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Abstract. Tabled evaluation has been proved an effective method to improve
several aspects of goal-oriented query evaluation, including termination and com-
plexity. Several “native” implementations of tabled evaluation have been devel-
oped which offer good performance, but many of them need significant changes
to the underlying Prolog implementation. More portable approaches, generally
using program transformation, have been proposed but they often result in lower
efficiency. We explore some techniques aimed at combining the best of these
worlds, i.e., developing a portable and extensible implementation, with minimal
modifications at the abstract machine level, and with reasonably good perfor-
mance. Our preliminary results indicate promising results.

1 Introduction

Tabling [16, 2, 15] is a resolution strategy which tries to memoize previous calls and
their answers in order to improve several well-known shortcomings found in SLD reso-
lution. It brings some of the advantages of bottom-up evaluation to the top-down, goal-
oriented evaluation strategy. In particular, evaluating logic programs under a tabling
scheme may achieve termination in cases where SLD resolution does not (because of
infinite loops —for example, the tabled evaluation of bounded term-size programs is
guaranteed to always terminate). Also, programs which perform repeated computations
can be greatly sped up. Program declarativeness is also improved since the order of
clauses and goals within a clause is less relevant, if at all. Tabled evaluation has been
successfully applied in many fields, such as deductive databases [11], program analy-
sis [17, 3], reasoning in the semantic Web [19], model checking [9], and others.

In all cases the advantages of tabled evaluation stem from checking whether calls
to tabled predicates, i.e., predicates which have been marked to be evaluated using
tabling, have been made before. Repeated calls to tabled predicates consume answers
from a table, they suspend when all stored answers have been consumed, and they
fail when no more answers can be generated. However, the advantages are not without
drawbacks. The main problem is the complexity of some (efficient) implementations of
tabled resolution, and a secondary issue is the difficulty in selecting which predicates to
table in order not to incur in undesired slow-downs.



Two main categories of tabling mechanisms can be distinguished: suspension-based
and linear tabling mechanisms. In suspension-based mechanisms the computation state
of suspended tabled subgoals has to be preserved to avoid backtracking over them.
This is done either by freezing the stacks, as in XSB [13], by copying to another area,
as in CAT [5], or by using an intermediate solution as in CHAT [6]. Linear tabling
mechanisms maintain a single execution tree where tabled subgoals always extend the
current computation without requiring suspension and resumption of sub-computations.
The computation of the (local) fixpoint is performed by repeatedly looping subgoals
until no more solutions can be found. Examples of this method are the linear tabling of
BProlog [18] and the DRA scheme [7].

Suspension-based mechanism have achieved very good performance results but, in
general, deep changes to the underlying Prolog implementation are required. Linear
mechanisms, on the other hand, can usually be implemented on top of existing sequen-
tial engines without major modifications. One of our theses is that it should be possible
to find a combination of the best of both worlds: a suspension-based mechanism that
is efficient and does not require complex modifications to the underlying Prolog imple-
mentation, thus contributing to maintainability. Also, we would like to avoid introduc-
ing any overhead that would reduce the execution speed for SLD execution.

Our starting point is the Continuation Call Mechanism presented by Ramesh and
Chen in [12]. This approach has the advantage that it indeed does not need deep changes
to the underlying Prolog machinery. On the other hand it has shown up to now worse
efficiency than the more “native” suspension-based implementations. Our aim is to an-
alyze the bottlenecks of this approach, explore variations of it, and propose solutions in
order to improve its efficiency without losing much in implementation simplicity and
portability.

2 Tabling Basics

We will now sketch how tabled evaluation works from a user point of view (more details
can be found in [2, 13]) and then we briefly describe the continuation call mechanism
implementation technique proposed in [12] on which we base our work.

2.1 Tabling by Example

Let us use as running example the program in Figure 1, taken from [12], whose purpose
is to determine reachability of nodes in a graph We ignore for now the :- tabled
path/2 declaration (which instructs the compiler to use tabled execution for the des-
ignated predicate), and assume that SLD resolution is to be used. Then, a query such
as ?- path(a, N). will never terminate since there is a left-recursive clause which
generates a goal with the same instantiation as the initial call.

