0

5

10

15

20

25

1 4 8 16 24 32

Ti
m

e
 [

s]

Chain length (nodes)

SNF with measurements SNF without measurements

FIGURE 5.1: Overhead caused by gathering additional statistics

Figure 5.1 compares the map library with and without gathering additional metrics.

The resulting overhead is negligible.

5.2 Machine Specifications

The benchmarks were performed on a machine with the architecture: Six-Core AMD

Opteron Processor 8425 HE, which is illustrated in Fig. 5.2.

60 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Node0 Node1

Node2 Node3

(A) Topology of the NUMA nodes

L3

Memory

Controller

RAM

I/O

CPU0

L1i L1d

L2

NUMA node 0
Core0

CPU4

L1i L1d

L2

Core4

CPU8

L1i L1d

L2

Core8

CPU12

L1i L1d

L2

Core12

CPU16

L1i L1d

L2

Core16

CPU20

L1i L1d

L2

Core20

(B) Internal architecture of (NUMA) node 0

FIGURE 5.2: Architecture visual description of our benchmark machine

The L1 data cache has 1.5MiB of size, L2 has 12MiB, and L3 has 20MiB. Each CPU

has its own L1 and L2 caches. The L1 cache is separated into two caches, one dedicated to

instructions and other dedicated to data.

The machine has 4 NUMA nodes, with 6 cores each, so the message latency is much

higher when cores from different nodes have to synchronize. For this reason, when we

increase the number of cores to 7, 13, and 19, the number of cache misses may increase.

The CPU numbers of each node are not arranged in numeric order. Node 0 has CPUs

0, 4, 8, 12, 16, and 20; node 1 has CPUs 1, 5, 9, 13, 17, and 21; node 2 has CPUs 2, 6, 10, 14,

18, and 22; node 3 has CPUs 3, 7, 11, 15, 19, and 23.

5.3 Hash Map Parameters

Before comparing implementations of the hash trie map, we need to determine the opti-

mal map configurations. For example, the chunk size to use throughout the testing phase.

5. EXPERIMENTS 61

5.3.1 Chain Length

Different keys can collide in the same bucket entry, forming a collision chain. When col-

lision chains get to a certain length, expansion takes place to reduce the average path

length. The maximum length of the chain can be configured, which determines how fre-

quent expansions will be.

Figure 5.3 illustrates the results, in throughput, when varying the chain length. With

lengths of 1 to 3 nodes, the sheer number of expansions and high average path length

contribute to lower throughput, as illustrated in Fig. 5.3b and 5.3c. With chains longer

than 5 nodes, however, it is the high average path length that causes the slowdown, as

demonstrated in Fig. 5.3c. The better value seems to be a size of 4, which shows the

highest throughput of all samples, with the smallest error, and low average path length.

5.3.2 Chunk Size

The chunk size determines the size of the hash nodes. Remember, 2W is the number of

buckets in a hash node where W is the chunk size.

A small chunk size will increase the number of expansions, compressions, hash colli-

sions, and average path length. This overhead can be observed in samples using chunk

sizes of 1 to 3 bits, as illustrated in Fig. 5.4a. On the other hand, increasing the chunk

size will increase the memory consumption, as can be observed in Fig. 5.4b. Too big of a

chunk size will also cause lower throughput because it will take multiple cache misses to

load the buckets of a single hash node.

With the given results, there is no clear optimal chunk size value. However, we want

to prevent low throughput and high memory consumption. Thus, chunk sizes of either

4, 5 or 7 may be the best option. We shall use chunk sizes of 5 from here on out. Thus,

hash nodes will have 25 = 32 bucket entries each, since it will force a higher number of

expansions and compressions which are the main metrics we want to study.

62 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

20

20

20

21

21

22

23

23

24

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u
t

[m
ill

io
n

s
o

p
e

ra
tio

n
s/

s
]

Chain length (nodes)

FNF

(A) Throughput

0

20

40

60

80

100

120

140

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xp

a
n

si
o

n
s

p
e

rf
o

rm
e
d

Chain length (nodes)

FNF

(B) Expansions performed

8.45

8.50

8.55

8.60

8.65

8.70

8.75

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
g
e

 p
a
th

 le
n

g
th

Chain length (nodes)

FNF

(C) Average path length

FIGURE 5.3: Variable chain length benchmark - 224 nodes; average of 10 samples; chunk
size 4

5. EXPERIMENTS 63

4

6

8

10

12

14

16

18

20

22

24

26

1 2 3 4 5 6 7 8 9 10 11

T
h
ro

u
g
h
p
u
t
[m

ill
io

n
s

o
p
e
ra

tio
n
s/

s]

Chunk size

FNF

(A) Throughput

0

10

20

30

40

50

60

70

80

90

 1 2 3 4 5 6 7 8 9 10 11

M
e
m

o
ry

 c
o
n
su

m
p
tio

n
 (

G
B

yt
e
s)

Chunk size

FNF

(B) Maximum memory consumption, in gigabytes

FIGURE 5.4: Variable chunk size benchmark - 224 nodes; average of 10 samples; chain
length 4

64 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

5.3.3 Memory Allocator

The standard library malloc function on Linux systems is blocking, meaning it will halt

the progress of multiple processors concurrently requesting memory blocks. Because the

memory allocator is frequently called during the execution of our hash map, our algo-

rithm will not be able to scale as we increase the number of cores. To prevent this problem

we used another malloc implementation called jemalloc, as documented by Evans [18].

The jemalloc project was created with the intention of making a multiprocessor-scalable

memory allocator for the FreeBSD operating system. Although jemalloc is also blocking,

we see significant improvement in throughput as shown in Fig. 5.5a. As seen in Fig. 5.5b,

the new memory allocator helps reduce the number of cache misses. More importantly,

the new allocator implements a fine-grained locking mechanism to prevent threads from

blocking. When using the original allocator, we will not be able to exploit parallelism

since threads will continuously queue up when calling the allocator.

5. EXPERIMENTS 65

2

4

6

8

10

12

14

16

18

 4 7 10 13 16 19 22

T
h
ro

u
g

h
p

u
t

[m
ill

io
n
s

o
p

e
ra

ti
o
n
s/

s]

Cores

LFHT w/ GNU malloc LFHT w/ jemalloc

(A) Throughput measurement

1.10

1.20

1.30

1.40

1.50

1.60

1.70

 4 7 10 13 16 19 22

C
a
ch

e
 m

is
se

s
[b

ill
io

n
s]

Cores

LFHT w/ GNU malloc LFHT w/ jemalloc

(B) Cache misses measurement

FIGURE 5.5: Comparing the original memory allocator with jemalloc

5.4 Compression

In this section we study the impact of compression on throughput.

To aggravate the differences between the elastic and static versions, we fill the map

with keys and completely empty it before starting the benchmarks illustrated in Fig. 5.6.

This approach to testing is the one used in the original paper by Areias and Rocha [37],

which we would like to closely follow.

The presented histograms indicate the throughput, i.e. the number of operations per-

formed per second. The higher the value, the less time it took to fully complete the bench-

mark. The results obtained in Fig. 5.6 are similar to the ones shown in the paper [37].

66 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

An additional benefit to compression, which is not apparent in these benchmarks, is

the fact that its memory consumption can be potentially lower. When a memory reclama-

tion method is implemented, hash nodes may also be reclaimed, therefore, saving space.

