
On Applying Deductive Databases

to Inductive Logic Programming:

a Performance Study

Tiago Soares, Michel Ferreira, Ricardo Rocha, and Nuno A. Fonseca

DCC-FC & LIACC
University of Porto, Portugal

{tiagosoares,michel,ricroc,nf}@ncc.up.pt

Abstract. Inductive Logic Programming (ILP) tries to derive an inten-
sional representation of data (a theory) from its extensional one, which in-
cludes positive and negative examples, as well as facts from a background
knowledge. This data is primarily available from relational databases, and
has to be converted to Prolog facts in order to be used by most ILP sys-
tems. Furthermore, the operations involved in ILP execution are also very
database oriented, including selections, joins and aggregations. We thus
argue that the Prolog implementation of ILP systems can profit from a
hybrid execution between a logic system and a relational database sys-
tem, that can be obtained by using a coupled deductive database system.
This hybrid execution is completely transparent for the Prolog program-
mer, with the deductive database system abstracting all the Prolog to re-
lational algebra translation. In this paper we propose several approaches
of coding ILP algorithms using deductive databases technology, with dif-
ferent distributions of work between the logic system and the database
system. We perform an in-depth evaluation of the different approaches
on a set of real-size problems. For large problems we are able to obtain
speedups of more than a factor of 100. The size of the problems that can
be solved is also significantly improved thanks to a non-memory storage
of data-sets.

1 Introduction

The amount of data collected and stored in databases is growing considerably
in almost all areas of human activity. A paramount example is the explosion
of bio-tech data that, as a result of automation in biochemistry, doubles its
size every three to six months [1]. Most of this data is structured and stored
in relational databases and, in more complex applications, it can involve several
relations, thus being spread over multiple tables. However, many important data
mining techniques look for patterns in a single relation (or table) where each
tuple (or row) is one object of interest. Great care and effort has to be made
in order to squeeze as much relevant data as possible into a single table so
that propositional data mining algorithms can be applied. Notwithstanding this

preparation step, propositionalizing data from multiple tables into a single one
may lead to redundancy, loss of information [2] or to tables of prohibitive size [3].

On the other hand, Multi-Relational Data Mining (MRDM) systems are able
to analyse data from multiple relations without propositionalizing data into a
single table first. Most of the multi-relational data mining techniques have been
developed within the area of Inductive Logic Programming (ILP) [4]. However,
on complex or sizable applications, ILP systems suffer from significant limitations
that reduce their applicability in many data mining tasks. First, ILP systems are
computationally expensive - evaluating individual rules may take considerable
time, and thus, to compute a model, an ILP system can take several hours or
even days. Second, most ILP systems execute in main memory, therefore limiting
their ability to process large databases. Efficiency and scalability are thus two
of the major challenges that current ILP systems must overcome.

The main contribution of this paper is thus the proposal of applying Deduc-
tive Databases (DDB) to ILP, allowing the interface with a relational database
system to become transparent to the ILP system. In particular, we will use the
MYDDAS system [5], which couples YapTab [6] with MySQL [7], as the DDB
system, and April [8], as the ILP system. Being able to abstract the Prolog
to SQL translation, we concentrate in describing and evaluating several high-
level coupling approaches, with different distributions of work between the logic
system and the database system. These alternative coupling approaches corre-
spond to different formulations in Prolog of relational operations, such as joins
and aggregations, that are transparently implemented by the DDB system. We
evaluate the different approaches on a set of real-size problems, showing that
significant improvements in performance can be achieved by coupling ILP with
DDB, and that the size of the problems solved can be significantly increased due
to a non-memory storage of the data-sets.

The remainder of the paper is organised as follows. First, we discuss the
main aspects of a typical coupling interface between a logic programming system
and a relational database. Then, we introduce some background concepts about
ILP and describe a particular ILP algorithm. Next, we show how to improve
ILP algorithms efficiency by performing the coverage computation of rules with
the database system. We then present some experimental results and end by
outlining some conclusions.

2 Coupling a Logic System with a Relational Database

On a coupled DDB system, the predicates defined extensionally in database
relations usually require a directive such as:

:- db_import(edge_db,edge,my_conn).

