
Relational Storage Mechanisms

for Tabled Logic Programs

Pedro Costa, Ricardo Rocha, and Michel Ferreira⋆

DCC-FC & LIACC
University of Porto, Portugal

c0370061@dcc.fc.up.pt {ricroc,michel}@ncc.up.pt

Abstract. Resolution strategies based on tabling are considerate to be
particularly effective in Logic Programming. Unfortunately, when faced
with applications that store large and/or many answers, memory ex-
haustion is a considerable problem. A common approach used to recover
space is to delete some tables. In this work, we propose a different ap-
proach, storing these tables externally in a relational database. Subse-
quent calls to stored tables import answers from the database, rather
than performing a complete re-computation. To validate this approach,
we have extended the YapTab tabling system, providing engine support
for exporting and importing tables to and from the MySQL relational
database management system. Two different relational schemas for data
storage and two data-set retrieval strategies are compared.

1 Introduction

Tabling is an implementation technique where intermediate answers for subgoals
are stored and then reused when a repeated call appears. Resolution strategies
based on tabling [1, 2] have proved to be particularly effective in logic programs,
reducing the search space, avoiding looping and enhancing the termination prop-
erties of Prolog models based on SLD resolution [3].

The performance of tabling largely depends on the implementation of the
table itself; being called upon very often, fast look up and insertion capabilities
are mandatory. Applications can make millions of different calls, hence compact-
ness is also required. Arguably, the most successful data structure for tabling is
tries [4]. Tries are trees in which there is one node for every common prefix. Tries
have proved to be one of the main assets of tabling implementations, because
they meet the previously enumerated criteria of compactness and operability
quite well. The YapTab tabling system [5] uses tries to implement tables.

Used in applications that pose many queries, possibly with a large number
of answers, tabling can build arbitrarily many and very large tables, quickly
filling up memory. In general, there is no choice but to throw away some of the

⋆ This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSC.

tables, ideally, the least likely to be used next. The common control mechanism
implemented in most tabling systems is to have a set of tabling primitives that
the programmer can use to dynamically abolish some of the tables.

A more recent proposal is the approach implemented in YapTab, where a
memory management strategy, based on a least recently used algorithm, auto-
matically recovers space from the least recently used tables when the system
runs out of memory [6]. With this approach, the programmer can still force the
deletion of particular tables, but can also rely on the effectiveness of the mem-
ory management algorithm to completely avoid the problem of deciding what
potentially useless tables should be deleted. Note that, in both situations, the
loss of stored answers within the deleted tables is unavoidable, leading to the
need of restarting the evaluation whenever a repeated call occurs.

In this work, we propose an alternative approach and instead of deleting
tables, we store them externally using a relational database management sys-
tem (RDBMS). Later, when a repeated call appears, we load the stored answers
from the database, hence avoiding recomputing them. With this approach, the
YapTab’s memory management algorithm can still be used, this time to decide
what tables to move to database storage when the system runs out of memory,
rather than to decide what tables to delete. To validate this approach we thus
propose DBTAB, a relational model for representing and storing tables exter-
nally in tabled logic programs. In particular, we will use YapTab as the tabling
system and MySQL [7] as the RDBMS. The initial implementation of DBTAB
handles only atomic terms such as integers, atoms and floating-point numbers.

The remainder of the paper is organised as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
our model and discuss how tables can be represented externally in database
storage. We then describe how we extended YapTab to provide engine support
for exporting and importing answers to and from the RDBMS. At the end, we
present initial experimental results and outline some conclusions.

2 The Table Space

Tabled programs are evaluated by storing all computed answers for current sub-
goals in a proper data space, the table space. Whenever a subgoal S is called
for the first time, a matching entry is allocated in the table space, under which
all computed answers for the call are stored. Variant calls1 to S are resolved by
consumption of these previously stored answers. Meanwhile, as new answers are
generated, they are inserted into the table and returned to all variant subgoals.
When all possible resolutions are performed, S is said to be completely evaluated.

