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Abstract. Resolution strategies based on tabling are considered to be
particularly effective in Logic Programming. Unfortunately, when faced
with applications that compute large and/or many answers, memory
exhaustion is a potential problem. In such cases, table deletion is the
most common approach to recover space. In this work, we propose a
different approach, storing tables into a relational database. Subsequent
calls to stored tables import answers from the database, rather than
performing a complete re-computation. To validate this approach, we
have extended the YapTab tabling system, providing engine support for
exporting and importing tables to and from the MySQL RDBMS. Three
different relational models for data storage and two recordset retrieval
strategies are compared.

1 Introduction

Tabling [1] is an implementation technique where intermediate answers for sub-
goals are stored and then reused whenever a repeated call appears. Resolution
strategies based on tabling [2, 3] proved themselves particularly effective in Logic
Programming – the search space is reduced, looping is avoided and the termina-
tion properties of Prolog models based on SLD resolution are enhanced.

The performance of tabled evaluation largely depends on the implementation
of the table itself – being called very often, fast lookup and insertion capabilities
are mandatory. Applications can make millions of different calls, hence compact-
ness is also required. Arguably, the most successful data structure for tabling is
the trie [4]. Tries meet the previously enumerated criteria of compactness and
efficiency quite well. The YapTab tabling system [5] uses tries to implement
tables.

Used in applications that pose many queries, possibly with a large number
of answers, tabling can build arbitrarily many and/or very large tables, quickly
filling up memory. Swapping the main memory to disk may attenuate the prob-
lem but it is not a practical solution, since the memory space is always limited
by the underlying architecture. In general, there is no choice but to throw away



some of those tables, ideally, the least likely to be used next [6]. The most com-
mon control mechanism implemented in most tabling systems is to have a set of
tabling primitives that the programmer can use to dynamically abolish some of
the tables. A more recent proposal has been implemented in YapTab [6], where
a memory management strategy based on a least recently used algorithm auto-
matically recovers space among the least recently used tables when memory runs
out. With this approach the programmer can still force the deletion of particular
tables, but may also transfer the decision of which tables are potential candi-
dates for deletion to the memory management algorithm. Note that, in both
situations, the loss of answers stored within the deleted tables is unavoidable,
eventually leading to re-computation.

In this work, we propose an alternative approach in which tables are sent
to secondary memory – a relational database management system (RDBMS) –
rather than deleted. Later, when a repeated call occurs, the answers are reloaded
from the database thus avoiding re-computation. With this approach, the mem-
ory management algorithm can still be used, this time to decide which tables are
to be sent to the database when memory runs out. To validate this approach we
propose DBTab [7], a relational model for tabled logic program support resulting
from the coupling of the YapTab tabling system with the MySQL RDBMS. In
this initial implementation the ability of DBTab to represent terms is restricted
to atomic strings and numbers.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
our model and discuss how tables can be represented in a RDBMS. We then
describe how we have extended YapTab to provide engine support for database
stored answers. Finally, we present initial results and outline some conclusions.

2 The Table Space

Tabled programs evaluation proceeds by storing all computed answers for cur-
rent subgoals in a proper data space, the table space. Whenever a subgoal S
is called for the first time, a new table entry is allocated in the table space –
all answers for subgoal S will be stored under this entry. Variant calls to S are
resolved consuming those previously stored answers. Meanwhile, as new answers
are generated, they are inserted into the table and returned to all variant sub-
goals. When all possible answers are found, S is said to be completely evaluated.

The table space may be accessed in a number of ways: (i) to find out if a
subgoal is in the table and, if not, insert it; (ii) to verify whether a newly found
answer is already in the table and, if not, insert it; and (iii) to load answers to
variant subgoals. With these requirements, performance becomes an important
issue so YapTab implements its table space resorting to tries [8] – which is
regarded as a very efficient way to implement tables [4].

A trie is a tree structure where each different path through the trie data units,
the trie nodes, corresponds to a term. At the entry point we have the root node.
Internal nodes store tokens in terms and leaf nodes specify the end of terms.



Each root-to-leaf path represents a term described by the tokens labelling the
nodes traversed. For example, the tokenized form of the term p(X, q(Y, X), Z)
is the stream of 6 tokens: p/3, X, q/2, Y, X, Z. Two terms with common prefixes
will branch off from each other at the first distinguishing token.

