
Tabling and Or-Parallelism in Yap Prolog:

Past, Present and Future

Ricardo Rocha
CRACS & INESC TEC

University of Porto, Portugal
ricroc@dcc.fc.up.pt

Joint work with Fernando Silva, Flávio Cruz, Inês Dutra, João Raimundo,
João Santos, Miguel Areias and V́ıtor Santos Costa

WLPE 2011, Lexington, Kentucky, USA, July 2011

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Yap: Past

ä Past (2000-2008)

© Tabling Engine [TAPD’00]
Support for sequential tabling based on the SLG-WAM model.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Yap: Past

ä Past (2000-2008)

© Tabling Engine [TAPD’00]
Support for sequential tabling based on the SLG-WAM model.

© Tabling and Implicit Or-Parallelism [ICLP’01,TPLP’05]
Support for implicit or-parallelism in tabled logic programs based on the
SLG-WAM and environment copying models.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Yap: Past

ä Past (2000-2008)

© Tabling Engine [TAPD’00]
Support for sequential tabling based on the SLG-WAM model.

© Tabling and Implicit Or-Parallelism [ICLP’01,TPLP’05]
Support for implicit or-parallelism in tabled logic programs based on the
SLG-WAM and environment copying models.

© Dynamic Mixed-Strategy Evaluation [ICLP’05]
Support for the dynamic intermixing of the two most successful tabling
evaluation strategies, batched and local evaluation, at the subgoal level.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Yap: Past

ä Past (2000-2008)

© Tabling Engine [TAPD’00]
Support for sequential tabling based on the SLG-WAM model.

© Tabling and Implicit Or-Parallelism [ICLP’01,TPLP’05]
Support for implicit or-parallelism in tabled logic programs based on the
SLG-WAM and environment copying models.

© Dynamic Mixed-Strategy Evaluation [ICLP’05]
Support for the dynamic intermixing of the two most successful tabling
evaluation strategies, batched and local evaluation, at the subgoal level.

© Handling Incomplete and Complete Tables [ICLP’06,PADL’07]
New techniques for making tabling more efficient when dealing with incomplete
tables and more robust when recovering memory from the tables.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Yap: Past

ä Past (2000-2008)

© Tabling Engine [TAPD’00]
Support for sequential tabling based on the SLG-WAM model.

© Tabling and Implicit Or-Parallelism [ICLP’01,TPLP’05]
Support for implicit or-parallelism in tabled logic programs based on the
SLG-WAM and environment copying models.

© Dynamic Mixed-Strategy Evaluation [ICLP’05]
Support for the dynamic intermixing of the two most successful tabling
evaluation strategies, batched and local evaluation, at the subgoal level.

© Handling Incomplete and Complete Tables [ICLP’06,PADL’07]
New techniques for making tabling more efficient when dealing with incomplete
tables and more robust when recovering memory from the tables.

© Program Transformation with Tabling Primitives [ICLP’07,PADL’08]
Support for tabling by applying source level transformations to a tabled
program and by using specific external tabling primitives, implemented with
the C language interface of Yap, to provide direct control over the search
strategy. This work was the basis for tabling support in Ciao Prolog.

WLPE 2011, Lexington, Kentucky, USA, July 2011 1

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Yap: Present and Future

ä Present (2009-2011): already available on Yap’s repository

© Global Trie [PADL’09,ICLP’09,EPIA’11]
© Compact Lists [PADL’10]

ä Present (2009-2011): to be synchronized soon, hopefully ;)

© Linear Tabling [PADL’10,ICLP’11]
© Call Subsumption [JELIA’10,ICLP’11,EPIA’11]
© Tabling Modes and Answer Subsumption

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Yap: Present and Future

ä Present (2009-2011): already available on Yap’s repository

© Global Trie [PADL’09,ICLP’09,EPIA’11]
© Compact Lists [PADL’10]

ä Present (2009-2011): to be synchronized soon, hopefully ;)

© Linear Tabling [PADL’10,ICLP’11]
© Call Subsumption [JELIA’10,ICLP’11,EPIA’11]
© Tabling Modes and Answer Subsumption

ä Future (2011-...)