This directive associates a predicate edge/2 with the relation edge db that
is accessible through a connection with the database system named my conn.
In MYDDAS, what this directive does is asserting a clause such as the one in
Fig. 1.

edge(A,B) :-
translate(proj_term(A,B),edge(A,B),SQLQuery),
db_query(my_conn,SQLQuery,ResultSet),
db_row(ResultSet,[A,B]).

Fig. 1. Asserted clause for an imported database predicate

Of the three predicates in Fig. 1, translate/3, db query/3 and db row/2,
the simplest one is db query/3. This predicate uses the connection identifier,
my conn, to send an SQL query, SQLQuery, to the database system that executes
the query and returns a pointer to the set of matching tuples, ResultSet.

The db row/2 predicate is more interesting. It usually navigates through the
result set tuple-at-a-time using backtracking. It unifies the current tuple in the
result set with the arguments of a list or some other structure. Several opti-
mizations can be implemented for db row/2 [9]. The most obvious is replacing
the unification by a simple binding operation for the unbound variables, since
normally the SQL query already returns only the tuples that unify with the list
arguments. Another interesting feature of db row/2 is how it handles pruning
through a cut over the result set [10].

The most interesting predicate is translate/3, which translates a query
written in logic to an SQL expression that is understood by database sys-
tems [11]. For example, the query goal ‘?- edge(10,B).’ will generate the call
translate(proj term(10,B),edge(10,B),SQLQuery), exiting with SQLQuery

bound to ‘SELECT 10, A.attr2 FROM edge db A WHERE A.attr1=10’.
The translate/3 predicate can still be used to implement a more complex

division of work between the logic system and the database system. Suppose we
write the following query goal:

?- edge(A,B), edge(B,A).

A DDB system might decide that this query is more efficiently executed
if the joining of the two edge/2 goals is performed by the database system, in-
stead of by the logic system. The system will then generate the translate/3 call
translate(proj term(A,B),(edge(A,B),edge(B,A)),SQLQuery) to obtain the
query ‘SELECT A.attr1, A.attr2 FROM edge db A, edge db B WHERE

B.attr1=A.attr2 AND B.attr2=A.attr1’. In MYDDAS, we use the db view/3

primitive to accomplish this. For the example given above, we should use a di-
rective like db view(direct cycle(A,B),(edge(A,B),edge(B,A)),my conn),
which will assert a clause for direct cycle/2 in a similar way to what was
done for the db import/3 directive in Fig. 1. This is known as view-level access,
in opposition to the previous relation-level access.

The translate/3 predicate also allows specifying database logic goals that
include higher-order operations, such as aggregate functions that compute values
over sets of attributes. Although higher-order operations are not part of the
relational database model, virtually every database system supports aggregate
functions over relations, such as sum(), avg(), count(), min() and max() which
compute the sum, the average, the number, the minimum and the maximum of
given attributes.

In translate/3, aggregate functions are represented as a binary subgoal in
the database goal, mapping the predicate symbol of such subgoal to the aggregate
function name in the database system. The first argument of the subgoal is
mapped to the attribute over which the aggregate function is to be computed
and the second argument specifies the relation goal. The projection term is
specified to include the result of the aggregation. As an example, if we want
translate/3 to generate an SQL query to compute the number of tuples from
predicate edge/2 that depart from point 10 we would write:

?- translate(count(X),(X is count(B,edge(10,B))),SQLQuery).

and this would bind SQLQuery to ‘SELECT COUNT(A.attr2) FROM edge db A

WHERE A.attr1=10’.

3 Inductive Logic Programming

The normal problem that an ILP system must solve is to find a consistent and
complete theory, from a set of examples and prior knowledge, the background
knowledge, that explains all given positive examples, while being consistent with
the given negative examples [4]. In general, the background knowledge and the
set of examples can be arbitrary logic programs. We next describe ILP execution
in more detail by using the classical Michalski train problem [12].