Adding the :- tabled declaration forces the compiler and runtime system to dis-
tinguish the first occurrence of a tabled goal (the generator) and subsequent calls which
are identical up to variable renaming (the consumers). The generator applies resolution
using the program clauses to derive answers for the goal. Consumers suspend the cur-
rent execution path (using implementation-dependent means) and move to a different



edge(a, b).
edge(b, c).
edge(b, d).

:− tabled path/2.

path(X, Y):−
path(X, Z),
edge(Z, Y).

path(X, Y):−
edge(X, Y).

Fig. 1. A simple tabled program.

path(X, Y):− slg(path(X, Y)).

slg path(path(X, Y), Id):−
slgcall ( Id , path(X, Z ), path cont).

slg path(path(X, Y), Id):−
edge(X, Y),
answer(Id, path(X, Y)).

path cont(Id , path(X, Z)):−
edge(Z, Y),
answer(Id, path(X, Y)).

Fig. 2. Program in Figure 1 transformed for tabled ex-
ecution.

branch. When such an alternative branch finally succeeds, the answer generated for the
initial query is inserted in a table associated with the original goal. This makes it pos-
sible to reactivate suspended calls and to continue execution at the point where it was
stopped. Thus, consumers do not use SLD resolution, but obtain instead the answers
from the table where they have been previously inserted by the producer. Predicates not
marked as tabled are executed following SLD resolution, hopefully with (minimal or
no) overhead due to the availability of tabling in the system.

2.2 The Continuation Call Technique

The continuation call technique [12] implements tabling by a combination of program
transformation and side effects in the form of insertions to and reads from an internally-
maintained table which relates calls, answers, and the continuation code to be executed
after consumers read answers from the table. We will now sketch how the mechanism
works using the path/2 example shown in Figure 1. The original code is transformed
into the program in Figure 2 which is the code actually executed.

Roughly speaking, the transformation for tabling is as follows: a bridge predicate
for path/2 is introduced so that calls to path/2 made from regular Prolog execution
do not need to be aware of path/2 being tabled. The call to the slg/1 primitive will
ensure that its argument is executed to completion and will return, on backtracking, all
the solutions found for the tabled predicate. slg/1 also inserts the call in the answer
table and generates an identifier for it. Control is then passed to a new distinct predi-
cate (in this case, slg path/2) by constructing a goal from path(X, Y) (which is
passed as an argument to slg/1) and then calling this term, suitably instantiated, from
inside the implementation of slg/1.4 The first argument contains the variables in the
original call to path/2 and the second one is the identifier generated for the parent
call, which is used to relate operations on the table with this initial call. Each clause of
slg path/2 is derived from a clause of the original path/2 predicate by:

4 The new term has been created in the example simply by prepending the prefix slg to the
argument passed to slg/1. Any means of constructing a new unique predicate symbol based
on the original one is acceptable. Our implementation performs at compile time as much of
this work as possible.



:− tabled path/2.

path(X, Z):−
edge(X, Y),
path(Y, Z).

path(X, Z):−
edge(X, Z).

Fig. 3. A program which needs to
keep an environment.

path(X, Y):− slg(path(X, Y)).

slg path(path(X, Y), Id):−
edge(X, Y),
slgcall ( Id , [ X ], path(Y, Z ), path cont 1).

slg path(path(X, Y), Id):−
edge(X, Y),
answer(Id, path(X, Y)).

path cont 1(Id , [ X ], path(Y, Z)):−
answer(Id, path(X, Z)).

Fig. 4. The program in Figure 3 after being transformed
for tabled execution.

– Adding an answer/2 primitive at the end of each clause resulting from a trans-
formation and which is not a bridge to call a continuation predicate. answer/2 is
responsible for checking for redundant answers and executing whatever continua-
tions (see the following item) there may be associated with that call identified by
its first argument.

