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Abstract. We present the design, implementation and evaluation of a
suspension-based tabling mechanism that supports tabled evaluation by
applying source level transformations to a tabled program. The trans-
formed program then uses external tabling primitives that provide direct
control over the evaluation strategy. To implement the tabling primitives
we took advantage of the C language interface of the Yap Prolog system.
Initial results show that our suspension-based mechanism is comparable
to the state-of-the-art YapTab system, that implements tabling support
at the low-level engine. This is an interesting result because YapTab also
implements a suspension-based mechanism, uses the same data struc-
tures to implement the table space and is implemented on top of Yap.
We thus argue that our approach is a good alternative to incorporate
tabling into any Prolog system. It requires neither advanced knowledge
of the implementation details of tabling nor time consuming or complex
modifications to the low-level engine.

1 Introduction

Tabling [1] is a technique of resolution that overcomes some limitations of tra-
ditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Tabling has become a popular and successful technique thanks to the
ground-breaking work in the XSB Prolog system and in particular in the SLG-
WAM [2], the most successful engine of XSB. The success of SLG-WAM led
to several alternative implementations that differ in the execution rule, in the
data-structures used to implement tabling, and in the changes to the underly-
ing Prolog engine. Tabling mechanisms are now widely available in systems like
YapTab [3], ALS-Prolog [4], B-Prolog [5] and Mercury [6].

The common approach used by all these systems to support tabled evaluation
is to modify and extend the low-level engine. Although this approach is ideal for
run-time efficiency, it is not easily portable to other Prolog systems as engine level
modifications are rather complex and time consuming. A different approach to
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incorporate tabled evaluation into existing Prolog systems is to apply source level
transformations to a tabled program and then use external tabling primitives to
provide direct control over the search strategy. This idea was first explored by
Fan and Dietrich [7] that implemented a form of linear tabling using source level
program transformation and tabling primitives implemented as Prolog built-ins.

In this work, we present the design, implementation and evaluation of a
suspension-based tabling mechanism based on program transformation, but we
use the C language interface, available in most Prolog systems, to implement the
tabling primitives. In particular, we use the C interface of the Yap Prolog sys-
tem [8] to build an external Prolog module implementing the support for tabled
evaluation. To implement our mechanism, that we named tabled evaluation with

continuation calls, we follow a local scheduling strategy [9] and we use tries [10]
to implement the table space data structures. To implement the program trans-
formation step, we have extended the original program transformation module
of Ramesh and Chen [11] to include tabling primitives for our approach.

Initial results comparing our mechanism with the state-of-the-art YapTab
system, that implements tabling support at the low-level engine, are very promis-
ing. This is an interesting result because YapTab also implements a suspension-
based mechanism, uses tries to implement the table space and is implemented on
top of Yap. This is thus a first and fair comparison between the approach of sup-
porting tabling at the low-level engine and the approach of supporting tabling by
applying source level transformations coupled with tabling primitives. We thus
argue that our approach is a good alternative to incorporate tabling into any
Prolog system. It requires neither advanced knowledge of the implementation
details of tabling nor time consuming or complex modifications to the low-level
engine.

The remainder of the paper is organized as follows. First, we show how a
tabled program is transformed to include specific tabling primitives and present
an evaluation example showing the interaction with Prolog execution. We then
provide the details for implementing our mechanism as an external Prolog mod-
ule written in C and discuss how completion is detected. At last, we present
some experimental results and we end by outlining some conclusions.

2 Tabled Evaluation with Continuation Calls

Whenever a tabled subgoal is first called, a new entry is allocated in the table
space and the evaluation begins with a generator node exploring the first clause
for the corresponding tabled predicate. On the other hand, variant calls to tabled
subgoals are not re-evaluated against the program clauses, instead they are re-
solved by consuming the answers already stored in their table entries. When a
consumer exhausts the set of available answers, the computation state for the
variant call is suspended. In this model, suspension is implemented by leaving
a continuation call for the current computation in the table entry correspond-
ing to the variant call being suspended. During this process and as further new
answers are found, they are stored in their tables and returned to all variant



calls by calling the previously stored continuation calls. We then follow a local
scheduling approach [9] and execution fails for the new answer operation. New
answers are only returned to the calling environment when all program clauses
for the subgoal at hand were resolved.

