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Abstract. Tabling is an implementation technique that improves the
declarativeness and expressiveness of Prolog by reusing answers to sub-
goals. During tabled execution, several decisions have to be made. These
are determined by the scheduling strategy. Whereas a strategy can achieve
very good performance for certain applications, for others it might add
overheads and even lead to unacceptable inefficiency. The ability of using
multiple strategies within the same evaluation can be a means of achiev-
ing the best possible performance. In this work, we present how the
YapTab system was designed to support dynamic mixed-strategy eval-
uation of the two most successful tabling scheduling strategies: batched
scheduling and local scheduling.

1 Introduction

The past years have seen wide efforts at increasing Prolog’s declarativeness, ex-
pressiveness and performance. One proposal that has gained popularity is the
use of tabling (also known as tabulation or memoing). Tabling based models are
able to reduce the search space, avoid looping, and have better termination prop-
erties than traditional Prolog based models. Several alternative tabling models
have been proposed and implemented [1–5]. The most well-known tabling Prolog
system is XSB Prolog [6], which proved the viability of tabling technology in ap-
plication areas such as Natural Language Processing, Knowledge Based Systems,
Model Checking, and Program Analysis.

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for current subgoals in an appropriate data space, called the table

space. Whenever a repeated call is found, the subgoal’s answers are recalled from
the table instead of being re-evaluated against the program clauses.

During tabled execution, there are several points where we may have to
choose between continuing forward execution, backtracking, consuming answers
from the table, or completing subgoals. The decision on which operation to
perform is crucial to system performance and is determined by the scheduling

strategy. Different strategies may have a significant impact on performance, and



may lead to a different ordering of solutions to the query goal. Arguably, the two
most successful tabling scheduling strategies are batched scheduling and local
scheduling [7].

Batched scheduling favors forward execution first, backtracking next, and
consuming answers or completion last. It thus tries to delay the need to move
around the search tree by batching the return of answers. When new answers
are found for a particular tabled subgoal, they are added to the table space and
the evaluation continues. On the other hand, local scheduling tries to complete
subgoals as soon as possible. When new answers are found, they are added to
the table space and the evaluation fails. Answers are only returned when all
program clauses for the subgoal in hand were resolved.

Empirical work from Freire et al. [7, 8] showed that, regarding the require-
ments of an application, the choice of the scheduling strategy can affect the
memory usage, execution time and disk access patterns. Freire argues [9] that
there is no single best scheduling strategy, and whereas a strategy can achieve
very good performance for certain applications, for others it might add overheads
and even lead to unacceptable inefficiency. Freire and Warren [10] suggested that
using multiple strategies within the same evaluation would be most useful. How-
ever, to the best of our knowledge, no such implementation has yet been done.

Our main contribution is a novel approach to supporting dynamic mixed-
strategy evaluation of tabled logic programs. We have implemented this approach
in the YapTab system, as an elegant extension of the original design [2]. YapTab
supports the dynamic intermixing of batched and local scheduling at the subgoal
level, that is, it allows one to modify at runtime the strategy to be used to resolve
the subsequent subgoal calls of a tabled predicate. We show that YapTab’s hybrid
approach does indeed return very substantial performance gains. Results were
impressive both on artificial applications, and on a complex, real-life, application.

The remainder of the paper is organized as follows. First, we briefly intro-
duce the basic tabling definitions and present the differences between batched
and local scheduling. Next, we describe the issues involved in providing engine
support for integrating both scheduling strategies at the subgoal level. We then
discuss some experimental results and outline some conclusions.

2 Basic Tabling Definitions

Tabling is about storing intermediate answers for subgoals so that they can
be reused when a repeated call appears. Whenever a tabled subgoal S is first
called, a new entry is allocated in the table space. This entry will collect all the
answers found for S. Repeated calls to variants of S are resolved by consuming
the answers already in the table. Meanwhile, as new answers are found, they are
stored into the table and returned to all variant subgoals. Within this model, the
nodes in the search space are classified as either: generator nodes, corresponding
to first calls to tabled subgoals; consumer nodes, corresponding to variant calls to
tabled subgoals; or interior nodes, corresponding to non-tabled subgoals. Tabling
based models have four main types of operations for definite programs:



1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if
the subgoal is in the table. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table,
and allocates a new generator node.