The table space can be accessed in a number of ways: (i) to look up if a
subgoal is in the table, and if not insert it; (ii) to verify whether a newly found
answer is already in the table, and if not insert it; and, (iii) to load answers to
variant subgoals. For performance purposes, tables are implemented using two

1 Two calls are said to be variants if they are the same up to variable renaming.

levels of tries, one for subgoal calls, other for computed answers. In both levels,
stored terms with common prefixes branch off each other at the first distin-
guishing symbol. The table space is organized in the following way. Each tabled
predicate has a table entry data structure assigned to it, acting as the entry
point for the subgoal trie. Each unique paths in this trie represents a different
subgoal call, with the argument terms being stored within the internal nodes.
The path ends when a subgoal frame data structure is reached. When insert-
ing new answers, substitution terms for the unbound variables in the subgoal
call are stored as unique paths into the answer trie. This optimisation is called
substitution factoring [4].

Subgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answers

Table entry for f/2

Subgoal frame
for f(VAR0,a)

a

VAR0

root
node

1

0

root
node

FLI

Subgoal trie
for f/2

Answer trie
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answers

tabled_subgoal_call: f(X,a)
tabled_subgoal_call: f(Y,1)
tabled_new_answer: f(0,1)
tabled_new_answer: f(2^30,1)

2^30

FLI

Fig. 1. Using tries to organise the table space

Each trie node consists of a
data structure with four fields
each. The first field stores the
symbol for the node. The sec-
ond and third fields store point-
ers respectively to the first child
node and to the parent node. The
fourth field stores a pointer to the
sibling node, in such a way that
the outgoing transitions from a
node can be collected by follow-
ing its first child pointer and then
the list of sibling pointers.

Among others, YapTab han-
dles atomic terms such as in-
tegers, atoms and floating-point
numbers. Terms are typed ac-
cordingly to the value of their
mask bits, which cannot be used
for data storage purposes. The
non-mask part of a term is thus
always less than the usual 32 or
64-bit C representation. In what
follows we shall refer to integers
larger than the maximum allowed
non-tagged integer value as long

integer terms. We shall also re-
fer to integer and atom terms
as short atomic terms and to
floating-point and long integers as long atomic terms. Storing long term values
requires the usage of additional nodes, consisting of special markers to delimit
the data area. For this reason, while short term representation can be attained
spending a single node, long atomic terms can use up to three and four nodes.

An example for a tabled predicate f/2 is shown in Fig. 1. Initially, the subgoal
trie contains only the root node. When the subgoal f(X, a) is called, two internal

nodes are inserted: one for the variable X , and a second last for the constant
a. Notice that variables are represented as distinct constants, as proposed by
Bachmair et al. [8]. The subgoal frame is inserted as a leaf, waiting for the answers
to appear. Then, the subgoal f(Y, 1) is inserted. It shares one common node with
f(X, a), but the second argument is different so a different subgoal frame needs
to be created. Next, the answers for f(Y, 1) are stored in the answer trie as their
values are computed. Notice how the 230 long integer term is surrounded by
two additional nodes tagged as FLI (functor long int). Finally, the leaf answer
nodes are chained in a linked list in insertion time order (using the child field),
so that recovery may happen the same way. The subgoal frame internal pointers
SgFr first answer and SgFr last answer are set to point respectively to the
first and last answer of this list. Therefore, when consuming answers, a variant
subgoal needs only to keep a pointer to the leaf node of its last loaded answer,
and consumes more answers just by following the chain. To load an answer, the
trie nodes are traversed in bottom-up order and the answer is reconstructed.

3 The Relational Storage Model

Fig. 2. The DBTAB system tables

DBTAB is expected to handle
multi-user concurrency. Storing run-
time data, of possible multiple
sources, into the same database
requires each running instance of
YapTab to uniquely identify its
own tabled predicates and its computed answers. To tackle this problem, DBTAB
introduces the notion of session. The system tables used to keep control status
are depicted in Fig. 2. Table dbtab sessions keeps track of initialised sessions,
while dbtab tabled is used to identify each session YapTab’s tabled predicates.

The choice of an effective representation model for the tables is a hard task
to fulfil, mainly due to the high variability of the tries internal representation of
different types of terms. The relational model is expected to quickly store and
retrieve answers, thus minimizing the impact on YapTab’s performance. With
this concern in mind, two different database schemes were developed, each one
focusing on a specific step of execution.

Multiple Table Predicate Representation To take full advantage of the
relational model, data regarding the computed subgoal’s answers is stored in
several tables, aiming to keep the table space representation as small as possible
in the database. Figure 3 shows the multiple table relational schema for the f/2
tabled predicate introduced back in Fig. 1.