2

4

6

8

10

12

14

16

18

20

22

2 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
[m

ill
io

n
s
 o

p
e
ra

tio
n
s
/s

]

Cores

SNF FNF CNF

(A) Reinserting nodes after emptying the map

0

50

100

150

200

250

300

2 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
[m

ill
io

n
s

o
p
e
ra

tio
n
s/

s]

Cores

SNF FNF CNF

(B) Searching for nodes after emptying the map

FIGURE 5.6: Compression benefits - 224 nodes, average of 10 samples

Before the test begins, the map is filled with a number of nodes and soon completely

emptied out. For the static version (SNF), all leaf nodes will be removed but the hash

nodes will remain. Thus, the tree will be left intact. For this reason, the elastic maps

(FNF and CNF) have an advantage right at the start which results in a lower average path

length all around. The average path length is an important metric for determining the

performance of the lookup function during the benchmark program.

5. EXPERIMENTS 67

When reinserting all nodes (Fig. 5.6a), the static map (SNF) will need to traverse an

already built hierarchy of hash nodes, resulting in a higher average path length, making it

slower in comparison to the elastic implementations (FNF and CNF). Since the hierarchy

is completely built, the static map does not expand any nodes during the benchmark.

The results show us that even with the added overhead of expansion, by keeping a low

average path length, the elastic versions are faster. Finally, when searching for keys in

an empty map, the average path length of the elastic map is zero since only the hash

root node is checked. On the other hand, the static map needs to traverse the complete

hierarchy tree for every search. Figure 5.6b illustrates the poor performance of the static

map demonstrating the importance of keeping a low average path length.

2

4

6

8

10

12

14

16

18

2 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
[m

ill
io

n
s
 o

p
e
ra

tio
n
s/

s]

Cores

SNF FNF CNF

(A) Removing nodes in a filled map

2

4

6

8

10

12

14

16

18

20

2 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t
[m

ill
io

n
s

o
p
e
ra

tio
n
s/

s]

Cores

SNF FNF CNF

(B) Searching for nodes in filled map

FIGURE 5.7: Compression overheads - 224 nodes, average of 10 samples, chain length and
chunk size of 4

68 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Figure 5.7 shows the overheads of compression when the map is filled with a number

of keys. As expected, the compression mechanism introduces additional work and syn-

chronization to the removal operation, which is illustrated in Fig. 5.7a, where the static

version (SNF) outperforms both elastic versions. On the other hand, the test of Fig. 5.7b

shows no differences between versions because the same nodes are present in the map

before the start of the test.

5.5 Memory Reclamation

We can lower the memory consumption of our hash map by implementing a memory

reclamation method. However, it is not clear how much of an impact to speedup this

memory reclamation method is. In this section, we analyse the results of the benchmark

program comparing our proposed memory reclamation method, based on hazard point-

ers (FHP and FHPA), with the base hash map implementation (SNF) which does not

reclaim memory. We also include an alternative memory reclamation method (HHL),

designed by Moreno et al. [38] and described in section 4.3.2. Again, this memory recla-

mation method does support map compression and, therefore, does not free the memory

of hash nodes.

We could have implemented the hazard pointers method to the version of the map

capable of compressing using a counter. However, the higher number of cache misses in

comparison with the version using freeze nodes, illustrated in Fig. 5.8, would aggravate

the overhead of the hazard pointers method.

1.10G

1.20G

1.30G

1.40G

1.50G

1.60G

1.70G

2 4 8 12 16 20 24

C
a
ch

e
 m

is
se

s

Cores

SNF FNF CNF

FIGURE 5.8: Cache misses - 25% of insertions; 25% of removals; 50% of searches

5. EXPERIMENTS 69

The main benefit of implementing a hazard pointers memory reclamation method is

that hash nodes can have their memory reclaimed. Therefore, the memory consumption

of our version is lower than previous versions, as illustrated in Fig. 5.9. We measured

memory consumption by counting the allocated memory at the end of the test. Versions

which are capable of reclaiming memory will have less memory allocated by the end of

the test.

0.0

500.0M

1.0G

1.5G

2.0G

2.5G

3.0G

3.5G

4.0G

2 4 8 12 16 20 24

M
e
m

o
ry

 [
b
y
te

s]

Cores

FNF FHP FHPA HHL

FIGURE 5.9: Memory consumption - 25% of insertions; 25% of removals; 50% of searches

Figure 5.10 shows the results of the benchmark program when comparing the four

memory reclamation methods.

HHL has a lower number of cache misses compared to FHPA. However, the lower

average path length of our version makes it the version with lower throughput.

HHL applies, on average, two protections per lookup, a contrast to our method which

protects every node traversed through. To reiterate, each protection is done with a strong

memory barrier in the original hazard pointers implementation (FHP). The system call

mem_barrier of the Linux kernel helps mitigate this issue. The system call implements an

asymmetric barrier, which FHPA uses. With this function, every hazard pointer protection

has the lowest memory ordering constraints, although a compiler barrier must still be

used.

With asymmetric barriers, the number of cache misses does not change. However,

during the memory reclamation procedure, which occurs much less frequently, caches

will be forced to synchronize using asymmetric barriers, i.e. CPUs will be forced to flush

their store buffers and invalidate queues. For both our implementations using the hazard

pointers method, it is only after removing 10000 nodes that the reclamation procedure

70 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

will be called. Otherwise, the hazard pointer protection used in the common code path of

the lookup function will use weak memory barriers.

During lookup, each thread will push changes onto their own store buffers, but the

progress of traversing the tree will not be hindered. With symmetric barriers, on the other

hand, every node traversed will force the store buffers and invalidate queues to flush,

frequently stalling the CPU. As a demonstration, the version FHP, which does not use this

system call, has the same number of cache misses as FHPA, but the lowest throughput of

all versions.

The removal operation (Fig. 5.10b) shows a significant slowdown of the elastic ver-

sions, especially the ones using hazard pointers. In most cases, however, the number of

search operations outnumbers insertions and removals, and a certain number of removals

implies that at least the same number of insertions occurred previously.

However, during the test where we simultaneously insert and search for keys, as

shown in Fig. 5.10a, FHPA has lower throughput compared to both FHP and HHL.

In Fig. 5.10c we perform mostly searches while simultaneously inserting and remov-

ing nodes. The results show FHPA just barely outperforming HHL, in throughput. In

addition to this, FHPA is capable of reclaiming the memory of hash nodes giving it also

an advantage in memory consumption compared to the other versions, as illustrated in

Fig. 5.9.

5. EXPERIMENTS 71

0

2

4

6

8

10

12

14

16

18

20

2 4 8 12 16 20 24

T
h

ro
u

g
h

p
u

t
[m

ill
io

n
s
 o

p
e

ra
tio

n
s
/s

]

Cores

FNF FHP FHPA HHL

(A) 100% of searches

0

2

4

6

8

10

12

14

16

2 4 8 12 16 20 24

T
h

ro
u

g
h

p
u

t
[m

ill
io

n
s

o
p

e
ra

tio
n

s/
s]

Cores

FNF FHP FHPA HHL

(B) 100% of removals

0

2

4

6

8

10

12

14

16

18

2 4 8 12 16 20 24

T
h

ro
u

g
h

p
u

t
[m

ill
io

n
s

o
p

e
ra

tio
n

s/
s]

Cores

FNF FHP FHPA HHL

(C) 25% of insertions; 25% of removals; 50% of searches

FIGURE 5.10: Memory reclamation method throughput benchmark - 224 nodes, average
of 10 samples

Chapter 6

Conclusions

We have proposed a memory reclamation method for a lock-free hash map data structure

named LFHT. To the best of our knowledge, this is the first implementation of a mem-

ory reclamation method compatible with LFHT’s compression operation, thus, being able

to reclaim memory for both types of nodes: key-value pair nodes, or internal tree hash

nodes. On top of having lower memory footprint, our design showed similar throughput

when compared to the state-of-the-art method (HHL), and can even outperform it in some

scenarios, despite the fact that HHL does not support compression of the hash map.