© Multi-Threaded Tabling
© Call Subsumption for Linear Tabling
© Incremental Tabling
© Negation
© Co-Induction

WLPE 2011, Lexington, Kentucky, USA, July 2011 2

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Or-Parallelism in Yap: Past, Present and Future

ä Past (1999-2003)

© Or-Parallelism for Shared Memory [EPIA’99,EUROPAR’00]
Support for implicit or-parallelism based on the environment copying model.

© Or-Parallelism For Distributed Memory [EPIA’03]
Support for implicit or-parallelism based on the stack splitting model.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Or-Parallelism in Yap: Past, Present and Future

ä Past (1999-2003)

© Or-Parallelism for Shared Memory [EPIA’99,EUROPAR’00]
Support for implicit or-parallelism based on the environment copying model.

© Or-Parallelism For Distributed Memory [EPIA’03]
Support for implicit or-parallelism based on the stack splitting model.

ä Present (2010-2011)

© Or-Parallelism using Threads [ICLP’10]
Redesign of the or-parallel model based on the environment copying model to
exploit or-parallelism based on a multi-threaded implementation.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Or-Parallelism in Yap: Past, Present and Future

ä Past (1999-2003)

© Or-Parallelism for Shared Memory [EPIA’99,EUROPAR’00]
Support for implicit or-parallelism based on the environment copying model.

© Or-Parallelism For Distributed Memory [EPIA’03]
Support for implicit or-parallelism based on the stack splitting model.

ä Present (2010-2011)

© Or-Parallelism using Threads [ICLP’10]
Redesign of the or-parallel model based on the environment copying model to
exploit or-parallelism based on a multi-threaded implementation.

ä Future (2011-...)

© Explicit Parallel Constructs
Use of explicit high-level parallel constructs to trigger parallel execution.

© Teams of Workers for Shared/Distributed Memory
Design of a new parallel platform that combines environment copying with
stack splitting to scale-up on clusters of multi-core processors.

WLPE 2011, Lexington, Kentucky, USA, July 2011 3

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

In This Talk

ä Tabling

© Global Trie
© Call Subsumption
© Tabling Modes and Answer Subsumption
© Multi-Threaded Tabling

ä Or-Parallelism

© Explicit Parallel Constructs
© Teams of Workers for Shared/Distributed Memory

WLPE 2011, Lexington, Kentucky, USA, July 2011 4

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling in Logic Programming

ä Tabling is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with recursion and redundant sub-
computations.

ä It extends the standard SLD resolution method by adding new tabling operations.

© First calls to tabled subgoals are evaluated as usual through the execution of
Prolog code but answers are inserted into a table space.

© Similar calls are evaluated by consuming answers from the table space that
were generated by the corresponding similar subgoal, instead of re-evaluating
them against the program clauses.

© As new answers are found, they are inserted into the table space and returned
to all similar calls.

WLPE 2011, Lexington, Kentucky, USA, July 2011 5

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Table Space

ä Can be accessed to:

© Look up if a subgoal is in the table and, if not, insert it.
© Look up if a newly found answer is in the table and, if not, insert it.
© Load answers for similar subgoals.

ä Implementation requirements:

© Fast look-up and insertion methods.
© Compactness in representation of logic terms.

WLPE 2011, Lexington, Kentucky, USA, July 2011 6

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Using Tries to Represent Terms

ä Tries are trees in which com-
mon prefixes are represented
only once.

ä Each different path through
the nodes in the trie corre-
sponds to a term.

ä Terms with common prefixes
branch off from each other at
the first distinguishing token.

root Empty
trie

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Using Tries to Represent Terms

ä Tries are trees in which com-
mon prefixes are represented
only once.

ä Each different path through
the nodes in the trie corre-
sponds to a term.