Therefore, when the execution backtracks to a generator node, we first ex-
haust the remaining clauses and only then, when no more clauses are available,
we start consuming the available answers for the subgoal. After consuming all
answers, if the generator depends on older subgoals, we then proceed as for con-
sumers and we fail by leaving the continuation call for the current computation in
the table entry corresponding to the generator. It is only when a tabled subgoal
is marked as complete that the corresponding continuation calls are deleted.

2.1 Program Transformation

Program transformation only applies to clauses of tabled predicates. Figure 1
shows how a p/2 tabled predicate, that defines a right recursive relation in a
graph, is transformed to implement our mechanism.

% original tabled predicate
p(X,Z) :- e(X,Y), p(Y,Z).
p(X,Z) :- e(X,Z).

% transformed predicate
p(X,Z) :- tabled_call(p(X,Z),Sid,_,p0,true), consume_answer(p(X,Z),Sid).
p0(p(X,Z),Sid) :- e(X,Y), tabled_call(p(Y,Z),Sid,[X,Z,Y],p0,p1).
p1(p(Y,Z),Sid,[X,Z,Y]) :- new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid) :- e(X,Z), new_answer(p(X,Z),Sid).

Fig. 1. Program transformation for a tabled predicate

A p/2 clause is maintained so that tabled predicate p/2 can be called from
other predicates without any change. The tabling primitive tabled call/5 in
the body of p/2 starts the tabled evaluation process and ensures that the subgoal
will be completely evaluated. The consume answer/2 primitive then returns each
computed answer one at a time.

Each clause in the original definition of p/2 becomes a clause for a new
distinct predicate, p0/2 in the example, with 2 arguments. The first argument
is the previous head clause; the second is the subgoal id. The id for a subgoal
call is generated by the tabled call/5 primitive and is used to guarantee that
the answers found for a call will be properly saved within that call. When the
tabled call/5 primitive is called for a new subgoal (the first argument), a
new entry is allocated in the table space and an unique id is returned (Sid).
This id is then used by the tabled call/5 primitive to start the evaluation
process by calling the predicate of arity 2 represented in the forth argument,
p0 in this case, with the appropriate arguments. To fully implement this idea,
each tabled predicate in the body of the p0/2 clauses is also replaced by a
call to the tabled call/5 primitive. In addition, a new answer/2 primitive,
responsible to check for redundant answers and to return new answers to the
stored continuation calls, is added to the end of each clause’s body.



A major issue with this transformation step is how to deal with continuation
calls. Intuitively, the continuation call for a generator or consumer node is the
code to be executed when an answer is returned to the node. With respect
to a clause and an occurrence of a tabled predicate in the clause body, the
continuation call is the portion of the clause body after the tabled predicate
literal. The problem here is that to execute a continuation call, we cannot start
a clause from the literal after the corresponding tabled predicate. Our program
transformation captures the continuation of a tabled predicate in a clause body
by introducing a new predicate symbol, which has a single clause and whose body
is the continuation to be executed when an answer is returned. In the example of
Fig. 1, we only have one such predicate, p1/3. The first two arguments of p1/3
are the same as the arguments of p0/2. The third argument is a list of variables
used to pass variable bindings across continuation calls.

Continuations calls are added by the tabled call/5 primitive when a com-
putation is being suspended. A continuation call is a triplet formed by the second,
third and fifth arguments passed to the tabled call/5. The second argument
stores the id of the call that is calling the tabled call/5 in the body of a clause.
The third argument stores the bindings for the variables appearing in the head
and in the body of the clause. The fifth argument stores the predicate of arity 3
to be called in the continuation. When a new answer is found, each continuation
triplet is then used in conjunction with the new answer to construct the calls
that continue the suspended computations.