We have designed our own benchmark suite in order to determine whether or not

the proposed method was more efficient in execution time and memory consumption.

This way, we could gather detailed statistics of the map’s behavior throughout the tests,

such as: the number of expansions, or the number of nodes reclaimed. These metrics

allowed us to reach conclusions regarding the results of the benchmarks, such as how

the original hazard pointers method contributed to an increase of cache misses and cache

synchronization which was detrimental to the performance of the map, in throughput.

The machine used to run the benchmarks uses processors which follow the Intel x86

memory model, which is one of the most strict compared to other architectures. In fact,

Intel’s manual of the architecture [22] provides the following details:

1. When reordering instructions, the CPU cannot reorder loads with other loads;

2. When reordering instructions, the CPU cannot reorder stores with other stores;

3. Stores to the same memory location have total order.

73

74 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

On the other hand, architectures such as ARM and IBM POWER have more relaxed mem-

ory models compared to x86, as described by Maranget et al. [24]. Running the bench-

marks and tests on a machine with ARM or IBM POWER architectures would likely give

higher throughput results of our implementation.

For future work, we plan on extending our reclamation method to support back ex-

pansion, as proposed by Areias and Rocha [37]. We also plan to compare our memory

reclamation method against the Automatic Optimistic Access [28] and the Free Access [33]

methods. Additionally, we could try and apply asymmetric barriers not just to hazard

pointers, but to other operations as well.

Appendix A

SNF - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 2155945.7208566 608207315.2000000 1173206076.5999999 1.0000000 6.4533541
4 4101745.0954660 1081161545.5999999 1170689265.3000000 1.9024146 6.4520786
8 5604737.4135745 2030616806.4000001 1234913768.0999999 2.5969620 6.4367994
12 8098146.3260336 2977520220.8000002 1232882041.2000000 3.7479937 6.4532223
16 10766903.6961805 3925356732.8000002 1208404407.0999999 4.9740594 6.4292695
20 13360564.6082560 3293017344.0000000 1216128106.7000000 6.1772027 6.4528194
24 16403496.4465333 3925359788.8000002 1212777383.9000001 7.6017116 6.4288990

TABLE A.1: SNF - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 1985968.4820043 1008242902.4000000 1189207521.0000000 1.0000000 6.1135070
4 3712412.2392347 1482040809.5999999 1190396601.2000000 1.8692210 6.1135100
8 5000059.4559875 2428228524.8000002 1248908281.0999999 2.5048484 6.1135030
12 7193376.8445235 3376742393.5999999 1255147046.0999999 3.6004772 6.1135068
16 9827147.3762232 4326053286.3999996 1227174630.3000000 4.9185357 6.1135013
20 12640886.7700754 3693429561.5999999 1220200615.0999999 6.3351736 6.1135068
24 14788371.0491096 4326054374.3999996 1208543326.4000001 7.4338257 6.1135030

TABLE A.2: SNF - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 2305738.4521411 472561536.0000000 1161987284.8000000 1.0000000 6.7729508
4 4352309.6917897 946996752.0000000 1159689019.5000000 1.8877840 6.7699055
8 5935052.6380330 1895471715.2000000 1227909170.5999999 2.5700874 6.7674759
12 8790220.1904819 2840964054.4000001 1216025239.2000000 3.8093017 6.7760619
16 11236605.5981433 3791268934.4000001 1202394752.7000000 4.8625924 6.7520755
20 14092595.6503559 3158792044.8000002 1193127471.5000000 6.0977252 6.7752835
24 17338062.8121213 3791269920.0000000 1185678346.0999999 7.5127596 6.7515025

TABLE A.3: SNF - 100% removals

75

76 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 2462864.5784391 474406806.4000000 1168739278.7000000 1.0000000 6.9478699
4 4746500.5805565 946668355.2000000 1160292703.4000001 1.9272867 6.9477171
8 6266840.3464215 1897344585.5999999 1229306384.4000001 2.5305188 6.9463145
12 9229922.0692209 2843555196.8000002 1223470830.7000000 3.7392229 6.9462622
16 12025433.5735942 3791268294.4000001 1199468265.0000000 4.8755376 6.9474273
20 15878376.4684238 3159078617.5999999 1193898921.7000000 6.4373617 6.9476326
24 18251010.8240982 3791269433.5999999 1186133603.2000000 7.4077072 6.9477791

TABLE A.4: SNF - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 2410214.4007048 473627750.4000000 1167473994.3000000 1.0000000 6.0373670
4 4614330.4527202 947489788.8000000 1164207285.0000000 1.9144644 6.0373670
8 5983346.2790048 1894587683.2000000 1224389270.5999999 2.4735290 6.0373670
12 8872086.5915894 2847594291.1999998 1220360288.2000000 3.6649910 6.0373670
16 12192435.1421641 3791268320.0000000 1202169357.8000000 5.0568507 6.0373670
20 15241081.9284931 3158861302.4000001 1197566042.0999999 6.3046558 6.0373670
24 18189678.8976500 3791269651.1999998 1190935640.8000000 7.5448443 6.0373670

TABLE A.5: SNF - 100% searches of keys not inserted on the map

Appendix B

FNF - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 2138837.0748578 615879337.6000000 1189112802.9000001 0.9918524 6.4298037
4 4025820.8766979 1091716329.5999999 1186240249.2000000 1.8672930 6.4282263
8 5452748.0374609 2040785929.5999999 1250449164.5999999 2.5211742 6.4125009
12 7933197.1420155 2986908614.4000001 1254941468.7000000 3.6706111 6.4301125
16 11028463.7623749 3942269392.0000000 1230080675.0000000 5.1103367 6.4064406
20 13510006.0891823 3308020137.5999999 1215852546.0000000 6.2548967 6.4295906
24 16604149.7999531 3942271449.5999999 1210463250.5000000 7.6895304 6.4059393

TABLE B.1: FNF - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 1980013.2308766 1015089987.2000000 1202352207.8000000 0.9970254 6.0897752
4 3722212.9269475 1492213504.0000000 1199405473.0999999 1.8740938 6.0897764
8 4955256.2903333 2443353772.8000002 1260161464.7000000 2.4748760 6.0897712
12 7300228.3319084 3390547552.0000000 1260009081.9000001 3.6628436 6.0897695
16 10354377.4398093 4344033862.3999996 1242472882.7000000 5.2128964 6.0897697
20 11863996.8236285 3710952588.8000002 1231650318.2000000 5.8916720 6.0897715
24 14604592.4687550 4344034976.0000000 1228782464.8000000 7.3342416 6.0897651

TABLE B.2: FNF - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 2038391.0892221 534974748.8000000 1189735260.0000000 0.8840782 6.7698220
4 3758246.9892912 1009610147.2000000 1187152658.5999999 1.6300752 6.7673469
8 4963786.5062881 1960617267.2000000 1241884292.0999999 2.1482770 6.7661820
12 7730133.1270698 2910480918.4000001 1250841149.7000000 3.3443506 6.7742787
16 10517731.1839474 3862178675.1999998 1226543944.4000001 4.5542645 6.7487237
20 12723145.6808034 3227434592.0000000 1216160460.2000000 5.5030955 6.7731124
24 15096881.7952073 3862180032.0000000 1212615797.4000001 6.5245739 6.7489602

