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Abstract. Tabling is an implementation technique that improves the
declarativeness and expressiveness of Prolog by reusing answers to sub-
goals. The declarative nature of tabled logic programming suggests that
it might be amenable to parallel execution. On the other hand, the com-
plexity of the tabling mechanism, and the existence of a shared resource,
the table, may suggest that parallelism might be limited and never scale
for real applications. In this work, we propose three alternative locking
schemes to deal with concurrent table accesses, and we study their impact
on the OPTYap parallel tabling system using a set of tabled programs.

1 Introduction

Tabling (or tabulation or memoing) is an implementation technique where re-
sults for subcomputations are stored and reused. Tabling has proven to be par-
ticularly effective in logic programs: tabling can reduce the search space, avoid
looping, and in general have better termination properties than traditional Pro-
log. The XSB Prolog system [1] is the most well known tabling Prolog system,
with excellent results in application areas such as Natural Language Processing,
Knowledge Based Systems, Model Checking, and Program Analysis.

One extra advantage of tabling is that tabled programs are most often pure
logic programs, and are thus amenable to the implicit exploitation of parallelism.
Because tabling has often been used to reduce search space, or-parallelism is most
interesting. We thus proposed OPTYap [2], a design for combining implemen-
tation techniques for or-parallelism in shared-memory machines, namely envi-
ronment copying [3], with the WAM extensions originally proposed in XSB [4].
Results have shown that OPTYap can achieve excellent speedups, while intro-
ducing low overheads for sequential execution [5].

The performance of tabling largely depends on the implementation of the ta-
ble itself. The table will be called very often, therefore fast lookup and insertion
is mandatory. Applications can make millions of different calls, hence compact-
ness is also required. The XSB design used tries to implement this goal [6]. Tries
are trees in which there is one node for every common prefix [7]. Tries have



proven to be one of the main assets of XSB, because they are quite compact for
most applications, while having fast lookup and insertion.

One critical issue in our parallel design was whether tries would be effective
in the presence of concurrent accesses. One of the first implementations of tries
in a parallel environment was the work by Chan and Lim [8], where tries were
used to index words for alphabets with a finite number of symbols. In our work,
we use tries to index Prolog terms, which can have an infinite number of symbols.
We address concurrency by extending the trie structure originally proposed in
XSB to support locking mechanisms. To achieve best performance, different
implementations may be pursued. We can have one lock per table entry, one
lock per path, or one lock per node. We can also have hybrid locking schemes
combining the above. Our initial results did show that naive approaches could
generate significant overheads or result in minimal concurrency. We thus studied
alternative locking schemes that try to reduce overheads by only locking part of
the tree when strictly necessary, and evaluated their performance. Our results
show almost-linear speedups up to 32 CPUs on an Origin2000. Although our
context is parallel tabling, we believe that these experiments will be of interest
to application areas that rely on access to frequently updated trees.

The remainder of the paper is organized as follows. First, we introduce the
trie data structure and the table space organization. Next, we describe the three
alternative locking schemes implemented in OPTYap. We then end by presenting
some initial results and outlining some conclusions.

2 Table Space

Tabling is about storing intermediate answers for subgoals so that they can be
reused when a repeated subgoal appears. Execution proceeds as follows. When-
ever a tabled subgoal S is first called, an entry for S is allocated in the table
space. This entry will collect all the answers found for S. Repeated calls to vari-
ants of S are resolved by consuming the answers already stored in the table.
Meanwhile, as new answers are generated, they are inserted into the table and
returned to all variant subgoals.

The table space can be accessed in a number of ways: (i) to look up if a
subgoal is in the table, and if not insert it; (ii) to verify whether a newly found
answer is already in the table, and if not insert it; and, (iii) to load answers
to variant subgoals. Hence, a correct design of the algorithms to access and
manipulate the table data is critical to achieve an efficient implementation. Our
implementation uses tries as proposed by Ramakrishnan et al. [6].

