
Tabling Logic Programs

in a Common Global Trie

Jorge Costa and Ricardo Rocha

DCC-FC & CRACS
University of Porto, Portugal

c0607002@alunos.dcc.fc.up.pt ricroc@dcc.fc.up.pt

Abstract. The performance of tabled evaluation largely depends on the
implementation of the table space. Arguably, the most successful data
structure for tabling is tries. However, while tries are efficient for variant
based tabled evaluation, they are limited in their ability to recognize
and represent repeated answers for different calls. In this paper, we pro-
pose a new design for the table space where terms in a tabled subgoal
call or/and answer are stored in a common global trie instead of being
spread over several different tries. Our preliminary experiments using
the YapTab tabling system show very promising reductions on memory
usage.

Keywords: Tabling, Table Space, Implementation.

1 Introduction

Tabling [1–3] is an implementation technique where intermediate answers for
subgoals are stored and then reused whenever a repeated call appears. The per-
formance of tabled evaluation largely depends on the implementation of the table
space – being called very often, fast lookup and insertion capabilities are manda-
tory. Applications can make millions of different calls, hence compactness is also
required. Arguably, the most successful data structure for tabling is tries [4].
Tries meet the previously enumerated criteria of efficiency and compactness.

Used in applications that pose many queries, possibly with a large number
of answers, tabling can build arbitrarily many and/or very large tables, quickly
filling up memory. A possible solution for this problem is to dynamically abolish
some of the tables. This can be done using explicit tabling primitives or using
a memory management strategy that automatically recovers space among the
least recently used tables when memory runs out [5]. An alternative approach is
to store tables externally in a relational database management system and then
reload them back only when necessary [6].

A complementary approach to the previous problem is to study how less
redundant, more compact and more efficient data structures can be used to bet-
ter represent the table space. While tries are efficient for variant based tabled
evaluation, they are limited in their ability to recognize and represent repeated



answers for different calls. In [7], Rao et al. proposed a table organization us-
ing Dynamic Threaded Sequential Automata (DTSA) which recognizes reusable
subcomputations for subsumption based tabling. In [8], Johnson et al. proposed
an alternative to DTSA, called Time-Stamped Trie (TST), which not only main-
tains the time efficiency of the DTSA but has better space efficiency.

In this paper, we propose a different approach. We propose a new design for
the table space where all terms in a tabled subgoal call or/and answer are stored
in a common global trie instead of being spread over several different trie data
structures. Our approach resembles the hash-consing technique [9], as it tries to
share data that is structurally equal. An obvious goal is to save memory usage
by reducing redundancy in term representation to a minimum. We will focus our
discussion on a concrete implementation, the YapTab system [10, 11], but our
proposals can be easy generalized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we describe
YapTab’s new design for the table space organization using the common global
trie and then, we describe how we have extended YapTab to provide engine
support for our approach. At last, we present some preliminary experimental
results and we end by outlining some conclusions.

2 Table Space

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Whenever a repeated tabled call is found, the subgoal’s answers are
recalled from the table space instead of being re-evaluated against the program
clauses. The table space may be accessed in a number of ways: (i) to find out if a
subgoal is in the table and, if not, insert it; (ii) to verify whether a newly found
answer is already in the table and, if not, insert it; and (iii) to load answers to
variant subgoals. With these requirements, YapTab implements its table space
using tries [12] which is regarded a very efficient way to implement tables [4].

A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term. Each root-to-leaf path represents
a term described by the tokens labelling the nodes traversed. Two terms with
common prefixes will branch off from each other at the first distinguishing token.
For example, the tokenized form of the term p(X, q(Y, X), Z) is the stream of
6 tokens: p/3, V AR0, q/2, V AR1, V AR0, V AR2. Variables are represented using
the formalism proposed by Bachmair et al. [13], where each variable in a term
is represented as a distinct constant. Formally, this corresponds to a function,
numbervar(), from the set of variables in a term t to the sequence of constants
V AR0, ..., V ARN , such that numbervar(X) < numbervar(Y ) if X is encoun-
tered before Y in the left-to-right traversal of t.