TABLE B.3: FNF - 100% removals

77

78 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 2474213.4314676 475079619.2000000 1176188011.2000000 1.0044058 6.9470988
4 4707994.7036259 949886006.4000000 1173834713.5999999 1.9113364 6.9471412
8 6287490.3862582 1902209804.8000000 1235708318.5999999 2.5380421 6.9445874
12 8810513.3863472 2852268732.8000002 1226197098.7000000 3.5646458 6.9447086
16 12291831.7060692 3802080102.4000001 1208745518.5999999 4.9821850 6.9468168
20 15665663.1459981 3167928048.0000000 1204680667.0000000 6.3580916 6.9470391
24 18559779.3794144 3802081689.5999999 1202238771.0000000 7.5327596 6.9470470

TABLE B.4: FNF - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 2427391.6091418 475741222.4000000 1176824273.2000000 1.0071786 5.9914980
4 4638111.4850845 948079392.0000000 1177248301.0000000 1.9245281 5.9914980
8 6154495.7317285 1899473539.2000000 1240523045.3000000 2.5447544 5.9914980
12 9066694.9264710 2852927804.8000002 1238809858.0999999 3.7562278 5.9914980
16 12052226.6161647 3802080243.1999998 1209692314.3000000 4.9909536 5.9914980
20 15580937.7064202 3167631561.5999999 1203707092.3000000 6.4583765 5.9914980
24 18610686.2312442 3802081356.8000002 1201493949.4000001 7.7116580 5.9914980

TABLE B.5: FNF - 100% searches of keys not inserted on the map

Appendix C

CNF - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 2116309.6306887 607951036.8000000 1548712707.5000000 0.9816180 6.4301675
4 3987396.2274189 1080655529.5999999 1548607114.3000000 1.8494815 6.4284317
8 5284251.1264904 2030471305.5999999 1644651443.5000000 2.4415748 6.4154294
12 7771265.2430460 2977175155.1999998 1651077634.5000000 3.5981193 6.4295480
16 10293041.7977205 3925410147.1999998 1651359135.7000000 4.7447129 6.4061379
20 13141405.3755566 3293103494.4000001 1594444468.7000000 6.0793871 6.4295301
24 15746159.1784841 3925411523.1999998 1584953153.9000001 7.2877606 6.4059123

TABLE C.1: CNF - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 1952382.9074307 1015100505.6000000 1599201469.0000000 0.9830314 6.0897752
4 3614950.8361104 1488815411.2000000 1596312755.0999999 1.8201222 6.0897767
8 4902162.4979232 2437957369.5999999 1695686902.4000001 2.4557827 6.0897709
12 7344791.7190484 3387241692.8000002 1703230164.5000000 3.6924345 6.0897696
16 9720283.1918723 4333221670.3999996 1705248756.0999999 4.8810719 6.0897708
20 12512449.8947217 3700949827.1999998 1641726954.0999999 6.2927582 6.0897724
24 14487713.6385671 4333222720.0000000 1644843960.3000000 7.2833001 6.0897659

TABLE C.2: CNF - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 2187602.6669837 473940371.2000000 1286241156.0000000 0.9488037 6.7699850
4 4096401.6268813 947967011.2000000 1278940392.2000000 1.7767589 6.7675148
8 5516482.5378918 1893141062.4000001 1367780760.5999999 2.3827428 6.7654358
12 8094804.4393454 2847673340.8000002 1366095107.4000001 3.5020794 6.7740716
16 10875527.8130425 3791268281.5999999 1365226785.0000000 4.6962125 6.7505205
20 13693096.6773185 3159473241.5999999 1310814300.0999999 5.9336232 6.7731290
24 16502329.0787444 3791269126.4000001 1313481672.8000000 7.1521482 6.7489764

TABLE C.3: CNF - 100% removals

79

80 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 2447200.1641759 474083139.2000000 1282509735.7000000 0.9935557 6.9470216
4 4636075.7567094 945997324.8000000 1282246130.7000000 1.8824702 6.9470734
8 6127701.7191544 1893506134.4000001 1371505371.2000000 2.4758146 6.9452007
12 8965706.5706265 2843074739.1999998 1362403028.5000000 3.6369570 6.9448319
16 11700780.2187571 3791268524.8000002 1369738586.4000001 4.7125169 6.9466064
20 15473879.0871998 3158756982.4000001 1311906638.9000001 6.2819229 6.9470926
24 18000268.7729077 3791269600.0000000 1317223879.7000000 7.2972105 6.9470650

TABLE C.4: CNF - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 2397040.1218851 473771936.0000000 1443174372.5000000 0.9946337 5.9914980
4 4585420.7068965 947924969.6000000 1445526300.7000000 1.9026706 5.9914980
8 6091837.8602861 1897397654.4000001 1535300754.5999999 2.5116518 5.9914980
12 8616530.9868526 2842210041.5999999 1540986394.8000000 3.5492182 5.9914980
16 11612291.5228447 3791268102.4000001 1549311400.5999999 4.8098885 5.9914980
20 15140433.7175006 3159215987.1999998 1480286996.0000000 6.2701782 5.9914980
24 18184146.6831650 3791269331.1999998 1492474737.5999999 7.5378925 5.9914980

TABLE C.5: CNF - 100% searches of keys not inserted on the map

Appendix D

SNF (empty map) - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 2472154.0542228 607709417.6000000 1173206076.5999999 1.1466541 5.7725164
4 4660449.3666358 1081021820.8000000 1170689265.3000000 2.1616815 5.7725509
8 6295631.0328006 2027526953.5999999 1234913768.0999999 2.9125916 5.7725653
12 9440626.4636015 2976557558.4000001 1232882041.2000000 4.3775883 5.7726117
16 12760306.1432050 3925356796.8000002 1208404407.0999999 5.9165868 5.7727128
20 15925617.4937686 3293410508.8000002 1216128106.7000000 7.3809413 5.7726205
24 18726256.6522171 3925359379.1999998 1212777383.9000001 8.6796138 5.7725184

TABLE D.1: SNF (empty map) - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 2157581.1880885 1007913836.8000000 1189207521.0000000 1.0863792 5.8295280
4 4003806.7265529 1482767955.2000000 1190396601.2000000 2.0160767 5.8295304
8 5634179.2012418 2433536636.8000002 1248908281.0999999 2.8301066 5.8295237
12 8383412.5718636 3378394329.5999999 1255147046.0999999 4.2200756 5.8295276
16 10803681.3135824 4326053427.1999998 1227174630.3000000 5.4287362 5.8295221
20 13688941.6730192 3694602310.4000001 1220200615.0999999 6.8919814 5.8295274
24 16572776.1532599 4326054054.3999996 1208543326.4000001 8.3413914 5.8295237

TABLE D.2: SNF (empty map) - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 2729172.3413901 475032598.4000000 1161987284.8000000 1.1837659 5.7534510
4 5212589.8171618 946725984.0000000 1159689019.5000000 2.2608063 5.7534510
8 7056679.9483363 1895060051.2000000 1227909170.5999999 3.0571124 5.7534510
12 10325925.7367631 2841390944.0000000 1216025239.2000000 4.4754179 5.7534510
16 13706767.6255312 3791268652.8000002 1202394752.7000000 5.9439002 5.7534510
20 17412404.6609458 3159428240.0000000 1193127471.5000000 7.5498172 5.7534510
24 20413252.3126707 3791269907.1999998 1185678346.0999999 8.8491900 5.7534510