– Instrumenting recursive calls to path/2 using the slgcall/3 primitive. If the
term passed as an argument (i.e., path(X, Y)) has already been inserted in the
table, slgcall/3 creates a new consumer which reads answers from the table.
Otherwise, the term is inserted in the table with a new call identifier and execution
follows using the slg path/2 program clauses to derive new answers. In the
first case, path cont/2 is recorded as (one of) the continuation(s) of path(X,
Y) and slgcall/3 fails. In the second case path cont/2 is only recorded
as a continuation of path(X, Y) if the tabled call cannot be completed. The
path cont/2 continuation will be called from answer/2 after inserting a new
answer or erased upon completion of the path(X, Y) subgoal.

– The body of path cont/2 encodes what remains of the clause body of path/2
after the recursive call. It is constructed in a similar way to slg path/2, i.e.,
applying the same transformation as for the initial clauses and calling slgcall/3
and answer/2 at appropriate times.

This strategy tries to complete subgoals as soon as possible, failing whenever new
answers are found, and thus implements the so-called local scheduling [13]. This im-
plementation uses the same completion detection algorithm as the SLG-WAM.

Figures 3 and 4 illustrate how additional modifications are required in the transla-
tion for some programs in order to pass on additional variables to continuations. Note
that in the program in Figure 3 an answer to ?- path(X, Y) may need to provide
a value to variable X which does not appear in the recursive call to path/2. If the
simple translation of Figure 2 is performed, this variable will not be available at the
point in the code where the answer is inserted in the table. The solution adopted in
this case is to explicitly carry a set of variables when preparing the call to the con-
tinuation. This set is also inserted in the table, and is passed to the continuation call
when resumed. The translation is shown in Figure 4. Note that the call to slgcall/4



answer(callid Id , term Answer) {
insert Answer in answer table
If ( Answer /∈ answer table)

for each continuation call C
of tabled call Id {

call (C) consuming Answer;
}

return FALSE;
}

Fig. 5. Pseudo-code for answer/2.

slgcall ( callid Parent, term Bindings,
term Call , term CCall) {

Id = insert Call into answer table;
if ( Id . state == READY) {

Id . state = EVALUATING;
call the transformed clause of Call ;
check for completion;

}
consume answers for Id;
if ( Id . state != COMPLETE) {

Id depends on Parent;
add a new continuation

call (CCall, Bindings) to Id ;
}
return FALSE;

}

Fig. 6. Pseudo-code for slgcall/4.

in path cont 1 includes a list containing variable X. This list is, on resumption, re-
ceived by path cont 1 and used to construct and insert in the table an answer which
includes X. A safe approximation of the variables which should appear in this list is the
set of variables which appear in the clause before the tabled goal and which are used in
the continuation, including the answer/2 primitive if there is one in the continuation
—this is the case in our example. Variables appearing in the tabled call itself do not
need to be included, as they will be passed along anyway.

The list of bindings is a means to recover the environment existing when a call is
suspended. Other approaches recover this environment using, e.g., lower-level mech-
anisms, such as the forward trail of SLG-WAM plus freeze registers [13]. The con-
tinuation call approach, has, however, the nice property that several of the operations
are made at the Prolog level through program transformation, which simplifies the im-
plementation (and helps portability). On the other hand, the primitives which insert
answers in the table and retrieve them are usually, and for efficiency reasons, written
using some lower-level language and accessed using a suitable interface.

The pseudo-code for answer/2 and slgcall/4 is shown in Figures 5 and 6,
respectively. The pseudo-code for slg/1 is similar to that of slgcall/4 but, instead
of consuming answers, they are returned by backtracking and it finally fails when all
the stored answers have been exhausted.

2.3 Issues in the Continuation Call Mechanism

We have identified two performance-related issues when implementing the technique
sketched in the previous section. The first one is rather general and related to the heavy
use of the interface from C to Prolog (and back) that the implementation needs to make,
and which adds an overhead which cannot be neglected.

The second one is the repeated copying of continuation calls. Continuation calls
(Prolog predicates with an arbitrarily long list of variables as an argument) are com-



pletely copied from Prolog memory to the table for every consumer found. Storing a
pointer to these structures in memory is not enough, since slg/1 and slgcall/3
fail immediately after associating a continuation call with a table call in order to force
the program to search for more solutions and complete the tabled call. Therefore, the
data structures created during forward execution may be removed on backtracking and
not be available when needed. When continuations are resumed by answer/2, it is
necessary to reconstruct them as Prolog terms from the data stored in the table to be
able to call them as a goal. This can also clearly have a negative impact on performance.