Internally, the trie nodes are 4-field data structures. The first field stores the
node’s token, the second field stores a pointer to the node’s first child, the third
field stores a pointer to the node’s parent and the fourth field stores a pointer



to the node’s next sibling. Each node’s outgoing transitions may be determined
by following the child pointer to the first child node and, from there, continuing
through the list of sibling pointers. To increase performance, YapTab enforces
the substitution factoring [4] mechanism and implements tables using two levels
of tries - one for subgoal calls, the other for computed answers. More specifically,
the table space of YapTab is organized in the following way:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.

– the subgoal frame data structure acts as an entry point to the answer trie.
– each different subgoal answer is represented as a unique path in the answer

trie. Oppositely to subgoal tries, answer trie paths hold just the substitu-
tion terms for the free variables which exist in the argument terms of the
corresponding subgoal call.

– the leaf’s child pointer of answers is used to point to the next available an-
swer, a feature that enables answer recovery in insertion order. The subgoal
frame has internal pointers that point respectively to the first and last answer
on the trie. Whenever a variant subgoal starts consuming answers, it sets a
pointer to the first leaf node. To consume the remaining answers, it must
follow the leaf’s linked list, setting the pointer as it consumes answers along
the way. Answers are loaded by traversing the answer trie nodes bottom-up.

An example for a tabled predicate t/2 is shown in Figure 1. Initially, the
subgoal trie is empty. Then, the subgoal t(a(1),X) is called and three trie
nodes are inserted: one for the functor a/1, a second for the constant 1 and
one last for variable X. The subgoal frame is inserted as a leaf, waiting for the
answers. Next, the subgoal t(a(2),X) is also called. It shares one common node
with t(a(1),X) but, having a/1 a different argument, two new trie nodes and
a new subgoal frame are inserted. At the end, the answers for each subgoal are
stored in the corresponding answer trie as their values are computed. Note that,
for this particular example, the completed answer trie for both subgoal calls is
exactly the same.

3 Common Global Trie

We next describe YapTab’s new design for the table space organization. In this
new design, all terms in a tabled subgoal call or/and answer are now stored in a
common global trie (GT) instead of being spread over several different trie data
structures. The GT data structure still is a tree structure where each different
path through the trie nodes corresponds to a term. However, here a term can
end at any internal trie node and not necessarily at a leaf trie node.

The previous subgoal trie and answer trie data structures are now represented
by a unique level of trie nodes that point to the corresponding terms in the GT



subgoal frame for
t(a(1),VAR0)

1

a/1

2

subgoal
trie

:- table t/2.

t(a(X),a(Y)) :- a(X), a(Y).
a(1).
a(2).

VAR0VAR0

table entry for t/2

answer
trie

a/1

12

subgoal frame for
t(a(2),VAR0)

answer
trie

a/1

12

Fig. 1. YapTab’s original table design

(see Figure 2 for details). For the subgoal tries, each node now represents a
different subgoal call where the node’s token is the pointer to the unique path in
the GT that represents the argument terms for the subgoal call. The organization
used in the subgoal tries to maintain the list of sibling nodes and to access the
corresponding subgoal frames remains unaltered. For the answer tries, each node
now represents a different subgoal answer where the node’s token is the pointer
to the unique path in the GT that represents the substitution terms for the
free variables which exist in the argument terms. The organization used in the
answer tries to maintain the list of sibling nodes and to enable answer recovery
in insertion order remains unaltered. With this organization, answers are now
loaded by following the pointer in the node’s token and then by traversing the
corresponding GT’s nodes bottom-up.

