
Fundamenta Informaticae XXI (2001) 1001–1023 1001

IOS Press

Compile the hypothesis space: do it once, use it often

Nuno A. Fonseca

Instituto de Biologia Molecular e Celular (IBMC) & CRACS, University of Porto, Portugal, nf@ibmc.up.pt

Rui Camacho

FEUP & LIAAD, University of Porto, Portugal, rcamacho@fe.up.pt

Ricardo Rocha

DCC-FCUP & CRACS, University of Porto, Portugal, ricroc@dcc.fc.up.pt

Vı́tor Santos Costa

DCC-FCUP & CRACS, University of Porto, Portugal, vsc@dcc.fc.up.pt

Abstract. Inductive Logic Programming (ILP) is a powerful and well-developed abstraction for
multi-relational data mining techniques. Despite the considerable success of ILP, deployed ILP
systems still have efficiency problems when applied to complex problems. In this paper we propose
a novel technique that avoids the procedure ofdeducingeach example to evaluate each constructed
clause. The technique is based on the Mode Directed Inverse Entailment approach to ILP, where a
bottom clause is generated for each example and the generated clauses are subsets of the literals of
such bottom clause. We propose to store in aprefix-treeall clauses that can be generated from all
bottom clauses together with some extra information. We show that this information is sufficient to
estimate the number of examples that can be deduced from a clause and present an ILP algorithm that
exploits this representation. We also present an extensionof the algorithm where each prefix-tree is
computed only once (compiled) per example. The evaluation of hypotheses requires only basic and
efficient operations on trees. This proposal avoids re-computation of hypothesis’ value in theory-
level search, in cross-validation evaluation procedures and in parameter tuning. Both proposals are
empirically evaluated on real applications and considerable speedups were observed.
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1. Introduction

Multi-relational data-mining algorithms analyse complexand structured data (e.g., data stored in differ-
ent tables of a relational database). Recent years have seena wide range of multi-relational data mining
approaches, in domains such as tree-mining, graph-mining,and cross-relational mining [14, 22]. One
powerful and well-studied abstraction for multi-relational data mining is through Inductive Logic Pro-
gramming (ILP) [31]. In ILP, the tables are abstracted asrelations, and the goal is to learnrules that
describe interesting patterns in the data, where rules are usually expressed in a language of First Order
Logic. ILP can be used as a framework for supervised and unsupervised learning and with a wide range
of learning algorithms [34], and has been successfully applied to problems in very different application
domains [24]. ILP thus provides a very general framework formulti-relational data-mining. Unfortu-
nately, this generality comes at a computational cost. Therefore, it has been argued that improvements in
efficiency and scalability are necessary to successfully tackle applications that learn from large data sets
and/or require the search of large hypothesis spaces [40].

Most ILP systems execute by proposing and evaluating rules,until a good rule is found. Usually,
one has to search a huge space of rules, hence the performanceof an ILP system primarily depends on
the size of the search space. This suggests that in order to reduce execution time one should reduce the
actual number of rules generated, either through better bias (e.g., [36, 7]) or through stochastic search
(e.g., [45]). If this is not possible or desirable, one has tofocus on the amount of time spent per node. At
each node, the ILP system will generate and score a new rule. Since generating a rule is straightforward,
research has focused on scoring in order to achieve speedups. Rules are scored based on the number of
examples they cover, therefore faster scoring requires faster theorem proving (see, e.g., [4, 43, 42]). Last,
one should observe that parallel systems can speed up ILP in anumber of ways [18], and that sequential
and parallel improvements may be combined.

In this paper we propose a novel approach to improve execution time of ILP systems. Our approach
starts from the observation that most execution time in ILP is spent in computingcoverage, that is, which
examples are satisfied by a rule. In fact, most of this work is redundant: the same clause can be generated
several times, and several clauses may be very similar. Query-packs [4] address this redundancy in an
interesting way: first, one generates a number of clauses; second, one groups this clauses as a tree, so that
one can take advantage of common prefixes; last, for each example one performs theorem proving over
the whole tree, or pack. Although query packs reduce redundancy, they do not totally prevent redundant
theorem proving; even within a query pack one may repeat computations [47]. Furthermore, because
storing the exact coverage of every rule is very expensive, one has to restart the query pack from scratch
every time one needs to add a new rule to a theory.

Ideally, we would like to do theorem proving only once. One way to do so is throughtabling [42]
or memoing: one can avoid computation by always reusing previously computing solutions. If one
tables conjunctions of goals, one needs to compute answers for a conjunction only once, and reuse these
answers for all new queries. Unfortunately, the number of conjunctions, their query and answer patterns
grows memory usage rather quickly. In practice, one has to choose a balance between re-computation
and saving space.

The approaches above assume that the problem is that we have avast space of rules, and that we
want to know how examples are covered by these rules. These approaches take advantage of the fact
that rules are similar, or repeated, but they do not take advantage of the fact thatthe space of rules is
not independent from the space of examples. To make our point more precise, consider Mode Directed
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Inverse Entailment (MDIE) [32], a popular approach followed by several ILP systems (e.g., Golem [33],
Progol [32], Aleph [46], Indlog [6], and April [19]). MDIE systems do not just generate rules: instead,
they first select an example asseedand create itsbottom clause. Intuitively, the bottom clause includes
the literals related to the seed. Thus, only clauses (rules)that subsume it need to be considered in order
to prove the seed. MDIE systems take advantage of this to reduce the search space: they only enumerate
clauses that satisfy the seed.