Finally, an issue found with the baseline implementation that we used as a starting
point [14], is that it did not allow backtracking over Prolog predicates called from C and
this compromised extensibility. In particular, this makes it difficult to implement other
scheduling strategies. Since this shortcoming may appear also in other C interfaces, it
is a clear candidate for improvement.

3 An Improvement over the Continuation Call Technique

We now propose some improvements to the different limitations of the original design
and implementation that we discussed in Section 2.3.

3.1 Using a Lower-Level Interface

Calls from C to Prolog were initially performed using a relatively high-level interface
similar to those commonly found in current state of the art logic programming systems:
operations to create and traverse Prolog terms appear to the programmer as regular C
functions, and details of the internal data representation are hidden to the programmer.
This interface imposed a noticeable overhead in our implementation, as the calls to C
functions had to allocate environments, pass arguments, set up Prolog environments to
call Prolog from C, etc.

Since the low-level code which constructs Prolog terms and performs calls from C is
the same regardless of the program being executed, we decided to skip the programmer
interface and call directly macros available in the engine implementation. Given that
the complexity of the C code involved is certainly manageable, that was a not a difficult
task to do and it sped the execution up by a factor of 2.5 on average.

3.2 Calling Prolog from C

A relevant issue when using a C-to-Prolog interface is the need to call Prolog goals from
C efficiently. This is needed both by slgcall/3 and answer/2 in order to invoke
continuations of tabled predicates. As mentioned before, we want to design a solution
which relies as little as possible on non-widely available characteristics of C-to-Prolog
interfaces (to simplify portability), but which keeps the efficiency as high as possible.

The solution we have adopted is to move calls to continuations from the C level to
the Prolog level. Continuations are stored in a (Prolog) list which is pointed to from the
corresponding table entry, and they are returned one at a time on backtracking using an
extra argument of slgcall/3 and answer/2. These continuations are then called



path(X,Y) :−
slgcall (path(X, Y), Sid,

true , Pred),
(

nonvar(Pred) −>
(call (Pred) ;
test complete(Sid))

;
true

),
consume answer(path(X, Y), Sid).

slg path(path(X, Y), Sid) :−
edge(X, Y),
answer(path(X, Y), Sid, CCall , 0),
call (CCall).

slg path(path(X, Y),Sid) :−
edge(X, Z),
slgcall (path(Z, Y), NewSid,

path cont 1, Pred),
(

nonvar(Pred) −>
(call (Pred);
test complete(NewSid))

;
true

),
read answers(Sid, NewSid, [X], CCall, 0),
call (CCall).

path cont 1(path(X, Y), Sid , [ Z]) :−
answer(path(Z, Y), Sid , CCall , 0),
call (CCall).

Fig. 7. New program transformation for right-recursive definition of path/2.

from Prolog.5 Failure happens when there is no pending continuation call. New contin-
uations found during program execution can be destructively inserted at the end of the
list of continuations transparently to Prolog.

In Figure 7 (which shows the translation we propose now for the code in Fig-
ure 3), answer/4, read answers/5, and slgcall/4 return in variables Pred
and CCall the continuations of a tabled call that are to be called as Prolog goals. This
avoids using up C stack space due to repeated Prolog → C → Prolog → . . . calls,
which may exhaust the available space. Additionally, the C code is somewhat simpli-
fied (e.g., there is no need to set up a Prolog environment to be used from C) which
makes using the lower-level, faster interface less of a burden. The last unused argument
of answer/4 (and read answers/5) implements a trick to make the correspond-
ing choicepoint have an extra, unused slot (corresponding to a WAM argument), which
will be used to hold a pointer to the rest of the list of continuations. Having such a slot
avoids changing the structure of choicepoints and how they are managed. This pointer
is destructively updated every time a continuation call is handed to the Prolog level.