On completion of a subgoal, a strategy exists that avoids answer recovery
using bottom-up unification and performs instead what is called a completed

table optimization [4]. This optimization implements answer recovery by top-
down traversing the completed answer trie and by executing specific WAM-like
code from the answer trie nodes. With our new design, the nodes in the GT can



a/1

12

VAR0 VAR0

subgoal frame for
t(a(1),VAR0)

call1call2

subgoal
trie

table entry for t/2

subgoal frame for
t(a(2),VAR0)

answer trie

answer1answer2

answer trie

answer1answer2

global
trie

Fig. 2. YapTab’s new table design

belong to several different subgoal/answer tries, and thus this optimization is no
longer possible.

Figure 2 uses again the example from Figure 1 to illustrate how the GT’s
design works. Initially, the subgoal trie and the GT are empty. Then, the first
subgoal t(a(1),X) is called and three nodes are inserted on the GT: one to
represent the functor a/1, another for the constant 1 and a last one for variable
X. Next, a node representing the path inserted on the GT is stored in the subgoal
trie (node labeled call1). The token field for the call1 node is made to point
to the leaf node of the GT’s inserted path and the child field is made to point to
a new subgoal frame. For the second subgoal call, t(a(2),X), we start again by
inserting the call in the GT and then we store a node in the subgoal trie (node
labeled call2) to represent the path inserted on the GT.

As we saw in the previous example, for each subgoal call we have two answers:
the terms a(1) and a(2). However, as these terms are already represented on
the GT, we need to store only two nodes, in each answer trie, to represent them
(nodes labeled answer1 and answer2). The token field for these answer trie
nodes are made to point to the corresponding term representation on the GT.
With this example we can see that terms in the GT can end at any internal trie
node (and not necessarily at a leaf trie node) and that a common path on the
GT can simultaneously represent different subgoal and answer terms.



4 Implementation Details

We then describe in more detail the data structures and algorithms for YapTab’s
new table design based on the GT. We start with Figure 3 showing in more detail
the table organization previously presented in Figure 2.

subgoal trie

answer trieanswer trie

root
node

a/1

global trie

VAR0 VAR0

2 1

root
node

root
node

root
node

call2 call1

answer2 answer1 answer1answer2

table entry for t/2

subgoal_trie_root_node

subgoal frame for t(a(2),VAR0)

answer_trie_root_node

subgoal frame for t(a(1),VAR0)

answer_trie_root_node

GT_ROOT_NODE

Fig. 3. Implementation details for YapTab’s new table design

Internally, tries are represented by a top root node, acting as the entry
point for the corresponding subgoal, answer or global trie data structure. For
the subgoal tries, the root node is stored in the corresponding table entry’s



subgoal trie root node data field. For the answer tries, the root node is stored
in the corresponding subgoal frame’s answer trie root node data field. For the
global trie, the root node is stored in the GT ROOT NODE global variable.

Regarding the trie nodes, remember that they are internally implemented as
4-field data structures. The first field (token) stores the token for the node and
the second (child), third (parent) and fourth (sibling) fields store pointers,
respectively, to the first child node, to the parent node, and to the sibling node.

Traversing a trie to check/insert for new calls or for new answers is imple-
mented by repeatedly invoking a trie node check insert() procedure for each
token that represents the call/answer being checked. Given a trie node parent

and a token t, the trie node check insert() procedure returns the child node
of parent that represents the given token t. Figure 4 shows the pseudo-code for
this procedure.

trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
child = parent->child
if (child == NULL) { // the list of sibling nodes is empty

child = new_trie_node(t, NULL, parent, NULL)
parent->child = child

} if (is_not_a_hash_table(child)) { // sibling nodes without hashing
sibling_nodes = 0 // to count the number of sibling nodes
do { // check if token t is already in the list of siblings
if (child->token == t)

return child
sibling_nodes++
child = child->sibling

} while (child)
child = new_trie_node(t, NULL, parent, parent->child)
if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) { // alloc new hash
hash = new_hash_table(child)
parent->child = hash