2. The new answer operation verifies whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

3. The answer resolution operation is executed every time the computation
reaches a consumer node. It verifies whether extra answers are available for
the particular consumer node and, if so, consumes the next one. If no answers
are available, it suspends the current computation, either by freezing the
whole stacks [1], or by copying the execution stacks to separate storage [3],
and schedules a possible resolution to continue the execution.

4. The completion operation determines whether a tabled subgoal is completely

evaluated. A subgoal is said to be completely evaluated when all its possible
resolutions have been performed, that is, when no more answers can be
generated. It executes when we backtrack to a generator node and all of its
clauses have been tried. If the subgoal has been completely evaluated, the
operation closes the goal’s table entry and reclaims stack space. Otherwise,
control moves to a consumer with unconsumed answers.

Completion is needed in order to recover space and to support negation. We
are most interested on space recovery in this work. Arguably, in this case, we
could delay completion until the very end of the execution. Unfortunately, doing
so would also mean that we could only recover space for consumers (suspended
subgoals) at the very end of the execution. Instead we shall try to achieve in-

cremental completion [11] to detect whether a generator node has been fully
exploited, and if so to recover space for all its consumers.

Completion is hard because a number of generators may be mutually depen-
dent, thus forming a Strongly Connected Component (or SCC ). Clearly, we can
only complete SCCs together. We will usually represent an SCC through the
oldest generator. More precisely, the youngest generator node which does not
depend on older generators is called the leader node. A leader node is also the
oldest node for its SCC, and defines the current completion point.

When we call a variant subgoal that is already completed, we can avoid
consumer node allocation and perform instead what is called a completed table

optimization [1]. This optimization allocates a node, similar to an interior node,
that will consume the set of found answers executing compiled code directly
from the table data structures associated with the completed subgoal [12].

3 Scheduling Strategies

It should be clear that at several points we can choose between continuing for-
ward execution, backtracking to interior nodes, returning answers to consumer
nodes, or performing completion. The actual sequence of operations depends on
the scheduling strategy. We next discuss in some more detail the batched and
local scheduling strategies.



3.1 Batched Scheduling

The batched strategy schedules the program clauses in a depth-first manner
as does the WAM. In this strategy, new answers are added to the table space
but evaluation continues until it resolves all program clauses for the subgoal in
hand. Only when all clauses have been resolved, the newly found answers will be
returned to consumer nodes. Hence, when backtracking we may encounter three
situations: (i) if backtracking to a generator or interior node, we take the next
available alternative; (ii) if backtracking to a consumer node, we take the next
unconsumed answer; (iii) if there are no available alternatives or no unconsumed
answers, we simply backtrack to the previous node on the current branch. Note
however that, if the node without alternatives is a leader generator node, then
we must check for completion.

In order to perform completion, we must ensure that all answers have been
returned to all consumers in the SCC. The process of resuming a consumer node,
consuming the available set of answers, suspending and then resuming another
consumer node can be seen as an iterative process which repeats until a fixpoint
is reached. This fixpoint is reached when the SCC is completely evaluated.

At the engine level, the fixpoint check procedure is controlled by the leader of
the SCC. Initially, it searches for the younger consumer with unresolved answers,
and as long as there new answers, it will consume them. After consuming the
available set of answers, the consumer suspends and fails into the next consumer
with unresolved answers. This process repeats until it reaches the last consumer,
in which case it fails into the leader node in order to allow the re-execution of the
fixpoint check procedure. When a fixpoint is reached, all subgoals in the SCC
are marked completed and the stack segments belonging to them are released.

3.2 Local Scheduling

Local scheduling is an alternative tabling scheduling strategy that tries to com-
plete subgoals as soon as possible. In this strategy, evaluation is done one SCC
at a time. The key idea is that whenever new answers are found, they are added
to the table space as usual but execution fails. Thus, execution explores the
whole SCC before returning answers outside the SCC. Hence, answers are only
returned when all program clauses for the subgoal in hand were resolved.

