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Abstract. A consequence of ILP systems being implemented in Prolog
or using Prolog libraries is that, usually, these systems use a Prolog
internal database to store and manipulate data. However, in real-world
problems, the original data is rarely in Prolog format. In fact, the data is
often kept in Relational Database Management Systems (RDBMS) and
then converted to a format acceptable by the ILP system. Therefore,
a more interesting approach is to link the ILP system to the RDBMS
and manipulate the data without converting it. This scheme has the
advantage of being more scalable since the whole data does not need to
be loaded into memory by the ILP system. In this paper we study several
approaches of coupling ILP systems with RDBMS systems and evaluate
their impact on performance. We propose to use a Deductive Database
(DDB) system to transparently translate the hypotheses to relational
algebra expressions. The empirical evaluation performed shows that the
execution time of ILP algorithms can be effectively reduced using a DDB
and that the size of the problems can be increased due to a non-memory
storage of the data.
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1 Introduction

The amount of data collected and stored in databases is growing considerably in
almost all areas of human activity. A paramount example is the explosion of bio-
tech data that, as a result of automation in biochemistry, doubles its size every
three to six months [1, 2]. Most of this data is structured and stored in relational
databases and, in more complex applications, can involve several relations, thus
being spread over multiple tables. However, many important data mining tech-
niques look for patterns in a single relation (or table) where each tuple (or row)
is one object of interest. Great care and effort has to be made in order to store
as much relevant data as possible into a single table so that propositional data
mining algorithms can be applied. Notwithstanding this preparation step, propo-
sitionalizing data from multiple tables into a single one may lead to redundancy,
loss of information [3] or to tables of prohibitive size [4].

On the other hand, Inductive Logic Programing (ILP) systems are able to
learn patterns from relational data. However, ILP systems usually store and ma-
nipulate data in Prolog databases as a result of being implemented in Prolog [5–7]



or using Prolog libraries [8]. The approach often followed by ILP practitioners
is to convert the data in the relational database to a format acceptable by the
ILP system. A consequence of learning from Prolog databases is that the data
is loaded into main memory, thus limiting ILP ability to process larger data-
sets. Although ILP systems load the data into main memory, they are known as
being computationally expensive. To find a model, ILP systems repeatedly ex-
amine sets of candidate clauses, which in turn involves evaluating each clause on
all data to determine its quality. On complex or sizable applications, evaluating
individual clauses may take considerable time, and thus, to compute a model,
an ILP system can take several hours or even days. Efficiency and scalability are
thus two of the major challenges that current ILP systems must overcome.

In this work we show how an ILP system can be transparently coupled with
a Relational Database Management System (RDBMS) by using a Deductive
Database (DDB) system, and how this coupled environment provides an ex-
cellent framework for the efficient and scalable induction of logic programs. In
particular, we will use April [9] as the ILP system and MYDDAS [10] as the
DDB system. By using a DDB system, the ILP system is able to process larger
databases, since the memory issues disappear, and can transparently exploit
advanced features of relational databases, such as powerful indexing schemes,
query optimization, efficient aggregation and joining algorithms. In particular,
we describe mode based indexing, an optimization that many ILP systems may
easily perform.

The idea of coupling ILP with relational databases is not new [11–14], but
very little has been reported about the impact on performance of learning from
a relational database. In fact, there is a general idea that ILP systems become
slower when coupled to a RDBMS. To clarify this, we investigate the effective-
ness of several high-level strategies of coupling an ILP system with a DDB. We
wish to evaluate the potential performance gains that result from learning from a
relational database as opposed to the more traditional approach of learning from
Prolog databases. In the experiments we used four artificially generated prob-
lems [15] that allowed us to perform the evaluations while considering different
data-set sizes and hypotheses complexity (number of joins in a hypothesis).

The remainder of the paper is organized as follows. First, we revise the back-
ground concepts of relational algebra operations in Prolog and introduce the
problem of coverage computation in ILP. Then, we describe our approaches to
couple ILP with DDB and discuss some implementation details. Next, we present
the results of an empirical evaluation on the performance of the proposed ap-
proaches. We end by discussing related work and by outlining some conclusions.

2 Preliminaries

In this section we revise relevant concepts of relational algebra and the encoding
of its operations in Prolog syntax. We also introduce the problem of coverage
computation in the context of ILP systems.