Tries were first proposed to index dictionaries [7] and have since been general-
ized to index recursive data structures such as terms (see [6, 9–11] for use of tries
in tabled logic programs, automated theorem proving and term rewriting). An
essential property of the trie structure is that common prefixes are represented
only once. The efficiency and memory consumption of a particular trie largely
depends on the percentage of terms that have common prefixes. For tabled logic
programs, we often can take advantage of this property.



Each different path through the nodes in the trie, the trie nodes, corresponds
to a term. The entry point is called the root node, internal nodes represent
symbols in terms and leaf nodes specify completed terms. Terms with common
prefixes branch off from each other at the first distinguishing symbol. Inserting
a term requires in the worst case allocating as many nodes as necessary to
represent its complete path. On the other hand, inserting repeated terms requires
traversing the trie structure until reaching the corresponding leaf node, without
allocating any new node. During traversal, each child node specifies the next
symbol to be inspected in the input term. A transition is taken if the symbol in
the input term at a given position matches a symbol on a child node. Otherwise,
a new child node representing the current symbol is added and an outgoing
transition from the current node is made to point to the new child. On reaching
the last symbol in the input term, we reach a leaf node in the trie.
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Fig. 1. Tries for terms

Figure 1 shows an example for a trie with three
terms. Initially, the trie contains the root node only.
Next, we insert f(X, a). As a result, we create three
nodes: one for the functor f/2, next for the variable X ,
and last for the constant a. The second step is to insert
g(X, b, Y ). The two terms differ on the main functor,
so tries bring no benefit here. In the last step, we insert
f(Y, 1) and we save two common nodes with f(X, a).
Notice the way variables are represented. We follow the
formalism proposed by Bachmair et al. [10], where each
variable is represented as a distinct constant.

The implementation of tries requires four fields per
trie node. The first field (TrNode symbol) stores the
symbol for the node. The second (TrNode child) and
third (TrNode parent) fields store pointers respectively to the first child node
and to the parent node. The fourth field (TrNode next) stores a pointer to the
sibling node, in such a way that the outgoing transitions from a node can be col-
lected by following its first child pointer and then the list of sibling pointers. We
next present how tries are used to implement tabled predicates. Figure 2 shows
an example for a predicate f/2 after the execution of the following operations:

tabled_subgoal_call: f(X,a)
tabled_subgoal_call: f(Y,1)
tabled_new_answer: f(0,1)
tabled_new_answer: f(n(0),1)

We use two levels of tries: one stores the subgoal calls, the other the answers.
Each different call to a tabled predicate corresponds to a unique path through
the subgoal trie structure. Such a path always starts from a table entry data
structure, follows a sequence of the subgoal trie nodes, and terminates at a leaf
data structure, the subgoal frame. Each subgoal frame stores information about
the subgoal, namely an entry point to its answer trie structure. Each unique path
through the answer trie nodes corresponds to a different answer to the entry
subgoal. When inserting new answers, we only store the substitutions for the
unbound variables in the subgoal call. This optimization is called substitution



factoring [6]. Leaf answer nodes are chained in a linked list in insertion time
order, so that we can recover answers in the same order they were inserted. The
subgoal frame points to the first and last answer in this list. Thus, a variant
subgoal only needs to point at the leaf node for its last loaded answer, and
consumes more answers just by following the chain. To load an answer, the trie
nodes are traversed in bottom-up order and the answer is reconstructed.
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Fig. 2. Tries to organize the table space

Traversing a trie to check/insert
for new calls or for new answers is
implemented by repeatedly invok-
ing a trie check insert() pro-
cedure for each symbol that rep-
resents the term being checked.
Given a symbol S and a parent
node P , the procedure returns the
child node of P that represents the
given symbol S. Figure 3 shows the
pseudo-code. Initially it traverses
the chain of sibling nodes that rep-
resent alternative paths from the
given parent node and checks for
one representing the given symbol.
If such a node is found then exe-
cution is stopped and the node re-
turned. Otherwise, a new trie node
is allocated and inserted in the be-
ginning of the chain. To allocate new trie nodes, we use a new trie node()

procedure with four arguments, each one corresponding to the initial values to
be stored respectively in the TrNode symbol, TrNode child, TrNode parent and
TrNode next fields of the new allocated node.