TABLE D.3: SNF (empty map) - 100% removals

81

82 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 2766133.6091897 472491270.4000000 1168739278.7000000 1.1231580 5.7535350
4 5240530.0231329 946995075.2000000 1160292703.4000001 2.1277645 5.7535350
8 7000787.1112052 1899416163.2000000 1229306384.4000001 2.8343898 5.7535350
12 10274397.2342338 2845149078.4000001 1223470830.7000000 4.1674319 5.7535350
16 13865745.0258394 3791268396.8000002 1199468265.0000000 5.6273349 5.7535350
20 17796245.0219758 3159828284.8000002 1193898921.7000000 7.2254018 5.7535350
24 20382778.4843585 3791269868.8000002 1186133603.2000000 8.2631696 5.7535350

TABLE D.4: SNF (empty map) - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 2673948.8880152 474144886.4000000 1167473994.3000000 1.1095670 5.7533900
4 5099880.4609351 946109987.2000000 1164207285.0000000 2.1162418 5.7533900
8 7017936.3456658 1897477545.5999999 1224389270.5999999 2.9078194 5.7533900
12 9783942.8083798 2843371008.0000000 1220360288.2000000 4.0492049 5.7533900
16 13513525.1924591 3791268422.4000001 1202169357.8000000 5.6051462 5.7533900
20 16961235.5756235 3159675824.0000000 1197566042.0999999 7.0353471 5.7533900
24 19773745.1139139 3791269420.8000002 1190935640.8000000 8.1968093 5.7533900

TABLE D.5: SNF (empty map) - 100% searches of keys not inserted on the map

Appendix E

FNF (empty map) - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 3637022.2005159 753626995.2000000 1189112802.9000001 1.6869287 5.1196338
4 6978829.5662838 1267728880.0000000 1186240249.2000000 3.2369559 5.1194623
8 9154368.9843462 2313464844.8000002 1250449164.5999999 4.2437040 5.1194692
12 14026987.9421681 3340018745.5999999 1254941468.7000000 6.4918888 5.1194428
16 18851716.8165846 4367191414.3999996 1230080675.0000000 8.7286617 5.1187329
20 24188570.3342797 3678250985.5999999 1215852546.0000000 11.2014247 5.1194162
24 27295258.4596901 4367180153.6000004 1210463250.5000000 12.5945751 5.1197993

TABLE E.1: FNF (empty map) - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 2590755.1126384 1278986428.8000000 1202352207.8000000 1.3045144 5.1700047
4 4787698.7167970 1793832272.0000000 1199405473.0999999 2.4103100 5.1699805
8 6374209.2808208 2824552627.1999998 1260161464.7000000 3.2018091 5.1699328
12 9574715.7522217 3877584963.1999998 1260009081.9000001 4.8144056 5.1700007
16 13278584.7528223 4889398060.8000002 1242472882.7000000 6.6736735 5.1699628
20 17084854.2139310 4200441123.1999998 1231650318.2000000 8.6002350 5.1699881
24 19513267.7026835 4889400646.3999996 1228782464.8000000 9.8078429 5.1699687

TABLE E.2: FNF (empty map) - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 36229317.6012761 512948867.2000000 1189735260.0000000 15.7145845 0.0000000
4 70950335.6789131 1029572467.2000000 1187152658.5999999 30.7742310 0.0000000
8 124189708.3583228 2065927107.2000000 1241884292.0999999 53.6552546 0.0000000
12 130068586.8970316 3085380784.0000000 1250841149.7000000 55.6663704 0.0000000
16 169855649.9427042 4126671929.5999999 1226543944.4000001 71.8986254 0.0000000
20 225264862.1299986 3437925011.1999998 1216160460.2000000 96.2260093 0.0000000
24 233095963.8286940 4126672672.0000000 1212615797.4000001 100.8810781 0.0000000

TABLE E.3: FNF (empty map) - 100% removals

83

84 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 40903612.9260384 513261737.6000000 1176188011.2000000 16.6038928 0.0000000
4 80444643.4341095 1032435264.0000000 1173834713.5999999 32.6643538 0.0000000
8 132939355.8708106 2060219737.5999999 1235708318.5999999 53.5472207 0.0000000
12 165599138.3083206 3096193216.0000000 1226197098.7000000 66.2155498 0.0000000
16 196353391.0362703 4126672006.4000001 1208745518.5999999 78.1891615 0.0000000
20 244003946.7063327 3436423945.5999999 1204680667.0000000 98.0677313 0.0000000
24 303807832.6474321 4126672774.4000001 1202238771.0000000 118.6297748 0.0000000

TABLE E.4: FNF (empty map) - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 35791197.5319518 516396281.6000000 1176824273.2000000 14.8517551 0.0000000
4 70364264.9737898 1030768758.4000000 1177248301.0000000 29.1984861 0.0000000
8 120972120.5727924 2063855072.0000000 1240523045.3000000 49.8799958 0.0000000
12 136824210.9520378 3100698249.5999999 1238809858.0999999 56.4816343 0.0000000
16 172374271.8916164 4126671788.8000002 1209692314.3000000 71.2819283 0.0000000
20 217106952.0666831 3437840256.0000000 1203707092.3000000 89.1749062 0.0000000
24 228450839.7452757 4126672915.1999998 1201493949.4000001 94.4843757 0.0000000

TABLE E.5: FNF (empty map) - 100% searches of keys not inserted on the map

Appendix F

CNF (empty map) - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 3597997.1174121 714123129.6000000 1548712707.5000000 1.6688236 5.1196444
4 6901484.1592387 1187247433.5999999 1548607114.3000000 3.2010334 5.1194502
8 9007432.6574521 2135302441.5999999 1644651443.5000000 4.1733169 5.1194560
12 13066943.4160703 3083787212.8000002 1651077634.5000000 6.0280559 5.1194756
16 18502708.2007002 4031788908.8000002 1651359135.7000000 8.5683085 5.1187236
20 23851868.3915671 3398689059.1999998 1594444468.7000000 11.0527674 5.1193659
24 27091431.3973140 4031776390.4000001 1584953153.9000001 12.5124505 5.1197941

TABLE F.1: CNF (empty map) - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 2530231.7852714 1236094332.8000000 1599201469.0000000 1.2740099 5.1700052
4 4665607.3059632 1708741686.4000001 1596312755.0999999 2.3490737 5.1699822
8 6301301.9843819 2657584057.5999999 1695686902.4000001 3.1612707 5.1699266
12 9236085.3327985 3605957145.5999999 1703230164.5000000 4.6423494 5.1700067
16 12430078.2131891 4553994528.0000000 1705248756.0999999 6.2370758 5.1699583
20 16427084.2501999 3922403856.0000000 1641726954.0999999 8.2640411 5.1699921
24 19053200.6084416 4553996960.0000000 1644843960.3000000 9.5687796 5.1699640

TABLE F.2: CNF (empty map) - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 35711026.6342340 473734851.2000000 1286241156.0000000 15.4897965 0.0000000
4 70039571.3916017 946542816.0000000 1278940392.2000000 30.3797715 0.0000000
8 119647519.4334662 1894315737.5999999 1367780760.5999999 51.7714563 0.0000000
12 136358432.0094794 2843642662.4000001 1366095107.4000001 58.6638027 0.0000000
16 165919021.7471161 3791268332.8000002 1365226785.0000000 71.7628488 0.0000000
20 206940369.4005714 3159212780.8000002 1310814300.0999999 89.6289411 0.0000000
24 242437928.5468839 3791269651.1999998 1313481672.8000000 103.5223647 0.0000000