The tabled predicate f/2 is mapped into the relational table sessionk f2,
where k is the current session id. Predicate arguments become the argi table
integer fields2, with i ranging between 1 and 2. sessionk f2 is destined to hold

2 The internal representation of terms can be thought of as 32 or 64-bit integers, so
MySQL integer or bigint types are used accordingly to store these values.

all the computed answers for each completely evaluated subgoal of f/2, along
with a meta-representation of the subgoal itself. The table’s integer field meta is
used to tell apart these two kinds of records: a zero value signals an answer trie
branch; an one value signals a full bound subgoal trie branch and a positive value
greater than one signals a meta-information record for a subgoal with unbound
variables within its arguments. The uniqueness of each stored answer is ensured
by the definition of a primary key involving every field of the table.

Fig. 3. The DBTAB multiple table schema

Opposite to short atomic terms,
who’s values are directly stored
within the corresponding argi

record fields of the main predi-
cate table, long atomic terms are
stored in the sessionk longints
and sessionk floats auxiliary ta-
bles. Each of these terms is stored
only once and is uniquely identified
by a sequential number masked as
a YapTab functor term to simplify the loading algorithm. Mind that a foreign

key relation between main table’s argi fields and auxiliary table’s term fields
may not be defined, because short atomic terms are also stored within the first.

Single Table Predicate Representation The previous schema may require
several transactions to store a single subgoal answer. For instance, for a subgoal
such as f/2 with two floating-point bindings, five transactions may be required if
the floating-point values have not been previously stored. To avoid over-heading
in the storage operation, a simpler database schema as been devised.

Fig. 4. The DBTAB
single table schema

Table sessionk f2’s design now considers the possi-
bility of storage for long atomic terms (see Fig. 4). For
that purpose, specifically typed fields are placed after each
argi argument field. Regardless of this, each triplet is
still considerate a single argument for record-set manipu-
lation purposes, hence a single field may be initialised to
a value other than null; the others must remain unset.
This extended table approach requires no special mask-
ing for long atomic terms, albeit the appearance of null
values in most field makes the definition of a primary key impossible.

4 Extending the YapTab Design

DBTAB’s model is meant to trigger the dumping of a completed tabled subgoal
to the database when the corresponding table is chosen by YapTab’s memory
management algorithm to be abolished. The present version, although not yet
suitable for fully safe usage, already implements the required features to cor-
rectly export and import tables, therefore allowing us to study and evaluate the
potential and weaknesses of the proposed model.

4.1 Prepared Statements

Data exchange between the YapTab engine and the RDBMS is mostly done
through the use of the MySQL C API for prepared statements. The SQL state-
ments, used to retrieve/store information from/to the database, are sent to
the database for parsing, and, on success, the returned handle is kept within
a PreparedStatement data structure. This specialised buffer is responsible for
keeping additional information about the statement’s execution, including pos-
sible used parameters and/or possible returning result-set and respective fields
meta-information.

Pointers to PreparedStatement structures are placed inside two major ta-
ble space data structures: table entries and subgoal frames. Table entries are
augmented with a pointer to an insert prepared statement. This statement is
prepared to insert a full record at a time into the predicate’s relational table, so
that all subgoals hanging from the same table entry may use the same insert
statement when storing their computed answers, therefore reducing the num-
ber of statements required for data submission transactions. On the other hand,
subgoal frames are augmented with a pointer to a select prepared statement.
This statement is used to speed up the data retrieval transaction, while reducing
the resulting record-set at the same time. Ground terms stored in the respec-
tive subgoal trie branch are used to refine the statement’s where clause - the
corresponding fields in the relational representation need not to be selected for
retrieval since their values are already known.

4.2 The DBTAB API

We next present the list of developed functions for the DBTAB’s API and briefly
describe their actions.

dbtab init session(MYSQL *handle, int sid) uses the database handle to
initialise the session identified by the sid argument.

dbtab kill session(void) kills the currently opened session.
dbtab init table(TableEntry tab ent) initialises the insert prepared state-

ment associated with tab ent and creates the corresponding relational table.
dbtab free table(TableEntry tab ent) frees the insert prepared statement

associated with tab ent and drops the corresponding table if no other in-
stance is using it.

dbtab init view(SubgoalFrame sg fr) initialises the specific select prepared
statement associated with sg fr.

dbtab free view(SubgoalFrame sg fr) frees the select prepared statement
associated with sg fr.

dbtab store answer trie(SubgoalFrame sg fr) traverses both the subgoal trie
and the answer trie, executing the insert prepared statement placed at the
table entry associated with the subgoal frame passed by argument.

dbtab fetch answer trie(SubgoalFrame sg fr) starts a data retrieval trans-
action executing the select prepared statement for sg fr.