Figure 2 shows the evaluation sequence for the query goal p(1,Z) if consid-
ering a small directed graph defined by two e/2 facts, e(1,2) and e(2,1). At
the top, the figure illustrates the program code and the final state of the table
space at the end of the evaluation. The bottom sub-figure shows the resulting
forest of trees with the numbering of nodes denoting the evaluation sequence.

The evaluation begins by calling the tabled call/5 primitive for the p(1,Z)
subgoal. The p(1,Z) subgoal is a new tabled subgoal call and thus, a new entry
is allocated in the table space for it, with id sid1, and a new generator node is
created (node 1). Generator nodes are represented by black oval boxes. In the
continuation, p0(p(1,Z),sid1) is called, creating node 2. The execution then
proceeds with the first alternative of p0/2, calling e(1,Y) that binds Y with 2

and with primitive tabled call/5 being called for the p(2,Z) subgoal (step 4).
As this is the first call to p(2,Z), we add a new entry for it, with id sid2, and
proceed by allocating a new generator node as shown in the bottommost tree.

Again, p(2,Z) is resolved against the first clause for p0/2 (step 5). In the
continuation, the first clause for e(2,Y) fails (step 7), but the second succeeds
by binding Y with 1 (step 8). The tabled call/5 primitive is then called again
for p(1,Z). Since p(1,Z) is a variant call and no answers are still available for
it, the current evaluation is suspended. A triplet formed by the id sid2, the list
[2,Z,1], and by the predicate symbol p1 is then stored in the table entry for
p(1,Z) as a continuation call (step 9).

We then return to node 5 and try the second clause for p0/2 obtaining, in
the continuation, a first answer for p(2,Z) (step 12). The answer is inserted



20. fail
(continuation call)

?- p(1,Z).

2. p0(p(1,Z),sid1).

3. e(1,Y), tabled_call(p(Y,Z),sid1,[1,Z,Y],p0,p1).

4. tabled_call(p(2,Z),sid1,[1,Z,2],p0,p1).

5. p0(p(2,Z),sid2).

6. e(2,Y), tabled_call(p(Y,Z),sid2,[2,Z,Y],p0,p1).

7. fail 8. tabled_call(p(1,Z),sid2,[2,Z,1],p0,p1).

9. fail
(continuation call)

11. fail

14. p1(p(2,1),sid1,[1,Z,2]).

15. new_answer(p(1,1),sid1).

16. p1(p(1,1),sid2,[2,Z,1]).

17. new_answer(p(2,1),sid2).

18. fail

21. fail

22. e(1,Y), new_answer(p(1,Z),sid1).

23. new_answer(p(1,2),sid1).

24. p1(p(1,2),sid2,[2,Z,1]).

25. new_answer(p(2,2),sid2).

26. p1(p(2,2),sid1,[1,Z,2]).

28. fail

32. complete
(Sid=sid1)

10. e(2,Y), new_answer(p(2,Z),sid2).

27. new_answer(p(1,2),sid1).

1. tabled_call(p(1,Z),Sid,_,p0,true), consume_answer(p(1,Z),Sid).

19. fail

13. fail

29. fail

30. fail

31. fail

33. consume_answer(p(1,Z),sid1).

4. tabled_call(p(2,Z),sid1,[1,Z,2],p0,p1).

1. tabled_call(p(1,Z),Sid,_,p0,true).

p(X,Z) :- tabled_call(p(X,Z),Sid,_,p0,true), consume_answer(p(X,Z),Sid).

p0(p(X,Z),Sid) :- e(X,Y), tabled_call(p(Y,Z),Sid,[X,Z,Y],p0,p1).
p1(p(Y,Z),Sid,[X,Z,Y]) :- new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid) :- e(X,Z), new_answer(p(X,Z),Sid).

e(1,2).   e(2,1).