} else
parent->child = child

} else { // sibling nodes with hashing
hash = child
bucket = hash_function(hash, t) // get the hash bucket for token t
child = bucket
sibling_nodes = 0
while (child) { // check if token t is already in the hash bucket
if (child->token == t)

return child
sibling_nodes++
child = child->sibling

}
child = new_trie_node(t, NULL, parent, bucket)
if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET) // expand hash
expand_hash_table(hash)

}
return child

}

Fig. 4. Pseudo-code for the trie node check insert() procedure



Initially, the procedure checks if the list of sibling nodes is empty. If this is
the case, a new trie node representing the given token t is initialized and inserted
as the first child of the given parent node. To initialize new trie nodes, we use a
new trie node() procedure with four arguments, each one corresponding to the
initial values to be stored respectively in the token, child, parent and sibling

fields of the new trie node.
Otherwise, if the list of sibling nodes is not empty, the procedure checks

if they are being indexed through a hash table. Searching through a list of
sibling nodes is initially done sequentially. This could be too expensive if we
have hundreds of siblings. A threshold value (MAX SIBLING NODES PER LEVEL)
controls whether to dynamically index the nodes through a hash table, hence
providing direct node access and optimizing search. Further hash collisions are
reduced by dynamically expanding the hash tables when a second threshold value
(MAX SIBLING NODES PER BUCKET) is reached for a particular hash bucket.

If not using hashing, the procedure then traverses sequentially the list of
sibling nodes and checks for one representing the given token t. If such a node
is found then execution is stopped and the node returned. Otherwise, a new
trie node is initialized and inserted in the beginning of the list. If reaching the
threshold value MAX SIBLING NODES PER LEVEL, a new hash table is initialized
and inserted as the first child of the given parent node.

If using hashing, the procedure first calculates the hash bucket for the given
token t and then, it traverses sequentially the list of sibling nodes in the bucket
checking for one representing t. Again, if such a node is found then execu-
tion is stopped and the node returned. Otherwise, a new trie node is initialized
and inserted in the beginning of the bucket list. If reaching the threshold value
MAX SIBLING NODES PER BUCKET, the current hash table is expanded.

To manipulate tries we use two interface procedures. For traversing a trie to
check/insert for new calls or for new answers we use the

trie_check_insert(TRIE_NODE root, TERM term)

procedure, where root is the root node of the trie to be used and term is the
call/answer term to be inserted. The trie check insert() procedure invokes
repeatedly the previous trie node check insert() procedure for each token
that represents the given term and returns the reference to the leaf node repre-
senting its path. Note that inserting a term requires in the worst case allocating
as many nodes as necessary to represent its complete path. On the other hand,
inserting repeated terms requires traversing the trie structure until reaching the
corresponding leaf node, without allocating any new node.

To load a term from a trie back to the Prolog engine we use the

trie_load(TRIE_NODE leaf)

procedure, where leaf is the reference to the leaf node of the term to be returned.
When loading a term, the trie nodes are traversed in bottom-up order.

When inserting terms in the table space we need to distinguish two situ-
ations: (i) inserting tabled calls in a subgoal trie structure; and (ii) inserting



answers in a particular answer trie structure. The former situation is handled
by the subgoal check insert() procedure as shown in Figure 5 and the lat-
ter situation is handled by the answer check insert() procedure as shown in
Figure 6.

subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call) {
st_root_node = te->subgoal_trie_root_node
if (GT_ROOT_NODE) { // new table design

leaf_gt_node = trie_check_insert(GT_ROOT_NODE, call)
leaf_st_node = trie_node_check_insert(st_root_node, leaf_gt_node)

} else { // original table design
leaf_st_node = trie_check_insert(st_root_node, call)