2.1 Prolog and Relational Algebra

If we abstract the notion of order on the clauses of a Prolog predicate and re-
strict these clauses to ground facts with atomic arguments, then this predicate is
equivalent to a database relation. Database relations are queried by RDBMS us-
ing relational algebra. In [16], Codd defined five primitive operations of relational
algebra: selection, projection, cartesian product, set union and set difference. We
can define Prolog predicates which are equivalent to these relational algebra
operations. Assuming that Q and R are database relations with an arbitrary
number of attributes, and that q and r are their associated Prolog predicates,
Table 1 defines a new relation P and a new Prolog predicate p, based on the five
primitive relational algebra operations and their equivalent encoding in Prolog
syntax.

Selection
P ← σ$i=val(Q)
p(X1, ...,Xi−1, val, Xi+1, ...,Xn) : − q(X1, ...,Xi−1, val, Xi+1, ...,Xn).

Projection
P ← π$i(Q)
p(Xi) : − q(X1, ...,Xi, ...,Xn).

Cartesian

Product

P ← Q×R

p(X1, ...,Xn, Y1, ..., Ym) : − q(X1, ..., Xn), r(Y1, ..., Ym).

Set Union

P ← Q ∪R

p(X1, ...,Xn) : − q(X1, ..., Xn).
p(X1, ...,Xn) : − r(X1, ...,Xn).

Set

Difference

P ← Q−R

p(X1, ...,Xn) : − q(X1, ..., Xn), not r(X1, ...,Xn).

Table 1. Relational algebra operations in Prolog

An important difference between Prolog and relational algebra is that the
Prolog’s inference engine operates tuple-at-a-time, while the database manager
operates set-at-a-time. To get the Prolog system to compute the equivalent
of the relational algebra operations of Table 1, we need to use the findall/3
built-in: findall(p(X1, ..., Xn), p(X1, ..., Xn), L), which will force backtracking
to occur on goal p(X1, ..., Xn), the second argument, collecting all solutions as
p(X1, ..., Xn) terms, the first argument, in list L.

Codd’s relational algebra has been extended to include higher-order opera-
tions, such as aggregate functions that compute values over sets of attributes.
Virtually every database system supports the following aggregate functions over
relations: sum(), avg(), count(), min() and max(), which compute the sum,
the average, the number, the minimum and the maximum of given attributes.
In relational algebra, aggregation operations are represented by groupFfun(Q),
where F is the aggregation operator, group is an optional list of attributes of
relation Q to be grouped and fun is the list of aggregation functions. For ex-
ample, a relational algebra expression returning a relation with a single tuple
representing the number of values for the ith attribute of a relation Q would be:
P ← Fcount $i(Q).

Because of its tuple-at-a-time nature, Prolog is particularly inefficient for
higher-order computations. Coupled DDB systems thus try to transfer these
computations to the database manager. In the context of DDB the logic syntax



to encode the aggregation operations of relational algebra is as follows:

p(Xi, ..., Xj , Y1, ..., Ym) : − Y1 is Xi
∧...∧Xj

∧fun1(Xk, q(X1, ..., Xk, ..., Xn)),

...,

Ym is Xi
∧...∧Xj

∧funm(Xl, q(X1, ..., Xl, ..., Xn)).

where the Xi, ..., Xj are the grouping attributes and the Y1, ..., Ym are the aggre-
gate values associated to the fun1, ..., funm aggregation functions. The above
example of P ← Fcount $i(Q) would be written in Prolog as:

p(Y1) : − Y1 is count(Xi, q(X1, ..., Xi, ..., Xn)).

Common database queries typically combine several primitive relational al-
gebra operations. For instance, a natural join such as P ← Q ⊲⊳$i=$j R is
implemented by a composition of cartesian product, selection and projection
operations: P ← πX1,...,Xn,Y1,...,Yj−1,Yj+1,...,Ym

(σ$i=$(n+j)(Q×R)).
An equivalent composition results in the following Prolog clause to implement

the same natural join:

p(X1, ..., Xi, ..., Xn, Y1, ..., Yj−1, Yj+1, ..., Ym) : − q(X1, ..., Xi, ..., Xn),

r(Y1, ..., Yj−1, Xi, Yj+1, ..., Ym).

Every composition of relational algebra can be expressed in Prolog, while the
reverse is not true. The subset of Prolog, extended with the findall/3 predicate,
equivalent to relational algebra is referred as Datalog [17]. Prolog predicates
which involve either direct or indirect recursion cannot be expressed in relational
algebra. Relational tuples also cannot represent Prolog facts containing unbound
or compound arguments.