1. p(1,Z)

4. p(2,Z)

15. p(1,1)
23. p(1,2)
32. complete

12. p(2,1)
25. p(2,2)
32. complete 

sid1

sid2 20. p1(?ANS?,sid1,[1,Z,2])

9. p1(?ANS?,sid2,[2,Z,1])

SubgoalSid Answers Continuation calls

12. new_answer(p(2,1),sid2).

34. Z=1 35. Z=2 36. no

Fig. 2. Tabled evaluation with continuation calls

in the table and, because there are no continuation calls for p(2,Z), the exe-
cution fails. Remember that the new answer operation always fails when using
a local scheduling approach. The execution then backtracks to node 4 and we
check whether p(2,Z) can be completed. It can not, because it depends on the
continuation call left by subgoal p(1,Z) at step 9. If that continuation call gets
executed, further answers for p(2,Z) can be found.

At that point, the answers in the table entry for p(2,Z) should be consumed.
Remember that answers are only returned to a generator node when all program



clauses for it were resolved. Consuming an answer corresponds to the execution
of the continuation call for the tabled call/5 at hand. The continuation call for
the tabled call/5 primitive at node 4 is thus executed for the answer p(2,1)
(step 14). Continuation calls are represented by white oval boxes.

A first answer, p(1,1), is then found for p(1,Z) (step 15) and, because
there is a continuation call for p(1,Z), the execution continues by calling it
with the newly found answer (step 16). A redundant answer is then found for
p(2,Z) (step 17), so we fail and backtrack again to node 4. We then proceed
as for consumers and we fail by leaving the continuation call for the current
computation in the table entry for p(2,Z) (step 20). The evaluation then explores
the second clause at node 2 obtaining, in the continuation, a second answer for
p(1,Z) (step 23) and a second answer for p(2,Z) (step 25). When backtracking
to node 1, the subgoals p(1,Z) and p(2,Z) are now fully exploited. So, we
declare the two subgoals to be completed (step 32). Again, at that point, the
answers in the table entry should be consumed. However, the continuation call
for the tabled call/5 primitive at node 1 is the predicate symbol true. This
means that the tabled call/5 was executed from the clause representing the
original p/2 predicate. In such situations, we simply succeed by binding Sid with
the current subgoal id, sid1 in this case, and leave to the consume answer/2

primitive the process of returning by backtracking the computed answers.

2.2 Implementation Details

A key data structure in the table space organization is the subgoal frame. Sub-
goal frames are used to store information about the tabled subgoals and to act
like entry points to the trie structures where answers are stored. In our imple-
mentation, a subgoal frame includes eight fields with the following meaning:

SgFr state: indicates the state of the subgoal. During evaluation, a subgoal can
be in one of the following states: ready, evaluating or complete.

SgFr dfn: is the depth-first number of the subgoal call. Calls are numbered incre-
mentally and according to the order in which they appear in the evaluation.

SgFr dep: is the depth-first number of the older call in which the current call
depends. It is initialized with the same number as its depth-first number,
meaning that no dependencies exist. It is critical to the fix-point check pro-
cedure that we discuss later.

SgFr answers: is the entry point to the answer trie structure.
SgFr first answer: is the pointer to the first inserted answer in the answer trie

or NULL if no answers are available.
SgFr last answer: is the pointer to the last inserted answer in the answer trie

or NULL if no answers are available.
SgFr cont calls: is the pointer to continuation calls associated with the sub-

goal or NULL if no continuation calls are available.
SgFr previous: is the pointer to the previously allocated subgoal frame that is

still not completed. A global variable, TOP SF, always points to the youngest
subgoal frame being evaluated.



