
The MyYapDB Deductive Database System

Michel Ferreira and Ricardo Rocha?

DCC-FC & LIACC, University of Porto
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

Tel. +351 226078830, Fax. +351 226003654
{michel,ricroc}@ncc.up.pt

Abstract. We describe the MyYapDB, a deductive database system
coupling the Yap Prolog compiler and the MySQL DBMS. We use our
OPTYap extension of the Yap compiler, which is the first available sys-
tem that can exploit parallelism from tabled logic programs. We describe
the major features of the system, give a simplified description of the im-
plementation and present a performance comparison of using static facts
or accessing the facts as MySQL tuples for a simple example.

1 Introduction

Logic programming and relational databases have common foundations based
on First Order Logic [4]. The motivation for combining logic with relational
databases is to provide the efficiency and safety of database systems in dealing
with large amounts of data with the higher expressive power of logic systems.
This combination aims at representing more efficiently the extensional knowledge
through database relations and the intensional knowledge through logic rules.

In the specific field of deductive databases [6], a restriction of logic program-
ming, Datalog [9], is commonly used as the query language. Datalog encapsulates
the set-at-a-time evaluation strategy and imposes a first normal form compliance
to the attributes of predicates associated to database relations. Datalog queries
are evaluated by combining top-down goal orientation with bottom-up redun-
dant computation checking. Redundant computations are resolved using two
main approaches: the magic-sets rewriting technique [1] and tabling [5], a tech-
nique of memoisation successfully implemented in XSB Prolog [8], the most well
known tabling Prolog system, and also in the OPTYap Prolog system [7].

The main concern in MyYapDB is in performance. Both Yap and MySQL
are systems known for their performance. MyYapDB explores specific features
of Yap and MySQL to build an external module which uses the C API’s of each
system to obtain an efficient deductive database coupled engine. OPTYap is also
the first available system that can exploit parallelism from tabled logic programs,
which seems interesting to further improve performance through the concurrent
evaluation of database queries. Applications of our system include areas such as
Knowledge Based Systems, Model Checking or Inductive Logic Programming.

? This work has been partially supported by APRIL (POSI/SRI/40749/2001) and
by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSI.



2

2 Basic Description of the System

In coupled deductive database systems, the communication between the Prolog
engine and the relational database is usually done via a SQL query. MySQL
answers to a SQL query with a structure called a result set, which includes the
selected tuples and meta-data about these tuples. Following MySQL alternatives,
MyYapDB allows for the result set to be copied to the Yap client process, or to
be left in the MySQL server [3]. The tuples of this local or remote result set are
then made available as Prolog facts in a tuple-at-a-time basis via backtracking.

A very important issue in terms of performance is to be able to transfer as
much unification as possible from the Prolog engine to the database engine in
the evaluation of database goals. Relational database engines traditionally have
more powerful indexing schemes than Prolog engines and thus are able to solve
more efficiently relational operations such as selections and joins. Dynamic SQL
query generation based on the bindings of logical variables is thus fundamental in
order to select exactly the tuples that unify with the Prolog goal calling pattern.
Conjunctions and disjunctions of database goals should also be translated into a
single SQL query, replacing a less efficient relation-level access for what is known
as view-level access. MyYapDB allows for the explicit declaration of views and
we plan to automatically replace constructs such as database goals conjunctions
by compiler created views.

In MyYapDB the dynamic SQL query generation is done using a generic Pro-
log to SQL compiler written by Draxler [2]. This compiler defines a translate/3

predicate, where the database access language is defined to be a restricted sub-
language of Prolog equivalent in expressive power to relational calculus (no recur-
sion is allowed). The first argument to translate/3 defines the projection term
of the database access request, while the second argument defines the database
goal which expresses the query. The third argument is used to return the cor-
respondent SQL select expression. Because this compiler is entirely written in
Prolog it is easily integrated in the pre-processing phase of Prolog compilers.

In MyYapDB, the association between a Prolog predicate and a database rela-
tion is defined using a directive such as ’:- db import(edge r,edge,my conn)’,
where edge r is a MySQL relation, edge is a Prolog predicate and my conn is a
connection to a MySQL server. This directive asserts the following Prolog clause:

edge(A,B) :-
translate(proj_term(A,B),edge(A,B),SqlQuery),
db_query(my_conn,SqlQuery,ResultSet),
db_row(ResultSet,[A,B]).

Predicates db query/3 and db row/2 are external predicates written in C.
The first is a deterministic predicate that sends a SQL query to MySQL and
stores the result set. The later is a backtrackable predicate that fetches a tuple
at a time from the result set and unifies the tuple with a list of variables.

When we call ’edge(A,1)’, the translate/3 predicate constructs a spe-
cific query to match the call: ’SELECT source,1 FROM edge r WHERE dest=1’,
where source and dest are the attributes names of relation edge r.