Figure 1 shows a small example that clarifies the differences between batched
and local evaluation. The top sub-figure illustrates the program code and query
goal used in the example. Declaration ’:- table t/1.’ indicates that calls to
predicate t/1 should be tabled. The two sub-figures below depict the evaluation
sequence for each strategy and how the table space is filled in. In both cases, the
leftmost tree represents the evaluation of the query goal q(X,Y). Nodes are num-
bered according to the evaluation sequence. Generators are depicted by white
oval boxes, and consumers by gray oval boxes. For simplicity of presentation,
the computation tree for t(X) is represented independently at the right.

Both cases begin by resolving the query goal against the unique clause for
predicate q/2, thus calling the tabled subgoal t(X). As this is the first call to
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Fig. 1. Batched scheduling versus local scheduling

t(X), we create a generator node and insert a new entry in the table space.
The first clause for t(X) succeeds immediately, obtaining a first answer for t(X)
that is stored in the table (step 2). The example is most interesting in how both
strategies handle the continuation of t(X).

Evaluation with batched scheduling proceeds as in standard Prolog with a
call to the second goal, t(Y), therefore creating consumer node 3. Node 3 is a
variant call to t(X), so instead of resolving the call against the program clauses,
we consume answers from the table space. As we already have one answer stored
in the table for this call (X=1), we continue by consuming it, which leads to a
first solution for the query goal (X=1,Y=1). When returning to node 3, we must
suspend the consumer node because we cannot collect more answers from the
table. We then backtrack to node 1 to try the second clause for t(X), and a new
answer is found (X=2). The continuation again calls t(Y), and a new consumer
is created (node 6). Eventually, two new solutions are found for the query goal
(steps 7 and 8). We have consumed all answers from the table. Hence, node 6
suspends and the computation backtracks again to node 1. Node 1 is the leader
of the SCC, hence at that point, we can check for completion. However, the
generator cannot complete because consumer 3 still has unconsumed answers.
The computation thus resumes at node 3 and a new solution for the query goal
is found (step 9). No new answers are inserted into the table, and all consumers
have exhausted the entries in the table. Thus, when we return to the generator
node 1, we can finally complete the tabled subgoal call t(X) (step 10).

Evaluation with local scheduling differs from early on, namely, after the first
answer was found (step 2). To exhaust the current SCC, we should fail, backtrack
to node 1, and execute the second clause for t(X). We thus find a second answer



for it (step 3). Then, we fail again to node 1, and the tabled subgoal call t(X) can
be completed immediately, as we have found no consumers yet (step 4). From
now on, answers are consumed by executing compiled code, as we discussed
before. The variant calls to t(X) at steps 5 and 8 are thus resolved in this way,
and no consumer goals are ever needed.

Choosing the best strategy is hard. The main difference between the two
is that in batched scheduling, variable bindings are immediately propagated
to the calling environment when an answer is found. For some situations, this
behavior may result in creating complex dependencies between consumers. On
the other hand, the clear advantage of local scheduling shown in the example does
not always hold. Since local scheduling delays answers, it does not benefit from
variable propagation, and instead, when explicitly returning the delayed answers,
it incurs an extra overhead for copying them out of the table. Freire et al. [7]
showed that, on average, local scheduling is about 15% slower than batched
scheduling in the SLG-WAM [1]. Similar results were also obtained in YapTab [2].

3.3 Defining the Scheduling Strategy

We provide two built-in predicates for defining and controlling the tabling mode

to be used to evaluate a tabled computation. We extend the standard predicate
yap flag/2 to define the standard scheduling strategy for the whole compu-
tation. Alternatively, we can use the tabling mode/2 predicate to define the
scheduling strategy of a particular tabled predicate. We next discuss how these
predicates can be used to dynamically control the evaluation. Consider, for ex-
ample, two tabled predicates, t/1 and t/2, and the following query goals:

:- t(1).
:- yap_flag(tabling_mode,local), t(2,2).
:- t(3), yap_flag(tabling_mode,default), t(3,3).
:- tabling_mode(t/1,local), t(X), t(X,Y), tabling_mode(t/1,batched), t(Y).