The internal nodes of a trie are 4-field data structures. One field stores the
node’s token, one second field stores a pointer to the node’s first child, a third
field stores a pointer to the node’s parent and a fourth field stores a pointer
to the node’s next sibling. Each internal node’s outgoing transitions may be
determined by following the child pointer to the first child node and, from there,
continuing through the list of sibling pointers.

To increase performance, YapTab enforces the substitution factoring [4] mech-
anism and implements tables using two levels of tries - one for subgoal calls, the
other for computed answers. More specifically, the table space of YapTab is
organized in the following way:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie;

– each different subgoal call is represented as a unique path in the subgoal
trie, starting at the predicate’s table entry and ending in a subgoal frame

data structure, with the subgoal sub-terms being stored within the path’s
internal nodes;

– the subgoal frame data structure acts as an entry point to the answer trie;
– each different subgoal answer is represented as a unique path in the answer

trie, starting at a particular leaf node and ending at the subgoal frame.
Oppositely to subgoal tries, answer trie paths hold just the substitution
terms for unbound variables in the corresponding subgoal call.

– the leaf’s child pointer of answers are used to point to the next available
answer, a feature that enables answer recovery in insertion order. The sub-
goal frame has internal pointers that point respectively to the first and last
answer on the trie. Whenever a variant subgoal starts consuming answers,
it sets a pointer to the first leaf node. To consume the remaining answers,
it must follow the leaf’s linked chain, setting the pointer as it consumes an-
swers along the way. Answers are loaded by traversing the answer trie nodes
bottom-up.

An important point when using tries to represent terms is the treatment of
variables. We follow the formalism proposed by Bachmair et al. [9], where each
variable in a term is represented as a distinct constant. Formally, this corresponds
to a function, numbervar(), from the set of variables in a term t to the sequence
of constants V AR0, ..., V ARN , such that numbervar(X) < numbervar(Y ) if X
is encountered before Y in the left-to-right traversal of t.

An example for a tabled predicate f/2 is shown in Fig. 1. Initially, the sub-
goal trie contains only the root node. When the subgoal f(X, a) is called, two
internal nodes are inserted: one for the variable X , and a second for the constant
a. The subgoal frame is inserted as a leaf, waiting for the answers. Then, the
subgoal f(Y, 1) is inserted. It shares one common node with f(X, a) but, having



a different second argument, a new subgoal frame needs to be created. Next, the
answers for f(Y, 1) are stored in the answer trie as their values are computed.

Two facts are noteworthy in the example of Fig. 1. First, the example helps
us to illustrate how the state of a subgoal changes throughout execution. A
subgoal is in the ready state when its subgoal frame is added. The state changes
to evaluating while new answers are being added to the subgoal’s table. When
all possible answers are stored in the table, the state is set to complete. When
not complete or evaluating, the subgoal is said to be incomplete.

Subgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answers

Table entry for f/2

Subgoal frame
for f(VAR0,a)

a

VAR0

root
node

1

0

root
node

FLI

Subgoal trie
for f/2

Answer trie
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answers

tabled_subgoal_call: f(X,a)
tabled_subgoal_call: f(Y,1)
tabled_new_answer:   f(0,1)
tabled_new_answer:   f(2^30,1)

2^30

FLI

Fig. 1. The table space organization

Second, some terms require spe-
cial handling from YapTab, such
as the 230 integer term, appearing
in the picture surrounded by the
FLI (functor long integer) mark-
ers. This is due to the node’s de-
sign. Internally, YapTab terms are
32 (or 64) bit words, divided in
two areas: type and value. Hence,
the value part, which is used for
data storage purposes, is always
smaller than an equally typed C
variable. Henceforth, we shall refer
to terms whose value fits the proper
slot, such as small integer and atom
terms, as short atomic terms and to
all the others, such as floating-point
and large integers, as long atomic

terms. Given a long atomic term,
YapTab (i) ignores the term’s type
and forces its (full) value into a sin-
gle node, or (ii) splits the value into
as many pieces as needed, assigning
a new node to each and every one
of these. Either way, the type bits
are used to store value data so ad-
ditional nodes, holding special type markers, are used to delimit the term’s value.