TABLE F.3: CNF (empty map) - 100% removals

85

86 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 42584163.6160411 472458572.8000000 1282509735.7000000 17.2462501 0.0000000
4 83843604.9168358 947701862.4000000 1282246130.7000000 33.9875808 0.0000000
8 140049447.2812652 1896487766.4000001 1371505371.2000000 56.5450594 0.0000000
12 166676620.7120861 2845398108.8000002 1362403028.5000000 66.0530549 0.0000000
16 188962665.9557773 3791268588.8000002 1369738586.4000001 76.4101101 0.0000000
20 248534046.6100695 3158781049.5999999 1311906638.9000001 99.4328248 0.0000000
24 272232303.8098804 3791269203.1999998 1317223879.7000000 109.8119514 0.0000000

TABLE F.4: CNF (empty map) - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 37946568.0231866 473808457.6000000 1443174372.5000000 15.7463239 0.0000000
4 74229375.6452983 948586188.8000000 1445526300.7000000 30.8022734 0.0000000
8 123959534.8990024 1895863286.4000001 1535300754.5999999 51.0311204 0.0000000
12 137127383.7873024 2843206057.5999999 1540986394.8000000 56.5991859 0.0000000
16 202880989.3158082 3791268320.0000000 1549311400.5999999 81.8886668 0.0000000
20 225608275.2627168 3159257209.5999999 1480286996.0000000 92.6585755 0.0000000
24 252980229.7142133 3791269728.0000000 1492474737.5999999 103.2922840 0.0000000

TABLE F.5: CNF (empty map) - 100% searches of keys not inserted on the map

Appendix G

FHP - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 1958165.6801031 453742028.8000000 1212223774.0000000 0.9082650 5.3581074
4 3743719.6594435 911489209.6000000 1210794325.2000000 1.7364429 5.3643905
8 4901822.0847252 911467782.4000000 1268922969.8000000 2.2633694 5.3645993
12 7766023.5933490 1369360227.2000000 1248175477.0000000 3.5883701 5.3400016
16 9765465.4006277 1216598160.0000000 1264232781.3000000 4.4630121 5.3704923
20 12854521.3452280 1140411094.4000001 1272845057.2000000 5.9620774 5.3697346
24 15269815.6561299 1369353811.2000000 1274985416.2000000 7.0804777 5.3412626

TABLE G.1: FHP - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 1903693.0592635 994000934.4000000 1224710814.5999999 0.9585987 6.0897748
4 3586297.1114616 1451815116.8000000 1222374409.4000001 1.8058503 6.0897768
8 4772945.4319700 1451843715.2000000 1269736424.2000000 2.3780333 6.0897713
12 7477467.2010966 1909638966.4000001 1276388591.3000000 3.7632874 6.0897688
16 9237975.4073428 1756962793.5999999 1278265831.9000001 4.5816492 6.0897672
20 12914719.4435473 1680708006.4000001 1303015622.5000000 6.5029070 6.0897732
24 14481174.1606153 1909643500.8000000 1285091758.5000000 7.2678551 6.0897805

TABLE G.2: FHP - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 1568189.8305500 184462410.0000000 1224574809.2000000 0.6801846 3.9235337
4 2924110.4187425 329052080.0000000 1224552530.8000000 1.2683279 3.9287411
8 3891078.6216237 328965123.2000000 1302632874.0000000 1.6834472 3.9294088
12 6137349.8109924 786862912.0000000 1288031426.0999999 2.6528553 3.9042455
16 8085632.6251631 634218140.8000000 1289937692.5000000 3.4921084 3.9341331
20 10374621.8951761 557970147.2000000 1310991295.2000000 4.4998291 3.9333813
24 12009524.4434678 786914768.0000000 1298620673.8000000 5.2067260 3.9090142

TABLE G.3: FHP - 100% removals

87

88 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 2390641.1871109 457782678.4000000 1197938229.5000000 0.9707180 6.9477041
4 4561836.9964745 915574310.4000000 1196715932.0000000 1.8523113 6.9477049
8 5710213.5091007 915584713.6000000 1257897846.7000000 2.2965375 6.9475890
12 8897769.0718481 1373420128.0000000 1253618978.8000000 3.5966549 6.9475943
16 11640138.3997152 1220835545.5999999 1257647977.0999999 4.7011048 6.9470674
20 15476101.9806022 1144439504.0000000 1227603143.4000001 6.2836699 6.9472160
24 18092911.5741567 1373433068.8000000 1263598302.0000000 7.3325588 6.9472256

TABLE G.4: FHP - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 2379298.1256871 457778099.2000000 1198783037.3000000 0.9873194 5.9914980
4 4531192.6951648 915578915.2000000 1197896140.4000001 1.8801634 5.9914980
8 6244943.4520223 915679513.6000000 1249070437.5000000 2.5839414 5.9914980
12 9247010.1275261 1373422614.4000001 1250414644.2000000 3.8354617 5.9915002
16 11626297.4298238 1220696425.5999999 1253009762.7000000 4.7985199 5.9915059
20 15444290.0123333 1144545459.2000000 1238460157.5000000 6.4079796 5.9915302
24 18513288.2428718 1373418966.4000001 1245017057.5999999 7.6808090 5.9914982

TABLE G.5: FHP - 100% searches of keys not inserted on the map

Appendix H

FHPA - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 1659691.1793200 453848630.4000000 1228159576.5000000 0.7697383 5.3572757
4 3225149.4888122 911565123.2000000 1226258343.0999999 1.4959336 5.3642677
8 4710003.2396420 911495603.2000000 1285600310.5000000 2.1799911 5.3645341
12 6860553.1650186 1369357260.8000000 1282184397.0000000 3.1697543 5.3399990
16 9188724.3093974 1216693574.4000001 1284698051.3000000 4.2591307 5.3705799
20 10940343.4070893 1140372601.5999999 1266548184.5999999 5.0408052 5.3700362
24 12141959.5355984 1369361734.4000001 1257149671.0999999 5.6142991 5.3413796

TABLE H.1: FHPA - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 1675556.4675230 994091897.6000000 1243009297.3000000 0.8437048 6.0897750
4 3271771.2529591 1451876246.4000001 1240047120.4000001 1.6472156 6.0897768
8 4864718.2569200 1451769014.4000001 1288254510.2000000 2.4387399 6.0897717
12 7146225.6193981 1909636028.8000000 1301164139.4000001 3.5976099 6.0897697
16 8903546.0565352 1756943222.4000001 1304550277.5000000 4.4502005 6.0897714
20 11113767.3469573 1680685420.8000000 1288127181.7000000 5.5151860 6.0897769
24 12962511.0166798 1909638665.5999999 1274373488.4000001 6.5115570 6.0897725

TABLE H.2: FHPA - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 1291515.8395841 184467440.0000000 1239528483.0000000 0.5601439 3.9235742
4 2429623.3729017 329099804.8000000 1241340017.8000000 1.0536891 3.9285618
8 3498688.9000276 329034009.6000000 1320780175.2000000 1.5148636 3.9288309
12 5423956.7066668 786869494.4000000 1304033111.3000000 2.3521350 3.9042319
16 6797975.2154481 634222934.4000000 1299016231.0000000 2.9437943 3.9339861
20 7895762.4328200 557918361.6000000 1303098379.8000000 3.3942450 3.9333539
24 9362098.4600946 786872496.0000000 1282611053.2000000 4.0313446 3.9078022