4.3 Top-Level Predicates

Two new predicates were added and two pre-existing ones were slightly changed
to act as front-ends to the developed api functions. To start a session we must call
the tabling init session/2 predicate. It takes two arguments, the first being a
database connection handler and the second being a session identifier. This iden-
tifier can be either a free variable or an integer term meaning, respectively, that
a new session is to be initiated or a previously created one is to be reestablished.
These arguments are then passed to the dbtab init session() function, which
will return the newly (re)started session identifier. The tabling kill session/0

terminates the currently open session by calling dbtab kill session().
YapTab’s directive table/1 is used to set up the predicates for tabling. The

DBTAB expanded version of this directive calls the dbtab init table() func-
tion for the corresponding table entry data structure. Figure 5 shows, labeled
as (1) and (2), the insert statements generated, respectively, to each storage
schema by the dbtab init table() function for the call ‘:- table f/2’.

(1) insert ignore into sessionk f2(meta,arg1,arg2) values (?,?,?);
(2) insert ignore into sessionk f2(meta,arg1,lint1,flt1,arg2,lint2,flt2)

values (?,?,?,?,?,?,?);
(3) select f2.arg1 as arg1, l.value as lint1 from sessionk f2 as f2

left join sessionk longints as l on (f2.arg1=l.term)
where f2.meta=0 and f2.arg2=22;

(4) select distinct arg1,lint1 from sessionk f2 where meta=0 and arg2=22;
(5) select arg1 from sessionk f2 where meta>1 and arg2=22;

Fig. 5. Prepared statements for f(Y, 1)

The abolish table/1 built-in predicate can be used to abolish the tables
for a tabled predicate. The DBTAB expanded version of this predicate calls
the dbtab free table() function for the corresponding table entry and the
dbtab free view() function for each subgoal frame under this entry.

4.4 Exporting Answers

Whenever the dbtab store answer trie() function is called, a new data trans-
action begins. Given the subgoal frame to store, the function begins to climb
the subgoal trie branch, binding every ground term it finds along the way to the
respective parameter in the insert statement. When the root node is reached,
all parameters consisting of variable terms will be left null. The attention is
then turned to the answer trie. For ground subgoal calls, no such structure is
found and all parameters already hold a value different than null. For all other
calls, control proceeds cycling through the terms stored within the answer trie
nodes. The remaining null parameters are bound repeatedly, and the prepared
statement is executed for each present branch.

Next, a single record of meta-information is stored. The meta field value is
set to a bit field structure that holds the total number of variables in the subgoal

call. The least significative bit is reserved to differentiate answers generated by
full ground subgoal trie branches from answer trie branches. The argi fields
standing for variable terms present in the subgoal trie branch are bitwise masked
with special markers. These markers identify each one of possible types of long
terms that were found in the answer trie and were meant to be unified with the
original variable.

Figure 6 illustrates the final result of the described process using both storage
schemas. When the subgoal trie is first climbed, arg2 is bound to the integer
term of value 1 (internally represented as 22). All values for arg1 are then bound
cycling through the leafs of the answer trie. The branch for the integer term of
value 0 (internally represented as 6) is stored first, and the branch for the long
integer term 230 is stored next. Notice how, in the multiple table schema, the
arg1 field of the second record holds the key for the auxiliary table record. At
last, the meta-information is inserted. This consists of a record holding in the
meta field the number of variables in the subgoal call (1 in this case, internally
represented by 2) and in the argi fields the different terms found in the answer
trie for the variables in the subgoal call along with the other ground arguments.

Fig. 6. Exporting f(Y, 1) using both storage schemas

4.5 Importing Answers

When importing answers from the database, the first step consists in calling
the dbtab init view() function in order to construct the specific select state-
ment used to fetch the set of answers for the subgoal. The dbtab init view()

function first retrieves the meta-information from the database and then it uses
the ground terms in the meta-information record to refine the search condition
within the where clause for the select statement. This shortens the retrieved
fields list, thus reducing the amount of data returned by the server.