2.2 Coverage Computation in ILP

The normal problem that an ILP system must solve is to find a consistent and
complete theory, from a set of examples and prior knowledge, the background

knowledge, that explains all given positive examples, while being consistent with
the given negative examples [18]. In general, the background knowledge and the
set of examples can be arbitrary logic programs.

To derive a theory with the desired properties, many ILP systems follow some
kind of generate-and-test approach to traverse the hypotheses space [8]. A general
ILP system spends most of its time evaluating hypotheses, either because the
number of examples is large or because testing each example is computationally
hard. For each of these hypotheses the ILP algorithm computes its coverage, that
is, the number of positive and negatives examples that can be deduced from it.
If a clause covers all of the positive examples and none of the negative examples,
then the ILP system stops. Otherwise, an alternative stop criteria should be
used, such as the number of hypotheses evaluated, or the number of positive
examples covered, or time. A simplified algorithm for the coverage computation
of a clause is presented next in Fig. 1.



compute_coverage(Clause,ScorePos,ScoreNeg) :-
assert(Clause,Ref),
reset_counter(pos,0), reset_counter(neg,0),
(

select_positive_example(Goal), once(Goal),
incr_counter(pos), fail

;
true

),
(

select_negative_example(Goal), once(Goal),
incr_counter(neg), fail

;
true

),
counter(pos,ScorePos), counter(neg,ScoreNeg),
erase(Ref).

Fig. 1. Coverage computation

The compute coverage/3 predicate starts by asserting the clause being evalu-
ated1 and by resetting a counter pos. Next, the select positive example/1 pred-
icate binds variable Goal to the first positive example, which is then called using
the once/1 primitive. The once/1 primitive is used to avoid backtracking on
alternative ways to derive the current goal. If the positive example succeeds,
counter pos is incremented and we force failure. Failure, whether forced or un-
forced, will backtrack to alternative positive examples, traversing all of them
and counting those that succeed. The process is repeated for negative examples
and finally the asserted clause is retracted.

3 Coupling Approaches

In this section we describe several approaches to divide the coverage computa-
tion work between the logic system and the relational database system. We will
describe the coupling approaches starting with the base coverage computation,
and then incrementally transferring computational work from the logic system
to the database system.

3.1 Selection Approach

On a typical coupled DDB system, the tuples defined extensionally in database
relations are transparently mapped to Prolog predicates by using a directive
such as:

: − db import(rel name, pred name, conn).

This directive is meant to associate a predicate pred name with a database
relation rel name that is accessible through a connection with the database
system named conn. What this directive does is implementing the communica-
tion layer between the Prolog engine and the database system, which involves
the translation of queries written in Prolog syntax to their equivalent relational

1 Here we consider the general case where the clauses being evaluated can be recursive.



algebra expressions, as explained in subsection 2.1. Typical interfaces with rela-
tional database systems do not include support for relational algebra expressions
in their textual form, requiring their further translation to SQL, the lingua franca

of database systems.
Based on the above directive and assuming that rel name is a two field

relation, the query goal pred name(val, A) will be translated to the following
relational algebra expression: σ$1=val(rel name), which is in turn translated to
the SQL expression:

SELECT val, A.attr2 FROM rel name A WHERE A.attr1 = val;

where attr1 and atrr2 are the attributes names of relation rel name. This expres-
sion is then sent to the database system and the obtained result set is navigated
tuple-at-a-time using backtracking. Note that the database system executes the
selection operation, returning only the tuples that unify with the logic goal, thus
freeing the logic system from the unification operation. This selection approach
requires just the declaration of the background knowledge and the positive and
negative examples predicates through db import/3 directives. Coverage compu-
tation is done exactly as in Fig. 1.

3.2 Join Approach

A fundamental improvement to the selection approach is to transfer the com-
putation of the join of the several database goals in the body of a clause to the
database system. Prolog efficiency is compromised by the strict execution mech-
anism of SLD-resolution, while the query optimiser of database systems is able
to use goal-reordering and extended indexing schemes to improve the efficiency
of join computation.