3 The DBTab Relational Model

The choice of effective models for table space representation is a hard task to
fulfill. The relational model is expected to allow quick storage and retrieval
operations over tabled answers in order to minimize the impact on YapTab’s
performance. Conceptually, DBTab’s relational model is straightforward – every
tabled subgoal is mapped into a database relation. The relation’s name bears the
predicate’s functor and arity and its attributes match the predicate’s arguments.
Two distinct database models spawned from this basic concept.



3.1 Datalog Model - Tries as Sets of Subgoals

Given an in-memory tabled subgoal, the complete set of its known answers may
be regarded as a set of ground facts that are known to hold in a particular exe-
cution context. In other words, known subgoal answers are regarded as Datalog
facts. Thus, and henceforth, this schema is referred to as the Datalog model.

In this model, each tabled predicate p/n is mapped into a relational table
sessionk pn, where k is the current session identifier. Predicate arguments be-
come the argi integer fields and the index field is used to store the answer’s
index in the answer chain of the in-memory subgoal trie. One can further refine
this model by choosing one of the two following alternatives.

Inline Values As previously stated, DBTab maps tabled predicates directly
into database relations bearing the same name and argument number. Thus,
predicates appear as tables, subgoals appear as records within those tables and
subgoal sub-terms appear as constants in record fields. Unfortunately, the dif-
ferent nature and size of logical atoms presents a problem. Table fields may be
given a primitive type big enough to accommodate all kinds of atoms, but that
seems to be too expensive and unpractical.

SESSIONk_F2

(pk) INDEX

       ARG1

       FLT1

       LNT1

       ARG2

       FLT2

       LNT2

Fig. 2. The inline val-
ues model

Instead, each of the predicate’s terms is mapped into
a set of fields, one for each supported atomic type. When-
ever storing a subgoal answer, the term’s type is checked
to decide which table field must be used to hold the
term’s value; the remaining ones are set to null. This
policy also simplifies the reverse decision process – since
all of these fields are regarded as a single predicate’s ar-
gument, the value for the stored term is always the non-
null one. Due to their size, short atomic terms may be
directly stored within the corresponding argi integer
fields. This small optimization enables the shortening of
each field set by one. Figure 2 displays an example of
such a relation for the f/2 tabled predicate, introduced
back in Fig. 1.

SESSIONk_F2

(pk) INDEX

       ARG1

       ARG2

SESSIONk_FLOATS

(pk) TERM

       VALUE

SESSIONk_LONGINTS

(pk) TERM

       VALUE

Fig. 3. The separate values model

Separate Values The inline
values model produces highly
sparse tables, since a lot of stor-
age space is wasted in records
containing mostly null-valued
fields. To take full advantage of
the normalized relational model,
the subgoal’s answer terms may
be stored in several auxiliary ta-
bles according to their logical nature. Figure 3 shows the separate values rela-
tional model for the previously stated f/2 tabled predicate.

Again, short atomic terms are directly stored within the argi integer fields,
thus reducing the number of required auxiliary tables. Long atomic terms, on



the other hand, are stored in auxiliary tables, such as sessionk longints and
sessionk floats. Each long atomic value appears only once and is identified
by a unique key value that replaces the term’s value in the proper field argi

of sessionk f2. The key is in fact a YapTab term, whose type bits tell which
auxiliary table holds the actual primitive term’s value whereas the value bits
hold a sequential integer identifier. Despite the practical similarity, these keys
may not be formally defined as foreign keys – notice that the same argi field
may hold references to both auxiliary tables.

3.2 Hierarchical Model - Tries as Sets of Nodes

Despite its correct relational design, the Datalog model drifts away from the
original concept of tries. From the inception, tabling tries where though of as
compact data structures. This line of reasoning can also be applied to any pro-
posed data model.

Storing the complete answer set extensionally is a space (and time) consum-
ing task, hence one should draw inspiration from the substitution factoring of
tabling tries [4], keeping only answer tries in the database. This not only signifi-
cantly reduces the amount of data in transit between the logical and the database
engines, but also perfectly suits YapTab’s memory management algorithm [6],
which cleans answer tries from memory but maintains subgoal tries intact.

The challenge is then to figure out a way to mimic the hierarchical structure
of a trie in the flat relational database environment. Tries may be regarded as
partially ordered sets of nodes ordered by reachability. Hence, mapping relations
must be defined in such a way that its tuples contain enough information to
preserve the nodes’ hierarchy. Such a model is henceforth referred to as the
hierarchical model.