In this work, we take advantage of a key observation: to a firstapproximation, MDIE can be used
to build an algorithm forenumerating the clauses that satisfy an example. If we can find such an al-
gorithm, the problem of whether a clause covers an example, which needs theorem-proving, reduces
to the problem of whether a clause is in the set of clauses satisfying the example. In practice, as it is
widely known, there are both theoretical and practical issues in enumeratingall clauses entailed by an
example [32, 48, 3]. A first problem is that, as discussed in this paper, the incompleteness of refinement
operators means that the enumeration algorithms need to be approximate. A second problem, is how
to represent compactly large sets of clauses. Given the characteristics of ILP search,prefix-treesare a
natural approach to storing sets of clauses.

We propose two algorithms that avoid the procedure ofdeducingeach example to evaluate each
constructed clause. In our first algorithm, T-MDIE, we visitexamples one by one and store all entailing
clauses in a prefix-tree. The major contribution of T-MDIE isthat, instead of actually evaluating these
clauses, we estimate the coverage of a clause by counting thenumber of bottom clauses that generated the
clause. Empirical results show that such an approach can indeed improve execution time over standard
ILP search. In our second algorithm, TO-MDIE, we observe that in T-MDIE the same set of clauses
is generated from the same example at different computationsteps (i.e., at different steps of theory
construction or when performing cross-validation). The TO-MDIE algorithm thus separates execution in
two steps:

1. A compilation step defines the search space by generating aset of clauses per example. Such set
of clauses is encoded in a prefix-tree, as before.

2. The traditional search step is replaced by search algorithms constructed from an algebra of set
operations implemented over these sets of clauses.

Experimental results for TO-MDIE do show a large reduction in execution time. Moreover, we
believe that the TO-MDIE approach provides a novel, modular, framework for ILP algorithm design,
where the search can be easily encoded using set operations.

The remainder of the paper is organised as follows. In Section 2 we provide a brief introduction
to ILP and MDIE. Section 3 introduces the reader to the rationale of seeing the examples as sets of
clauses and in Section 4 we present a first algorithm, called T-MDIE, that exploits this idea. Next,
in Section 5, we describe the proposed two step algorithm that we called TO-MDIE. In Section 6, some
implementation details are discussed. In Section 7 we pointout and compare research work that is related
to ours. In Section 8 we present an empirical evaluation of the impact in execution time and accuracy of
our two algorithms. Finally, in Section 9 we discuss our workand draw conclusions.
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2. Background

This section briefly presents some basic concepts and terminology of Inductive Logic Programming but
is not meant as an introduction to ILP. For such introductionwe refer to [34, 13, 37]. Throughout the
text it is assumed that the reader is familiar with Logic Programming terminology, nevertheless we next
provide a very short and incomplete introduction to Logic Programming for ease of reference (for a more
complete treatment we refer to [28]).

2.1. Logic Programming

The following concepts are often referred in ILP. Without loss of generality we may consider each clause
c as a sequential definite clause [25], i.e., a sequence of literals, in the forml0 ← l1, . . . , ln (n ≥ 1)
wherel0 is the head literal of the clause and eachli (1 ≤ i ≤ n) is a body literal at depthi. A literal li
can be represented bypi(A1, . . . , Aia) wherepi is a predicate symbol with arityia andA1, . . . , Aia are
argument terms. A term is a variable (represented by an uppercase letter followed by a string of lower
case letters and digits) or a function symbol (represented with a lower case letter followed by a string of
lower case letters, digits or underscores) followed by a bracketedn-tuple of terms. A variable represents
an unspecified term for which a value can be assigned (usuallydesignated as instantiated or bound). A
variable can be instantiated only once with another variable or a term. Letθ = {X1/t1, . . . ,Xn/tn}, θ
is said to be asubstitutionwhen eachXi is a variable and eachti is a term. The application ofθ to a term
t, denoted bytθ, is the act of replacing every occurrence ofXi in t by ti.

A clausel0 ← l1, . . . , ln (n ≥ 1) can be interpreted asl0 if l1 and . . . andln and is usually represented
as ‘l0 : −l1, . . . , ln’. A fact is a body-less clause (e.g., represented asl0.). A recursive clause has at least
one literal in the body with the same predicate symbol as the head literal. A finite set of clauses is
called a clausal theory (or logic program) and represents a conjunction of clauses. A theory that contains
recursive clauses is called a recursive theory.

2.2. ILP Problem

The most common task addressed by predictive ILP systems canbe defined as follows. LetE+ be the
set of positive examples,E− the set of negative examples,E = E+ ∪ E−, andB the prior knowledge
(background knowledge). The aim of an ILP system is to find an hypothesis (also referred to as a theory)
H, in the form of a logic program, such thatB ∧ E− ∧ H 2 � (Consistency) andB ∧ H � E+

(Completeness), assuming thatB ∧ E−

2 � andB 2 E+. In general,B andE can be arbitrary logic
programs. However, in this paper it is assumed thatE is constituted only by facts.

A classical ILP example is theMichalski train problem[30]. In this problem, the theory to be found
should explain why trains are travelling eastbound. Figure1 presents the set of positive and negative
examples, together with part of the background knowledge (describing the traineast1). There are five
examples of trains known to be travelling eastbound (the setof positive examples) and five examples of
trains known to be travelling westbound (the set of negativeexamples). All our observations about these
trains, such as size, number, position, contents of carriages, etc, constitutes the background knowledge.
We next describe a method used for learning a theory.
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has_car(east1,car_11).        has_car(east1,car_12).
has_car(east1,car_13).        has_car(east1,car_14).
short(car_12).                short(car_14).
closed(car_12).               long(car_11).
long(car_13).                 open_car(car_11).
open_car(car_13).             open_car(car_14).
shape(car_11,rectangle).      shape(car_12,rectangle).
shape(car_13,rectangle).      shape(car_14,rectangle).
wheels(car_11,2).             wheels(car_12,2).
wheels(car_13,3).             wheels(car_14,2).
load(car_11,rectangle,3).     load(car_12,triangle,1).
load(car_13,hexagon,1).       load(car_14,circle,1).
...                           ...

eastbound(east1).
eastbound(east2).
eastbound(east3).
eastbound(east4).
eastbound(east5).