In the Michalski train problem the theory to be found should explain why
trains are travelling eastbound. There are five examples of trains known to be
travelling eastbound, which constitutes the set of positive examples, and five
examples of trains known to be travelling westbound, which constitutes the set of
negative examples. All our observations about these trains, such as size, number,
position, contents of carriages, etc, constitutes our background knowledge. We
present in Fig. 2 the set of positive and negative examples, together with part
of the background knowledge (describing the train east1).

has_car(east1,car_11). has_car(east1,car_12).
has_car(east1,car_13). has_car(east1,car_14).
short(car_12). short(car_14).
closed(car_12). long(car_11).
long(car_13). open_car(car_11).
open_car(car_13). open_car(car_14).
shape(car_11,rectangle). shape(car_12,rectangle).
shape(car_13,rectangle). shape(car_14,rectangle).
wheels(car_11,2). wheels(car_12,2).
wheels(car_13,3). wheels(car_14,2).
load(car_11,rectangle,3). load(car_12,triangle,1).
load(car_13,hexagon,1). load(car_14,circle,1).
... ...

eastbound(east1).
eastbound(east2).
eastbound(east3).
eastbound(east4).
eastbound(east5).

Positive Examples Background Knowledge

eastbound(east6).
eastbound(east7).
eastbound(east8).
eastbound(east9).
eastbound(east10).

Negative Examples

Fig. 2. Examples and background knowledge for the Michalski train problem

To derive a theory with the desired properties, many ILP systems follow
some kind of generate-and-test approach to traverse the hypotheses space [13,

14]. A general ILP system spends most of its time evaluating hypotheses, either
because the number of examples is large or because testing each example is
computationally hard. For instance, a possible sequence of hypotheses (clauses)
generated for the Michalski train problem would be:

eastbound(A) :- has_car(A,B).
eastbound(A) :- has_car(A,C).
eastbound(A) :- has_car(A,D).
eastbound(A) :- has_car(A,E).
eastbound(A) :- has_car(A,B), short(B).
eastbound(A) :- has_car(A,B), open_car(B).
eastbound(A) :- has_car(A,B), shape(B,rectangle).
eastbound(A) :- has_car(A,B), wheels(B,2).
eastbound(A) :- has_car(A,B), load(B,circle,1).
...

For each of these clauses the ILP algorithm computes its coverage, that is,
the number of positive and negatives examples that can be deduced from it. If
a clause covers all of the positive examples and none of the negative examples,
then the ILP system stops. Otherwise, an alternative stop criteria should be
used, such as, the number of clauses evaluated, the number of positive examples
covered, or time. A simplified algorithm for the coverage computation of a clause
is presented next in Fig. 3. In the evaluation section we name this approach the
Basic ILP Approach.

compute_coverage(Clause,ScorePos,ScoreNeg) :-
assert(Clause),
reset_counter(pos,0),
(

positive_examples(X),
process(Clause,X,GoalP),
once(GoalP),
incr_counter(pos),
fail

;
true

),
counter(pos,ScorePos),
reset_counter(neg,0),
(

negative_examples(Y),
process(Clause,Y,GoalN),
once(GoalN),
incr_counter(neg),
fail

;
true

),
counter(neg,ScoreNeg),
retract(Clause).

Fig. 3. Coverage computation

Consider now that we call the compute coverage/3 predicate for clause
‘eastbound(A) :- has car(A,B), short(B).’. Initially, it starts by assert-
ing the clause to the program code, resetting a counter pos, and by calling the

predicate representing the positive examples. The positive examples/1 predi-
cate binds variable X to the first positive example, say east1, and the process/3
predicate creates the eastbound(east1) goal, which is called using the once/1

primitive. The once/1 primitive is used to avoid backtracking on alternative
ways to derive the current goal. It is defined in Prolog as ‘once(Goal) :-

call(Goal), !.’. If the positive example succeeds, counter pos is incremented
and we force failure. Failure, whether forced or unforced, will backtrack to alter-
native positive examples, traversing all of them and counting those that succeed.
The process is repeated for negative examples and finally the asserted clause is
retracted.

4 Coupling ILP with a Deductive Database System

The time spent in the coverage computation of the rules generated by an ILP sys-
tem represents the larger percentage of the total execution time of such systems.
In this section we describe several approaches to divide the work between the
logic system and the relational database system in order to maximize overall ef-
ficiency of the coverage computation. We will present this coverage computation
starting with its original implementation, and then incrementally transferring
computational work from the logic system to the database system. In what fol-
lows, we name each of the approaches in order to compare their performance in
the evaluation section.