In order to transfer the join computation to the database system, the interface
of the DDB system must group together conjunctions of extensional goals and
Prolog built-ins that can be expressed in relational algebra. This can be done
automatically during compilation using a simple program analysis, or can be
done explicitly by the user. Currently, MYDDAS follows the later approach,
through a db view/3 directive:

: − db view(view(Ai, ..., Aj), (db goal1(A1, ..., An), ..., db goalm(Ak, ..., Al)), conn).

where the first argument specifies the attributes to be fetched from the database,
the second argument specifies the selection restrictions and join conditions, and
the third argument identifies the connection with the database system.

The compute coverage/3 predicate still works as before, but instead of as-
serting the given clause, it now creates a view for the goals in the body of the
clause and then replaces the clause’s body with the created view. For example,
considering the clause ‘h(A) : − p1(A, B), p2(B).’, where p1/2 and p2/1 repre-
sent the database relations r1 and r2, the compute coverage/3 predicate now
creates the view:

db view(view(A), (p1(A, B), p2(B)), conn)



and asserts the clause ‘h(A) : − view(A).’. The relational algebra expression
generated for the view when evaluating a given example, e1 for instance, is:

π$1((σ$1=e1(r1)) ⊲⊳$2=$1 r2)

3.3 Reduced-Join Approach

Some very important issues in the coverage algorithm of Fig. 1 arise for the
once/1 primitive: (i) the coupling interface must support deallocation of queries
result sets when the once/1 primitive prunes the search space [19]; (ii) instead of
unnecessarily computing all the alternative solutions, the database system only
needs to compute the first tuple of the join.

In order to reduce the scope of the join computed by the database system,
we should push the once/1 primitive to the database view. The asserted clause
should include an once/1 predicate on the view definition and the DDB inter-
face should be able to translate it to a relational algebra expression that can
be efficiently executed by the database system. We introduce an extension to
the relational algebra selection operation, σ(conditions,rows)(R), where the rows
argument defines a limit to the number of tuples that the selection operation
should return. In particular, if this selection operation is composed with a join
operation, the query optimizer can prune the join computation as soon as the re-
quired number of tuples is reached. With this approach, the compute coverage/3
predicate can be used as before and we can drop the once/1 call from its code.
For our previous example, the view is now:

db view(view(A), once(p1(A, B), p2(B)), conn)

and the relational algebra operation generated when evaluating example e1 is:

π$1((σ($1=e1,1)(r1)) ⊲⊳$2=$1 r2)

Based on this relational algebra expression, the MYDDAS interface is able
to send the following SQL query to the database system:

SELECT A.attr1 FROM r1 A, r2 B

WHERE A.attr1 = e1 AND A.attr2 = B.attr1 LIMIT 1;

3.4 Aggregation Approach

A final transfer of computation work from the logic system to the database
system can be done for the aggregation operation which counts the number of
examples covered by a clause. The compute coverage/3 predicate uses extra-
logical global variables to perform this counting operation, as it would be too
inefficient otherwise.

To transfer the aggregation work to the database system we need to restrict
the theories we are inducing to non-recursive theories, where the head of the
clause can not appear as a goal in the body. With this restriction, we can drop



the assertion of the clause to the program code, include the positive or negative
examples relation as a goal co-joined with the goals in the body of the current
clause, and include a count/2 predicate on the view definition for the attributes
holding the positive or negative examples. Again, the join should only test for
the existence of one tuple in the body goals for each of the examples, using the
once/1 primitive on the view definition. For our example, the view would be:

db view(view(C), C is count(A, (h(A), once(p1(A, B), p2(B)))), conn)

The composition of these relational operations results in the following rela-
tional algebra expression:

Fcount $1(r0 ⊲⊳$1=$1 (σ(ǫ,1)(r1) ⊲⊳$2=$1 r2))

where r0 is the database relation associated with h/1 and ǫ represents the empty
condition. We have extended the MYDDAS interface in order to generate an
efficient translation to SQL for such expressions. The above view generates the
following SQL expression:

SELECT COUNT (A.attr1) FROM r0 A

WHERE EXISTS (SELECT ∗ FROM r1 B, r2 C

WHERE A.attr1 = B.attr1 AND B.attr2 = C.attr1 LIMIT 1);

Although the ‘LIMIT 1’ keyword may seem redundant for an existential sub-
query, our experiments showed that MySQL performance is greatly improved if
we include it on the sub-query. On the other hand, the ‘LIMIT 1’ suffix has
no impact on performance when using an Oracle RDBMS, as we shall see. This
observation shows that MySQL query optimizer is failing somewhere on its task.