Positive Examples Background Knowledge

eastbound(east6).
eastbound(east7).
eastbound(east8).
eastbound(east9).
eastbound(east10).

Negative Examples

Figure 1. Michalski train problem: examples and part of the background knowledge (for the traineast1).

2.3. Mode-Directed Inverse Entailment

Mode-Directed Inverse Entailment (MDIE) [32] is an approach followed by several ILP systems to ad-
dress the ILP problem described above (e.g., [32, 46, 6, 1, 39]). MDIE usesinverse entailmenttogether
with mode restrictions1 as the basis to perform induction. The key idea in MDIE is to find all literals
that could be used in hypotheses (clauses) that explain an example (seed). This is achieved through the
construction of a bottom clause, that can be considered as the set of all such literals.

In MDIE, the procedure to find a clause can be described as follows:

1. Pick an examplee from E+ (theseed).

2. Build a bottom clause (ormost specific clause) ⊥e that entails the selected seed example.⊥e is a
clause that explains an examplee relatively to the background knowledgeB (andH if the target
predicate is recursive)2. The bottom clause is usually a clause with several literals, i.e., it has
the form l0 : −l1, l2, . . ., whereli are ground consequences ofB ∧ e. Since, in general,⊥e can
have infinite cardinality, the ground consequences are derived fromB using a depth-bound proof
procedure for some selected depth.

3. Find the best consistent clause(s) more general thane by performing a general-to-specific search3

in the space of clauses bounded below by⊥e. The clauses’ bodies generated during the search
are subsets of the literals from⊥e. The generation of clauses is performed by a function, termed
refinement operator, which computes (generates) a set of specializations (dually, generalizations)
of a (set of) clause(s). Note that, in general, the number of clauses generated can be arbitrarily

1The mode restrictions [32], more specifically the type and input/output mode declarations, supply information concerning the
arguments of each predicate that may appear in the hypotheses. The type declarations of the predicate to be learned are useful
because the learner needs only to consider a subset of the hypotheses space that is type-conform.
2In general, a bottom clause can also be constructed as the relative least general generalization of two (or more) examples [33]
with respect to the given background knowledgeB, or as the most specific resolvent of an example [35] with respect toB.
3Although it is usual to perform a general-to-specific search, other directions may be pursued (see e.g., [39]).
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:-modeh(1,eastbound(+train)). % mode declaration for head literal eastbound/1

:-modeb(2,has_car(+train,-car)).% mode declaration for body literal has_car/2

:-modeb(1,short(+car)). % mode declaration for body literal short/1

:-modeb(1,closed(+car)). % mode declaration for body literal closed/1

:-modeb(1,long(+car)). % mode declaration for body literal long/1

Figure 2. Example of mode declarations using a Progol style mode language for the trains problem. Each mode
declaration has two arguments: the first, the recall number,indicates how many solutions to a goal can be intro-
duced in the bottom clause; the second argument has the predicate and predicate’s arguments type and input/output
(-/+) mode.

large, and the user needs to impose some further restrictions, such as a limit in clause length. Once
we have several clauses we need some way to rank them. There are many measures to assess the
quality of clauses [27], but all of them involve computing the coverage of a clause, i.e., the number
of positive (positive cover) and negative examples (negative cover) derivable from the background
knowledge.

Note that constraints are imposed on 2) and 3) in order to ensure that the algorithm terminates. The
great advantage of using a bottom clause is that it bounds (anchors) the search lattice.

As an example, consider the set of examples and background knowledge given for the train prob-
lem (Figure 1 and mode declarations in Figure 2). To build thebottom clause we start by picking a
seed (positive) example (e.g.,eastbound(east1)). Next, using the given mode declarations, all ground
consequences are deduced:

eastbound(east1):- has_car(east1,car_11),has_car(east1,car_12),

long(car_11), short(car_12), closed(car_12).

Then, the clause is variabilized by transforming the predicates’ input/output arguments, thus obtain-
ing the bottom clause for traineast1 (eastbound(east1)):

⊥east1= eastbound(A) : −has car(A,B), has car(A,C), long(B), short(C), closed(C).

Having the bottom clause, the next step, is to search for the best consistent clause more general than
eastbound(east1). The clauses’ bodies generated during the search are subsets of the literals from the
bottom clause. For instance, using a clause length limit of 4, an ILP system would generate the following
clauses given the bottom clause⊥east1:

eastbound(A):- has_car(A,B).

eastbound(A):- has_car(A,C).

eastbound(A):- has_car(A,B), long(B).

eastbound(A):- has_car(A,C), short(C).

eastbound(A):- has_car(A,C), closed(C).

eastbound(A):- has_car(A,C), short(C), closed(C).
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We briefly described how a clause can be learned. The process of generating a theory (set of clauses)
often involves the use of a kind of covering algorithm where one clause is learnt at a time. In a nutshell,
the algorithm proceeds as follows. After learning a clause,all covered positive examples are separated
(removed) from the training set and the next clause is learned from the remaining examples. The process
repeats while the training set is not empty. In Section 4 an instance of this algorithm is outlined.