}
return leaf_st_node

}

Fig. 5. Pseudo-code for the subgoal check insert() procedure

In the original table design, the subgoal check insert() procedure simply
uses the trie check insert() procedure to check/insert the given call in the
subgoal trie corresponding to the given table entry te. In the new design based
on the GT, the subgoal check insert() procedure now first checks/inserts
the given call in the GT. Then, it uses the reference to the GT’s leaf node
representing call (leaf gt node in Figure 5) as the token to be checked/inserted
in the subgoal trie corresponding to the given table entry te. Note that this
is done by calling the trie node check insert() procedure, thus if the list
of sibling nodes in the subgoal trie exceeds the MAX SIBLING NODES PER LEVEL

threshold value, then a new hash table is initialized as described before.

answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer) {
at_root_node = sf->answer_trie_root_node
if (GT_ROOT_NODE) { // new table design

leaf_gt_node = trie_check_insert(GT_ROOT_NODE, answer)
leaf_at_node = trie_node_check_insert(at_root_node, leaf_gt_node)

} else { // original table design
leaf_at_node = trie_check_insert(at_root_node, answer)

}
return leaf_at_node

}

Fig. 6. Pseudo-code for the answer check insert() procedure

The answer check insert() procedure works similarly. In the original ta-
ble design, it checks/inserts the given answer in the answer trie corresponding
to the given subgoal frame sf. In the new design based on the GT, it first
checks/inserts the given answer in the GT and, then, it uses the reference to
the GT’s leaf node representing answer (leaf at node in Figure 6) as the to-
ken to be checked/inserted in the answer trie corresponding to the given sub-



goal frame sf. Again, if the list of sibling nodes in the answer trie exceeds the
MAX SIBLING NODES PER LEVEL threshold value, a new hash table is initialized.

Finally, the answer load() procedure is used to consume answers. Figure 7
shows the pseudo-code for it. In the original table design, it simply uses the
trie load() procedure to load from the answer trie the answer given by the
trie node leaf at node. In the new design based on the GT, the answer load()

procedure first accesses the GT’s leaf node represented in the token field of
the given trie node leaf at node (leaf gt node in Figure 7). Then, it uses
the trie load() procedure to load from the GT back to the Prolog engine the
answer represented by the obtained GT’s leaf node.

answer_load(ANSWER_TRIE_NODE leaf_at_node) {
if (GT_ROOT_NODE) { // new table design

leaf_gt_node = leaf_at_node->token
answer = trie_load(leaf_gt_node)

} else { // original table design
answer = trie_load(leaf_at_node)

}
return answer

}

Fig. 7. Pseudo-code for the answer load() procedure

5 Preliminary Experimental Results

We next present some preliminary experimental results comparing YapTab with
and without support for the common global trie data structure. The environment
for our experiments was an AMD Athlon XP 2800+ with 1 GByte of main
memory and running the Linux kernel 2.6.24-19.

To evaluate the impact of our proposal, we have defined a tabled predicate
t/5 that simply stores in the table space terms defined by term/1 facts, and then
we used a top query goal test/0 to recursively call t/5 with all combinations
of one and two free variables in the arguments. An example of such code for
functor terms of arity 1 (500 terms in total) is shown next.

:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail. term(f(1)).
... term(f(2)).
test :- t(f(1),f(1),f(1),f(1),A), fail. ...
test :- t(A,B,f(1),f(1),f(1)), fail. term(f(499)).
... term(f(500)).
test :- t(f(1),f(1),f(1),A,B), fail.
test.

We experimented the test/0 predicate with 7 different kinds of 500 term/1

facts: integers, atoms and functor terms of arity 1 to 5. Table 1 shows the memory



usage, in KBytes, and the running times, in milliseconds, to store to the tables
(first execution) and to load from the tables (second execution) the complete
set of subgoals/answers for YapTab with (column YapTab+GT ) and without
(column YapTab) support for the common global trie data structure.