trie_check_insert(symbol s, trie node parent) {
child = TrNode_child(parent)
while (child) { // check if a node for s was already inserted

if (TrNode_symbol(child) == s)
return child // node found

child = TrNode_next(child)
}
child = new_trie_node(s, NULL, parent, TrNode_child(parent))
TrNode_child(parent) = child // insert the new node for s
return child

}
Fig. 3. Pseudo-code for trie check insert()

3 Table Locking Schemes

There are two critical issues that determine the efficiency of a locking scheme for
the table. One is lock duration, that is, the amount of time a data structure is
held. The other is lock grain, that is, the number of data structures that are pro-
tected through a single lock request. It is the balance between lock duration and



lock grain that compromises the efficiency of different table locking approaches.
For instance, if the lock scheme is short duration or fine grained, then inserting
many trie nodes in sequence, corresponding to a long trie path, may result in
a large number of lock requests. On the other hand, if the lock scheme is long
duration or coarse grain, then going through a trie path without extending or
updating its trie structure, may unnecessarily lock data and prevent possible
concurrent access by others. Unfortunately, it is impossible beforehand to know
which locking scheme would be optimal.

The Table Lock at Node Level (TLNL) was our first implemented scheme.
It only enables a single writer per chain of sibling nodes that represent alterna-
tive paths from a common parent node. Figure 4 shows the pseudo-code that
implements it. The main difference from the original procedure is that in TLNL
we lock the parent node while accessing its children nodes. Locking is done by
applying a mask to the node address in order to index a global array of lock
entries. Within this scheme, the period of time a node is locked is proportional
to the average time needed to traverse its children nodes, and the number of
lock requests is proportional to the length of the path.

trie_check_insert(symbol s, trie node parent) {
lock(parent) // locking the parent node
child = TrNode_child(parent)
while (child) {

if (TrNode_symbol(child) == s) {
unlock(parent) // unlocking before return
return child

}
child = TrNode_next(child)

}
child = new_trie_node(s, NULL, parent, TrNode_child(parent))
TrNode_child(parent) = child
unlock(parent) // unlocking before return
return child

}
Fig. 4. Pseudo-code for the TLNL scheme

The Table Lock at Write Level (TLWL) scheme improves TLNL by reducing
lock duration. Like TLNL, TLWL only enables a single writer per chain of sibling
nodes, but the common parent node is only locked when writing to the table is
likely. Figure 5 shows the pseudo-code for TLWL. Initially, the chain of sibling
nodes that follow the given parent node is traversed without locking. The parent
node must be locked only when the given symbol is not found. This avoids
locking when the symbol already exists in the chain. Moreover, it delays locking
while insertion of a new node to represent the symbol is not likely. Note that we
need to check if, during our attempt to lock, other worker expanded the chain to
include the given symbol. Within this scheme, the number of lock requests is, on
average, lower than TLNL. It ranges from zero to the number of nodes in path.
Similarly, the amount of time a node is locked is also, on average, smaller. It
includes the time needed to check the nodes that in the meantime were inserted
by other workers, if any, plus the time to allocate and initialize the new node.

Last, the Table Lock at Write Level - Allocate Before Check (TLWL-ABC)
scheme is a variant of TLWL. It also follows the probable node insertion notion,



trie_check_insert(symbol s, trie node parent) {
child = TrNode_child(parent)
initial_child = child // keep the initial child node
while (child) { // traverse the initial chain of sibling nodes

if (TrNode_symbol(child) == s)
return child

child = TrNode_next(child)
}
lock(parent)
child = TrNode_child(parent) // traverse the nodes inserted in the ...
while (child != initial_child) { // ... meantime by others, if any

... // the same as TLNL
}
... // the same as TLNL

}
Fig. 5. Pseudo-code for the TLWL scheme

but uses a different strategy to decide on when to allocate a node. In order to
reduce to a minimum the lock duration, it anticipates the allocation and initial-
ization of nodes that are likely to be inserted in the table before locking. However,
if in the meantime a different worker introduces first an identical node, we pay
the cost of having pre-allocated an unnecessary node that has to be additionally
freed. Figure 6 presents the pseudo-code that implements this scheme.