3. Examples as Sets of Clauses

The key idea of this work is that we can estimate a clause’s coverage by simply visiting the examples
where the clause can be refined from the example’s bottom clause. This raises a number of issues. The
first one is whether this estimate is exact or approximate. The second one is whether this estimate can be
implemented effectively, as otherwise it would be of littleinterest.

We will address the first question next. Given a bottom clause⊥e, we have seen that the refinement
operator enumerates clauses that subsume⊥e

4. We are interested in the connection between the clauses
that cover an examplee and the set of clausesSe that subsume⊥e. Unfortunately, it is well known that
the set of clauses inSe does not correspond to all clauses that covere. For instance, given a recursive
theory, we can generate clauses that cover an examplee which cannot be refined from⊥e [48].

In this work, we are interested on non-recursive theories. In this case, even thoughθ-subsump-
tion and logical implication are equivalent [23], the problem is that the refinement operator is known
to be not complete [32]. Incompleteness stems from only considering literals from left to right and
from considering them only once [3]. A weaker form of completeness would be useful when comparing
clauses from different bottom clauses. Consider clausec ∈ Sei

. Clearly, c must coverei. Consider
now a different exampleej . Can we prove ifc coversej , is it the case thatc ∈ Sej

? Unfortunately, the
answer is again negative, and this follows immediately fromthe previous results. For example, consider
the following example taken from [3]:

⊥e1
= g(A) : −p(A,A)

⊥e2
= g(A) : −p(A,A), p(A,B)

C1 = g(A) : −p(A,A)

C2 = g(A) : −p(A,A), p(A,B)

Clearly,C2 satisfies both examples, butSe1
will only containC1, asC2 is never generated by the refine-

ment operator (remember that the refinement operator selects a literal only once).
One could investigate this result further by researching for classes of clauses such that we can achieve

clause completeness. For example, it is straightforward toshow by constructive induction that if a ground
clause covers examplesek andel, and it belongs toSek

, then it belongs toSel
(just observe that the last

literal must be in both⊥ek
and⊥el

). In this work we follow a different approach: we study whetherSe

provides a convenientapproximationto whether the clause coverse. To do so, we try to validate this
argumentempirically.

Next, we discuss the second question, whether it is practical to represent and manipulateSe. Our first
observation is that, as it is well known, the set of clausesSe can grow very quickly with bottom clause

4The subsumption order is the generality order most often used in ILP and is defined as follows. Letc1 andc2 be clauses. A
clausec1 subsumesc2 if there exists a substitutionθ such thatc1θ ⊆ c2.
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size, since it corresponds to combinations of literals within the bottom clause. Manipulating arbitrarily
large sets of clauses is clearly impractical. We address this problem through alengthrestriction on the
clauses contained inSe: we defineS l

e as the set of clauses refined from⊥e with at mostl literals. We
can obtain this set in two ways: discarding all clauses of length > l from Se, or, given the observation
that the refinement operator is incremental on length, by only refining clauses with up to lengthl. Note
that in both cases if a clausec belongs toS l

e, then it also belongs toSe.
Given this restriction, the question is now whether we can store all clauses of length≤ l effectively.

In Section 6 we discuss in detail how prefix-trees can be used for this purpose.

4. T-MDIE

Our first algorithm approximates traditional ILP by using the setsSe to simulate full breadth-first search
up to a certain lengthl [8]. For each examplee, we generate all clauses subsuming the bottom clause
and if c ∈ S l

e, state thatc coverse. The algorithm uses two multisets to represent clauses and their cov-
erage:M+ store clauses covering the positive examples, andM− stores clauses covering the negative
examples. It works as follows:

• ConstructM+ by generating all clauses subsuming the bottom clauses for the positive examples
E+.

• PruneM+ by discarding clauses with a multiplicity inferior to a predefined minimum number of
positive examples.

• ConstructM− by generating all clauses subsuming the bottom clauses for the negative examples
E−.

• PruneM+ andM− by discarding clauses with a multiplicity inM− greater than a predefined
number of negative examples (also referred as thenoise).

• Enumerate the clauses inM+ and select the best clause by estimatingc’s positive coverage asc’s
multiplicity inM+, and its negative coverage asc’s multiplicity inM−.

Figure 3 shows the actual T-MDIE algorithm. First the multisets are constructed (lines 1 to 10) and
then the best clause (according to some metric) is found by inspection of the multisets (line 11).

Most often, we would use the T-MDIE algorithm as the inner step in any theory construction algo-
rithm. Figure 4 shows the algorithm being used to implement greedy coverage. The difference regarding
systems such as Progol and Aleph concerns the inner procedure learn T −MDIE().

4.1. Details

When implementing T-MDIE we found it convenient to reduce redundancy as much as possible. Figure 5
shows, in more detail, the inner loop of the T-MDIE algorithm.

ThefillMultiSet() procedure starts by initializing an empty setS to keep track of the clauses being
found. Then, it generates the bottom clause for the given example e (line 2). Next, it uses the bottom
clause to generateall valid clausesc satisfying the language and bias constraints (line 4). Eachclausec
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learn T −MDIE(B,E+, E−, C):
Given: background knowledgeB, finite training setE = E+ ∪ E−, constraintsC.
Return: thebestclause that explains some of theE+ and satisfiesC.