Fig. 7. Importing f(Y, 1) using both storage schemas

The storage schemes
differ somewhat in the
way the returned result-
set is interpreted. The
multiple table schema
sets the focus on the argi

fields, where no null val-
ues can be found. Ad-
ditional columns, placed
immediately to the right
of the argi fields, are re-
garded as possible place-
holders of answer terms
only when these main

fields convey long atomic
term markers. In such a
case, the non-null addi-
tional field value is used
to create the specific YapTab term. The single table schema, on the other hand,
requires no sequential markers for long atomic terms, hence, it makes no dis-
tinction what so ever between argi and its possibly following auxiliary fields.
For each argument (single field, pair or triplet), the first non-null value is con-
siderate to be the correct answer term. Figure 7 shows, in the right boxes, the
resulting views for each storage schema.

Figure 5 shows, labeled as (3) and (4), the select statements generated,
respectively, to each storage schema by the call to dbtab init view(). Notice
that statement (4) bears a distinct option. This is the chosen way to prune re-
peated answers from the record-set, since no primary key is created for predicate
tables in the single table schema. The statement labeled as (5) is used by both
schemes to obtain the meta-information record. Notice how the search condition
over the meta field is established for subgoals calls with free variables.

4.6 Handling the Resulting Record-Sets

After the select statement execution, two possible strategies may be used to
supply the stored record-set with the answers back to the YapTab engine.

Rebuilding the Answer Trie In this scenario, the stored record-set is used
only for answer trie rebuilding purposes. Traversing the records in a sequentially
top-to-bottom fashion, the retrieved values are used to create the substitution
factoring of the respective subgoal call, exactly as when the tabled new answer

operation occurred. By the end of the cycle, the entire answer trie resides in the
table space, as observed back in Fig. 1, and the record-set can then be released
from memory. This approach requires no alteration to the YapTab’s implemented
api, safe for the call to dbtab fetch answer trie().

Browsing the Record-Set This approach aims at reducing the required mem-
ory space required to store completed subgoal calls by keeping data in this binary
form. This is expected to lead to gains in performance since: (i) retrieval transac-
tion occurs only once; (ii) no time and memory are spent rebuilding the answer
trie; and (iii) long atomic term representation required down to one fourth of
the usually occupied memory. Since the answer tries will not change once com-
pleted, all subsequent subgoal calls may fetch their answers from the record-sets
obtained by dbtab fetch answer trie().

Figure 7 illustrates how the ancillary YapTab constructs are used to imple-
ment the idea. The left side box presents the state of the subgoal frame after
answer collection for f(Y, 1). The internal pointers are set to the first and last
rows of the record-set. When consuming answers, the SgFr answers value is
tested to decide if the subgoal should fail, proceed or load answers from the
database. If loading answers, the first record’s offset along with the subgoal
frame address are stored in a loader choice point3. The fetched record and its
field values are then used to bind the free variables found for the subgoal in hand.
If backtracking occurs, the choice point is reloaded and the last recorded offset
is used to step through to the next answer. When, at the end of the record-set,
an invalid offset is reached, the loader choice point is discarded and execution
fails, thus terminating the ongoing evaluation.

5 Initial Experimental Results

A batch of tests using a simple path discovery algorithm over a graph (see Fig. 8)
were performed in an Intel Pentium R©4 XEON 2.6GHz processor with 2 GBytes
of main memory and running the Linux kernel-2.6.18.

% connection handle creation stuff...
:- tabling_init_session(my_connection,Sid).
:- consult(’graph.pl’).
:- table path/2.

path(X,Z) :- path(X,Y), path(Y,Z).
path(X,Y) :- edge(X,Y).

Fig. 8. The test program

For comparison purposes, three main series of tests were performed both in
YapTab and DBTAB environments (DBTAB with MySQL 5.0 running a InnoDB
engine [7]). For each one of these series, the external file that holds the edge/2

facts was generated with a different number of edges, aiming to achieve between
10,000 and 100,000 possible combinations among nodes. In each sub-series, two
types of nodes were considered: integer and floating-point terms. The query ‘?-

path(X,Y).’ was executed 10 times for each setup and the mean of measured
times, in milliseconds, is presented next in Table 1.

The table shows two columns for YapTab, measuring the generation and
browsing times when using tries to represent the table space, two columns for

3 A loader choice point is a WAM choice point augmented with a pointer to the subgoal
frame data structure and with the offset for the last consumed record.