We would like to clarify how some of the primitives used in Figure 7 work for this
case. Note that the functionality of slgcall/3 (slg/1 when called from SLD-type
execution) has been split across slgcall/3, test completion/1 and
read answer/5 (consume answers/2when associated with slg/1) in order to
be able to perform calls to continuations from Prolog. slgcall/5, as in the original
definition, checks if a call to a tabled goal is a new one. If so, Pred is unified with
a goal whose main functor is slg path/2 and whose arguments are appropriately
instantiated. A free variable is returned otherwise. test complete/1 always suc-
ceeds but performing a side effect: it tests if the tabled goal identified by Sid can be

5 In our implementation this exploits being able to write non-deterministic predicates in C. If
this feature is not available in a given system, a list of continuations can always be returned
instead which is then traversed on backtracking using member/2.



marked as complete, and marks it in that case. read answers/5 consumes actual
answers for the call identified by NewSid and then associates a new continuation call
with NewSid if the tabled call is not completed. Its first argument, Sid, is needed to
mark dependencies between tabled calls. consume answer/2 returns the answers
stored in the table one at a time and on backtracking if the tabled call is completed.
Otherwise, it behaves internally as read answers/5.

3.3 Freezing Continuation Calls

In this section we will sketch some proposals to reduce the overhead associated with
the way continuation calls are handled in the original approach.

Overhead related to resuming consumers: The original continuation call technique
saved a binding list to reinstall the environment of consumers instead of copying or
freezing the stacks and using a forward trail, as CAT, CHAT, or SLG-WAM. This is a
relatively non-intrusive technique, but it requires copying terms back and forth between
Prolog and the table where calls are stored. Restarting a consumer needs to construct a
term whose first argument is the new answer (which is stored in the heap), the second
one the goal identifier (an atomic item), and the third one a list of bindings (which may
be arbitrarily large). If the list of bindings has N elements, constructing the continuation
call requires creating ≈ 2N + 4 heap cells. If a continuation call is resumed often and
N is high, the efficiency of the system can degrade quickly.

The technique we propose constructs all the continuation calls in the heap as a
regular Prolog term. This makes calling the continuation a constant time operation,
since answer/4 only has to unify its third argument with the continuation call. Since
that argument is a variable at run time, full unification is not needed. However, the
fragment of code which constructs this call performs backtracking as it fails after every
success of answer/4. This would remove the constructed call from the heap, thereby
forcing us to construct it again. Protecting that term would make it possible to construct
it only once. The solution we propose can be seen as a variant of the approach taken by
CHAT, but without having to introduce new abstract machine instructions.

In the explanation of our proposed freezing technique we will use the following
notation. H denotes the pointer to the top of the heap. B is the pointer to the most recent
choicepoint. To distinguish different kinds of choicepoints (borrowing from [6]) we
will use BT, where T can be G, C or P, which stand for generator, consumer, or Prolog,
respectively. The pointer to the heap stored in a choicepoint will be denoted as BT[H].

In CHAT the heap pointer is not reset on backtracking (as the WAM does with the
assignment H := BP[H]) by manipulating the heap pointer field BP[H] of the Prolog
choicepoints between the (newly created) consumer choicepoint and the choicepoint
corresponding to its generator so that they all point to the current top of the heap H:
BP[H] := BC[H]. Therefore, forward execution will continue building terms on the
heap on top of the previous solutions.

This solution can generate garbage in the heap, which is not a serious problem
as garbage collection can eventually free it. A more critical problem is the need to
traverse an arbitrarily long series of choicepoints, which could make the system effi-
ciency decrease. A solution for this problem has been proposed [4], which for us has
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Fig. 9. Frozen continuation call.

the drawback of needing new WAM-level instructions and adding a new field to some
choicepoints. As an alternative solution, we update the B[H] fields of the choicepoints
between a new consumer and its generator so that they point to a pointer H’ which
in turn points to the heap top. Whenever we need to change again the B[H] field for
these choicepoints, we simply update H’ plus the choicepoints pushed since the last
adjustments. Determining whether B[H] points to the heap or to H’ is easy and simply
entails deciding whether it falls within the heap limits. This needs changing the WAM
instructions used for backtracking in a very localized way which, in our experience, has
an unmeasurable impact over SLD execution performance.