1. M+ = ∅
2. M− = ∅
3. foreach e ∈ E+ do
4. fillMultiSet(M+, B, e, C)
5. endforeach
6. prunePositives(M+, C)
7. foreach e ∈ E− do
8. fillMultiSet(M−, B, e, C)
9. endforeach
10.pruneNegatives(M+,M−, C)
11.return bestClause(M+,M−, C)

Figure 3. The learning algorithm of T-MDIE.

generaliseMDIE(B,E+, E−, C):
Given: background knowledgeB, finite training setE = E+ ∪ E−, constraintsC.
Return: a theoryH that explainsE givenB and satisfiesC.

1. H = ∅
2. while E+ 6= ∅ do
3. h = learn T −MDIE(B,E+, E−, C)
4. E+ = E+ \ covered(h)
5. H = H ∪ h
6. B = B ∪ h
7. endwhile
8. return H

Figure 4. The greedy cover algorithm of a MDIE system implementation.

is then normalised (line 5) before looking it up onS in order to be added to the given multisetM if not
repeated (lines 6 to 9). The normalisation consists of two steps:

• The first step is motivated by prior work on query optimisation [43]. It removes redundant literals,
and separates independent components.

• The second step orders the literals according to the Prolog standard order relation. The standard
order relation in Prolog orders terms as follows [11]: variables roughly by age; floating-point
numbers; integers; and compound terms ordered by the functor’s name, arity, and arguments.

Notice that this algorithm will generate a number of clausesthat would never be generated by an
ordinary ILP system: namely, clauses that only cover negative examples. As we are only interested in
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fillMultiSet(M, B, e, C):
Given: multisetM, background knowledgeB, examplee, constraintsC.

1. S = ∅
2. bottom = saturate(e,B,C)
3. do
4. c = findNewV alidClause(bottom,C)
5. normalise(c)
6. if c 6∈ S then
7. S = S ∪ {c}
8. M =M∪ {c}
9. endif
10.while c 6= ∅

Figure 5. Filling the multisets.

clauses that at least cover a predefined minimum number of positive examples, we can implement the
following improvement when constructingM−. When considering a clausec for a negative example, if
c 6∈ M+, we can discardc and all its refinements, as they do not cover sufficient positive examples.

4.2. T-MDIE in the Real World

Next we address two major issues we found to be important in practise: completion of the saturated
clause and syntactic redundancy.

Completeness and Recall Number In almost every data set, ILP can only generate a subset of thefull
saturated clause. This subset is controlled by a depth factor i on the maximum length of variable chains,
and also by therecall number. Next, we discuss how these two factors affect our algorithm.

As we discussed, thei constraint is a syntactic constraint that is applied uniformly to every goal
while generating the bottom clause. By induction, it shouldbe clear that if a variable chain respects the
i constraint in a saturated clause, it will respect the same constraint on every other saturated clause.

Therecall numberparameter indicates how many solutions to a goal can be introduced in the bottom
clause. If set to*, it will include every answer. On the other hand, if set to a lower threshold than the
actual number of different answers a goal can generate, thisparameter becomes a source of incomplete-
ness. As the answer order will be different with different examples, using low-values of this parameter
results in incorrect execution when using our algorithm.

Syntactically Redundant Clauses It is very important to reduce the size of the multisetsM. The
switching lemma[28] tells us that if a conjunction of goalsG1, . . . , Gn is satisfiable, then any permu-
tation of these goals is also satisfiable. ILP systems often take advantage of this principle to reduce the
number of clauses they actually need to generate: if one generatesa(X), b(X) there is no point in also
generatingb(X), a(X). On the other hand, traditional ILP systems cannot use any ordering of goals, as
they must respect an ordering that respects the mode declarations given by the user. Since our algorithm
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does not actually evaluate goals, this is unnecessary: we can choose any ordering between goals when
checking for redundant goals. In this vein, we try to simplify all syntactically redundant clauses into
normalised clauses, as described in the previous section, so that all syntactically equivalent clauses will
have a canonical representation. However, when the clausesare presented to the user, the literals in the
body are reordered so that the clause is in accordance to the mode declarations.

5. TO-MDIE

It is often necessary to perform repeated runs on the same examples. For example, the greedy covering
algorithm (Figure 4) needs to consider examples repeatedlywhenever it tries to add a clause to a theory.
The same examples will also be considered whenever we try thealgorithm with different parameters, or
when we perform cross-validation.

In all these cases, we repeatedly perform saturation and clause generation steps. The TO-MDIE
algorithm addresses this problem bydecouplingthe generation ofSe from its usage. With TO-MDIE,
induction is divided into two steps:

• A compilation step, where a setSe is generated for each examplee and stored on disk.

• A learning step, where the setsSe are loaded from disk at run-time, therefore avoiding the satura-
tion and generation of clauses.

The compilation algorithm is outlined in Figure 6. It basically follows thefillMultiSet() algorithm
(Figure 5), except that at the very end it generates a separate file per example.

compileClauses(B,E+, E−, C):
Given: background knowledgeB, finite training setE = E+ ∪ E−, constraintsC.

1. foreach e ∈ E do
2. Se = ∅
3. bottom = saturate(e,B,C)
4. do
5. c = findNewV alidClause(bottom,C)
6. normalise(c)
7. if c 6∈ Se then
8. Se = Se ∪ {c}
9. endif
10. while c ! = ∅
11. saveToFile(Se, e, C)
12.endforeach

Figure 6. Compiling a set of clauses per example.