Next we show the pseudo-code for the new answer/2 and tabled call/5

primitives. The new answer/2 primitive (see Fig. 3) starts by calling a procedure
to insert the given ANSWER in the answer trie structure for the SF subgoal frame.
If the answer is redundant, it simply fails. Otherwise, the answer is new and
each continuation triplet stored in SF is then used in conjunction with the new
answer to construct the calls that continue the suspended computations.

new_answer(YAP_Term ANSWER, SgFr SF) {
if (insert_answer(ANSWER, SF) == TRUE)

for each (cont_pred, cont_sf, cont_vars) in SgFr_cont_calls(SF) do {
cont_call = construct_call(cont_pred, ANSWER, cont_sf, cont_vars);
YAP_CallProlog(cont_call);

}
return FALSE; // always fail at the end

}
Fig. 3. Pseudo-code for the new answer/2 primitive

The tabled call/5 primitive (see Fig. 4) starts by calling a procedure to
insert the given SUBGOAL CALL in the table space. Then, it checks if the resulting
subgoal frame is new, that is, if the SgFr state is READY. Being this the case,
it changes the subgoal’s state to EVALUATING, constructs the call that starts the
evaluation process and calls the Prolog engine to execute it. When returning,
it checks for completion. If the SgFr dfn and SgFr dep fields are equal then
we know that no dependencies exist and, therefore, all younger subgoals can be
completed. Otherwise, if the subgoal is not new or if the SgFr dfn and SgFr dep

fields are different, we propagate the dependency in the SgFr dep field of the
current subgoal to the SgFr dep field of the CONT SF frame that continues the
execution. We discuss completion in more detail in the next subsection.

In both situations, we then consume the available answers, leave a contin-
uation call if the subgoal is not completed, and fail. The only situation where
this primitive does not fails is when it is executed from the clause represent-
ing the original tabled predicate, that is, where the CONT PRED is true. In such
situations, the procedure succeeds by unifying the CONT SF argument with the
current subgoal frame pointer.

2.3 Detecting Completion

When checking for completion, we use the SgFr dfn and the SgFr dep fields
of the subgoal frames to quickly determine whether a subgoal is a leader node,
that is, whether it does not depend on older generators. If the SgFr dfn and
SgFr dep fields are equal then we know that no dependencies exist and thus the
subgoals starting from the frame referred by TOP SF up to the current subgoal
can be completed. On the other hand, if the SgFr dep field holds a number less
than its depth-first number then we cannot perform completion. Instead, we
must propagate the current dependency to the subgoal call that continues the
evaluation. Figures 5 and 6 show two examples illustrating how completion is
detected. At the top, each figure shows the subgoal dependencies and the leader
nodes (nodes filled with a black background). The black dots in the sub-figures
below indicate the fields being updated at each step of the example.



tabled_call(YAP_Term SUBGOAL_CALL, SgFr CONT_SF, YAP_Term CONT_VARS,
YAP_Atom INITIAL_PRED, YAP_Atom CONT_PRED) {

sf = insert_tabled_call(SUBGOAL_CALL);
if (SgFr_state(sf) == READY) { // new subgoal call

SgFr_state(sf) = EVALUATING;
initial_call = construct_call(INITIAL_PRED, SUBGOAL_CALL, sf);
YAP_CallProlog(initial_call);
if (SgFr_dfn(sf) == SgFr_dep(sf)) // check for completion
do {

SgFr_state(TOP_SF) = COMPLETE;
delete_continuation_calls(TOP_SF);
TOP_SF = SgFr_previous(TOP_SF);

} while (TOP_SF != SgFr_previous(sf)) // complete frames up to sf
}
if (SgFr_state(sf) != COMPLETE) // propagate dependencies to CONT_SF

SgFr_dep(CONT_SF) = minimum(SgFr_dep(CONT_SF), SgFr_dep(sf));
else if (SgFr_state(sf) == COMPLETE && CONT_PRED == true) { // succeed

YAP_Unify(CONT_SF, sf); // we use the sf pointer as the subgoal id
return TRUE;