TABLE H.3: FHPA - 100% removals

89

90 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 1970133.9733243 457877036.8000000 1212821262.3000000 0.7999455 6.9476836
4 3876908.0901136 915662284.8000000 1212246097.3000000 1.5742164 6.9476801
8 5779041.8597701 915634048.0000000 1253952034.4000001 2.3456027 6.9476262
12 8296240.7920270 1373418838.4000001 1270811921.5999999 3.3675109 6.9476580
16 10252993.0033164 1220751913.5999999 1286862131.0000000 4.1352135 6.9471150
20 12697170.0965559 1144447059.2000000 1243073360.5000000 5.1301089 6.9472353
24 15617705.5339504 1373418124.8000000 1254812349.3000000 6.3368756 6.9472392

TABLE H.4: FHPA - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 2004747.6199358 457869971.2000000 1215605602.4000001 0.8318918 5.9914980
4 3947961.9820388 915639427.2000000 1214249474.8000000 1.6382404 5.9914980
8 5904032.1449687 915649596.8000000 1258093872.2000000 2.4490883 5.9914981
12 8450306.0144158 1373417088.0000000 1263437257.4000001 3.5059405 5.9914980
16 10821262.7745216 1220854560.0000000 1277592367.5999999 4.4746780 5.9915165
20 13000072.1025862 1144463968.0000000 1256423235.3000000 5.3724111 5.9915028
24 15948339.7577081 1373422643.2000000 1262371945.2000000 6.6099770 5.9915192

TABLE H.5: FHPA - 100% searches of keys not inserted on the map

Appendix I

HHL - benchmark data

Cores Throughput Memory Cache Misses Speedup APL
2 1878672.7707736 732939532.8000000 1222116370.8000000 0.8713639 6.7051144
4 3679494.5934059 1462684080.0000000 1222124614.8000000 1.7066682 6.7212879
8 5312633.2509869 1462937161.5999999 1297767526.0999999 2.4636670 6.7220617
12 8003524.7553944 2193070396.8000002 1280506882.0000000 3.7104467 6.6575300
16 10025315.6209682 1951288217.5999999 1279121423.8000000 4.6409903 6.7378125
20 11932148.6504466 1827544729.5999999 1255742653.7000000 5.5149214 6.7348869
24 14692509.9369307 2193083660.8000002 1257343282.2000000 6.8138364 6.6617525

TABLE I.1: HHL - 25% removals, 25% insertions, 50% searches

Cores Throughput Memory Cache Misses Speedup APL
2 1756659.7385608 1265727126.4000001 1239646946.9000001 0.8845543 6.2683532
4 3395895.0454699 1995613465.5999999 1238759294.3000000 1.7099208 6.2683591
8 4993584.6624879 1994736873.5999999 1309655604.7000000 2.5121339 6.2683459
12 7231573.2814440 2725892304.0000000 1301018043.8000000 3.6346012 6.2683522
16 9737846.4800093 2481920659.1999998 1285708225.3000000 4.9027876 6.2683480
20 12226011.6133358 2360129523.1999998 1269622148.7000000 6.1561520 6.2683535
24 13985854.2097001 2725894624.0000000 1261929509.5000000 7.0347828 6.2683482

TABLE I.2: HHL - 100% insertions

Cores Throughput Memory Cache Misses Speedup APL
2 1688345.3287437 204417033.6000000 1215090874.5000000 0.7322945 7.6281307
4 3258175.3999522 934438745.6000000 1214485214.8000000 1.4132005 7.6488386
8 4594957.6197266 934051952.0000000 1289453502.2000000 1.9910822 7.6519079
12 6883434.0726443 1664651712.0000000 1276300701.3000000 2.9837017 7.5513267
16 8791685.2607180 1421068102.4000001 1265550764.5000000 3.8105721 7.6701733
20 10151748.2899126 1299576086.4000001 1261771515.9000001 4.3849229 7.6684752
24 12454197.1395703 1664653888.0000000 1253882161.3000000 5.4014586 7.5674504

TABLE I.3: HHL - 100% removals

91

92 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

Cores Throughput Memory Cache Misses Speedup APL
2 2266995.9892553 730877977.6000000 1206811790.0000000 0.9204592 6.9576341
4 4424848.1286437 1460847808.0000000 1206136563.8000000 1.7966445 6.9576344
8 6385423.0221683 1460475881.5999999 1277430564.8000000 2.5862546 6.9576389
12 9393187.6520703 2191107376.0000000 1267008786.9000001 3.8129008 6.9576099
16 12033315.0812436 1947448121.5999999 1275811538.8000000 4.8849041 6.9562831
20 15047664.3090629 1826606569.5999999 1227210455.4000001 6.1082701 6.9564898
24 18080487.4006526 2191109440.0000000 1234704574.0000000 7.3359461 6.9563194

TABLE I.4: HHL - 100% searches of inserted keys

Cores Throughput Memory Cache Misses Speedup APL
2 2160592.1858132 730827996.8000000 1214338842.0999999 0.8965596 6.1195780
4 4264545.2627437 1460797078.4000001 1213589912.0000000 1.7695245 6.1195780
8 6230745.3947817 1461051619.2000000 1275314829.0999999 2.5841695 6.1195780
12 8999779.0721615 2191107456.0000000 1272112121.8000000 3.7324628 6.1195780
16 11754834.3992749 1947138425.5999999 1272358895.0999999 4.8763415 6.1195780
20 14514242.6027871 1826239280.0000000 1238108204.8000000 6.0168488 6.1195780
24 17561214.1200988 2191109648.0000000 1232102639.7000000 7.2841472 6.1195780

TABLE I.5: HHL - 100% searches of keys not inserted on the map

Bibliography

[1] Rene De La Briandais. “File searching using variable length keys”. In: Papers pre-

sented at the the March 3-5, 1959, western joint computer conference. 1959, pp. 295–298.

[2] Edward Fredkin. “Trie memory”. In: Communications of the ACM 3.9 (1960), pp. 490–

499.

[3] IBM. “System/370 principles of operation”. In: Order Number GA22-7000. 1970.

[4] Jon Bentley, Don Knuth, and Doug McIlroy. “Programming pearls: A literate pro-

gram”. In: Communications of the ACM 29.6 (1986), pp. 471–483.

[5] Maurice Herlihy. “A methodology for implementing highly concurrent data struc-

tures”. In: Proceedings of the second ACM SIGPLAN symposium on Principles & practice

of parallel programming. 1990, pp. 197–206.

[6] Jeffrey C Mogul and Anita Borg. “The effect of context switches on cache perfor-

mance”. In: ACM SIGPLAN Notices 26.4 (1991), pp. 75–84.

[7] Jon L Bentley and Robert Sedgewick. “Fast algorithms for sorting and searching

strings”. In: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algo-

rithms. 1997, pp. 360–369.

[8] Stefan Nilsson and Gunnar Karlsson. “Fast address lookup for Internet routers”. In:

(1998).

[9] Phil Bagwell. Fast and space efficient trie searches. Tech. rep. 2000.

[10] Phil Bagwell. Ideal hash trees. Tech. rep. 2001.

[11] Timothy L Harris. “A pragmatic implementation of non-blocking linked-lists”. In:

International Symposium on Distributed Computing. Springer. 2001, pp. 300–314.

[12] Petar Maymounkov and David Mazieres. “Kademlia: A peer-to-peer information

system based on the xor metric”. In: International Workshop on Peer-to-Peer Systems.