trie_check_insert(symbol s, trie node parent) {
... // the same as TLWL
pre_alloc = new_trie_node(s, NULL, parent, NULL) // pre-allocate ...
lock(parent) // ... a node for s before locking
child = TrNode_child(parent)
while (child != initial_child) {

if (TrNode_symbol(child) == s) {
unlock(parent)
free(pre_alloc) // free the pre-allocated node
return child

}
child = TrNode_next(child)

}
TrNode_next(pre_alloc) = TrNode_child(parent)
TrNode_child(parent) = pre_alloc // insert the pre-allocated node
unlock(parent)
return pre_alloc

}
Fig. 6. Pseudo-code for the TLWL-ABC scheme

4 Preliminary Results

In order to evaluate the scalability of our locking schemes, we ran OPTYap for a
set of selected programs in a Cray Origin2000 parallel computer with 96 MIPS
195 MHz R10000 processors. We selected the programs that showed significant
speedups for parallel execution in previous work [2, 5]. The programs include the
transition relation graphs for two model-checking specifications, a same gener-
ation problem for a 24x24x2 data cylinder, and a transitive closure of a 25x25
grid using left recursion. All programs find all the solutions for the problem.

In order to get a deeper insight on the behavior of each program, we first
characterize the programs in Table 1. The columns have the following meaning:
time is the execution time in seconds with a single worker; sg is the number



of different tabled subgoal calls; unique is the number of answers stored in the
table; repeated is the number of redundant answers found; nodes is the number
of trie nodes allocated to represent the set of answers; and depth is the average
number of trie nodes required to represent an answer. In parentheses, it shows
the percentage of saving that the trie’s design achieves on these data structures.
Consider Figure 1 as an example, it requires 10 nodes to represent individually all
answers but it uses only 8, thus achieving a saving of 20%. Smaller depth values
or higher percentages of saving reflect higher probabilities of lock contention
when concurrently accessing the table space.

Program time sg unique repeated nodes depth

mc-sieve 268 1 380 1386181 8624 53(57%)
mc-iproto 24 1 134361 385423 1554896 51(77%)
samegen 26 485 23152 65597 24190 1.5(33%)
lgrid 69 1 160000 449520 160401 2(49%)

Table 1. Program characteristics

Table 1 indicates
that mc-sieve is the
program least amena-
ble to lock contention
because it finds the
least number of an-
swers and has the
deepest trie structures. In this regard, lgrid is the opposite case. It finds the
largest number of answers and it has very shallow trie structures. Likewise,
samegen also shows a very shallow trie structure, despite that it can benefit
from its large number of different tabled subgoal calls. It is the case, because the
answers found for different subgoals can be inserted without overlap. Finally,
mc-iproto can also lead to higher ratios of lock contention. It shows the highest
percentage of saving and it inserts a huge number of trie nodes in the table.

Workers

Schemes 8 16 24 32

mc-sieve

TLNL 7.2 11.8 3.9 4.7
TLWL 7.9 15.8 23.7 31.5
TLWL-ABC 7.9 15.8 23.7 31.4

mc-iproto

TLNL 2.6 1.8 1.0 1.0
TLWL 5.0 9.0 8.8 7.2
TLWL-ABC 5.1 7.7 8.4 7.1

samegen

TLNL 7.2 13.8 19.6 24.0
TLWL 7.2 13.9 19.7 24.1
TLWL-ABC 7.2 13.9 19.7 24.2

lgrid

TLNL 6.7 12.1 6.2 5.3
TLWL 7.1 13.5 19.9 24.3
TLWL-ABC 6.9 13.4 18.9 24.2

Table 2. Speedups

Table 2 shows the speedups for the three
locking schemes with varying number of work-
ers. The speedups are relative to the single
worker case. A main conclusion can be easily
drawn from the results presented: TLWL and
TLWL-ABC show identical speedup ratios and
they are the only schemes showing scalability. In
particular, for the mc-sieve program they show
superb speedups up to 32 workers. Closer anal-
ysis allows us to observe other interesting as-
pects: the more refined strategy of TLWL-ABC
does not show to perform better than TLWL; all
schemes show identical speedups for samegen;
and TLNL clearly slows down for more than 16
workers. The good behavior with samegen arises
from the fact that this program calls 485 differ-
ent tabled subgoals. This increases the number
of entries where answers can be stored thus re-
ducing contention points. The TLNL slowdown
is related to the fact that this scheme locks the table even when writing is not
likely. In particular, for repeated answers it pays the cost of performing locking
operations without inserting any new node.