In the first example query, t(1) evaluates using batched scheduling. This
happens because, by default in YapTab, when a predicate is declared as tabled,
its initial tabling mode is batched. In the second query, t(2,2) evaluates us-
ing local scheduling as the call to yap flag(tabling mode,local) changes the
tabling mode of the following computations to local. In the third query, t(3)
evaluates using local scheduling because the tabling mode for the computa-
tion is still local (as a result of the previous yap flag/2 declaration in the
second query), and t(3,3) evaluates using batched. Note that the actual exe-
cution tree will have nodes for both strategies: t(3,3) might itself call t(3).
The call to yap flag(tabling mode,default) defines that, in what follows,
we should use the default strategy of each predicate and the initial tabling
mode of t/2 is batched. Finally, in the fourth query, t(X) evaluates using local
scheduling and t(X,Y) and t(Y) evaluates using batched scheduling. The call to
tabling mode(t/1,local) initially changes the tabling mode of predicate t/1

to local and then tabling mode(t/1,batched) changes it back to batched.



4 Implementation

The YapTab design mostly follows the seminal SLG-WAM design [1]: it intro-
duces a new data area to the WAM, the table space; a new set of registers, the
freeze registers; an extension of the standard trail, the forward trail ; and four new
operations: tabled subgoal call, new answer, answer resolution, and completion.
Tables are implemented using tries as proposed in [12]. The differences between
the two designs reside in the data structures and algorithms used to control the
process of leader detection and the scheduling of unconsumed answers.

Namely, the original SLG-WAM considers that such control should be done at
the level of the data structures corresponding to first calls to tabled subgoals, and
does so by associating completion frames to generator nodes. The SLG-WAM
relies on a completion stack of generators to detect completion points. On the
other hand, YapTab innovates by considering that the control of leader detection
and scheduling of unconsumed answers should be performed through the data
structures corresponding to variant calls to tabled subgoals, and it associates
a new data structure, the dependency frame, to consumer nodes. Dependency
frames store information about the last consumed answer; and information to ef-
ficiently check for completion points, and to efficiently move across the consumer
nodes with unconsumed answers.

In YapTab, applying batched or local scheduling to an evaluation mainly de-
pends on the way generator nodes are handled. At the engine level, this includes
minor changes to the operations tabled subgoal call, new answer and comple-
tion. All the other tabling extensions are common across both strategies. We
claim that, this makes YapTab highly suitable to efficiently support a dynamic
mixed-strategy evaluation.

4.1 Tabled Nodes

By combining the two built-in predicates yap flag/2 and tabling mode/2 we
can dynamically define the scheduling strategy to be used to evaluate each tabled
subgoal. Thus, when a tabled subgoal is first called, the tabled subgoal call oper-
ation starts by consulting the current tabling mode of the computation/predicate
in order to decide the strategy to be used by the corresponding generator node.

In our implementation, generator nodes are WAM choice points extended
with two extra fields: CP DepFr is a pointer to the corresponding dependency
frame (its use is detailed next) and CP SgFr is a pointer to the associated subgoal
frame where answers should be stored. Consumer nodes are WAM choice points
extended with the CP DepFr field only. Figure 2 details generator and consumer
choice points and their relationship with the table and dependency spaces.

The left sub-figure shows a choice point stack with generator nodes for both
strategies and with a consumer node. Remember that the key difference be-
tween the two strategies is that local scheduling prevents answers from being
returned early by backtracking until getting all answers for the leader genera-
tor. At the point all answers have been exhausted, the leader must export them
to its environment. To do so, it must act like a consumer: consuming answers
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Fig. 2. Generator and consumer choice points in YapTab

and propagating them to caller one by one. In YapTab, this was implemented
by having the CP DepFr field in the generators at the same position as for the
consumers. This simple extension allows generators being evaluated using local
scheduling to easily become consumers. Note that YapTab relies on this field: it
is used by the operations new answer and completion as a way to distinguish if
a generator is being evaluated using local scheduling (cases where CP DepFr is
not NULL) or using batched scheduling (cases where CP DepFr is NULL).