Figure 8 shows the state of the choicepoint stack and heap before freezing a con-
tinuation call. On the left of Figure 9 all B[H] fields of the choicepoints G, P, and C
have changed to a common pointer H’ to the heap top. Thus, the continuation call (C,
[X,1,2], Ans) is frozen.

Trail management to recover a continuation call state: The same term T corre-
sponding to a continuation call C can be used several times to generate multiple an-
swers to a query. This is in general not a problem as answers are in any case saved in
a safe place (e.g., the answer table), and backtracking would undo the bindings to the
free variables in T . There is, however, a particular case which needs special measures.
When a continuation call C1, identical to C, is resumed within the scope of C, and it is
going to read a new answer, the state of T has to be reset to its frozen initial state. The
variables which may have been bound by C (Figure 10) are reset to unbound by using
a list of free variables collected when this term was copied to the heap (Figure 9, at the
right). Since C1 is using the same term T as C, we say that C1 is a reusing call. This
approach to call reuse avoids repeatedly copying several times the same continuation
call to the heap.

When C1 finishes and execution has to continue with C, the state of T has to be
restored to the one existing just before starting C1, i.e., that in Figure 10, where some
initially free variables were bound. This is done by constructing a value trail (Figure 11)
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Fig. 11. Setting up the value trail.

just before untrailing T prior to calling C1. This value trail is used to put back in T the
bindings generated by C up to the point in which it was interrupted. Value trails are
pointed to from the choicepoints associated with answer/4.

Other systems like CHAT or SLG-WAM also spend some extra time while preparing
a consumer to be resumed, as they need to record bindings in the forward trail in order
to later reinstall them. This is done for every resumption, and not only for reusing calls.

3.4 Freezing Answers

When a consumer is found or when read answers/5 is executed a continuation
call is created and its third argument needs to be instantiated using the answers found
so far to continue execution. These answers are, in principle, stored in the table (i.e.,
answer/4 inserted them), and they have to be constructed on the heap so that the
continuation call can access them and proceed with execution.

The ideas in Section 3.3 can be reused to freeze the answers and avoid the overhead
of building them again. In fact, since there are no reused answers, trail management is
not needed for them. As done with the continuation calls, a new field is added to the
table pointing to a (Prolog) list which holds all the answers found so far for a tabled
goal. When a continuation for some tabled goal is to be executed, the elements of the
answer list are unified with the corresponding argument of the continuation call. The list
head is, again, accessed through a pointer which is saved in a slot of the corresponding
choicepoint and which is updated on backtracking.

In spite of this freezing operation, answers to tabled goals are stored in the table
in addition to being linked in a list. There are two reasons for this: the first one is that
when some tabled goal is completed, all the answers have to be accessible from outside
the derivation tree of the goal. The second one is that the table (which is a trie in our
implementation, following [10]) makes checking for duplicate answers faster.



lchain X Left-recursive path program, unidimensional graph.
lcycle X Left-recursive path program, cyclic graph.
rchain X Right-recursive path program (this generates more continuation calls), uni-

dimensional graph.
rcycle X Right-recursive path program, cyclic graph.
numbers X Find arithmetic expressions which evaluate to some number N using all the

numbers in a list L.
numbers Xr Same as above, but all the numbers in L are all the same (this generates a

larger search space).
Table 1. Terse description of the benchmarks used.

4 Performance Evaluation

We have implemented the proposed techniques as an extension of the Ciao system [1].
Tabled evaluation is provided to the user as a loadable package that provides the new
directives and user-level predicates, performs the program transformations, and links in
the low-level support for tabling. We have implemented and measured three variants:
the first one is based on a direct adaptation of the implementation presented in [14],
using the standard, high-level C interface. We have also implemented a second variant
in which the lower-level and simplified C interface is used, as discussed in Sections 3.1
and 3.2. Finally, a third variant incorporates the proposed improvements to the model
discussed in Sections 3.3 and 3.4.