}
answer = load_answer(SgFr_first_answer(sf)); // get first answer
while (answer != NULL) {

cont_call = construct_call(CONT_PRED, answer, CONT_SF, CONT_VARS);
YAP_CallProlog(cont_call);
answer = load_answer(AnswerTrie_next(answer)); // get next answer

}
if (SgFr_state(sf) != COMPLETE) // leave a continuation call

add_continuation_call(sf, CONT_PRED, CONT_SF, CONT_VARS);
return FALSE; // always fail at the end

}
Fig. 4. Pseudo-code for the tabled call/5 primitive

e(1,2).
e(2,1).

p(1,Z) p(2,Z)
1 2

3

4.propagate5.complete

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(2)

SgFr_dfn  2
SgFr_dep  2

p(2,Z)

TOP_SF

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(3)

SgFr_dfn  2
SgFr_dep  1

p(2,Z)

TOP_SF

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(4)

SgFr_dfn  2
SgFr_dep  1

p(2,Z)

TOP_SF

TOP_SF

(5)

.

.
.

.

.

Fig. 5. Completion in the evaluation of Fig. 2

Figure 5 represents
again the evaluation of
Fig. 2. Initially, p(1,Z)

and p(2,Z) are called
and two subgoal frames
are initialized respectively
with fields SgFr dfn and
SgFr dep as 1 and 2 (step
2 in Fig. 5). In the con-
tinuation, p(2,Z) calls
again p(1,Z), which cre-
ates a dependency be-
tween subgoals p(2,Z)

and p(1,Z). The SgFr dep

field of p(2,Z) is updated to represent this dependency to p(1,Z) (step 3 in
Fig. 5). Next, when the computation returns to p(2,Z), we cannot perform
completion because the SgFr dfn and SgFr dep fields are different. We thus
propagate the dependency in the SgFr dep field of p(2,Z) to p(1,Z) (step 4 in
Fig. 5). This has no effect because the SgFr dep field of p(1,Z) is already 1. At
the end, when the computation returns to p(1,Z), the two subgoals are marked
as complete and the TOP SF global variable is updated (step 5 in Fig. 5).



e(1,2).
e(2,3).
e(3,4).
e(4,2).

p(1,Z) p(2,Z)
1 2

5

8.complete9.complete

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(5)

SgFr_dfn  4
SgFr_dep  2

p(4,Z)

TOP_SF

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(6)

SgFr_dfn  4
SgFr_dep  2

p(4,Z)

TOP_SF

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(7)

SgFr_dfn  4
SgFr_dep  2

p(4,Z)

TOP_SF

p(1,Z)

(8)

.

.

p(3,Z)
3

7.propagate

p(4,Z)
4

6.propagate

SgFr_dfn  2
SgFr_dep  2

p(2,Z)
SgFr_dfn  2
SgFr_dep  2

p(2,Z)
SgFr_dfn  2
SgFr_dep  2

p(2,Z)

SgFr_dfn  3
SgFr_dep  3

p(3,Z)
SgFr_dfn  3
SgFr_dep  2

p(3,Z)
SgFr_dfn  3
SgFr_dep  2

p(3,Z)

.

SgFr_dfn  1
SgFr_dep  1

TOP_SF.

Fig. 6. Completion in the middle of the evaluation

Figure 6 represents a
different example for a
graph with more edges
(see the e/2 facts in the
sub-figure at the top),
where subgoals are not
necessarily completed at
the end of the evalua-
tion. As in the previous
example, the computa-
tion starts with subgoals
p(1,Z) and p(2,Z). Next,
p(3,Z) and p(4,Z) are
also called and two new
frames are initialized re-
spectively with SgFr dfn