The right sub-figure shows the dependency frames, the key data structure to
synchronize the flow of a tabled evaluation. The TOP DF variable always points to
the youngest dependency frame on stack. Frames form a linked list through the
DepFr previous field. The DepFr last answer field points to the last consumed
answer in the table space. The DepFr cons cp field points back to the corre-
sponding consumer choice point. The DepFr leader and the DepFr back leader

fields respectively point to the leader node at creation time and to the leader
node where we performed the last unsuccessful completion operation. They are
critical in the SCC fixpoint check procedure, that we discuss next.

4.2 Leader Nodes

How does completion change in a mixed environment? Completion takes place
when we backtrack to a generator node that (i) has exhausted all its alternatives
and that (ii) is a leader node (remember that the youngest generator which
does not depend on older generators is called a leader node). The key idea in our
original algorithms is that each dependency frame holds a pointer to the resulting
leader node of the SCC that includes the correspondent consumer node. Using
the leader node pointer from the dependency frames, a generator can quickly
determine whether it is a leader node. We thus rely on the notion of leader node:
a generator L is a leader node when either (a) L is the youngest tabled node,
or (b) the youngest consumer says that L is the leader.



Next we show that our algorithm for detecting leader nodes works well in a
mixed environment. The algorithm requires computing leader node information
whenever creating a new consumer node C. First, we hypothesize that the leader
node is C’s generator, say G. Next, for all consumer nodes older than C and
younger than G, we check whether they depend on an older generator node.
Consider that there is at least one such node and that the oldest of these nodes
is G′. If so then G′ is the leader node. Otherwise, our hypothesis was correct
and the leader node is indeed G. Leader node information is implemented as a
pointer to the choice point of the newly computed leader node. Figure 3 shows
the procedure that computes the leader node information for a new consumer.

compute_leader(consumer node CN) {
leader_cp = generator_for(CN) // the generator is the default leader
df = TOP_DF
while (DepFr_cons_cp(df) is younger than leader_cp ) {

if (DepFr_leader(df) is older than leader_cp) { // older dependency
leader_cp = DepFr_leader(df)
break

}
df = DepFr_previous(df)

}
return leader_cp

}
Fig. 3. Pseudo-code for compute leader()

The procedure traverses the dependency frames for the consumer nodes be-
tween the new consumer and its generator in order to check for older dependen-
cies. As an optimization it only searches until it finds the first dependency frame
holding an older reference (the DepFr leader field). The nature of the procedure
ensures that the remaining dependency frames cannot hold older references.

Note that for local scheduling, when we store a generator node G we also
allocate a dependency frame. However, we can avoid calling compute leader()

because G itself is the leader node.

4.3 Completion

Next, we show our implementation of completion. Completion is forced as fol-
lows. When a generator choice point tries the last program clause, its CP AP

(failure continuation program counter) field is updated to the completion in-
struction. From then on, every time we backtrack to the choice point the oper-
ation is executed. Figure 4 shows the pseudo-code for completion in YapTab.

First, the procedure checks out if the generator is the current leader node.
If a leader, it checks whether all younger consumer nodes have consumed all
their answers. To do so, it traverses the chain of dependency frames looking for
a frame that has not yet consumed all the generated answers. If there is such a
frame, the computation should be resumed to the corresponding consumer node.
Otherwise, it can perform completion. This includes (i) marking as complete all
the subgoals in the SCC, and (ii) deallocating all younger dependency frames.
At the end, if the generator was evaluated using local scheduling, we need to



completion(generator node GN) {
if (GN is the current leader node) {

df = TOP_DF
while (DepFr_cons_cp(df) is younger than GN) {
if (unconsumed_answers(DepFr_last_answer(df))) {