4.1 Relation-Level Approach

In coupled DDB systems the level of transparency allows the user to deal with
relationally defined predicates exactly as if they were defined in the Prolog
source code. Basically, predicates are transparently mapped to database tables
or views. The extensionally defined predicates are mapped to tables, while the
intensionally defined predicates are mapped to views. This mapping scheme pro-
vides a transparent solution for the designer of the ILP engine (if the system
is implemented in a first order language like Prolog). However, it results in in-
creased communication with the relational database system since many accesses
are made to evaluate each single clause.

In particular, the compute coverage/3 predicate of Fig. 3 can be used when
the background knowledge and the positive and negative examples are declared
through the db import/3 directive. However, using only the db import/3 direc-
tives, the coverage computation uses relation-level access to retrieve the tuples
from the database system. This means an uneven division of work between the
logic system and the database system. We name this approach the Relation-Level
Approach.

4.2 View-Level Approach

A fundamental improvement to the Relation-Level Approach is to transfer the
joining effort of the background knowledge goals, in the body of the current
clause, to the database system.

In MYDDAS, we use the db view/3 predicate to convert the relation-level
accesses in view-level accesses, as explained in section 2. Following our previ-
ous example, instead of asserting the clause ‘eastbound(A) :- has car(A,B),

short(B).’, we now create the view using the directive db view(view(A,B),

(has car(A,B),short(B)),my conn) and assert the clause ‘eastbound(A) :-

view(A,B).’. As the view just has to outlive the coverage computation of the
current clause, an useful optimization is to use a predicate run view/3 which
calls the view without asserting it: ‘eastbound(A) :- run view(view(A,B),

(has car(A,B),short(B)),my conn).’. The coverage computation algorithm
of Fig. 3 works as before, with the joining computation performed now by the
database system. We name this approach the View-Level Approach.

4.3 View-Level/Once Approach

Some very important issues in using the database system to compute the join of
the goals in the body of the current clause and the algorithm of Fig. 3 arise for
the once/1 primitive. Not only the coupling interface must support deallocation
of queries result sets through a ‘!’ [10], but also the pruning of unnecessary
computation work to derive alternative solutions is not being done by once/1, as
intended. The database system has already computed all the alternative solutions
when the ‘!’ is executed. Reducing the scope of the join is thus fundamental
and, for a given positive or negative example, the database system only needs
to compute the first tuple of the join.

In order to reduce the scope of the join computed by the database system, we
should push the once/1 call to the database view. Therefore, the asserted clause
includes a once/1 predicate on the view definition which we can efficiently trans-
late to SQL using the ‘LIMIT 1’ SQL keyword. For our example, the asserted
clause is now: ‘eastbound(A) :- run view(view(A,B),once(has car(A,B),

short(B)),my conn)’. For the first positive example east1 the SQL expres-
sion generated for the view is: ‘SELECT A.attr1, A.attr2 FROM has car db

A, short db B WHERE A.attr1=‘east1’ AND B.attr1=A.attr2 LIMIT 1’.
We can now drop the once/1 primitive from the call on the code of Fig. 3.

We name this approach the View-Level/Once Approach.

4.4 Aggregation/View Approach

A final transfer of computation work from the logic system to the database
system can be done for the aggregation operation which counts the number of
examples covered by a rule. The Basic ILP Approach uses extra-logical global
variables to perform this counting operation, as it would be too inefficient with-
out this feature.

To transfer the aggregation work to the database system we need to restrict
the theories we are inducing to non-recursive theories, where the head of the
clause can not appear as a goal in the body. With this restriction, we can drop
the assertion of the current clause to the program code and use the db view/3

predicate with the aggregation operation count/1 on an attribute of the rela-
tion holding the positive or negative examples. Also, the view now includes the
positive or negative examples relation as a goal co-joined with the goals in the
body of the current clause. Again, the join should only test for the existence of
one tuple in the body goals for each of the examples. We introduce a predicate
exists/1, similar to once/1, extending again the Prolog to SQL compiler, which
will be translated to an SQL expression involving an existential sub-query. For
our example clause, ‘eastbound(A) :- has car(A,B), short(B).’, the view
used to compute positive coverage would be the following:

db_view(count_examples(P),
P is count(A,(eastbound(A),exists(has_car(A,B),short(B)))),
my_conn).

which generates the SQL expression:

SELECT COUNT(A.attr1) FROM eastbound_db A
WHERE EXISTS (SELECT * FROM has_car_db B, short_db C