Terms
YapTab (a) YapTab+GT (b) Ratio (b)/(a)

Mem Store Load Mem Store Load Mem Store Load

500 int 49074 490 155 52803 738 164 1.08 1.51 1.06
500 atom 49074 508 158 52803 770 167 1.08 1.52 1.06
500 f/1 49172 693 242 52811 1029 243 1.07 1.48 1.00
500 f/2 98147 842 314 56725 1298 310 0.58 1.54 0.99
500 f/3 147122 1098 377 60640 1562 378 0.41 1.42 1.00
500 f/4 196097 1258 512 64554 1794 435 0.33 1.43 0.85
500 f/5 245072 1418 691 68469 2051 619 0.28 1.45 0.90

Table 1. Memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for the common global trie data structure

The results show that GT support can reduce memory usage proportionally
to the depth and redundancy of the terms stored in the GT. In particular, for
functor terms of arity 2 to 5, the results show an increasing and very significant
reduction on memory usage. The results for integer and atoms terms are also
very interesting as they show that the cost of representing only atomic terms
in the GT (between 7% and 8% in these experiments) can be manageable when
we increase redundancy. Note that integers and atoms terms are represented by
a single node in the original YapTab design, and by an extra node (therefore
requiring two nodes) if using the GT approach.

On the other hand, these results seem to indicate that memory reduction
comes at a price in execution time. With GT support, we need to navigate in
two tries when checking/inserting a term. Moreover, in some situations, the cost
of inserting a new term in an empty/small trie can be less than the cost of
navigating in the GT, even when the term is already stored in the GT. However,
our results seem to suggest that this cost decreases also proportionally to the
depth and redundancy of the terms stored in the GT.

The results obtained for loading terms do not suggest significant differences.
However and surprisingly, the GT approach showed to outperform the original
YapTab design in some experiments.

6 Conclusions and Further Work

We have presented a new design for the table space organization that uses a
common global trie to store terms in tabled subgoal calls and answers. Our
goal is to reduce redundancy in term representation, thus saving memory by
sharing data that is structurally equal. Our preliminary experiments showed
very significant reductions on memory usage.



Further work will include exploring the impact of applying our proposal to
real-world applications that pose many subgoal queries, possibly with a large
number of redundant answers, such as ILP applications, seeking real-world ex-
perimental results allowing us to improve and expand our current implementa-
tion. In particular, we intend to study how alternative designs for the table space
organization can further reduce redundancy in term representation.

Acknowledgements

This work has been partially supported by the research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/ EIA/66924/2006) and by Fundação
para a Ciência e Tecnologia.

References

1. Michie, D.: Memo Functions and Machine Learning. Nature 218 (1968) 19–22
2. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-

ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98
3. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-

grams. Journal of the ACM 43(1) (1996) 20–74
4. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access

Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1)
(1999) 31–54

5. Rocha, R.: On Improving the Efficiency and Robustness of Table Storage Mech-
anisms for Tabled Evaluation. In: International Symposium on Practical Aspects
of Declarative Languages. Number 4354 in LNCS, Springer-Verlag (2007) 155–169

6. Costa, P., Rocha, R., Ferreira, M.: Tabling Logic Programs in a Database. In:
Workshop on (Constraint) Logic Programming. (2007) 125–135

7. Rao, P., Ramakrishnan, C.R., Ramakrishnan, I.V.: A Thread in Time Saves
Tabling Time. In: Joint International Conference and Symposium on Logic Pro-
gramming, The MIT Press (1996) 112–126

8. Johnson, E., Ramakrishnan, C.R., Ramakrishnan, I.V., Rao, P.: A Space Efficient
Engine for Subsumption-Based Tabled Evaluation of Logic Programs. In: Fuji
International Symposium on Functional and Logic Programming. Number 1722 in
LNCS, Springer-Verlag (1999) 284–300

9. Goto, E.: Monocopy and Associative Algorithms in Extended Lisp. Technical
Report TR 74-03, University of Tokyo (1974)

10. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction.
(2000) 77–87

11. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling
to logic programs. Theory and Practice of Logic Programming 5(1 & 2) (2005)
161–205

12. Fredkin, E.: Trie Memory. Communications of the ACM 3 (1962) 490–499
13. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-

nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74