The learning algorithm is motivated by the observation thatthe T-MDIE algorithm can be described
as the operation of adding every clause inSe to the currentM. If Se is a set, it is also a multiset, so
T-MDIE can be seen as implementing the multiset join,⊎, of every example.
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Figure 7 shows in more detail how such operations can be employed to implement greedy coverage
in a MDIE-based ILP system using the compiled multisets. Like the algorithm presented in the previous
section, thelearn TO −MDIE() algorithm has two main stages. First, it generates the multisetsM+

andM− by loading the compiled examples and by merging them using the multiset join operation and
then, the best clause is selected. Next, it uses a multiset subtraction operation to implement greedy cover
removal. It should be clear that the same or similar operations can be used to implement other ILP
algorithms.

learn TO −MDIE(E+, E−, C):
Given: finite training setE = E+ ∪ E−, constraintsC.
Return: a theoryH that explainsE and satisfiesC.

1. M+ = ∅
2. foreach e ∈ E+ do
3 Se = loadFromFile(e,C)
4. M+ =M+ ⊎ Se

5. endforeach
6. M− = ∅
7. foreach e ∈ E− do
8 Se = loadFromFile(e,C)
9. M− =M− ⊎ Se)
10.endforeach
11.prunePositives(M+, C)
12.H = ∅
13.while E+ 6= ∅ do
14. h = bestClause(M+,M−, C)
15. E+ = E+ \ covered(h)
16. H = H ∪ h
17. M+ =M+ \ ⊎(Scovered(h))

18.endwhile
19.return H

Figure 7. The TO-MDIE algorithm. EachSe is assumed to have been compiled and stored in disk.

6. Implementation Issues

The implementation of our algorithms depends on the efficient implementation of operations such as
unionandsubtractionof multisets. Furthermore, we need a data structure to storethe multisets. To do so
efficiently, we used tries [20]. Tries were originally invented to index dictionaries, and have since been
generalised to index recursive data structures such as terms. Please refer to [2, 21, 41] for the use of tries
in automated theorem proving, term rewriting and tabled logic programs. An essential property of the
trie data structure is that common prefixes are stored only once. This naturally applies to ILP since the
hypothesis space is structured as a lattice and clauses close to one another in the lattice have common
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prefixes (literals).

6.1. Using Tries to Store Clauses

A trie is a tree structure where each different path through the trie data units, thetrie nodes, corresponds
to a term. At the entry point we have the root node. Internal nodes store tokens in terms and leaf nodes
specify the end of terms. Each root-to-leaf path representsa term described by the tokens labelling
the nodes traversed. For example, the tokenized form of the term p(X, q(Y,X), Z) is the stream of 6
tokens:p/3,X, q/2, Y,X,Z. Two terms with common prefixes will branch off from each other at the
first distinguishing token.

Trie’s internal nodes are four field data structures. One field stores the node’s token, one second field
stores a pointer to the node’s first child, a third field storesa pointer to the node’s parent and a fourth field
stores a pointer to the node’s next sibling. Each internal node’s outgoing transitions may be determined
by following the child pointer to the first child node and, from there, continuing sequentially through
the list of sibling pointers. When a list of sibling nodes becomes larger than a threshold value (8 in our
implementation), we dynamically index the nodes through a hash table to provide direct node access and
therefore optimise the search. Further hash collisions arereduced by dynamically expanding the hash
tables.

In order to minimize the number of nodes when storing clausesin a trie, we use Prolog lists to
represent clauses. A clause of the form ‘l0 :- l1, . . . , ln’ is thus stored in the trie structure as the list
[l0, l1, . . . , ln]. Figure 8 presents an example of a trie storing three clauses. Initially, the trie contains the
root node only. Next, we store the clause ‘eastbound(T ) :- has car(T,C), long(C)’ and nine nodes
(corresponding to nine tokens) are added to represent it (Figure 8(a)). The clause ‘eastbound(T ) :-
has car(T,C), closed(C), short(C)’ is then stored which requires eleven nodes. As it shares a com-
mon prefix with the previous clause, we save the six initial nodes common to both representations (Fig-
ure 8(b)). The clause ‘eastbound(T ) :- has car(T,C), closed(C), long(C)’ is stored next and we save
eight nodes, the same six as before plus two more nodes commonwith the second stored clause (Fig-
ure 8(c)). TheMDIE framedata structure, at the end of each path, extends the originaltrie structure
to store associated information with each clause. This information is the number of times a clause ap-
pears on each multiset, i.e., the number of positive and negative examples covered by the clause. This
representation is discussed in more detail next.

An important point when using tries to store terms is the treatment of variables. We follow the
formalism proposed by Bachmairet al. [2], where each variable in a term is represented as a distinct
constant. Formally, this corresponds to a functionnumbervar() from the set of variables in a termt
to the sequence of constants VAR0, . . . ,VARN , such thatnumbervar(X) < numbervar(Y ) if X is
encountered beforeY in the left-to-right traversal oft. For example, in the clause ‘eastbound(T ) :-
has car(T,C), long(C)’, numbervar(T ) andnumbervar(C) are respectively VAR0 and VAR1.

6.2. Multiset Operations

A multiset can be formally defined as a pair(M,m) whereM is the underlying multiset andm is a
mapping from the elements inM to the natural numbers. This provides a natural intuition toimplement
multisets over tries. Given that each clausec in the underlying multiset will ultimately correspond to a
leaf in the trie, we extend leaves with the mappingm. In fact, we can do better: given that in practice
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LIST
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VAR0

VAR1

long/1

VAR1

END_LIST

MDIE frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

MDIE frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

MDIE frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

MDIE frame

long/1

VAR1

END_LIST

MDIE frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

MDIE frame

eastbound/1

VAR0

(a) (b) (c)

Figure 8. Using tries to store clauses. Initially, the trie contains the root node only. Next, we store the clauses:
(a) ‘eastbound(T ) :- has car(T, C), long(C)’; (b) ‘ eastbound(T ) :- has car(T, C), closed(C), short(C)’; and
(c) ‘eastbound(T ) :- has car(T, C), closed(C), long(C)’.

bothM+ and bothM− have the same underlying set of clauses, weuse the same triefor both multisets.