WHERE B.attr1=A.attr1 AND B.attr2=C.attr1 LIMIT 1)

Although the ‘LIMIT 1’ primitive may seem redundant for an existential
sub-query, our experiments showed that MySQL performance is greatly improved
if we include it on the sub-query. We name this approach the Aggregation/View
Approach. Figure 4 presents a simplified algorithm for the coverage computation
using this approach.

compute_coverage(’:-’(Head,Body), ScorePos, ScoreNeg, Conn) :-
process(pos, Head, HeadPos, AggrArgPos),
run_view(count_positive_examples(ScorePos),

(ScorePos is count(AggrArgPos,(HeadPos,exists(Body)))), Conn),
process(neg, Head, HeadNeg, AggrArgNeg),
run_view(count_negative_examples(ScoreNeg),

(ScoreNeg is count(AggrArgNeg,(HeadNeg,exists(Body)))), Conn).

Fig. 4. Coverage computation with the database

Although our coverage computation predicate is very simple to implement
in the context of a DDB, it brings with it a complex set of features which have
been the subject of recent research in the implementation of ILP systems. The
first of these features is efficient higher-order computation. Reasoning about a
set of values is typically inefficient in Prolog, as we usually have to build the set
of values and then traverse them again to compute the desired function. This
can be overcome, as shown in Fig. 3, using non-logical extensions such as global
variables. Database systems have efficient aggregation algorithms.

A second feature is powerful indexing. Typical Prolog systems indexing is re-
stricted to the first argument of clauses. The inefficiency of this indexing scheme

for ILP algorithms, where efficient selections and joins are fundamental, moti-
vated the development of the just-in-time, full arguments, indexing of the Yap
Prolog system 5.0 [15]. Database systems allow the creation of a variety of index
types over all the attributes of a relation.

A third feature is goal-reordering. The coverage computation goal is just
to compute the number of positive and negative examples covered by a clause.
The execution order of the goals in the body of a clause is irrelevant. Query
optimization of database systems executes the computation of the join on the
involved relations in the most efficient way, using transformations which are
similar to goal-reordering in Prolog execution.

Another feature is parallelism. By using a parallel database system we can
have the aggregation, selection and joining operations implemented using the
parallel algorithms of parallel database systems.

5 Performance Evaluation

In order to evaluate and analyse the different approaches for coverage compu-
tation, we used the April ILP system [8] to obtain sets of hypotheses which are
generated during the ILP algorithm search process. We then implemented the
five different approaches for coverage computation through simple Prolog pro-
grams, as explained in the previous sections, and measured the time taken by
each on the different sets of hypotheses. Implementing the different approaches
in April and using April’s execution time as the measure, did not allow us to
do a precise performance evaluation. April can use different heuristics, optimiza-
tions and search strategies, and the time taken in the search process can mislead
the real speed-up obtained in the different coverage computation approaches
described in this paper.

We used MYDDAS 0.9, coupling Yap 5.1.0 with MySQL Server 4.1.5-gamma,
on a AMD Athlon 64 Processor 2800+ with 512 Kbytes cache and 1 Gbyte of
RAM. Yap performs a just-in-time, full arguments, indexing. We have used five
ILP problems: the Michalski train problem [12] and four artificially generated
problems [16]. Table 1 characterizes the problems in terms of number of ex-
amples, number of relations in the background knowledge, number of clauses
generated, and number of tuples.

Problem Examples Relations Clauses Tuples

train 10 10 68 240
p.m8.l27 200 8 495 321,576
p.m11.l15 200 11 582 440,000
p.m15.l29 200 15 687 603,000
p.m21.l18 200 21 672 844,200

Table 1. Problems characterization

The clauses were randomly generated and equally distributed by length, rang-
ing from 1 to the maximum number of relations. The clauses were then evaluated
using each of the described approaches.

5.1 Coverage Performance

Table 2 shows the best execution time of five runs, in seconds, for coverage
computation using our five approaches in each ILP problem.