SESSIONk_F2_V0I1

(pk) INDEX

       PARENT_INDEX

       TOKEN

Fig. 4. The hierarchical
model

Arguably, the most simple and compact way to
represent a trie is through a database relation like
the one presented in Fig. 4, where every node knows
only its own order, its parent’s order, and its own
token. Of all possible numbering methods, we feel
that assigning nodes’ order while traversing the trie
in post-order is the most appropriate, since it will
eventually lead to a reduction of the number of data
transactions, while maintaining the in-memory insertion order at the same time.

In this context, mapping relations no longer hold entire predicate answer
sets, rather each relation stands for a single subgoal call. Hence, one must be
able to tell the different subgoals apart. A straightforward way to establish this
distinction is to encapsulate the arguments’ values as a suffix to the relation’s
name. The chosen naming convention dictates that each argument is identified
by a capital letter, indicating the type of the term, and a number, indicating its
order within the subgoal. The possible letters are I and L for standard and long
integers, D for doubles, A for (string) atoms and V for (unbound) variables.
Figure 4 displays an example of such a relation for the f/2 tabled predicate.



4 Extending YapTab’s Design

From the beginning, our goal was to introduce DBTab without disrupting the
previously existing YapTab framework. With that in mind, we have striven to
keep both tabling semantics and top-level predicates syntax intact. Rather, top-
level predicates and internal instructions were internally modified to include calls
to the developed API functions.

The dumping of in-memory answer tries into the database is triggered by
the least recently used algorithm when these tables are selected for destruction.
Recordset reloading takes place when calls to tabled subgoals occur and their
tables have been previously dumped.

Communication between the YapTab engine and the RDBMS is mostly done
through the MySQL C API for prepared statements. Two of the major table
space data structures, table entries and subgoal frames, are expanded with new
pointers (see Fig. 5) to proprietary PreparedStatement wrapping data struc-
tures. These structures hold specialized queries that enable the dumping and
loading of subgoals to and from the database. All SQL statements are executed
in a transactional context.

Subgoal Frame

SgFr_answer_trie

SgFr_first_answer

SgFr_last_answer

SgFr_state

...

TabEnt_pe

Table entry

TabEnt_arity

TabEnt_subgoal_trie

...

Datalog
Model

TabEnt_insert_stmt

Subgoal Frame

Hierarchical
Model

SgFr_select_stmt

SgFr_answer_trie

SgFr_first_answer

SgFr_last_answer

SgFr_state

...

SgFr_insert_stmt

SgFr_select_stmt

Fig. 5. New table frames’ fields

Two new predicates are added to manage database session control. To start
a session one must call the tabling init session/2 predicate. It takes two ar-
guments, the first being a database connection handler and the second being a
session identifier. The connection handler is usually created resorting to the My-
ddas package [10] and the session identifier can be either a unbound variable or a
positive integer term, meaning respectively that a new session is to be initiated
or a previously created one is to be reestablished. The tabling kill session/0

terminates the currently open session.
YapTab’s directive table/1 is used to set up logic predicates for tabling.

The choice of a storage model determines the behaviour of DBTab’s expanded
version of this built-in predicate. In the hierarchical model, it issues a table



creation statement and exists. In the Datalog model (both alternatives), an
additional step creates an insert prepared statement. The statement, placed
inside the predicate’s table entry in the new TabEnt insert stmt field, allows
the introduction of any subgoal answer for the tabled predicate. Two examples
of such statements for the inline and separate values models, labeled (1) and
(2) respectively, are shown in Fig. 6.

(1) insert ignore
into sessionk f2(index,arg1,flt1,lnt1,arg2,flt2,lnt2)
values (?,?,?,?,?,?,?);

(2) insert ignore
into sessionk f2(index,arg1,arg2)
values (?,?,?);

(3) insert ignore
into sessionk f2 V0I1 (index, parent index, token)
values (?,?,?);

(4) select distinct arg1,lnt1
from sessionk f2
where arg2=14;

(5) select distinct f2.arg1 as arg1, l.value as lnt1
from sessionk f2 as f2

left join sessionk longints as l on (f2.arg1=l.term)
where f2.arg2=14
order by f2.index;

(6) select index, token
from sessionk f2 V0I1
where parent index=?;

Fig. 6. Prepared statements for f(Y, 1)

The abolish table/1 built-in predicate is used to destroy in-memory ta-
bles for tabled predicates. The DBTab expanded version of this predicate frees
all prepared statements used to manipulate the associated database tables and
drops them if they are no longer being used by any other instance.