During parallel execution, not only concurrency can be a major source of
overhead. For some programs, the complexity of the tabling mechanism can in-
duce some intricate dependencies that may always constraint parallel execution.
Besides, as tabling, by nature, reduces the potential non-determinism available
in logic programs, the source of parallelism may also be intrinsically limited.

To better understand the parallel execution behavior of our set of programs,
we gathered in Table 3 a set of statistics regarding the number of contention
points when using our best table locking scheme – TLWL. By contention points
we mean the number of unsuccessful first attempts to lock a data structure. We
distinguish three kind of locking attempts: (i) locking related with trie nodes,
when inserting new subgoal calls or new answers; (ii) locking related with subgoal
frames, when updating the subgoal frame pointers to point to the last found
answer; and (iii) locking related with variant subgoals, when synchronizing access
to check for available answers to variant subgoals. Note that TLWL only affects
contention related with trie nodes.

Contention Workers

Points 8 16 24 32

mc-sieve

trie nodes 188 415 677 1979
subgoal frames 0 0 0 2
variant subgoals 0 1 0 4

mc-iproto

trie nodes 6579 10537 11816 11736
subgoal frames 9894 21271 33162 33307
variant subgoals 4685 25006 66334 81515

samegen

trie nodes 119 201 364 417
subgoal frames 52 112 283 493
variant subgoals 0 1 0 0

lgrid

trie nodes 5292 10341 12870 12925
subgoal frames 1124 7319 17440 27834
variant subgoals 1209 5987 23357 35991

Table 3. Contention points with TLWL

The insignificant number of con-
tention points obtained for mc-sieve
supports the excellent speedups ob-
served for parallel execution. In this re-
gard, the contention also obtained for
samegen indicates that locking is not
a problem, and that the small over-
head observed for samegen in Table 2 is
thus mainly related with the complex-
ity of the tabling mechanism. On the
other hand, regarding mc-iproto and
lgrid, lock contention is a major prob-
lem. For trie nodes they show identical
numbers, but mc-iproto inserts about
10 times more answer trie nodes than
lgrid. For subgoal frames and variant
subgoals they show a similar pattern,
but mc-iproto has higher contention ra-
tios per time unit (remember from Ta-
ble 1 that mc-iproto is about 3 times
faster than lgrid), hence justifying its worst behavior with the increase in the
number of workers. For these programs, the sequential order by which leaf an-
swer nodes are chained in the trie seems to be the key issue that reflects the high
number of contention points. After inserting a new answer we need to update
the subgoal frame to point to the last found answer. When checking for answers
to variant subgoals we need to lock and possibly update the variant subgoal
to point to the last loaded answer. For programs that find a large number of
answers per time unit, this obviously increases contention when accessing such
pointers, and thus obtaining good speedups in the presence of these conditions
will always be a difficult task.



5 Concluding Remarks

We studied the impact of using alternative locking schemes to deal with concur-
rent table accesses in parallel tabling. We used OPTYap, that to the best of our
knowledge, is the only available parallel tabling system for logic programming.
Through experimentation, we observed that there are locking schemes that can
obtain good speedup ratios and achieve scalability. Our results show that a main
problem is not only how we lock trie nodes to insert items, but also how we use
auxiliary data structures to synchronize access to the table space. In this regard,
a key issue is the sequential order by which leaf answer nodes are chained in the
trie structure. In the future, we plan to investigate whether alternative designs
can obtain scalable speedups even when frequently updating/accessing tables.
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