Approach
Problem

train p.m8.l27 p.m11.l15 p.m15.l29 p.m21.l18

Basic ILP 0.002 15.331 50.447 33,972.225 >1 day
Relation-Level 0.515 35,583.984 >1 day >1 day >1 day
View-Level 0.235 n.a n.a n.a n.a
View-Level/Once 0.208 99.837 628.409 2,975.051 33,229.210
Aggregation/View 0.105 5.330 14.850 251.192 734.800

Table 2. Coverage performance for the different approaches

The train problem is a toy problem, useful to explain how an ILP algo-
rithm works, but totally non-typical with respect to actual problems approached
through ILP. The background knowledge together with the positive and negative
examples totals less than 300 tuples (facts). This number clearly fits in memory
and the communication overhead with a database represents most of the execu-
tion time, as the select or join operations involve very few tuples. We included
this example as it is the only one where we could obtain execution times for
all of the approaches. With regard to the database approaches, this example
already shows gradual improvements as the computation work is transferred to
the database engine, from 0.515 seconds using the Relation-Level Approach to
0.105 seconds using the Aggregation/View Approach. For this example, all the
queries are executed almost instantly, and the time difference just translates the
number of queries that are sent to the database system, which decreases from
the Relation-Level Approach to the Aggregation/View Approach. Even sending
a no-action query to the database system and obtaining the result set, takes a
core execution time, which explains the difference to the Basic ILP Approach
for this very small problem.

For the larger problems, the core time of communication between the logic
system and the database system becomes diluted as we increase the computation
work of the database system. For problems involving thousands of tuples in a
number of relations, the Relation-Level Approach is unrealistic. This approach
does not transfer any computation work to the database system, other than
selecting tuples from individual relations. Also, the number of queries generated
is a factor of the number of tuples in each relation, which explains execution
times of days or weeks for problems larger than p.m8.l27.

For the View-Level Approach, as expected, we could not obtain the execution
times for the large problems, due to insufficient memory to compute the joins
involved. Note that this approach does not implement the once/1 optimization,

therefore the entire join is computed instead of just the first tuple. MySQL runs
out of memory when trying to compute a join of several relations, each with
thousands of tuples.

For the View-Level/Once Approach the scope of the join is now reduced
to compute just the first tuple. For problem p.m11.l15 the slow-down factor
compared to the Basic ILP Approach is explained by the number of queries that
are sent to the database system, one for every positive and negative example.
For the p.m* problems this means that for each of the 688 clauses a total of 200
queries (the number of positive and negative examples) are sent to the database
system. As the size of the joins grows larger, as with problem p.m15.l29, the
core time of these 200 queries becomes irrelevant compared to the time taken
for computing the joins. This and the huge amount of backtracking performed
by the Basic ILP Approach for the two largest problems, explains the speedup
obtained with this approach.

On the Aggregation/View Approach only two queries are sent to the database
system per clause, one to compute positive coverage and one to compute negative
coverage. All the coverage computation work is transferred to the database sys-
tem, and the core time of sending and storing the result set for just two queries
is insignificant. The performance gains over the Basic ILP Approach are clear: a
2.8 speedup for problem p.m8.l27, a 3.4 speedup for problem p.m11.l15 and a
135 speedup for the p.m15.l29. These results show a clear tendency for higher
speedups as the size of the problems grow.

The results obtained with the Aggregation/View Approach are very signif-
icant. Not only we can now handle problems of size two orders of magnitude
larger, thanks to the non-memory storage of data-sets, but we are also able to
improve the coverage computation execution time by a very significant factor.

5.2 Coverage Analysis

The results presented in the previous section compare the different approaches
for the coverage computation. In order to achieve a deeper insight on the be-
haviour of the DDB system usage, and therefore clarify some of the results
obtained, we present in Table 3 data related to several activities of the coverage
computation. These statistics were obtained by introducing a set of counters
to measure the several activities. The columns in this table have the following
meaning:

transl: the percentage of time spent on the translate/3 predicate translating
Prolog to SQL.

server: the percentage of time spent by the database server processing queries.

transf: the percentage of time spent in transferring result sets from the database
to Prolog.

db row: the percentage of time spent on the db row/2 predicate. It measures
the time spent in unifying the results of the queries with the variables of the
logic system.

prolog: the percentage of time spent on normal Prolog execution and not mea-
sured by the other activities.

queries: the total number of queries sent to the database server by the Prolog
process.

rows: the total number of rows returned for the queries made. In parenthesis,
it shows the amount of data transferred in KBytes.