and SgFr dep as 3 and
4. In the continuation,
p(4,Z) calls p(2,Z) again,
and the SgFr dep field of subgoal p(4,Z) is updated to represent this dependency
(step 5 in Fig. 6). Then, the computation returns to p(4,Z) and we propagate
the dependency in the field SgFr dep of p(4,Z) to p(3,Z) (step 6 in Fig. 6). The
same happens when the computation returns to p(3,Z) and we propagate its
dependency to p(2,Z) (step 7 in Fig. 6). The interesting case occurs when the
computation returns to p(2,Z) as the SgFr dfn and SgFr dep fields are equal
meaning that p(2,Z) is the leader of the subgoals starting from TOP SF up to
it, that is, subgoals p(4,Z), p(3,Z) and p(2,Z). The three subgoals are thus
marked as complete and the TOP SF variable is updated to the previous subgoal
in evaluation (step 8 in Fig. 6). At the end, the computation returns to p(1,Z)

and its subgoal frame is also marked as completed as no more dependencies exist.

3 Experimental Results

To evaluate the impact of our approach, we ran it against the YapTab system
using six different versions of the p/2 predicate combined with several different
configurations of the e/2 facts, for a total number of 54 programs. The six ver-
sions of the p/2 predicate include two right recursive, two left recursive and two
doubly recursive p/2 definitions. Each pair has one definition with the recursive
clause first and another with the recursive clause last. Regarding the e/2 facts,
we used three configurations: a binary tree, a cycle and a grid configuration
(Fig. 7 shows an example for each configuration). We have experimented the bi-
nary tree configuration with depths 12, 14 and 16; the cycle configuration with
depths 200, 300 and 400; and the grid configuration with depths 10x10, 15x15
and 20x20. The environment for our experiments was a Pentium M 1600MHz
processor with 768 MBytes of main memory and running the Linux kernel 2.6.11.



Cycle (depth 4) Grid (depth 4x4)Binary tree (depth 4)

Fig. 7. The e/2 configurations

Table 1 shows the overhead of the continuation calls running times over the
YapTab running times using local scheduling. Each result corresponds to the
average overhead obtained in a set of 3 runs. Each run finds all the solutions for
the problem. All experiments were performed using the YapTab system based
on the Yap Prolog 5.1.1.

Predicate
Binary tree Cycle Grid

12 14 16 200 300 400 10x10 15x15 20x20

p right first/2 4.00 3.73 3.62 4.36 3.99 3.89 7.75 6.41 6.11
p right last/2 3.73 3.59 3.70 4.56 4.00 3.98 8.55 6.27 6.42
p left first/2 2.65 2.39 2.34 3.05 2.65 2.26 3.11 2.46 2.12
p left last/2 5.00 4.31 4.25 5.13 4.34 4.24 5.67 4.73 4.15
p doubly first/2 8.13 7.72 7.68 10.45 11.57 11.22 10.34 9.66 10.40
p doubly last/2 15.05 13.96 13.68 20.36 22.23 21.72 19.74 18.25 19.53

Table 1. Overheads over the YapTab running times

The results in Table 1 clearly show that the YapTab tabling engine outper-
forms the tabled evaluation with continuation calls mechanism in all configura-
tions. However, considering that Yap and YapTab are respectively two of the
fastest Prolog and tabling engines currently available, the results obtained with
our approach are very interesting and very promising results. A closer analy-
sis of the results indicate that our approach scales well when we increase the
complexity of the problem being tested. In general, the overhead over YapTab
is almost the same when we compare the binary tree configurations (depths 12,
14 and 16), the cycle configurations (depths 200, 300 and 400) or the grid con-
figurations (depths 10x10, 15x15 and 20x02) between themselves. In particular,
for some configurations, the overhead over YapTab shows a generic tendency to
decrease as the complexity of the problem increases. The results also show that
the right recursive definitions achieve similar overheads when we use the versions
with the recursive clause first or last. For the left and doubly recursive defini-
tions, the versions with the recursive clause first obtain better results, about half
the overhead of the corresponding last versions. Globally, best performance is
always achieved by the left recursive definition with the recursive clause first,
p left first/2, with an excellent average overhead between 2 and 3.