The four coupling approaches, Selection, Join, Reduced-Join and Aggregation,
are gradually transferring computation from the logic system to the database
system. In a future approach we plan to further transfer computation work to
the database system, implementing a many-at-once optimization, as illustrated
by the query packs technique [20]. Not only do some database systems per-
form caching of queries, but we can also extend the Prolog-to-relational-algebra
translation in order to be able to send packs of logic queries to the database sys-
tem and have their coverage computed by the database system, at once, using
relational grouping operators optimized for redundancy elimination.

4 Implementation

The coupling approaches described above were implemented in the April ILP
system [9] coupled with the DDB system MYDDAS. Both April and MYDDAS
systems run on top of the Yap Prolog engine.

Being able to abstract the Prolog to SQL translation, task performed by
MYDDAS, we concentrated in implementing the various coupling approaches,



with different distributions of work between the logic system and the database
system, and considered some optimizations such as mode-based indexing, pre-
sented in the next subsection. The integration of both systems required minor
changes to April’s code and, in particular, to its clause evaluation component.

The impact for the ILP practitioner of using a DDB as opposed to using
the Prolog database is kept to a minimum. The user first indicates, through
a configuration option, which coupling approach wants to use, and then only
needs to provide information regarding the database where the data resides
(name, user, password, and host) and, if using the aggregation approach, the
names of the tables of the positive and, if available, negative examples. When
the examples are stored in tables, the ILP system automatically creates new
tables for each class of examples with extra attributes that are used to keep
temporary information generated during execution.

4.1 Mode-Based Indexing

ILP systems often use some kind of input/output mode declarations to supply
information concerning the arguments of each predicate that may appear in the
hypotheses [21, 22]. These declarations specify if an argument of a predicate is
intended to be a constant, an input or an output argument. Although the mode
declarations are usually provided by the user, they can be also automatically
extracted from the background knowledge [23].

There are two major advantages in the use of mode declarations. First, the
ILP system can guarantee termination by ensuring that the hypotheses it gen-
erates are accordingly to the mode. Second, ILP systems can use the mode
information to automatically create indexes in the database in order to optimize
query execution. We proceed as follows. For each mode declaration (that affects
some table) we create two indexes. The first index is created on the attributes
indicated as constants or input arguments. The rationale is that all hypotheses
(queries) generated will be mode conform and, thus, the join and projection op-
erations in the queries will always be performed over the constant and/or the
input attributes. The second index is created on all the attributes of the corre-
sponding table (predicate). In the following section, we show that this automatic
index creation, when used with the aggregation approach, reduces the execution
speed significantly.

5 Performance Evaluation

We have performed a set of experiments in order to evaluate our work. The goals
of the experiments were two-fold:

– Empirically compare the four coupling approaches.

– Assess if our proposal of coupling ILP with a DDB can improve the efficiency
and scalability of ILP systems.



5.1 Materials and Methodology

We have used four artificially generated problems [15]. Table 2 characterizes the
problems in terms of number of examples, number of relations in the background
knowledge, and number of tuples. All experiments were performed using MY-
DDAS 0.9, coupling Yap 5.1.0 with MySQL Server 4.1.5-gamma, on a AMD
Athlon 64 Processor 2800+ with 512 Kbytes cache and 1 Gbyte of RAM. Yap
performs indexing in run-time on all arguments.

Problem # Examples # Relations # Tuples

p.m8.l27 200 8 321,576
p.m11.l15 200 11 440,000
p.m15.l29 200 15 603,000
p.m21.l18 200 21 844,200

Table 2. Problems characterization

A set of 688 clauses was generated for each artificial problem. The clauses
were randomly generated and equally distributed by length, ranging from 1 to
the number of relations available in the data-set. We used the April ILP system
to randomly generate the sets of clauses.

Since the weight of coverage computation on the total execution time of
an ILP system varies accordingly to the system or algorithm used, we have
chosen to implement the approaches for coverage computation through simple
Prolog programs2. This allows us to perform a comparison independent of the
ILP system and to correctly measure the time spent in coverage computation.
Using April’s execution time as the measure does not allow us to do a precise
performance evaluation since the gains would vary, depending on the search
algorithm used and on the optimizations that April can perform during run-
time.