Besides the referred predicates, the tabling instruction set must suffer some
small modifications. The instruction responsible for the subgoal insertion into the
table space is adapted to create a select prepared statement. This statement,
kept inside the subgoal frame structure in the new SgFr select stmt field, is
used to load answers for that subgoal. Examples of such statements for the
inline values, separate values and hierarchical models, labeled (4), (5) and (6)
respectively, are shown in Fig. 6. The selection query is tailored to reduce the
search space – this is accomplished by including all bound terms in comparison
expressions within the where sub-clause3. Notice that select statement of the
Datalog models, examples (4) and (5), bear a distinct option. This modifier
is added to enforce the uniqueness of retrieved answers.

3 Here, we are considering a 32 bit word representation where the integer term of value
1 is internally represented as 14.



In the hierarchical model, an additional step creates the insert prepared
statement. This statement is placed inside the subgoal SgFr insert stmt new
field. Unlike the Datalog models, the hierarchical model’s table name identifies
unequivocally the subgoal for which its stands, rendering the statement useless
to all other subgoals belonging to the same predicate. Example (3) of Fig. 6
illustrates the hierarchical insert statement.

4.1 Exporting Answers

When the system runs out of memory, the least recently used algorithm is called
to purge some of tables from the table space. The algorithm divides subgoal
frames in two categories, active and inactive, according to their execution state.
Subgoals in ready and incomplete states are considered inactive, while subgoals
with evaluating state are considered active. Subgoals in the complete state may
be either active or inactive.

Figure 7 illustrates the memory recovery process. Subgoal frames correspond-
ing to inactive subgoals are chained in a double linked list. Two global regis-
ters point to the most and least recently used inactive subgoal frames. Starting
from the least recently used, the algorithm navigates through the linked subgoal
frames until it finds a memory page that fits for recovery. Only tables storing
more than one answer may be elected for space recovery (completed nodes with
a yes/no answer are ignored). Recall that only the answer trie space is recov-
ered. Rocha [6] suggests that for a large number of applications, these structures
consume more that 99% of the table space.

answer
trie

structure

answer
trie

structure

Table Space

SgFr_previous

subgoal frame

SgFr_answer_trie

SgFr_next

space that can be potentially recovered

Inact_least

Inact_most

ready

empty trie yes/no answer

SgFr_previous

subgoal frame

SgFr_answer_trie

SgFr_next

complete

SgFr_previous

subgoal frame

SgFr_answer_trie

SgFr_next

incomplete

SgFr_previous

subgoal frame

SgFr_answer_trie

SgFr_next

complete

space recovered

Fig. 7. The least recently used algorithm in action

DBTab cuts in before the actual table elimination. At that point, a specific
API function begins a new data transaction. From this point on, implementations
differs according to the used database model.



The hierarchical model implementation traverses the trie in post-order, num-
bering and storing nodes as it goes along. The complete set of records belonging
to an answer trie is stored recursively. Starting from a level’s last node (first
record), the next trie level is stored before proceeding to the previous node
(next record). The table records are created as the trie nodes are visited.

The Datalog model implementation first traverses the subgoal trie branch
bottom-up (starting from the subgoal frame), binding every ground term it finds
along the way to the respective parameter in the insert statement. When the
root node is reached, all parameters consisting of variable terms will be left null.
The attention is then turned to the answer trie and control proceeds cycling
through the terms stored within the answer trie nodes. Again, the remaining
null statement parameters are bound to the current answer terms and the
prepared statement is executed, until no more answers remain to be stored. The
last step consists in constructing the specific select statement to be used to
fetch the answers for the subgoal, whose ground terms are used to refine the
search condition within the where sub-clause.

With both models, the transaction is committed and the subgoal frame
changes its internal state to stored, signalling that its known answers now reside
on a database table. Finally, the least recently used algorithm resumes its normal
behaviour by removing the answer trie from memory.

Subgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answer_trie

Table entry for f/2

VAR0

root

1

0

root

FLI

Subgoal trie
for f/2

Answer trie
for f(VAR0,1)

2^30

FLI

INSERT statement

Separate Values

sessionK_f2_V0I1

INDEX

1

PARENT TOKEN

0 6

2 0 FLI

3 2 2^30

Inline Values

INDEX

1

ARG1 ARG2

6 14

2 k 14

sessionK_Longints

TERM VALUE

k 2^30

sessionK_f2

Hierarchical Model

Datalog Model

DBTab Database

SgFr_insert_stat

a

INDEX

1

ARG1

6

2 FLI

LNT1

NULL

2^30

FLT1

NULL

NULL

ARG2

14

14

LNT2

NULL

NULL

FLT2

NULL

NULL

sessionK_f2

Fig. 8. Exporting f(Y, 1) using both storage models

Figure 8 illustrates the final result of the described process using both stor-
age models. The branch for the integer term of value 0 is stored first, and the



branch for the long integer term 230 is stored next4. Notice how, in the separate
values model, the arg1 field of the second record holds the key for the auxiliary
table record. Also, notice how the hierarchical model saves one record omitting
the second FLI type marker. Recall that, in this model, the insert prepared
statement is placed at the subgoal frame level.

4.2 Importing Answers

After memory recovery, a repeated call to a pruned subgoal may occur. Normally,
YapTab checks the subgoal frame state and, should it be ready, recomputes the
entire answer trie before proceeding. Again, DBTab cuts in before this last step.
An API function uses the select prepared statement residing in the subgoal
frame to retrieve the previously computed answers from the database and uses
them to rebuild the answer trie. Figure 9 shows, in the right boxes, the result-
ing views for each storage model. The way in which the returned recordset is
interpreted differs from model to model.

Subgoal frame
for f(VAR0,1)

Table entry for f/2

a

VAR0

root

1

Subgoal trie
for f/2

Recordset
for f(VAR0,1)

SELECT statement

Recordset

INDEX

1

TOKEN

6

2 LIF

3 2^30

Hierarchical Model

Result Recordsets

Datalog Model

ARG1 LNT1

6 NULL

2^30FLI

Recordset

ARG1 LNT1

6 NULL

2^30k

Recordset

Inline Separate

SgFr_answer_trie
SgFr_last_answer
SgFr_first_answer
SgFr_select_stmt

Fig. 9. Importing f(Y, 1) using both storage models

The hierarchical model reloading operation is straightforward. The recordset
is loaded one level at a time from the database. All records within a certain level
are fetched in insertion order simply by ordering the selection by the index field.
The complete set of records belonging to an answer trie is fetched recursively.
Starting from a level’s last node (first record), the next trie level is fetched before
proceeding to the previous node (next record). The trie nodes are created as the
records are consumed. A special feature in this process involves the setting and

4 Again, we are considering a 32 bit word representation where the integer terms of
value 0 and 1 are internally represented respectively as 6 and 14.



reading of a type flag whenever an opening long atomic term delimiter is found.
The flag is set to the proper primitive type so that, once the entire term is
reloaded from the database, the closing delimiter is inserted into the trie. This
allows a small efficiency gain, since it reduces tables’ and views’ sizes.

The Datalog models focus on the argi fields, where no null values can be
found. Additional columns, placed immediately to the right of the argi fields,
are regarded as possible placeholders of answer terms only when the first field
conveys long atomic type markers. In such a case, the non-null additional field
value is used to create the specific YapTab term. The separate values alternative
uses the auxiliary table’s key value as marker, while the inline values alternative
uses the special type markers directly.

Complete answer-sets present themselves as a special case of the import oper-
ation. Since they will no longer change, one wonders if trie reconstruction is the
best approach for most of the cases. In both Datalog alternatives, two possible
strategies may be used to supply the YapTab engine with the answers fetched
by the select statement.

Rebuilding the Answer Trie The retrieved recordset is used to rebuild the
answer trie and is then discarded. Records are sequentially traversed and each
one of them provides the sub-terms of a complex term – the answer. This term
is passed to the ancillary table look-up/insertion function that places the new
answer in the respective subgoal table. By the end of the process, the entire
answer trie resides in the table space and the recordset can then be released from
memory. This approach requires small changes to YapTab and mostly makes use
of its already implemented API.