Problem/Approach
Activities

transl server transf db row prolog queries rows

train
Relation-Level 9.4% 67.6% 2.0% 1.9% 19.1% 3402 5402(53)
View-Level/Once 9.6% 69.3% 1.3% 1.4% 18.4% 924 1362(7)
Aggregation/View 47.0% 41.4% 0.6% 0.5% 10.6% 154 154(0)

p.m08.l27
View-Level/Once 4.6% 89.5% 0.3% 0.2% 5.5% 100378 236800(998)
Aggregation/View 1.5% 97.3% 0.1% 0.0% 1.1% 990 990(2)

p.m11.l15
View-Level/Once 1.2% 97.2% 0.1% 0.1% 1.4% 117776 254000(1090)
Aggregation/View 0.8% 98.6% 0.0% 0.0% 0.6% 1164 1164(3)

p.m21.l18
View-Level/Once 0.0% 99.9% 0.0% 0.0% 0.1% 100378 264055(1155)
Aggregation/View 0.0% 99.9% 0.0% 0.0% 0.0% 1344 1344(3)

Table 3. Activities analysis for the different approaches

For the train problem, the time spent on the database server is comparatively
small to the other data-sets. The queries calculated are very small and easy to
compute, so the other activities of the coverage computation gain relevance.

Considering only the problems that have a more interesting size, the data-set
p.m08.l27 presents the highest percentage of time spent on the transl activity.
This can be explained by the fact that p.m08.l27 is the smallest problem. As the
size of the problems grow, the total execution time increases, therefore lowering
the impact of the translate/3 predicate on the final execution time. In fact,
test results show that for each different type of approach, the core time spent on
this predicate, is of the same order for any of the problems experimented. For the
Aggregation/View Approach the times obtained were around 100 milliseconds,
having a variance increase due to an enlargement of the logic clauses to be
translated, as the data-sets grow in size. Notice also that in this approach only
2 queries are made to the database server per clause, one to count the positive
examples that are covered, and another for the negative ones. On the View-
Level/Once Approach, the number of queries sent to the server for each clause is
augmented to 1 query per positive and negative example, which causes the time
spent on the transl activity to increase.

Table 3 shows that the most significant part of the time is consumed in the
server activity. Improving the efficiency of the database server in the execution
of queries is thus fundamental to achieve good results. As ILP problems often use
some kind of mode declarations to supply information concerning the arguments

of each predicate that may appear in the background knowledge, we use the mode
information to automatically create indexes in the database in order to optimize
query execution. Without indexing, the final execution time can increase more
than 5000 times.

Table 3 also shows that for these approaches, only a small percentage of
time is spent transferring the result sets from the database server to the Prolog
system (transf activity). This is due to the small number of rows returned,
and consequently, small amount of data transferred. This also shows that it
is in fact the relational system that processes most of the work of the coverage
computation. However, for the View-Level/Once Approach, the database returns
more results than for the Aggregation/View Approach, which increases the time
spent on unifying logic variables increases (prolog activity).

With respect to the db row activity, we can see that for the View-Level/Once
Approach and Aggregation/View Approach the time spent in this activity is
not relevant. Results obtained for these approaches show that, on average, the
time spent on the db row/2 predicate unifying the results of the queries with
the logic variables, is around 2 and 400 milliseconds respectively for the Ag-
gregation/View Approach and View-Level/Once Approach. Remember that the
Aggregation/View Approach only returns two values for each query, while the
View-Level/Once Approach produces far more results.

6 Conclusions and Future Work

In this work we have proposed to couple ILP systems with DDB systems. This
strategy allows bringing to ILP systems the technology of relational database
systems, which are very efficient in dealing with large amounts of data. Coupling
ILP with DDB allows abstracting the Prolog to SQL translation from the ILP
system. The ILP system just uses high-level Prolog predicates that implement
relational operations that are more efficiently executed by the relational database
system. We argue that this strategy is easier to implement and maintain than
the approach that tries to incorporate database technology directly in the logic
programming system. And, much more important, it allows a substantial increase
of the size of the problems that can be solved using ILP since the data does not
need to be loaded to memory by the ILP systems.

The performance results in execution speed for coverage computation are very
significant and show a tendency to improve as the size of the problems grows.
The size of the problems is exactly our most significant result, as the storage
of data-sets in database relations allows an increase of more than 2 orders of
magnitude in the size of the problems than can be approached by ILP systems.