Springer. 2002, pp. 53–65.

93

94 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

[13] Maged M Michael. “High performance dynamic lock-free hash tables and list-based

sets”. In: Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and

architectures. 2002, pp. 73–82.

[14] Keir Fraser. Practical lock-freedom. Tech. rep. University of Cambridge, Computer

Laboratory, 2004.

[15] Maged M Michael. “Hazard pointers: Safe memory reclamation for lock-free ob-

jects”. In: IEEE Transactions on Parallel and Distributed Systems 15.6 (2004), pp. 491–

504.

[16] Chris Purcell and Tim Harris. “Non-blocking hashtables with open addressing”. In:

International Symposium on Distributed Computing. Springer. 2005, pp. 108–121.

[17] Mark Aiken et al. “Deconstructing process isolation”. In: Proceedings of the 2006

workshop on Memory system performance and correctness. 2006, pp. 1–10.

[18] Jason Evans. “A scalable concurrent malloc (3) implementation for FreeBSD”. In:

Proc. of the bsdcan conference, ottawa, canada. 2006.

[19] Ori Shalev and Nir Shavit. “Split-ordered lists: Lock-free extensible hash tables”. In:

Journal of the ACM (JACM) 53.3 (2006), pp. 379–405.

[20] Chuanpeng Li, Chen Ding, and Kai Shen. “Quantifying the cost of context switch”.

In: Proceedings of the 2007 workshop on Experimental computer science. 2007, 2–es.

[21] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. “Hopscotch hashing”. In: Interna-

tional Symposium on Distributed Computing. Springer. 2008, pp. 350–364.

[22] Part Guide. “Intel® 64 and ia-32 architectures software developer’s manual”. In:

Volume 3B: System programming Guide, Part 2.11 (2011).

[23] Maurice Herlihy and Nir Shavit. “On the nature of progress”. In: International Con-

ference On Principles Of Distributed Systems. Springer. 2011, pp. 313–328.

[24] Luc Maranget, Susmit Sarkar, and Peter Sewell. “A tutorial introduction to the ARM

and POWER relaxed memory models”. In: Draft available from http://www. cl. cam. ac.

uk/˜ pes20/ppc-supplemental/test7. pdf (2012).

[25] Aleksandar Prokopec et al. “Concurrent tries with efficient non-blocking snapshots”.

In: Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Par-

allel Programming. 2012, pp. 151–160.

BIBLIOGRAPHY 95

[26] Nhan Nguyen and Philippas Tsigas. “Lock-free cuckoo hashing”. In: 2014 IEEE 34th

international conference on distributed computing systems. IEEE. 2014, pp. 627–636.

[27] Linda Null and Julia Lobur. Essentials of Computer Organization and Architecture.

Jones & Bartlett Publishers, 2014.

[28] N. Cohen and E. Petrank. “Automatic memory reclamation for lock-free data struc-

tures”. In: ACM SIGPLAN Notices 50.10 (2015), pp. 260–279.

[29] D. Dice, M. Herlihy, and A. Kogan. “Fast Non-Intrusive Memory Reclamation for

Highly-Concurrent Data Structures”. In: International Symposium on Memory Man-

agement. 2016, pp. 36–45.

[30] M. Areias and R. Rocha. “Towards a Lock-Free, Fixed Size and Persistent Hash

Map Design”. In: Proceedings of the International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD 2017). Ed. by M. Valero and A. Melo.

Campinas, Brazil: IEEE Computer Society, 2017, pp. 145–152.

[31] Paul E McKenney. “Is parallel programming hard, and, if so, what can you do about

it?” In: arXiv preprint arXiv:1701.00854 (2017).

[32] Miguel Areias and Ricardo Rocha. “On Extending a Fixed Size, Persistent and Lock-

Free Hash Map Design to Store Sorted Keys”. In: 2018 IEEE Intl Conf on Parallel &

Distributed Processing with Applications, Ubiquitous Computing & Communications, Big

Data & Cloud Computing, Social Computing & Networking, Sustainable Computing &

Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE. 2018, pp. 415–

422.

[33] Nachshon Cohen. “Every data structure deserves lock-free memory reclamation”.

In: Proceedings of the ACM on Programming Languages 2.OOPSLA (2018), pp. 1–24.

[34] P. Moreno. “Memory Reclamation Methods for Lock-Free Hash Tries”. MSc Thesis.

Portugal: University of Porto, 2018.

[35] Aleksandar Prokopec. “Cache-tries: Concurrent lock-free hash tries with constant-

time operations”. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. 2018, pp. 137–151.

[36] Robert Kelly, Barak A Pearlmutter, and Phil Maguire. “Lock-free hopscotch hash-

ing”. In: Symposium on Algorithmic Principles of Computer Systems. SIAM. 2020, pp. 45–

59.

96 MEMORY RECLAMATION FOR AN ELASTIC LOCK-FREE HASH TRIE MAP

[37] M. Areias and R. Rocha. “Towards an Elastic Lock-Free Hash Trie Design”. In: Pro-

ceedings of the 20th International Symposium on Parallel and Distributed Computing (IS-

PDC 2021). Ed. by B. Iancu and Ralf-Peter Mundani. Cluj-Napoca, Romania (online

event): IEEE Computer Society, 2021, pp. –.

[38] P. Moreno, M. Areias, and R. Rocha. “On the Implementation of Memory Reclama-

tion Methods in a Lock-Free Hash Trie Design”. In: Journal of Parallel and Distributed

Computing 155 (2021), pp. 1–13.

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Hash tries
	2.2 State-of-the-Art Comparison

	3 Lock-free Hash Trie Map
	3.1 Lookup
	3.1.1 Average Path Length
	3.1.2 Algorithm

	3.2 Insertion
	3.2.1 Dealing With Collisions
	3.2.2 Algorithm

	3.3 Expansion
	3.3.1 Algorithm

	3.4 Removal
	3.4.1 Invalidation Step
	3.4.2 Memory Reclamation Problem
	3.4.3 Delegation Problem
	3.4.4 Algorithm

	3.5 Compression
	3.5.1 Freezing
	3.5.2 Counter

	3.6 Cost Analysis
	3.6.1 Lookup Cost
	3.6.2 Insertion Cost
	3.6.3 Removal Cost
	3.6.4 Expansion Cost
	3.6.5 Freeze Compression Cost
	3.6.6 Counter Compression Cost
	3.6.7 The Cost of Synchronization

	4 Memory Reclamation
	4.1 The Cost Of Synchronization
	4.1.1 The Cache
	4.1.2 Memory Barriers
	4.1.3 Summary

	4.2 Memory Life Cycle
	4.3 Memory Reclamation Methods
	4.3.1 Hazard Pointers
	4.3.2 Hazard Hash And Level

	4.4 Our Contribution
	4.4.1 Number of Hazard Pointers
	4.4.2 Other Important Changes
	4.4.3 Delegation Problem

	5 Experiments
	5.1 Benchmark Program
	5.1.1 Metrics

	5.2 Machine Specifications
	5.3 Hash Map Parameters
	5.3.1 Chain Length
	5.3.2 Chunk Size
	5.3.3 Memory Allocator

	5.4 Compression
	5.5 Memory Reclamation

	6 Conclusions
	A SNF - benchmark data
	B FNF - benchmark data
	C CNF - benchmark data
	D SNF (empty map) - benchmark data
	E FNF (empty map) - benchmark data
	F CNF (empty map) - benchmark data
	G FHP - benchmark data
	H FHPA - benchmark data
	I HHL - benchmark data