DepFr_back_leader(df) = GN // mark the leader to return to
move_to(DepFr_cons_cp(df))

}
df = DepFr_previous(df)

}
perform_completion()
if (CP_DepFr(GN) != NULL) // local scheduling
completed_table_optimization()

}
if (CP_DepFr(GN) != NULL) { // local scheduling

CP_AP(GN) = answer_resolution
load_first_available_answer_and_proceed()

} else backtrack() // batched scheduling
}

Fig. 4. Pseudo-code for completion()

consume the set of answers that have been found. As the subgoal is already
completed, we can execute compiled code directly from the trie data structure
associated with the completed subgoal.

On the other hand, if the current node is not the leader, the procedure
simply backtracks to the previous node, if in batched mode, or starts acting like
a consumer node and consumes the first available answer, if in local mode.

4.4 Answer Resolution

Next, we show that our implementation of answer resolution is independent of
strategy. The answer resolution operation executes every time the computation
fails back to a consumer. In our implementation, a consumer choice point always
points to the answer resolution instruction in its CP AP field. Figure 5 shows
the pseudo-code for this instruction in YapTab.

answer_resolution(consumer node CN) {
df = CP_DepFr(CN) // dependency frame for CN
if (unconsumed_answers(DepFr_last_answer(df)))

load_next_available_answer_and_proceed()
back_cp = DepFr_back_leader(df)
if (back_cp == NULL) // first time here

backtrack()
df = DepFr_previous(df)
while (DepFr_cons_cp(df) is younger than back_cp) {

if (unconsumed_answers(DepFr_last_answer(df))) {
DepFr_back_leader(df) = back_cp // mark the leader to return to
move_to(DepFr_cons_cp(df))

}
df = DepFr_previous(df)

}
move_to(back_cp) // move to last leader node

}
Fig. 5. Pseudo-code for answer resolution()



Initially, the procedure checks the table space for unconsumed answers. If
there are new answers, it loads the next available answer and proceeds. Other-
wise, it schedules for a backtracking node. If this is the first time that backtrack-
ing from that consumer node takes place, then it is performed as usual to the
previous node. This is the case when the DepFr back leader field is NULL. Oth-
erwise, we know that the computation has been resumed from an older leader
node L during an unsuccessful completion operation. Therefore, backtracking
must be done to the next consumer node that has unconsumed answers and
that is younger than L. We do this by restoring bindings and stack pointers. If
no such consumer node can be found, backtracking must be done to node L.

The iterative process of resuming a consumer node, consuming the available
set of answers, suspending and then resuming another consumer until a fixpoint
is reached, is completely independent of the scheduling strategy being used.

5 Experimental Results

To put the performance results in perspective, we first used a set of common
tabled benchmark programs to evaluate the overheads of supporting mixed-
strategy evaluation for programs that only require a single-strategy approach.
The environment for our experiments was an AMD Athlon XP 2800+ processor
with 1 GByte of main memory and running the Linux kernel 2.6.8. YapTab is
based on the current development version of Yap, version 4.5.7.

Table 1 shows the running times, in milliseconds, for YapTab supporting a
single scheduling strategy (YapTab Single) and supporting the mixed approach
(YapTab Mixed). In parentheses, it shows the overhead over YapTab Single.
The execution times correspond to the average times obtained in a set of 3
runs. The results indicate that YapTab Mixed introduces insignificant overheads
over YapTab Single, both for batched and local scheduling. These overheads are
very small. They mainly result from operations that test if a generator is being
evaluated using batched or local scheduling.

Batched Scheduling Local Scheduling
Program YapTab Single YapTab Mixed YapTab Single YapTab Mixed

mc-iproto 2495 2519 (1.009) 2668 2689 (1.007)
mc-leader 8452 8467 (1.001) 8385 8403 (1.002)
mc-sieve 21568 21325 (0.988) 21797 21217 (0.973)
lgrid 850 870 (1.023) 1012 1031 (1.018)
rgrid 1250 1332 (1.065) 1075 1141 (1.061)
samegen 20 20 (1.000) 21 21 (1.000)

Average (1.014) (1.010)

Table 1. Overheads of supporting mixed-strategy evaluation

In the literature, we can find several examples showing that batched schedul-
ing performs better than local scheduling for certain applications and that local
scheduling performs better for others [7, 10]. However, usually, these examples



are independent and not part of the same application. To further motivate for
the applicability of our mixed-strategy approach, we next present two different
examples where we take advantage of YapTab’s flexibility.