To better understand these results, we next present in Table 2 several statis-
tics gathered during execution for three specific configurations: the binary tree
with depth 16, the cycle with depth 400 and the grid with depth 20x20. The
rows in Table 2 have the following meaning:



AnsUni: is the number of non-redundant answers found. It corresponds to the
total number of answers stored in the table space.

AnsRed: is the number of redundant answers found.
CallsUni: is the number of first calls to tabled subgoals. It corresponds to the

total number of subgoal frames allocated.
CallsRep: is the number of repeated calls to tabled subgoals.
ContCalls: is the number of continuation calls executed by the primitives

tabled call/5 and new answer/2.
OvHd: is the overhead over YapTab from Table 1.

Predicate AnsUni AnsRed CallsUni CallsRed ContCalls OvHe

Binary tree 16

p right first/2 1,769,478 0 65,535 65,532 1,638,412 3.62
p right last/2 1,769,478 0 65,535 65,532 1,638,412 3.70
p left first/2 917,506 0 1 1 917,506 2.34
p left last/2 917,506 786,440 1 1 1,769,478 4.25
p doubly first/2 1,769,478 9,568,232 65,535 1,769,479 12,976,122 7.68
p doubly last/2 1,769,478 19,136,464 65,535 3,407,891 24,182,766 13.68

Cycle 400

p right first/2 320,000 800 401 400 320,000 3.89
p right last/2 320,000 800 401 400 320,000 3.98
p left first/2 160,000 400 1 1 160,000 2.26
p left last/2 160,000 160,000 1 1 319,600 4.24
p doubly first/2 320,000 127,680,519 401 320,001 128,320,000 11.22
p doubly last/2 320,000 255,358,774 401 639,200 256,319,200 21.72

Grid 20x20

p right first/2 320,000 899,040 401 2,640 1,216,000 6.11
p right last/2 320,000 899,040 401 2,640 1,216,000 6.42
p left first/2 160,000 449,520 1 1 160,000 2.12
p left last/2 160,000 1,051,672 1 1 318,480 4.15
p doubly first/2 320,000 127,683,040 401 320,001 128,320,000 10.40
p doubly last/2 320,000 254,467,040 401 636,961 255,420,960 19.53

Table 2. Statistics gathered during execution for three specific configurations

Globally, the statistics presented in Table 2 suggest that there is a cost in
the execution time that is proportional to the number of redundant answers, re-
peated calls and continuation calls executed during an evaluation. In particular,
the number of continuation calls seems to be the most relevant factor that con-
tributes to this cost. Remember that continuation calls are not compiled, they
are constructed and called in run-time using the C language interface.

The statistics also show why the right recursive definitions obtain similar
overheads for the versions with the recursive clause first and last. In the three
configurations tested, they show exactly the same statistics. For the left and
doubly recursive definitions, the number of redundant answers, repeated calls
and continuations calls in the versions with the recursive clause first is about half
the number of the statistics for the last versions, which justifies why they have,
on average, half the overhead of the corresponding last versions. The statistics
for the left recursive definitions with the recursive clause first also show the
smallest number of redundant answers, repeated calls and continuations calls.



4 Conclusions

We have presented the design, implementation and evaluation of a suspension-
based tabling mechanism based on program transformation coupled with tabling
primitives. Initial results comparing the state-of-the-art YapTab system with our
approach were very interesting and very promising. We thus argue that our ap-
proach is a good alternative to incorporate tabling into any Prolog system. Both
source level transformations and tabling primitives can be easily ported to other
Prolog systems with a C language interface. Currently, we are already working
with the Ciao group to include our implementation as a module of the Ciao Pro-
log system [12]. Further work also includes extending our approach to support
linear tabling mechanisms, such as the DRA [4] and SLDT [5] mechanisms.
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