We have then evaluated the performance of our proposal using a series of bench-
marks which are briefly described in Table 1. The results are shown in Table 2, where
times are given in milliseconds. All measurements have been made using Ciao-1.13 and
XSB 3.0.1 compiled with local scheduling and disabling garbage collection in all cases
(this in the end did not impact execution times very much). We used gcc 4.1.1 to
compile both systems, and we executed them on a machine with Fedora Core Linux,
kernel 2.6.9.

For reference, we have made an attempt to also compare with the execution times re-
ported in [12]. Due to the difference in technology (Prolog system, C compilers, CPUs,
available memory, etc.) it is not possible to compare directly with those execution times.
Instead, we took those graph benchmarks which can be executed using SLD resolution
and measured their execution times on Ciao-1.13. We then compared these times to
those reported in [12] (which were originally executed using the then current version
of SICStus Prolog) and obtained a speed ratio. Finally, we applied this ratio in order
to estimate the execution time that would be obtained for other (tabled) programs by
the original implementation in our platform. These predicted times for the original con-
tinuation call-based execution (when available) are presented in the second column of
Table 2.

The three following columns in the table provide the execution times for the three
variants implemented as explained at the beginning of this section. It is reassuring to
note that the execution times predicted from those in [12] are within reasonable range
(and with a relatively consistent ratio) when compared to those obtained from our first,
baseline version. We are quite confident, therefore, that they are in general terms compa-



Benchmark Original Ciao Ccal Lower C itf. Copying
lchain 1024 8.65 7.12 2.85 2.07
lcycle 1024 8.75 7.32 2.92 2.17
rchain 1024 - 2620.60 1046.10 603.44
rcycle 1024 - 8613.10 2772.60 1150.54
numbers 5 - 1691.00 676.40 772.10
numbers 5r - 3974.90 1425.48 986.00

Table 2. Comparison of original implementation and Ciao implementations.

rable, despite the difference in the base system, C compiler technology, implementation
of answer tables, etc.

Lowering the level of the C interface and improving the transformation for tabling
and the way calls are performed have a clear impact. It should also be noted that the
latter improvement seems to be specially relevant in non-trivial programs which handle
data structures (the larger the data structures are, the more re-copying we avoid) as
opposed to those where little data management is done. On average, we consider the
version reported in the rightmost column to be the implementation of choice among
those we have developed, and this is the one we will refer to in the rest of the paper.

Table 3 tries to determine how our implementation of tabling compares with a state-
of-the-art one —namely, the latest available version of XSB at the time of writing. In
the table we provide, for several benchmarks, the raw time (in milliseconds) taken to
execute them using tabling and, when possible, SLD resolution, the speedup obtained
when using tabling, for Ciao and XSB, and the ratio of the execution time of XSB vs.
Ciao using SLD resolution and tabling.

It should be taken into account that XSB is somewhat slower than Ciao when ex-
ecuting programs using SLD resolution —at least in those cases where the program
execution is large enough to be really significant (between 1.8 and 2 times slower for
these non-trivial programs). This is partly due to the fact that XSB is, even in the case
of SLD execution, prepared for tabled resolution, and thus the SLG-WAM has an addi-
tional overhead (reported to be around 10% [13]) not present in other Prolog systems
and also presumably that the priorities of their implementors were understandably more
focused on the implementation of tabling.

The speedup obtained when using tabling with respect to SLD resolution (the columns
marked SLD

Tabling
) is, in general, favorable to XSB, specially for benchmarks which are

tabling-intensive but do not resume so many consumers (e.g., the transitive closure with-
out cycles), confirming, as expected, the advantages of the native implementation of
tabling in XSB. However, and interestingly, the difference in the speedups between
XSB and Ciao tends to reduce as the programs get more complex, mix in more SLD
execution, the XSB forward trail gets larger, and consumers are resumed more times,
especially if the answers are large and there are no reusing continuation calls.