Browsing the Record-Set In this strategy, the retrieved recordset is kept in
memory. Since the answer tries will not change once completed, all subsequent
subgoal calls may fetch their answers browsing the recordset through offset arith-
metics. Figure 9 illustrates how the ancillary YapTab constructs are used to im-
plement this idea. The left side box presents the state of the subgoal frame after
answer collection for f(Y, 1). The internal pointers are set to the first and last
rows of the recordset. When consuming answers, the first record’s offset along
with the subgoal frame address are stored in a loader choice point5. The fetched
record and its field values are then used to bind the free variables found for the
subgoal in hand. If backtracking occurs, the choice point is reloaded and the last
recorded offset is used to step through to the next answer. When, at the end of
the recordset, an invalid offset is reached, the loader choice point is discarded and
execution fails, thus terminating the on-going evaluation. It is expected that this
approach may introduce a small gain in performance and memory usage because
(i) retrieval transaction occurs only once; (ii) no time and memory are spent
rebuilding the answer trie; and (iii) long atomic term representation required
down to one fourth of the usually occupied memory.

5 A loader choice point is a WAM choice point augmented with a pointer to the subgoal
frame data structure and with the offset for the last consumed record.



5 Initial Experimental Results

Three main series of tests were performed in YapTab, both with and without
the DBTab extensions. This meant to establish the grounds for a correct com-
parison of performances. The environment for our experiments was an Intel
Pentium R©4 2.6GHz processor with 2 GBytes of main memory and running the
Linux kernel-2.6.18. DBTab was deployed on a MySQL 5.0 RDBMS running an
InnoDB engine. Both engines were running on the same machine.

% connection handle creation stuff

:- consult(’graph.pl’).

:- tabling_init_session(Conn,Sid).

% top query goal

go(N) :- statistics(walltime, [Start,_]), benchmark(N),

statistics(walltime, [End,_]), Time is End-Start,

writeln([’WallTime is ’,Time]).

benchmark(1):- path(A,Z), fail.

benchmark(1).

benchmark(2):- write_path(A,Z), fail.

benchmark(2).

% path(A,Z) and write_path(A,Z) succeed if there is a path between A and Z

:- table path/2.

path(A,Z):-path(A,Y), edge(Y,Z).

path(A,Z):-edge(A,Z).

:- table write_path/2.

write_path(A,Z):- write_path(A,Y), edge(Y,Z), writeln([’(’,A,’,’,Z,’)’]).

write_path(A,Z):- edge(X,Y), writeln([’(’,A,’,’,Z,’)’]).

Fig. 10. Test program
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Fig. 11. Test graph

A path discovery program, presented
in Fig. 10, was used to measure both
YapTab and DBTab performances in
terms of answer time. The program’s main
goal is to determine all existing paths for
the graph presented in Fig. 11, starting
from any node in the graph.

The go/1 predicate is the top query
goal. It determines the benchmark predi-
cates’ performance by calculating the dif-
ference between the program’s up-time
before and after the benchmark execu-
tion. Benchmark predicates are failure

driven loops, i.e., predicates defined by
two clauses – a first one executes a call to the tabled goal followed by a fail-



ure instruction and a second one ensures the successful completion of the top
query goal.

Two tabled predicates were used to determine all existing paths in the loaded
graph. Predicate path/2, henceforth called benchmark #1, helped us to estab-
lish minimum performance standards, since its answer-set is relatively easy both
to obtain and handle through the use of standard tabling. However, every day
problems often require heavy calculations or some sort of input/output opera-
tion. With this in mind, predicate write path/2, henceforth called benchmark

#2, was introduced. It basically results from the addition of a call to an output
predicate, writeln/1, at the very end of both clauses of path/2. Our aim was to
determine if DBTab could improve the overall performance of the main program
when such heavy operations were performed. Note that from the start, it was our
firm conviction that, for programs mostly based on pure tabled computations,
DBTab would not bring any gain than improvement in program termination due
to the overhead induced by the YapTab/MySQL communication.

For a relatively accurate measure of execution times, the node’s type changed
twice and the graph’s size changed twenty-five times. Both benchmark programs
were executed twenty-five times for each combination of type and size. The
average of every combination’s run-time was measured in milliseconds.

Early tests uncovered a major bottleneck during answer storage. Sending
an answer a time to the database significantly damaged performance. As a re-
sult, DBTab now incorporates a MySQL feature that enables clustered insert
statements, sending answer-tries to the database in clusters of 25 tuples.

Figure 12 shows three charts that visually summarize the results. The first
chart shows that input/output operations introduce a significant decrease in
performance. When comparing both benchmark’s performance in YapTab, one
observes that in average benchmark #2 executes 87 times slower than the bench-

mark #1. The chart shows that the gap widens as the number of nodes in the
answer trie grows.