Our first example is an application in the context of Inductive Logic Program-
ming (ILP) [13]. The fundamental goal of an ILP system is to find a consistent
and complete theory (logic program), from a set of examples and prior knowl-
edge, the background knowledge, that explain all given positive examples, while
being consistent with the given negative examples. Since it is not usually obvious
which set of hypotheses should be picked as the theory, an ILP system generates
many candidate hypotheses (clauses) which have many similarities among them.
Usually, these similarities tend to correspond to common prefixes (subgoals)
among the hypotheses. Consider, for example, that the system generates an hy-
pothesis ’theory(X):- b1(X),b2(X,Y).’ which obtains a good coverage quality,
that is, the number of positive examples covered by it is high and the number
of negative example is low. Then, it is quite possible that the system will use it
to generate more specific clauses like ’theory(X):- b1(X),b2(X,Y),b3(Y).’.

Computing the coverage of an hypothesis requires, in general, running all
positives and negatives examples against the clause. For example, to evaluate if
the positive example theory(p1) is covered by ’theory(X):- b1(X),b2(X,Y).’,
the system executes the goal ’b1(p1),b2(p1,Y)’. If the same example is then
evaluated against the other clause, goal ’b1(p1),b2(p1,Y),b3(Y)’, part of the
computation will be repeated. For datasets with a large number of examples, we
can arbitrarily do a lot of recomputation. Tabling technology is thus an excellent
candidate to significantly reduce the execution time for these kind of problems.
Moreover, as we will see, we can benefit from YapTab’s mixed-strategy approach
to further improve performance.

Assume now that we declared b2/2 as tabled and that ’b1(p1),b2(p1,Y)’
succeeds. Thus, we can mark theory(p1) as covered by the corresponding hy-
pothesis, and we can reclaim space by pruning the search space for the goal in
hand. Note that the ILP system is only interested in evaluating the coverage of
the examples, and not in finding answers for the subgoals. On the other hand,
from the tabling point of view, b2(p1,Y) is not completed because it may suc-
ceed with other answers for Y. A question then arises: should we use batched or
local scheduling to table these predicates?

At first, local scheduling seems more attractive because it avoids the pruning
problem mentioned above. When the ILP system prunes the search space, the
tables are already completed. On the other hand, if the cost of fully generating
the complete set of answers is very expensive, then the ILP system may not
always benefit from it. Consider, for example a predicate defined by several
facts and then by a recursive clause (quite common in some ILP datasets). It
can happen that, after completing a subgoal, the subgoal is not called again or
when called it succeeds just by using the known facts, thus, turning it useless to
compute beforehand the full set of answers.

Note also that, when an example is not covered, all the subgoals in the clause
are completed. For example, if in ’b1(p1),b2(p1,Y),b3(Y)’, the subgoal b3(Y)



never succeeds then, by backtracking, b2(p1,Y) will be completely evaluated.
For such cases, batched scheduling is better because variable bindings are au-
tomatically propagated. We can also benefit from batched when an example is
covered in clauses of the form ’b2(p1,Y),b2(p1,Z)’, with the tabled subgoal ap-
pearing repeated. Finally, for subgoals that never succeed or that succeed with
a yes answer (all arguments ground), batched and local obtain similar results.

We experimented with using both strategies individually and together. Ta-
ble 2 shows, the running times, in milliseconds, for the April ILP system [14]
running a well-known ILP dataset, the mutagenesis dataset.