ä Terms with common prefixes
branch off from each other at
the first distinguishing token.

root Empty
trie

f/1

1

VAR0

t/2

root Inserting
t(f(1),Y)

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Using Tries to Represent Terms

ä Tries are trees in which com-
mon prefixes are represented
only once.

ä Each different path through
the nodes in the trie corre-
sponds to a term.

ä Terms with common prefixes
branch off from each other at
the first distinguishing token.

root Empty
trie

f/1

1

VAR0

t/2

root Inserting
t(f(1),Y)

1

f/1

2

VAR0VAR0

t/2

root Inserting
t(f(2),Y)

WLPE 2011, Lexington, Kentucky, USA, July 2011 7

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Using Tries to Represent the Table Space

answer
trie

f/1

2 1

f/1

2 1

f/1

2 1

f/1

2 1

answer
trie

VAR0

VAR1 1

VAR0

subgoal frame for
t(VAR0,VAR1)

subgoal frame for
t(f(1),VAR0)

f/1
subgoal
trie

table entry for t/2

WLPE 2011, Lexington, Kentucky, USA, July 2011 8

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

GT-T: Global Trie for Terms

ä In GT-T, all argument and substitution compound terms appearing in tabled
subgoal calls and/or answers are represented only once in the GT, thus
preventing situations where these terms are represented more than once in
different trie data structures.

ä Each path in the original subgoal and answer tries is composed of a fixed
number of trie nodes representing the number of argument or substitution
terms in the corresponding tabled subgoal call or answer.

WLPE 2011, Lexington, Kentucky, USA, July 2011 9

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

GT-T: Global Trie for Terms

answer
trie

global
trie

answer
trie

f/1

2 1

subs2

subs1

subs2

subs1

subs2

subs1 subs1

subs2

subgoal
trie

table entry for t/2

subgoal frame for
t(VAR0,VAR1)

subgoal frame for
t(f(1),VAR0)

arg1VAR0

VAR1 VAR0

WLPE 2011, Lexington, Kentucky, USA, July 2011 10

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

GT-ST: Global Trie for Subterms

ä The GT-ST maximizes the sharing of the tabled data that is structurally equal
at a second level, by avoiding the representation of equal compound subterms,
and thus preventing situations where the representation of those subterms occur
more than once.

ä Although GT-ST uses the same GT-T’s tree structure for implementing the
GT, every different path in the GT can now represent a complete term or a
subterm of another term, but still being an unique term.

WLPE 2011, Lexington, Kentucky, USA, July 2011 11

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

GT-ST: Global Trie for Subterms

ä Consider, for example, the insertion of the terms f(g(1),g(1)) and f(g(2),g(2))
in the GT-T...

g/1

2 1

g/1

2

g/1

1

GT-T
global trie

:- table t/2.

t(X,Y) :- term(X),
 term(Y).

term(f(g(1),g(1))).
term(f(g(2),g(2))).

f/2

WLPE 2011, Lexington, Kentucky, USA, July 2011 12

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

GT-ST: Global Trie for Subterms

ä ... and in the GT-ST.

GT-ST
global trief/2

subt1 subt1

g/1

2 1

subt2 subt2

:- table t/2.

t(X,Y) :- term(X),
 term(Y).

term(f(g(1),g(1))).
term(f(g(2),g(2))).

WLPE 2011, Lexington, Kentucky, USA, July 2011 13

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Global Trie: Experimental Results

Terms
GT-T/YapTab GT-ST/YapTab

Mem Store Load Comp Mem Store Load Comp
1,000 ints 1.00 1.05 1.00 1.00 1.00 1.09 1.11 1.07
1,000 atoms 1.00 1.04 1.01 1.02 1.00 1.04 1.03 1.08
1,000 f/1 1.00 1.32 1.16 2.10 1.00 1.34 1.17 2.13
1,000 f/2 0.50 1.10 1.14 1.84 0.50 1.06 1.11 1.88
1,000 f/4 0.25 0.81 0.98 1.44 0.25 0.78 1.04 1.53
1,000 f/6 0.17 0.72 0.72 1.38 0.17 0.66 0.71 1.36
1,000 []/1 0.50 1.08 1.05 1.61 0.50 1.10 1.02 1.58
1,000 []/2 0.25 0.80 0.94 1.38 0.25 1.00 1.05 1.48
1,000 []/4 0.13 0.63 0.54 0.96 0.13 0.89 0.66 1.14
Average 0.53 0.95 0.95 1.42 0.53 0.99 0.99 1.47