The second chart in Fig. 12 shows first call execution times for benchmark

#2. In order to measure the impact of DBTab on YapTab’s performance, a
full table dump is forced after each answer-set is complete. As expected, some
overhead is induced into YapTab’s normal performance. For the inline values
model, the median storage overhead is 0.3 times the amount of time required to
execute benchmark #2, within an interval ranging from 0.2 to 0.6 times. For the
separate values alternative, the median overhead grows to 0.6 times, within an
interval ranging from 0.3 to 0.7 times. For the hierarchical model, the median
induced overhead is of 0.5 times the computation time of benchmark #2, within
an interval ranging from 0.2 to 0.7 times. Additionally, label types also have
impact on the execution times. In average, answer set generation using long
integer labels is 1.6 times slower than when integer labels are used. No doubt,
this is due to the larger number of nodes in the answer trie, which result in a
larger number of transacted answers.

The third chart in Fig. 12 shows subsequent call execution times. From its
observation, one can learn that retrieval operations have little cost in terms of



Fig. 12. Test results



performance and indeed introduce some speed-up when compared to full answer-
set re-computation. For the inline values model, the minimum, median and max-
imum retrieval times are 0.1 times the amount of time required to execute bench-

mark #2. The performance of the other alternative is similar, although in the
worst-case scenario the median retrieval time may rise to 0.2. For the hierarchical
model, the median retrieval time is 0.1 times the computation time of benchmark

#2, within an interval ranging from (nearly) 0.0 to 0.2 times.
The performances of trie traversal and recordset browsing are compared in

Fig. 13. In this figure, it is possible to observe that recordset browsing times grow
with the graph size. For the inline values model, it takes in average 3.8 times
more the time required to traverse the respective answer trie. For the separate
values, it takes only 3.6 times. However, this technique introduces a considerable
gain in terms of used memory, as the recordset in-memory size is in average 0.4
of the correspondent answer trie size for both Datalog alternatives.

Fig. 13. Trie navigation versus recordset browsing

6 Conclusions and Further Work

In this work, we have introduced the DBTab model. DBTab was designed to
be used as an alternative approach to the problem of recovering space when
the tabling system runs out of memory. By storing tables externally instead of
deleting them, DBTab avoids standard tabled re-computation when subsequent
calls to those tables appear.

In all performed tests, data transaction performances revealed a similar pat-
tern. Storage revealed to be an expensive operation. In all cases, this operation’s
cost exceeded that of recomputing the same answer set. The inline values model
was always the fastest, the hierarchical model the second fastest and the separate
values Datalog model was always the slowest. However, when the computation



involved side-effected operations, this scenario has radically changed and the
cost of storing the answer set became quite acceptable.

Things were somewhat different with the retrieval operation. Of all imple-
mentations, the hierarchical model was always the fastest and the separate values
Datalog model the slowest. This last implementation shows a significant perfor-
mance decay, no doubt induced by the use of left join clauses in the retrieval
select statement. In average, the separate values Datalog model took at least
twice the time to retrieve the answer-sets than its inline counterpart. When
the answer set evaluation involved no costly operations, reloading answers from
the database was obviously slower. On the other hand, when the side-effected
operations were introduced, reloading became a quite attractive possibility.

In what regards to term types, integer terms where obviously the simplest and
fastest to handle. The other primitive types, requiring special handling, induced
significant overheads to both storage and retrieval operations. Atom terms, not
considered in the tests, are known to behave as standard integers.

For small answer-sets, recordset browsing might be enough to locate a small
initial subset of answers and decide whether that subset is the adequate one or if
it should be ignored; in either case, this allows saving both the time and memory
resources required for the complete trie reconstruction. However, as answer-sets
size increase, this traversal approach performance decays, reaching up to three
times the amount of time required to reconstruct the table. In this last case,
the only advantage of recordset browsing is the introduced saving in terms of
memory requirements.

Our preliminary results show that DBTab may become an interesting ap-
proach when the cost of recalculating a table largely exceeds the amount of time
required to fetch the entire answer recordset from the database. As further work
we plan to investigate the impact of applying DBTab to a more representative
set of programs. We also plan to cover all possibilities for tabling presented by
YapTab and extend DBTab to support lists and application terms.
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