To implement the proposed TO-MDIE algorithm, we need to be able to perform some basic trie
operations such as the union and subtraction of tries. Figures 9 and 10 show respectively thetrieJoin()
andtrieSubtract() procedures that implement these operations.

Given two multiset tries,T1 andT2, the trieJoin(T1, T2) procedure returns in the first argument
trie, T f

1 , the multiset join of both given tries, that is, if a termt ∈ T1 or t ∈ T2 then t ∈ T f
1 and

frameMDIE(t
T

f
1

) = frameMDIE(tT1
) + frameMDIE(tT2

), whereframeMDIE(t) repre-

sents the information concerning the number of positive andnegative examples covered byt. The
trieSubtract(T1, T2) procedure returns in the first argument trie,T f

1 , a trie equivalent to the initial
T1 trie but with the information concerning the number of positive and negative examples covered by
the terms inT2 subtracted from the terms inT1. More formally, if a termt ∈ T1 then t ∈ T f

1 and
frameMDIE(t

T
f
1

) = frameMDIE(tT1
) − frameMDIE(tT2

). Terms stored inT2 but not inT1

are ignored.

Since tries provide complete discrimination for terms and permit lookup and possibly insertion
to be performed in a single pass through a term, the time complexity of the trieJoin(T1, T2) and
trieSubtract(T1, T2) procedures is linear in the total number of nodes in both tries T1 andT2.
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trieJoin(parent dest, parent src):
Given: two internal trie nodes.

1. child src = nodeChild(parent src)
2. while child src do
3 child dest = getChildWithToken(parent dest, nodeToken(child src))
4. if child dest then
5. if isLeaf(child dest) then
6. frameMDIE(child dest)+ = frameMDIE(child src)
7. else
8. trieJoin(child dest, child src)
9. endif
10. else
11. trieCopy(parent dest, child src)
12. endif
13. child src = nodeSibling(child src)
14.endwhile

Figure 9. ThetrieJoin() procedure.

trieSubtract(parent dest, parent src):
Given: two internal trie nodes.

1. child src = nodeChild(parent src)
2. while child src do
3 child dest = getChildWithToken(parent dest, nodeToken(child src))
4. if child dest then
5. if isLeaf(child dest) then
6. frameMDIE(child dest)− = frameMDIE(child src)
7. else
8. trieSubtract(child dest, child src)
9. endif
10. endif
11. child src = nodeSibling(child src)
12.endwhile

Figure 10. ThetrieSubtract() procedure.

7. Related Work

The work presented in this paper is a new proposal to the solution of efficiency of ILP systems. Let us
remember that the main sources of long execution times in ILPare: i) the size of the search space; ii) the
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highly search space redundancy and; iii) the theorem proving effort, either because of a large number of
examples or because theorem proving is hard. We can find in theliterature proposals for all of the above
cases.

Techniques to reduce the search space size include languagebias, as described in [36] and [7], and/or
improved search methods such as parallel search ([18]) or stochastic search (e.g., [45]). Notice also
that parallel and sequential improvements can be combined.Reducing the search space redundancy has
been handled by the use of query transformations [43] and query-packs [4]. Query transformations and
query-packs may also be used to reduce the theorem proving effort. Wherever the number of examples
is too large, a technique such as lazy evaluation[6] has alsoproved to be very useful. Evaluating indi-
vidual hypotheses may also be speed up using stochastic matching methods as described in [44] taking a
constraint satisfaction approach as in [29] or by designingan efficient algorithm for matching clauses as
in [12].

The above mentioned proposals to improve the execution timeof ILP systems assume that hypotheses
are dynamically evaluated during the search for the best clause and that theorem proving is required for
such evaluation. This assumption is basically quite different from our proposal. In the method presented
in this paper there is no theorem proving effort associated with the evaluation of hypotheses. That crucial
point, that is responsible for the long execution time of ILPsystems, is replaced by operations of trees
that have extremely low execution times. Although we still need to explicitly generate the clauses of the
search space, that is done only once. Because of this step we can profit from techniques that reduce the
search space, techniques that avoid redundancy5 and from using parallelism to speed up our system (by
compiling each example search space in parallel).

The idea of having a compilation step to improve speed can be found in the Inductive Mercury
Programming (IMP) system [15]. The IMP approach is however different from the one described here
because IMP performs the usual search step with dynamic evaluation of each hypotheses generated.
Compilation is used to allow for optimizations on the code (background knowledge and examples) in
order to execute faster. The IMP uses the Mercury declarative language which requires the compilation
of the background knowledge and examples but implies strongrestrictions of the programs to use.

In our implementation tries are used to store efficiently theclauses of the search space. To the best
of our knowledge, FARMER [38] was the first system where they were used as a technique to improve
efficiency when learning Association Rules, in this case using the Warmr approach [10]. In a similar
fashion, April uses them as a technique to reduce the amount of memory storage [17].

8. Experiments and Results

The goal of the experiments is to evaluate the proposed approaches on real application problems. The
impact is assessed through considering execution time and model quality.