Memory usage and store/load times for a t/5 tabled predicate that simply stores
in the table space terms defined by term/1 facts, called with all combinations of

one and two free variables in the arguments.

WLPE 2011, Lexington, Kentucky, USA, July 2011 14

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Global Trie: Experimental Results

Terms
GT-T GT-ST/GT-T

Mem (MB) Times (ms) Mem Times
Total/GT Str/Ld/Cmp Total/GT Str/Ld/Cmp

f/1
500,000 g/1 17.17/7.63 126/28/51 1.44 / 2.00 1.55 / 1.14 / 1.00
500,000 g/3 32.43/22.89 198/34/61 1.24 / 1.33 3.29 / 1.12 / 1.25
500,000 g/5 47.68/38.15 293/47/83 1.16 / 1.20 1.46 / 1.00 / 0.99
f/2
500,000 g/1 32.43/22.89 203/38/71 1.00 / 1.00 1.28 / 1.13 / 1.09
500,000 g/3 62.94/53.41 45/60/103 0.76 / 0.71 1.18 / 0.84 / 0.95
500,000 g/5 93.46/83.92 438/111/146 0.67 / 0.64 1.10 / 0.67 / 0.80
f/3
500,000 g/1 47.68/38.15 296/50/89 0.84 / 0.80 2.87 / 1.02 / 1.03
500,000 g/3 93.46/83.92 616/142/164 0.59 / 0.55 1.25 / 0.80 / 0.85
500,000 g/5 139.24/129.7 832/197/224 0.51 / 0.47 0.96 / 0.67 / 0.74
Average 0.96 / 0.97 0.93 / 0.97 / 0.91

Memory usage and store/load times for a t/1 tabled predicate that simply stores
in the table space terms defined by term/1 facts.

WLPE 2011, Lexington, Kentucky, USA, July 2011 15

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Call Subsumption

ä In general, we can distinguish two main approaches to determine similarity
between tabled subgoals.

© Call by Variance: subgoal A is similar to B if they are the same by renaming
the variables.
Example: p(X,1,Y) and p(Y,1,Z) are variants because both can be renamed
into p(VAR0,1,VAR1).

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Call Subsumption

ä In general, we can distinguish two main approaches to determine similarity
between tabled subgoals.

© Call by Variance: subgoal A is similar to B if they are the same by renaming
the variables.
Example: p(X,1,Y) and p(Y,1,Z) are variants because both can be renamed
into p(VAR0,1,VAR1).

© Call by Subsumption: subgoal A is similar to B if A is more specific than B
(or B is more general than A).
Example: p(X,1,2) is more specific than p(Y,1,Z) because there is a substi-
tution {Y=X, Z=2} that makes p(X,1,2) an instance of p(Y,1,Z).

WLPE 2011, Lexington, Kentucky, USA, July 2011 16

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Call Subsumption

ä Advantages

© Less code is executed because subsumed subgoals can reuse answers instead
of executing their own code.

© More answers are shared across subgoals, therefore there is less redundancy
in the table space.

ä Disadvantages

© More strict semantics (with some extra-logical features of Prolog, such as
the var/1 predicate, call by subsumption should not be used as it can produce
wrong results).

© The mechanisms to support subsumption-based tabling are harder to imple-
ment.

