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Extended Abstract

A consequence of ILP systems being implemented in Prolog (e.g., [1–3]) or
using Prolog libraries (e.g., [4]) is that, usually, these systems use the Prolog
internal database to store and manipulate data. However, in real-world problems,
the original data is rarely in Prolog format. In fact, due to the huge amount of
information used to characterise these type of problems, the data is often kept
in relational database management systems (RDBMS).

A common approach is thus to convert the data in the RDBMS to a format
acceptable by the ILP system. A more interesting approach is to link the ILP
system to the RDBMS and manipulate the data without converting it [5]. This
can be done by (i) mapping Prolog predicates to database tables; or by (ii)
translating logical clauses into SQL statements. Note that both schemes have
the advantage of being more scalable since the whole data does not need to be
loaded into memory by the ILP system.

If the ILP system is implemented in a first order language like Prolog, then
the mapping scheme is a more transparent solution for the designer of the ILP
engine. However, this scheme can result in increased communication with the
RDBMS since many accesses may be needed to evaluate each single hypothe-
sis [6]. On the other hand, the translating scheme reduces communication at the
cost of some expressiveness - the ILP system is no longer able to learn recursive
definitions. In this scheme one can devise two ways of translating a hypothesis
to an SQL statement: (i) transform a hypothesis into an equivalent SQL view;
or (ii) transform a hypothesis into an equivalent SQL count query. The second
alternative is the one usually pursued since it minimizes communication and
transfers almost all work to the RDBMS. For each hypothesis, the communica-
tion exchanged with the RDBMS is the SQL count query and a number, with
the count value, returned as the result.

Several previous implementations have already coupled ILP systems with re-
lational databases, some using the mapping scheme, others translating logical
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rules into SQL statements [7–9], and others using both [10]. The level of trans-
parency for the user in these implementations is quite variable, ranging from no
transparency (e.g., the user manually defines the views for each literal that may
appear in a hypothesis [10]), to completely transparent [9]. Despite the work on
linking ILP systems with relational databases (e.g., [7–10]), very little is known
about the impact on efficiency of learning directly from a database. It is often
assumed that the increase in scalability resulted from using a RDBMS costs a
reduction in performance.

In this work we present an user transparent approach to couple an ILP sys-
tem with a relational database by using a Deductive Database (DDB) system.
Our proposal uses the DDB engine to transparently translate the generated hy-
potheses to SQL statements with only minor changes to the implementation of
the ILP system. By transferring as much as possible the evaluation of hypothe-
ses to the RDBMS, we show how this coupled environment provides an excellent
framework for the efficient and scalable execution of ILP algorithms. By us-
ing a DDB system, the ILP system can transparently exploit advanced features
of relational databases, such as powerful indexing schemes, query optimization,
efficient aggregation and joining algorithms.

The idea of coupling ILP with DDB is not new - the ILP system Warmr has
been coupled with a deductive database system to mine association rules [11].
The difference to our work is twofold. First, the tasks addressed are different:
Warmr learns associations rules from multiple relations while we are concerned
with learning classification rules. Second, Warms loads data into main memory
while in our proposal the data remains in the database.

Being able to abstract the Prolog to SQL translation by using the DDB, we
concentrate on evaluating several high-level schemes of interaction between the
ILP system and the RDBMS, with different distributions of work between the
logic system and the database system. In all experiments we used four artifi-
cially generated data-sets [12] that allowed us to perform the evaluations while
considering different data-set sizes and hypotheses complexity (number of joins
in a hypothesis). To do the experiments we used April [13] as the ILP system
and MYDDAS [14], which couples the Yap Prolog engine [15] with the MySQL
RDBMS, as the DDB system.

Our results indicate that the execution time of ILP algorithms can be ef-
fectively reduced and that the size of the problems solved can be significantly
increased due to a non-memory storage of the data-sets. Best performance is
achieved when we use a scheme that transforms the hypotheses into an equiva-
lent SQL count query.

ILP systems often use some kind of input/output mode declarations to sup-
ply information concerning the arguments of each predicate that may appear in
the hypotheses [16, 17]. These declarations specify if an argument (attribute) of
a predicate (table) is intended to be a constant, an input or an output argument.
Although the mode declarations are usually provided by the user, they can be
also automatically extracted from the background knowledge. This mode infor-
mation provided to the ILP system is used to optimize query execution in the



RDBMS by automatically creating indexes in the tables. The rationale is that all
hypotheses (queries) generated will be mode conform and, thus, the projection
operations in the queries will always be performed using the constant and/or
the input attributes. Our performance study also shows that the automatic in-
dex creation, when used with the count scheme, reduces the execution speed
significantly [6].
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