An External Module for Implementing
Linear Tabling in Prolog

Claudio Silva, Ricardo Rocha, and Ricardo Lopes*

DCC-FC & LIACC
University of Porto, Portugal
ccaldas@dcc.online.pt {ricroc,rslopes}@ncc.up.pt

Extended Abstract

In previous work [1], we have presented a proposal to combine the power
of tabling with the Extended Andorra Model (EAM) in order to produce an
execution model with advanced control strategies that guarantees termination,
avoids looping, reduces the search space, and is less sensitive to goal ordering.

To address the integration between tabling and the EAM, through the BEAM
system [2], we have identified several tasks [1]. In particular, to study how tabling
interacts with the BEAM, we proposed the ability to use an external module
for implementing tabling primitives that provide direct control over the search
strategy. This approach may compromise efficiency, if compared to systems that
implement tabling support at the low-level engine, but allows tabling to be easily
incorporated into any Prolog system. For our work, it will serve as the basis to
study and detect in advance the potential integration problems before extending
the BEAM system to support tabling running within the EAM environment.

In the past years several alternative mechanisms for tabling have been pro-
posed and implemented in systems like XSB, Yap, B-Prolog, ALS-Prolog and
Mercury. In these implementations, we can distinguish two main categories of
tabling mechanisms: delaying-based tabling mechanisms in the sense that the
computation state of suspended tabled subgoal calls has to be preserved, ei-
ther by freezing the whole stacks or by copying the execution stacks to separate
storage; and linear tabling mechanisms where a new call always extends the lat-
est one, therefore maintaining only a single SLD tree in the execution stacks.
Delaying-based mechanisms can be considered more complicated to implement
but obtain better results. The weakness of the linear mechanisms is the necessity
of re-computation for computing fix-points.

Implementing tabling through an external module restrict us to linear tabling
mechanisms, because external modules cannot directly interact with the execu-
tion stacks. Therefore, we have decided to design a module that implements the
two available mechanisms that, to the best of our knowledge, implement linear
tabling: the SLDT strategy of Zhou et al. [3]; and the DRA technique of Guo
and Gupta [4]. The key idea of the SLDT strategy is to let a tabled subgoal call

* This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundagao para a Ciéncia e Tecnologia and Programa POSC.



execute from the backtracking point of a former variant call if such a call exists.
When there are available answers in the table space, the variant call consumes
them; otherwise, it uses the predicate clauses to produce answers. Meanwhile, if
a call that is a variant of some former call occurs, it takes the remaining clauses
from the former call and tries to produce new answers by using them. The vari-
ant call is then repeatedly re-executed, until all the available answers and clauses
have been exhausted, that is, until a fix-point is reached. The DRA technique is
based on dynamic reordering of alternatives with variant calls. This technique
tables not only the answers to tabled subgoals, but also the alternatives leading
to variant calls, the looping alternatives. It then uses the looping alternatives to
repeatedly recompute them until a fix-point is reached.

Currently, we have already a preliminary implementation of both approaches
in our external module. The module uses the C language interface of the Yap Pro-
log system to implement external tabling primitives that provide direct control
over the search strategies for a transformed program. According to the tabling
mechanism to be used, a tabled logic program is first transformed to include
the tabling primitives through source level transformations and only then, the
resulting program is compiled. Our module is independent from the Yap Prolog’s
engine which makes it easily portable to other Prolog systems with a C language
interface. To implement the table space data structures we use tries as originally
implemented in the XSB Prolog system [5].

Preliminaries results, on a set of common benchmarks for tabled execution,
allows us to make a first and fair comparison between the SLDT and the DRA
mechanisms and, therefore, better understand the advantages and weaknesses of
each. Starting from these results, we are now working on a new proposal that
tries to combine the best features of both in order to produce a more robust and
efficient linear tabling mechanism to experiment with the BEAM.

References

1. Rocha, R., Lopes, R., Silva, F., Costa, V.S.: IMPACT: Innovative Models for Pro-
log with Advanced Control and Tabling. In: International Conference on Logic
Programming. Number 3668 in LNCS, Springer-Verlag (2005) 416-417

2. Lopes, R., Santos Costa, V., Silva, F.: A Novel Implementation of the Extended
Andorra Model. In: International Symposium on Pratical Aspects of Declarative
Languages. Number 1990 in LNCS, Springer-Verlag (2001) 199-213

3. Zhou, N.F.; Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. In: Practical Aspects of Declarative Languages. Number 1753 in LNCS,
Springer-Verlag (2000) 109-123

4. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabling based on Dy-
namic Reordering of Alternatives. In: Conference on Tabulation in Parsing and
Deduction. (2000) 141-154

5. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31-54