WLPE 2011, Lexington, Kentucky, USA, July 2011 17

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Retroactive Call Subsumption

ä We have developed a new resolution extension called Retroactive Call Sub-
sumption (RCS) that supports subsumption-based tabling by allowing full
sharing of answers among subsumptive subgoals, independently of the order they
are called.
Example: if p(1,X) is called before or after p(X,Y), p(1,X) will reuse the
answers from p(X,Y). This is not the case in XSB Prolog, because if p(1,X) is
called before p(X,Y), no reuse will occur.

ä RCS selectively prunes the evaluation of a subgoal S when a more general
subgoal G appears later on.

ä RCS works by pruning the execution branch of S and then by restarting the
evaluation of S as a consumer. By doing that, we save execution time by
not executing code that would generate a subset of the answers we can find by
executing G.

WLPE 2011, Lexington, Kentucky, USA, July 2011 18

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Retroactive Call Subsumption: Challenges

ä Keep execution consistent after pruning [JELIA’10]

© Build a subgoal dependency tree.
© Update the low-level stacks related to the pruned subgoals.
© New operations and evaluation strategies that can handle multiple scenarios

in order to ensure correct completion.

ä Compute the set of subsumed subgoals executing [ICLP’11]
New algorithms and extensions to the table space to efficiently retrieve the set
of subsumed subgoals.

ä Ensure that new consumers will not consume repeated answers [EPIA’11]
New table space organization where answers are represented only once.

WLPE 2011, Lexington, Kentucky, USA, July 2011 19

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Retroactive Call Subsumption: Experimental Results

Program
Yap Prolog

Variant/RCS Subsumption/RCS
left first 0.89 0.95
left last 0.88 0.90

double first 1.07 1.09
double last 1.05 1.10

genome 450.33 0.74
reach first 2.54 1.76
reach last 3.22 1.87

flora 3.17 1.17
fib 1.95 2.02
big 13.26 13.66

For programs where the time needed to retrieve the answers for the subsumed
subgoal offsets the time spent executing the code, RCS performs slightly worse.

WLPE 2011, Lexington, Kentucky, USA, July 2011 20

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling Modes and Answer Subsumption

ä Mode Declaration

© :- table p(M1,M2,...,Mn).

ä Available Modes

© index (index argument)
© first (keeps first answer)
© last (keeps last answer)
© all (keeps all answers)
© min (keeps minimum answer)
© max (keeps maximum answer)

WLPE 2011, Lexington, Kentucky, USA, July 2011 21

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling Modes

:- table p(index,index,first).

Answers Table Space
1. p(1,2,10) New 1
2. p(1,2,6) Repeats 1 1
3. p(1,3,5) New 1 / 3
4. p(1,3,6) Repeats 3 1 / 3
5. p(1,2,8) Repeats 1 1 / 3

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Tabling Modes

:- table p(index,index,first).

Answers Table Space
1. p(1,2,10) New 1
2. p(1,2,6) Repeats 1 1
3. p(1,3,5) New 1 / 3
4. p(1,3,6) Repeats 3 1 / 3
5. p(1,2,8) Repeats 1 1 / 3

:- table p(index,index,min,all).

Answers Table Space
1. p(1,2,10,[1,3,2]) New + Removed by 2 1
2. p(1,2,6,[1,4,2]) Better Than 1 2
3. p(1,3,5,[1,3]) New 2 / 3
4. p(1,3,6,[1,9,3]) Worse Than 3 2 / 3
5. p(1,2,6,[1,5,2]) Equal To 2 2 / 3 / 4

WLPE 2011, Lexington, Kentucky, USA, July 2011 22

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Answer Subsumption

:- table p(index,index,min).

Answers Table Space
1. p(1,2,3) New + Removed by 2 1
2. p(1,2,2) Better Than 1 2
3. p(2,3,3) New 2 / 3
4. p(1,Y,1) New 2 / 3 / 4
5. p(1,5,3) New 2 / 3 / 4 / 5

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Answer Subsumption

:- table p(index,index,min).