For example, in the rchain X and numbers X benchmarks, the speed relation
between XSB and Ciao is roughly constant independently of the value of X. On the
other hand, in rcycle X and numbers Xr this relation is more favorable to Ciao
the larger the execution is. We attribute this to two reasons. The first one is that XSB



does not resume consumers immediately after finding new answers, so it has to pay an
extra cost during completion to traverse the list of suspended consumers, and this traver-
sal may have to be repeated several times. The second one is the forward trail that XSB
uses: when repeatedly resuming consumers, XSB needs to keep track of the bindings
and reinstall them, while our implementation only performs an initial copy between two
memory areas (to have a continuation ready to execute) and, since there are no reusing
continuation calls in these programs, it can resume continuations in constant time, hav-
ing better asymptotic behavior. Since the number of resumptions of rchain X and
numbers X is linear in the value of X, their behavior is not affected. Besides, answers
for numbers Xr are relatively large (they are arithmetic expressions) and our imple-
mentation freezes them when evaluating a tabled call, while XSB has to reconstruct
them whenever a consumer is resumed.

It is also interesting to note that rchain X and rcycle X are faster in XSB than
in Ciao because their execution is tabling intensive. However, in non-trivial benchmarks
like numbers X and numbers Xr, which at least in principle should reflect more
accurately what one might expect in larger applications, execution times are in the end
somewhat favorable to Ciao. This is probably due in part to the faster raw speed of the
basic engine in Ciao but it also implies that the overhead of the approach to tabling used
is reasonable after the proposed optimizations. More work is in any case needed to com-
pare further not only with XSB but also with other modern systems supporting tabling.
In this context it should be noted that in these experiments we have used the baseline,
bytecode-based compilation and abstract machine, but turning on global analysis and
the optimizing, low-level compiler [8] can further improve the speed of the SLD part of
the computation.

The results are also encouraging to us because they appear to be another example
supporting the “Ciao approach” of starting from a fast and robust, but extensible LP-
kernel system and then including additional characteristics by means of pluggable com-
ponents whose implementation must, of course, be as efficient as possible but which in
the end benefit from the initial base speed of the system.

5 Conclusions

We have reported on the design and efficiency of some improvements made to the con-
tinuation call mechanism of Ramesh and Chen. We argue that the resulting mechanism
is still easier to add to an existing, WAM-based system than implementing the SLG-
WAM, as it requires relatively small changes to the underlying execution engine. In
fact, almost everything is implemented within a fairly reusable C library, and the engine
has to be changed only to conditionally reinterpret the B[H] field when backtracking.

Our experimental results show that in general the speedups that the SLG-WAM ob-
tains with respect to SLD execution are, as expected, better than the ones obtained by
our implementation. However, the difference in raw speed between the systems makes
Ciao have sometimes better results in the absolute, as well as sometimes better conver-
gence results.

Our main conclusion is that using an external module for implementing tabling is a
viable alternative for adding tabled evaluation to Prolog systems, especially if coupled



Ciao XSB XSB
Ciao

Program SLD Tabling SLD
Tabling

SLD Tabling SLD
Tabling

SLD Tabling

rchain 64 0.02 2.54 0.0080 0.02 0.9 0.027 1.00 0.35
rchain 256 0.11 37.01 0.0027 0.11 14.4 0.008 1.00 0.39
rchain 1024 0.48 603.44 0.0008 0.42 216.1 0.002 0.88 0.36
rcycle 64 - 4.98 - - 2.1 - - 0.42
rcycle 256 - 72.13 - - 35.2 - - 0.49
rcycle 1024 - 1150.54 - - 650.9 - - 0.56
numbers 3 0.56 0.63 0.88 1.0 0.7 1.43 1.79 1.11
numbers 4 24.89 25.39 0.98 44.4 28.7 1.55 1.78 1.13
numbers 5 811.08 772.10 1.05 1465.9 868.7 1.69 1.81 1.13
numbers 3r 1.62 1.31 1.24 3.3 1.8 1.83 2.04 1.37
numbers 4r 99.74 33.43 2.98 197.7 49.3 4.01 1.98 1.47
numbers 5r 7702.03 986.00 7.81 15091.0 1500.1 10.6 1.96 1.52

Table 3. Comparing the speed of our (Ciao) implementation and XSB.

with the proposed optimizations. It is also an approach that ties in well with the modular
approach to extensions which is an integral part of the design of the Ciao system. As
a result, the modifications have already been integrated in the Ciao repository and will
thus also appear in upcoming distributions.
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