YapTab DBTAB

Answers Terms Generate Browse
Multiple Table Single Table

Browse
Export Import Export Import

10,000
integers 65 1 1055 16 1048 34 2
floats 103 2 10686 44 1112 47 6

50,000
integers 710 6 4911 76 5010 195 12
floats 1140 8 83243 204 5012 282 27

100,000
integers 1724 11 9576 153 9865 392 20
floats 1792 14 215870 418 11004 767 55

Table 1. Execution times, in milliseconds, for YapTab and DBTAB

each of DBTAB storage schemes, measuring the times to export and import
the respective number of answers and one last column, measuring the time to
recover answers when using the approach that browses through the stored data-
set. Some preliminary observations: (i) export and import times exclude the
table generation time; (ii) when the trie is rebuilt after importing, this operation
duration is augmented with generation time; (iii) when using tries, YapTab and
DBTAB spend the same amount of time browsing them.

As expected, most of DBTAB’s execution time is spent in data transactions
(export and import). Long atomic terms (floats) present the most interesting
case. For storage purposes, the single table approach is clearly preferable. Due
to the extra search and insertion on auxiliary tables in the multiple table ap-
proach, the export time of long atomic terms (floats) when compared with their
short counter-part (integers) increases as the number of answers also increases.
For 10,000 answers the difference is about 10 times more, while for 1000,000 the
difference increases to 20 times more. On the other hand, the single table ap-
proach seems not to improve the import time, since it is, on average, the double
of the time spent by the multiple table approach. Nevertheless, the use of left
join clauses in the retrieval select statement (as seen in Fig. 5) may become
a heavy weight when dealing with larger data-sets. Further experiments with
larger tables are required to provide a better insight on this issue.

Three interesting facts emerge from the table. First, the browsing times for
tries and record-sets are relatively similar, with the later requiring, on average,
the double of time to be completely scanned. Secondly, when the answer trie
becomes very large, re-computation requires more time, almost the double, than
the fetching (import plus browse) of its relational representation. DBTAB may
thus become an interesting approach when the complexity of re-calculating the
answer trie largely exceeds the amount of time required to fetch the entire answer
record-set. Third, an important side-effect of DBTAB is the attained gain in
memory consumption. Recall that trie nodes possess four fields each, of which
only one is used to hold a symbol, the others being used to hold the addresses
of parent, child and sibling nodes (please refer to section 2). Since the relational
representation dispenses the three pointers and focus on the symbol storage, the
size of the memory block required to hold the answer trie can be reduced by a
factor of four. This is the worst possible scenario, in which all stored terms are
integers or atoms. For floating-point numbers the reducing factor raises to eight

because, although this type requires four trie nodes to be stored, one floating-
point requires most often the size of two integers. For long integer terms, memory
gains go up to twelve times, since three nodes are used to store them in the trie.

6 Conclusions and Further Work

In this work, we have introduced the DBTAB model. DBTAB was designed to
be used as an alternative approach to the problem of recovering space when
the tabling system runs out of memory. By storing tables externally instead of
deleting them, DBTAB avoids standard tabled re-computation when subsequent
calls to those tables appear. Another important aspect of DBTAB is the possible
gain in memory consumption when representing answers for floating-point and
long integer terms. Our preliminaries results show that DBTAB may become an
interesting approach when the cost of recalculating a table largely exceeds the
amount of time required to fetch the entire answer record-set from the database.

As further work we plan to investigate the impact of applying DBTAB to a
more representative set of programs. We also plan to improve the quality of the
developed model. A first goal is to cover all possibilities for tabling presented by
YapTab. Early stages of implementation shown that lists and application terms
can be represented as record trees. Auxiliary tables, similar to those used for
long atomic terms, are added to hold the internal terms of these complex types.
The complex terms can be stored/retrieved from/to YapTab’s addressing space
using an algorithm that, starting from the root, descends the record tree one
level at a time, recovering possible child records of each node.

References

1. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-
ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98

2. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43 (1996) 20–74

3. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)
4. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access

Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

5. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction. (2000)
77–87

6. Rocha, R.: On Improving the Efficiency and Robustness of Table Storage Mecha-
nisms for Tabled Evaluation. In: International Symposium on Practical Aspects of
Declarative Languages. Number 4354 in LNCS, Springer-Verlag (2007) 155–169

7. Widenius, M., Axmark, D.: MySQL Reference Manual: Documentation from the
Source. O’Reilly Community Press (2002)

8. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-
nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74