Answers Table Space
1. p(1,2,3) New + Removed by 2 1
2. p(1,2,2) Better Than 1 2
3. p(2,3,3) New 2 / 3
4. p(1,Y,1) New 2 / 3 / 4
5. p(1,5,3) New 2 / 3 / 4 / 5

answer subsumption(p(, ,C),min,C).

Answers Table Space
1. p(1,2,3) New + Removed by 2 1
2. p(1,2,2) Better Than 1+ Removed by 4 2
3. p(2,3,3) New 2 / 3
4. p(1,Y,1) 4a. p(1,Y,1)

4b. p(1,2,1) 3 / 4a / 4b
5. p(1,5,3) 5a. p(1,5,1) 3 / 4a / 4b / 5a

WLPE 2011, Lexington, Kentucky, USA, July 2011 23

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling

ä Despite the availability of both threads and tabling in Prolog compilers such as
XSB, Yap and Ciao, the implementation of these two features such that they
work together is not an easy task.

ä Until now, XSB was the only system combining tabling with multi-threading:

© Private Tables: each thread keeps it own copy of the table space, thus
avoiding concurrency between threads.

© Shared Tables: when a set of subgoals computed by different threads is
mutually dependent, then a usurpation operation synchronizes threads and
a single thread assumes the computation of all subgoals, turning the remaining
threads into consumer threads.

WLPE 2011, Lexington, Kentucky, USA, July 2011 24

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling

ä The basis for our work is also on multi-threaded tabling using shared tables, but
we propose an alternative view to XSB’s approach.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling

ä The basis for our work is also on multi-threaded tabling using shared tables, but
we propose an alternative view to XSB’s approach.

ä In our proposal, each thread was its own tables, i.e., from the thread point of
view the tables are private, but at the engine level we use a common table
space, i.e., from the implementation point of view the tables are shared among
all threads.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling

ä The basis for our work is also on multi-threaded tabling using shared tables, but
we propose an alternative view to XSB’s approach.

ä In our proposal, each thread was its own tables, i.e., from the thread point of
view the tables are private, but at the engine level we use a common table
space, i.e., from the implementation point of view the tables are shared among
all threads.

ä We propose three designs for our common table space approach:

© No-Sharing (similar to XSB with private tables)
© Subgoal-Sharing
© Full-Sharing

WLPE 2011, Lexington, Kentucky, USA, July 2011 25

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling: No-Sharing

Answer
Trie

Structure

Answer
Trie

Structure

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Subgoal
Trie

Structure

Table Entry

T0 T1 Tk-1. . .T2 Tk-2Tk-3

Memory usage for a table T assuming NK threads evaluating NS subgoals:
sizeof(TE) + sizeof(BA) +

[sizeof(STS)+ [sizeof(SF) + sizeof(ATS)] * NS] * NK

WLPE 2011, Lexington, Kentucky, USA, July 2011 26

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling: Subgoal-Sharing

Subgoal
Frame
call_i

Answer
Trie

Structure

Subgoal
Frame
call_i

Answer
Trie

Structure

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Tk-3 Tk-2 Tk-1. . .

Subgoal Trie Structure

T0 T1 T2

Memory usage for a table T assuming NK threads evaluating NS subgoals:
sizeof(TE) + sizeof(STS) +

[sizeof(BA) + [sizeof(SF) + sizeof(ATS)] * NK] * NS

WLPE 2011, Lexington, Kentucky, USA, July 2011 27

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling: Full-Sharing

Table Entry

Subgoal Entry call_i

Answer
Trie

Structure

Subgoal Trie Structure

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Subgoal
Frame
call_i

Tk-3 Tk-2 Tk-1. . .T0 T1 T2

Sg_Entry Sg_Entry Sg_Entry

Memory usage for a table T assuming NK threads evaluating NS subgoals:
sizeof(TE) + sizeof(STS) +

[sizeof(SE) + sizeof(BA) + sizeof(ATS) + sizeof(SF)* NK] * NS

WLPE 2011, Lexington, Kentucky, USA, July 2011 28

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling: Experimental Results

Design Time Memory
Pyramid 400
NS 322,799 370,894,136
SS 1.12 -448,984
FS 4.30 -346,599,384
Cycle 400
NS 209,678 247,351,736
SS 1.13 -225,544
FS 4.84 -231,333,792
Grid 20
NS 193,419 247,351,736
SS 0.96 -225,544
FS 1.14 -231,333,792

Execution time (in milliseconds) and total memory usage (bytes) running 16
simultaneous threads, all executing the same query goal.