5.2 Comparing the Coupling Approaches

Table 3 shows the best execution time of 5 runs, in seconds, for each problem. For
the basic ILP approach, the clauses were evaluated using Yap with indexing on
the first argument (IFA) and using Yap with indexing on all arguments (IAA).
For the coupling approaches, the clauses were evaluated using mode-based index-
ing (MBI) as described in subsection 4.1. For comparison purposes, we also show
the execution time for the Aggregation approach without mode-based indexing.
Without mode-based indexing the relational tables still include indexing, but
only based on the primary indexes associated to the primary keys.

A first observation should be made regarding the impact in the execution
time when using full indexing in Prolog (Basic ILP + IAA) as opposed to use
indexing solely in the first argument (Basic ILP + IFA). We will use the times
taken by the Basic ILP + IAA as the base times, although full indexing is
available in only a few Prolog engines.

2 Available from http://www.ncc.up.pt/MYDDAS/ilpddb.html



Approach
Problem

p.m8.l27 p.m11.l15 p.m15.l29 p.m21.l18

Basic ILP + IFA 149 409 >1 day >1 day
Basic ILP + IAA 15 50 33,972 >1 day
Selection + MBI 35,583 >1 day >1 day >1 day
Join + MBI n.a n.a n.a n.a
Reduced-Join + MBI 99 628 2,975 33,229
Aggregation >1 day >1 day >1 day >1 day
Aggregation + MBI 5 14 251 734

Table 3. Performance for the different approaches (execution time in seconds)

The core time of communication between the ILP system and the database
system dilutes as we increase the computation work of the database system.
For problems involving relations with thousands of tuples the Selection + MBI

approach is unrealistic. This approach does not transfer any computation work
to the database system, other than selecting tuples from individual relations.
Furthermore, the number of queries generated is a factor of the number of tuples
in each relation, which explains execution times of days or weeks for problems
larger than p.m8.l27.

For the Join + MBI approach, as expected, we could not obtain the execution
times for any problem, due to insufficient memory to compute the joins involved.
Note that this approach does not implement the once/1 optimization, therefore
the entire join is computed instead of just the first tuple. MySQL ran out of
memory when trying to compute a join of several relations, each with thousands
of tuples.

For the Reduced-Join + MBI approach the scope of the join is now reduced
to compute just the first tuple. For problem p.m11.l15 the slow-down factor
compared to the Basic ILP + IAA approach is explained by the number of
queries that are sent to the database system, one for every positive and negative
example. This means that a total of 200 queries (the number of positive and
negative examples) are sent to the database system for each of the 688 clauses.
As the size of the joins grows larger, as with p.m15.l29, the time spent in com-
munication of the queries becomes irrelevant compared to the time taken for
computing the joins. This and the huge amount of backtracking performed by
the Basic ILP + IAA approach for the two largest artificial problems, as the Ba-

sic ILP + IAA approach runs on a tuple-at-a-time form against the set-at-a-time

database approaches, explains the speedup obtained with this approach.

On the Aggregation approach only two queries per clause are sent to the
database system, one to compute positive coverage and one to compute negative
coverage. Since all the coverage computation work is transferred to the database
system, the core time of sending and storing the result set for the two queries
is insignificant. However, the results are disappointing due to the lack of useful
indexes on the tables.

The results obtained with the Aggregation + MBI approach are very good.
The performance gains over the Basic ILP + IAA approach are clear: a 2.8
speedup for p.m8.l27, and a 3.4 speedup for p.m11.l15, and a 135 speedup for



p.m15.l29. These results show a clear tendency for higher speedups as the size
of the problems grow.

In conclusion, the Aggregation + MBI approach clearly outperforms the other
approaches. It significantly reduces the execution time and may allow ILP sys-
tems to handle larger problems, thanks to the non-memory storage of data-sets,
thus contributing to improving the scalability of ILP systems.

5.3 Impact of Query Transformations

The results presented in the previous section showed that Aggregation + MBI

approach has the best results, even when compared to the times obtained to
the Basic ILP + IAA approach. Although Prolog’s indexing on all arguments
is an improvement to indexing on the first argument (often provided by Prolog
engines), that is not the only technique that may be used to improve query
execution in Prolog.

Several techniques have been proposed to this effect, namely perform trans-
formations in the query so that it can be executed more efficiently [24, 20], com-
pute an approximate evaluation [25, 26] as opposed to an exact evaluation, store
and reused the computations [27, 28], or by exploiting parallelism [29]. Deter-
mining which technique or combinations of techniques produces the best results
is out of scope of this paper. Instead, we selected one ILP technique similar to
the query optimization performed by RDBMS and that has been shown to yield
good results - the query transformations (QT ) proposed in [24]. The results ob-
tained with query transformations are presented in Table 4 and compared with
two other approaches and with the times taken in an Oracle RDBMS.