In the future we plan to deal with recursive theories, through the YapTab
tabling system [6], and to be able to send packs of clauses as a single query to the
database system, using its grouping operators, to avoid redundant computation.
We also plan to use the query packs technique [17], which is very similar to
the tabling of prefixes technique [18], to perform a many-at-once optimization
of SQL queries. Not only do some database systems perform caching of queries,

but it is also simple to implement similar techniques to query-packs on a DDB
context.

A more ambitious future goal aims at a full integration of April and MY-
DDAS in a single programming environment where any program can be seen
as a set of extensional data represented in a database, a set of intensional (and
extensional) data represented by logic rules, and a set of undefined data that the
ILP component of the system should be able to derive and compile to intensional
data to be used by the program itself.

Acknowledgements

This work has been partially supported by MYDDAS (POSC/EIA/59154/2004)
and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia (FCT) and Programa POSC. Tiago
Soares is funded by FCT PhD grant SFRH/BD/23906/2005. Michel Ferreira was
funded by FCT sabbatical grant SFRH/BSAB/518/2005, and thanks Manuel
Hermenegildo and University of New Mexico for hosting his research.

References

1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research
(2000) 235–242

2. Wrobel, S.: Inductive Logic Programming for Knowledge Discovery in Databases.
In: Relational Data Mining. Springer-Verlag (2001) 74–101

3. Raedt, L.D.: Attribute Value Learning versus Inductive Logic Programming: The
Missing Links. In: Inductive Logic Programming. Volume 1446 of LNAI., Springer-
Verlag (1998) 1–8

4. Muggleton, S., Raedt, L.D.: Inductive Logic Programming: Theory and Methods.
Journal of Logic Programming 19/20 (1994) 629–679

5. Soares, T., Ferreira, M., Rocha, R.: The MYDDAS Programmer’s Manual. Tech-
nical Report DCC-2005-10, Department of Computer Science, University of Porto
(2005)

6. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction.
(2000) 77–87

7. Widenius, M., Axmark, D.: MySQL Reference Manual: Documentation from the
Source. O’Reilly Community Press (2002)

8. Fonseca, N., Camacho, R., Silva, F., Santos Costa, V.: Induction with April: A
Preliminary Report. Technical Report DCC-2003-02, Department of Computer
Science, University of Porto (2003)

9. Ferreira, M., Rocha, R., Silva, S.: Comparing Alternative Approaches for Coupling
Logic Programming with Relational Databases. In: Colloquium on Implementation
of Constraint and LOgic Programming Systems. (2004) 71–82

10. Soares, T., Rocha, R., Ferreira, M.: Generic Cut Actions for External Prolog Predi-
cates. In: International Symposium on Practical Aspects of Declarative Languages.
Number 3819 in LNCS, Springer-Verlag (2006) 16–30

11. Draxler, C.: Accessing Relational and Higher Databases Through Database Set
Predicates. PhD thesis, Zurich University (1991)

12. Michalski, R.S., Larson, J.B.: Selection of Most Representative Training Examples
and Incremental Generation of VL918 Hypotheses: The Underlying Mehtodology
and the Description of Programs ESEL and AQ11. Technical Report 867, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign (1978)

13. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A Midterm Report. In: European
Conference on Machine Learning. Volume 667., Springer-Verlag (1993) 3–20

14. Muggleton, S., Firth, J.: Relational Rule Induction with CProgol4.4: A Tutorial
Introduction. In: Relational Data Mining. Springer-Verlag (2001) 160–188

15. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual. (2006)
Available from http://www.ncc.up.pt/~vsc/Yap.

16. Botta, M., Giordana, A., Saitta, L., Sebag, M.: Relational Learning as Search in
a Critical Region. Journal of Machine Learning Research 4 (2003) 431–463

17. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the Efficiency of Inductive Logic Programming Through the Use of
Query Packs. Journal of Artificial Intelligence Research 16 (2002) 135–166

18. Rocha, R., Fonseca, N., Santos Costa, V.: On Applying Tabling to Inductive Logic
Programming. In: European Conference on Machine Learning. Number 3720 in
LNAI, Springer-Verlag (2005) 707–714