WLPE 2011, Lexington, Kentucky, USA, July 2011 29

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Multi-Threaded Tabling: Experimental Results

Design
Execution Tries Threads

TE SF STS ATS BA SE
Pyramid 400
NS 56 921,600 1,024,640 368,947,200 640 0
SS 0 0 -960,600 0 511,616 0
FS 0 -307,200 -960,600 -345,888,000 511,616 44,800
Cycle 400
NS 56 461,952 513,920 246,375,168 640 0
SS 0 0 -481,800 0 256,256 0
FS 0 -153,984 -481,800 -230,976,720 256,256 22,456
Grid 20
NS 56 461,952 513,920 246,375,168 640 0
SS 0 0 -481,800 0 256,256 0
FS 0 -153,984 -481,800 -230,976,720 256,256 22,456

Specific memory usage (bytes) running 16 simultaneous threads, all executing the
same query goal.

WLPE 2011, Lexington, Kentucky, USA, July 2011 30

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä Traditional parallel LP systems usually run in parallel mode from beginning
to end and this may severely restrict parallelism when supporting sequential
semantics.

© If we avoid exploiting non-leftmost sub-computations, we may be restricting
the granularity of the available parallel work.

© If we allow such sub-computations, we may be executing speculative work
and/or side-effects that would not be done in a sequential system.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä Traditional parallel LP systems usually run in parallel mode from beginning
to end and this may severely restrict parallelism when supporting sequential
semantics.

© If we avoid exploiting non-leftmost sub-computations, we may be restricting
the granularity of the available parallel work.

© If we allow such sub-computations, we may be executing speculative work
and/or side-effects that would not be done in a sequential system.

ä However, most of the execution time is spent in a parallel application is spent
in computations that are inherently parallel and independent and only a small
part of the execution time is spent in sequential parts of code:

© Initialization code
© Code to partitioning the data into small sub-tasks
© Code to aggregate/reduce data from different sub-tasks

WLPE 2011, Lexington, Kentucky, USA, July 2011 31

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä Most of the recent proposals on parallel programming, where parallelism is
exploited explicitly, are trying to encapsulate some of the low-level details in
more high-level explicit parallel constructs for well-know patterns and let
the execution model implement them implicitly:

© OpenMP
© Intel Threading Building Blocks
© Map-Reduce

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä Most of the recent proposals on parallel programming, where parallelism is
exploited explicitly, are trying to encapsulate some of the low-level details in
more high-level explicit parallel constructs for well-know patterns and let
the execution model implement them implicitly:

© OpenMP
© Intel Threading Building Blocks
© Map-Reduce

ä Our approach goes in the opposite direction. It establishes its foundations on
implicit parallelism and relies on high-level explicit parallel constructs to
trigger parallel execution.

© More declarative, thus simplifying parallel programming;
© Better performance, since we can benefit from the intrinsic and strong

potential that LP has for implicit parallelism;
© More general, can be easily generalized to implement new parallel constructs

with minor changes to the low-level parallel engine.

WLPE 2011, Lexington, Kentucky, USA, July 2011 32

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä Some basic parallel constructs we are interested in are:

© parallel/1
© parallel findall/3
© parallel once/1

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä Some basic parallel constructs we are interested in are:

© parallel/1
© parallel findall/3
© parallel once/1

go1 :- statistics(cputime,[Init,_]),
parallel(benchmark),
statistics(cputime,[End,_]),
Time is End - Init, writeln(Time).