3

The definition of views is similar. When programmers use a directive such as
’:- db view((edge(A,B),edge(B,A)),direct cycle(A,B),my conn)’, the fol-
lowing clause is asserted:

direct_cycle(A,B) :-
translate(proj_term(A,B),(edge(A,B),edge(B,A)),SqlQuery),
db_query(my_conn,SqlQuery,ResultSet),
db_row(ResultSet,[A,B]).

If later we call ’direct cycle(A,B)’, translate/3 constructs the query:
’SELECT A.source,A.dest FROM edge r A,edge r B WHERE B.source=A.dest

AND B.dest=A.source’. This is clearly more efficient than if we define a predi-
cate direct cycle/2 in Prolog using relation level access:

direct_cycle(A,B) :- edge(A,B), edge(B,A).

Using the table directive of OPTYap allows the efficient evaluation of recur-
sive predicates including database goals. For example, assuming edge/2 defined
as above, the following tabled predicate computes its transitive closure.

:- table path/2.
path(X,Y) :- edge(X,Y).
path(X,Y) :- path(X,Z), edge(Z,Y).

3 Performance Evaluation

We want to evaluate the overhead of accessing Prolog facts in the form of MySQL
tuples compared to statically compiled Prolog facts. We also want to evaluate the
advantages allowed by using MySQL indexes schemes compared to the simple
indexing scheme of Prolog. We used Yap 4.4.3 and MySQL server 4.1.1-alpha
versions running on the same machine, an AMD Athlon 1400 with 512 Mbytes
of RAM. We have used two queries over the edge r relation of the examples
above. The first query was to find all the solutions for the edge(A,B) goal,
which correspond to all the tuples of relation edge r. The second query was to
find all the solutions of the edge(A,B),edge(B,A) goal, which correspond to all
the direct cycles. We measured the execution time using the walltime parameter
of the statistics built-in predicate, in order to correctly measure the time spent
in the Yap process and in the MySQL process.

Table 1 presents execution times (in seconds) for Yap with edge/2 facts as
statically compiled facts and indexed on the first argument (this is the available
indexing scheme in Yap 4.4.3), and for MyYapDB with edge/2 facts fetched
from the edge r relation with a secondary index on (source) and a primary
index on (source,dest). Note that first argument indexing is the only available
indexing scheme on almost all Prolog systems. XSB is one of the most well-
know exceptions. The current development version of Yap, version 4.5, is also
being improved to build indices using more than just the first argument. Further
evaluation should experiment with these systems.

As expected, Table 1 confirms that view-level access is much more efficient
than relation-level access. For queries that access sequentially a set of tuples, the



4

System/Query
Tuples (Facts)

50,000 100,000 500,000

Yap (index on first argument)
edge(A,B) 0.02 0.03 0.17
edge(A,B),edge(B,A) 5.97 24.10 132.15

MyYapDB (secondary index on (source))
edge(A,B) 0.18 0.37 1.95
edge(A,B),edge(B,A) (relation level) 39.88 119.84 1,779.26
edge(A,B),edge(B,A) (view level) 6.94 26.18 142.14

MyYapDB (primary index on (source,dest))
edge(A,B) 0.22 0.44 2.18
edge(A,B),edge(B,A) (relation level) 23.29 69.81 1,272.81
edge(A,B),edge(B,A) (view level) 0.35 0.82 4.78

Table 1. Performance evaluation

overhead of MyYapDB compared to Yap accessing compiled facts is a factor of 10.
For queries which take advantage of indexing schemes, an interesting comparison
is the time taken by Yap and by MyYapDB using an equivalent indexing scheme.
Results show a small overhead of 10% on MyYapDB using view-level access. The
most interesting result for potential users of MyYapDB is the ability to use the
available indexing capabilities of MySQL on the database predicates, which can
allow very important speed-ups, like a factor of 25 for our example by using
a primary index on both attributes. Further evaluation must also be done for
different programs and queries.

References

1. C. Beeri and R. Ramakrishnan. On the Power of Magic. In ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, 1987.

2. C. Draxler. Accessing Relational and Higher Databases Through Database Set Pred-
icates. PhD thesis, Zurich University, 1991.

3. M. Ferreira, R. Rocha, and S. Silva. Comparing Alternative Approaches for Coupling
Logic Programming with Relational Databases. In Colloquium on Implementation
of Constraint and LOgic Programming Systems, 2004. To appear.

4. H. Gallaire and J. Minker, editors. Logic and Databases. Plenum, 1978.
5. D. Michie. Memo Functions and Machine Learning. Nature, 218:19–22, 1968.
6. Jack Minker, editor. Foundations of Deductive Databases and Logic Programming.

Morgan-Kaufmanm, 1987.
7. R. Rocha, F. Silva, and V. Santos Costa. On a Tabling Engine that Can Exploit

Or-Parallelism. In International Conference on Logic Programming, number 2237
in LNCS, pages 43–58. Springer-Verlag, 2001.

8. K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database
Engine. In ACM SIGMOD International Conference on the Management of Data,
pages 442–453. ACM Press, 1994.

9. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1989.