Approach
Problem

p.m8.l27 p.m11.l15 p.m15.l29 p.m21.l18

Basic ILP + IAA 15 50 33,972 >1 day
Basic ILP + IAA + QT 1 4 16 39
Aggregation + MBI (MySQL) 5 14 251 734
Aggregation + MBI (Oracle) 6 9 101 164

Table 4. Comparing with query transformations (execution time in seconds)

It is obvious that the results presented are dependent of the RDBMS used.
In our experiments we used MySQL which is known to be a fast database.
However, our experiments suggest that the optimizer is not efficient. The results
obtained for the Aggregation + MBI approach in the Oracle RDBMS show
that it outperforms the MySQL RDBMS by almost a factor of 5 for the largest
problem. This speedup also shows a clear trend to increase as the size of the
data-sets grows. The Oracle optimizer also proves to be more intelligent when
computing the existential sub-query on the Aggregation approach. When using
the Oracle system, the ‘LIMIT 1’ keyword is actually redundant in terms of
performance.

The impact of query transformations is impressive when compared to the
basic ILP approach. Compared to our Aggregation + MBI approach in Oracle
it is still 4 times faster for p.m21.l18. However, it requires the full data-set to



be loaded to memory, which might not be possible for larger problems. Another
interesting possibility we are exploring is the translation to relational algebra of
the Prolog goals after applying the queries transformations optimization. Our
preliminary results showed that this can in fact improve the performance on
the database side. At this time, the MYDDAS interface translating Prolog to
relational algebra expressions does not support the usage of the cut (!) predicate.
The query transformations uses this extra-logical predicate to optimize queries.
In Prolog, the cut operator is used to prune the search tree, but on the relational
algebra the semantics of the !/0 predicate gives the notion of an existential sub-
query. Preliminaries results of translating the cut to existential sub-queries for
the goals generated by the queries transformation optimization indicate that it
may have a positive impact on performance.

6 Related Work

Several previous implementations have already coupled ILP systems with rela-
tional databases, some mapping logical predicates into database relations, oth-
ers translating logical clauses into SQL statements [11–14], and others using
both [30]. The level of transparency (for the user) in these implementations is
quite variable, ranging from no transparency (the user manually defines the views
for each literal that may appear in a clause) [30] to completely transparent [14].

The idea of coupling ILP with DDB is also not new - the ILP system Warmr
has been coupled with a DDB system to mine association rules [31]. The differ-
ence to our work is twofold. First, Warmr loads the data into main memory from
a relational database, while in our proposal the data remains in the database.
Secondly, we have performed an empirical performance study of several coupling
approaches and proposed to exploit mode based indexing.

7 Concluding Remarks

In this work we have studied several approaches to couple ILP systems with
RDBMS by using a DDB system. The strategy of using a DDB system brings
to ILP systems the technology of relational database systems, which are very
efficient in dealing with large amounts of data. We argue that this strategy is
easier to implement and maintain than the approach that tries to incorporate
database technology directly in the logic programming system. And, much more
important, it allows a substantial increase of the size of the problems that can
be solved using ILP since the data does not need to be loaded to memory by the
ILP system.

The results of evaluating the several approaches to couple ILP with RDBMS
show that the Aggregation + MBI approach: i) outperforms the other coupling
approaches and significantly reduces the execution time when compared to the
use of a Prolog engine (even with indexing on all arguments) and ii) may allow
ILP systems to handle larger problems, thanks to the non-memory storage of
data-sets, thus contributing to improving the scalability of ILP systems.



The results also indicate that further research should be done in order to
make learning from RDBMS competitive, in terms of execution time, with a
fast Prolog engine (using indexing on all predicate’s arguments and performing
query transformations). For instance, a possible line of research could be the
adaptation of techniques already developed in the ILP context (see e.g., [20,
24]) to be used while learning from RDBMS. As further work we also plan to
be able to implement the transformations from Prolog to SQL described in this
paper as a compilation step, based on program analysis, which takes into account
factors such as the size of data, database indexing information and complexity
of queries. This information should guide an automatic translation of parts of a
Prolog program to database accesses, using SQL as a compiler target language
and a database system as an abstract machine.
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