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä Some basic parallel constructs we are interested in are:

© parallel/1
© parallel findall/3
© parallel once/1

go1 :- statistics(cputime,[Init,_]),
parallel(benchmark),
statistics(cputime,[End,_]),
Time is End - Init, writeln(Time).

go2 :- init_something,
parallel_findall(X,benchmark(X),L),
do_something_with_results(L).

WLPE 2011, Lexington, Kentucky, USA, July 2011 33

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä As in OpenMP, we can extend the parallel constructs to include pre-defined
directives that can be used to instruct and/or to pass specific information to
the execution system about the computation at hand:

© num workers(expr)
© execution model(env copying | stack splitting)
© if(expr)
© reduction(var,operator)
© cut safe
© allow out of order side effects

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Explicit Parallel Constructs

ä As in OpenMP, we can extend the parallel constructs to include pre-defined
directives that can be used to instruct and/or to pass specific information to
the execution system about the computation at hand:

© num workers(expr)
© execution model(env copying | stack splitting)
© if(expr)
© reduction(var,operator)
© cut safe
© allow out of order side effects

go :- init_something(I),
parallel(benchmark(X),[if(I),reduction(X,sum),cut_safe]),
do_something_with_result(X).

WLPE 2011, Lexington, Kentucky, USA, July 2011 34

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Teams of Workers for Shared/Distributed Memory

ä In the past, we have already designed and developed or-parallel systems for
shared and distributed memory architectures:

© Shared Memory: support for implicit or-parallelism based on the environ-
ment copying model.

© Distributed Memory: support for implicit or-parallelism based on the stack
splitting model.

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Teams of Workers for Shared/Distributed Memory

ä In the past, we have already designed and developed or-parallel systems for
shared and distributed memory architectures:

© Shared Memory: support for implicit or-parallelism based on the environ-
ment copying model.

© Distributed Memory: support for implicit or-parallelism based on the stack
splitting model.

ä Design a new parallel platform that will be able to take advantage of both
models to scale-up on clusters of multi-core processors.

ä For that, we will consider Teams of Workers, i.e., workers sharing the same
memory address space. Workers executing in different computer nodes cannot
belong to the same team, but we can have more than a team in the same
computer node.

WLPE 2011, Lexington, Kentucky, USA, July 2011 35

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Teams of Workers for Shared/Distributed Memory

ä Workers inside a team (shared memory only) can distribute work using:

© Environment Copying
© Stack Splitting

ä Teams of workers can distribute work using:

© Environment Copying (shared memory only)
© Stack Splitting (shared and distributed memory)

ä This idea is similar to the MPI/OpenMP hybrid programming pattern where
MPI is usually used to communicate work among workers in different computer
nodes and OpenMP is used to communicate work among workers in the same
node.

ä By invoking our explicit parallel constructs with proper directives, we will be
able to trigger parallel execution of these different combinations of number of
workers, teams of workers and execution models.

WLPE 2011, Lexington, Kentucky, USA, July 2011 36

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Teams of Workers for Shared/Distributed Memory

CPU
Memory

Network

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Teams of Workers for Shared/Distributed Memory

CPU
Memory

Network

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

Network

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

stack_splitting

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Teams of Workers for Shared/Distributed Memory

CPU
Memory

Network

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

Network

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

stack_splitting

stack_splittingenv_copying

env_copying

CPU
Memory

Network

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

env_copying

stack_splitting

WLPE 2011, Lexington, Kentucky, USA, July 2011 37

Tabling and Or-Parallelism in Yap Prolog: Past, Present and Future Ricardo Rocha

Thank You!

Ricardo Rocha
CRACS & INESC TEC

University of Porto, Portugal

ricroc@dcc.fc.up.pt
http://www.dcc.fc.up.pt/∼ricroc

Yap Prolog: http://www.dcc.fc.up.pt/∼vsc/Yap
Project LEAP: http://www.dcc.fc.up.pt/leap

WLPE 2011, Lexington, Kentucky, USA, July 2011 38