Predicates Running Time

Without tabling > 1 day
All batched (11 predicates) 283779
All local (11 predicates) 147937
Some batched (7 predicates), others local (4 predicates) 127388

Table 2. Intermixing batched and local scheduling at the predicate level

We used four different approaches to evaluate the predicates in the back-
ground knowledge: (i) without tabling; (ii) all predicates being evaluated using
batched scheduling; (iii) all using local scheduling; and (iv) some using batched
and others using local (for this approach we show the running time for the
best result obtained). Note that the running times include the time to run the
whole ILP system and not just the time for computing the coverage of the hy-
potheses. The results show that tabled evaluation can significantly reduce the
execution time for these kind of problems. Moreover, they show that, by using
mixed-strategy evaluation, we can further speedup the execution. Better perfor-
mance is still possible if we use YapTab’s flexibility to intermix batched and local
scheduling at the subgoal level. However, from the programmer point of view,
it is very difficult to define the subgoals to table using one or another strategy.
Further work is still needed to study how to use this flexibility to, in runtime,
automatically adjust the system to the best approach.

We next show a different application where we take full advantage of the
dynamic mixed-strategy of YapTab by intermixing batched and local scheduling
at the subgoal level. Consider a 30x30 grid, represented by a number of edge/2
facts, and the following program code:

:- table path/2.
path(X,Y) :- path(X,Z), edge(Z,Y).
path(X,Y) :- edge(X,Y).

reachable(X,Y) :- path(F,X), path(F,Y), !.

go_batched :- tabling_mode(path/2,batched).
go_local :- tabling_mode(path/2,local).

Now consider the query goal ’path(X,Y),reachable(X,Y)’ that computes
the paths in the grid whose extremities are reachable from, at least, another
node. We solve this query using three alternative approaches for tabling the



path/2 predicate: (i) only batched scheduling; (ii) only local scheduling; and
(iii) local scheduling for the first query subgoal and batched scheduling for the
second. Table 3 shows the running times, in milliseconds, for finding all the
solutions for the query above using the three approaches. The execution times
correspond to the average times obtained in a set of 3 runs.

Query Goal Running Time

(i) :- go batched, path(X,Y), reachable(X,Y), fail. 141962
(ii) :- go local, path(X,Y), reachable(X,Y), fail. 60471
(iii) :- go local, path(X,Y), go batched, reachable(X,Y), fail. 19770

Table 3. Intermixing batched and local scheduling at the subgoal level

The results show that by using local scheduling for computing the first sub-
goal and batched for the second we are able to significantly reduce the execution
time and achieve the best performance. This happens because, by using local
scheduling to compute the complete set of answers for path(X,Y), we avoid
complex dependencies when executing predicate reachable(X,Y) with batched.
Note that when we call path(F,X) in predicate reachable/2, F is a free vari-
able. Then, when we use the first clause of path/2 to solve path(F,X), we get a
call to path(F,Z) (with both variables free), which is a variant call of the initial
query subgoal path(X,Y), and thus we must allocate a consumer node.

On the other hand, if we already have the set of answers for the first query
subgoal, it is best if we use batched to solve the calls to the reachable/2 pred-
icate. If we use local scheduling, we will compute all the answers for each par-
ticular call to path(F,X), with X ground, and this may lead to unnecessary
computation. Note that predicate reachable/2 succeeds by pruning the search
space with a cut operation, which makes batched scheduling more appropriate
for this particular example.

6 Conclusions

In this work, we presented the design and implementation of YapTab to sup-
port dynamic mixed-strategy evaluation of tabled logic programs. Our approach
proposes the ability to combine batched scheduling with local scheduling at the
subgoal level with minor changes to the tabling engine. These changes intro-
duced insignificant overheads on YapTab’s performance. Moreover, our results
show that dynamic mixed-strategies can be extremely important to improve the
performance of some applications.

The proposed data structures and algorithms can also be easily extended
to support dynamic switching from batched to local scheduling and vice versa,
while a generator is still producing answers. In particular, we plan to study how
such flexibility can be used to design a more aggressive approach for applications
that do a lot of pruning over the table space, such as ILP applications. We also
plan to further investigate the impact of combining both strategies in other
application areas.
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