8.1. Experimental Settings

We followed a 10-fold cross validation methodology to assess the training time and accuracy. The data
sets used were downloaded from the Machine Learning repositories at the Universities of Oxford6 and

5Although some redundancy is already avoided by the use of tries and by the way clauses are stored in the tries.
6http://www.comlab.ox.ac.uk/oucl/groups/machlearn
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York7. The NCTRER data set [26] was kindly provided by the Leuven Machine Learning research
group. Table 1 characterises the data sets in terms of numberof positive and negative examples as well
as background knowledge size (number of relations used). The total number of examples ranges from
205 in the Mutagenesis data set up to 1762 in the Pyrimidines data set.

Data set | E+ | | E− | | B |

Carcinogenesis 202 174 44

Mutagenesis 136 69 21

NCTRER 131 101 5

Pyrimidines 881 881 244

Table 1. Data sets.| E+ | is the number of positive examples,| E− | is the number of negative examples, and
| B | is the number of relations in the background knowledge.

The algorithms were implemented in the April ILP system [19]. For each data set we compare
T-MDIE and TO-MDIE to a standard MDIE implementation using aDeterministic Top-Down Breadth-
First search (DTD-BF). In this algorithm, DTD-BF, no limit on the number of clauses generated was
imposed since T-MDIE and TO-MDIE consider all clauses up to the maximum clause length given (4
literals in the body, unless otherwise stated – clause length parameter set to 5). This means that in all algo-
rithms considered, all valid clauses up to the given clause length are generated. The covering algorithm
used in all algorithms tested follows the so-calledinduce-maxapproach implemented in Aleph [46]:
each time a clause is committed to the theory, it is the best clause found using all uncovered positive
examples as seed. We implemented DTD-BF using two techniques known to speedup the execution of
ILP systems: query-transformations [43] and coverage caching [9]. Other relevant experimental settings
(see [46] for a full description of the parameters) areminpos = 5, i = 2 andnoise = 30%. The ex-
periments were performed on an AMD Athlon(tm) MP 2000+ dual-processor PC with 2 GB of memory,
running Fedora Linux (kernel 2.6.12). The runs that took more than 2 days were aborted:n.a. (stands
for data not available) is used for the outcomes of such experiments.

8.2. Results

First, we discuss how the running time for the three algorithms compares on the four data sets. Figure 11
depicts the execution times needed by the three algorithms as maximum clause length ranges from 2 (one
literal in the body) to 5 (4 literals in the body). Notice thatthe time-scale in Figure 11 is logarithmic.
Also, notice that some configurations exceed the maximum time limit of two days.

The results clearly show that TO-MDIE outperforms T-MDIE, and that T-MDIE outperforms DTD-
BF. The T-MDIE algorithm outperforms DTD-BF in almost all applications and at almost all clause
lengths. The only exception is for Carcinogenesis at small values of clause lengths, where the overhead
of the method is most significant. Notice that the improvement tends to grow for larger clause lengths,
and is often of more than an order of magnitude, even though DTD-BF performs more sophisticated
pruning than T-MDIE. In fact, DTD-BF is not practical for clause length 5 on these data sets. Clearly,
estimating the coverage of the clauses instead of using Prolog resolution pays off in terms of running
time.
7http://www.cs.york.ac.uk/mlg
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Figure 11. Performance evaluation (time in seconds) for thedifferent strategies from 2 to 5 literals in the clause.

TO-MDIE further outperforms T-MDIE, and thus DTD-BF, in allapplications and with different
clause lengths. The only exception is observed in Carcinogenesis when the clause limit is set to 2 or 3.
In these cases, DTD-BF is quite fast and the generation of extra clauses by TO-MDIE does not pay off.
Nevertheless, the performance improvements, when using TO-MDIE, increase as the maximum depth is
increased. In practise, this is very useful since the most interesting clauses have rarely one or two literals
in the body.

It is interesting to study algorithm TO-MDIE in more detail.Table 2 presents information about the
time and size of search space explored to obtain each example’s trie, the size of the actual tries, and the
time spent using the tries to learn. As expected, the search space is much larger than the size of the actual
tries: tries are in fact at most 10KB per example, even with clause length equals 5. Table 2 also clearly
shows that the average time taken to generate a theory, aftercompiling the examples, is very low (1 or
2 seconds). TO-MDIE time is mostly spent compiling the tries, suggesting that further improvements
should focus there. On the other hand, we remember the readerthat as compilation is performed only
once, subsequent runs have no need to recompile the search space associated to each example (unless
parameters are changed).

Notice that the number of clauses generated by TO-MDIE can beenormous, e.g., almost 700 million
clauses generated in Carcinogenesis for a search space witha maximum depth of 5. The large number of
clauses generated by TO-MDIE will become a problem as the maximum clause length increases. Hence,
improving the refinement operator to generate less clauses should improve the performance of TO-MDIE
and also T-MDIE.

Table 3 shows for each application and clause length limit the average accuracy and standard devi-
ation. With one exception, we found that variations are not significant, and result only from different
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Time
Data set Search Space Trie Size

Compilation Learning

Carcinogenesis 683,883,665 10.04 76,206 1

Mutagenesis 529,054,555 2.34 78,205 1

NCTRER 10,261,522 0.82 7,003 1

Pyrimidines 54,138,100 8.47 4,777 2

Table 2. Average search space (in clauses per example) and compiled file size (in KB per example), compilation
time (in seconds), and learning time (in seconds) at clause length=5.

orders in clause generation, which affects the generated theory and thus their predictive power. The ex-
ception is NCTRER, where DTD-BF has worst performance than the other two methods. We observed
that the theories produced by DTD-BF for NCTRER have a singleclause while the theories produced
by T-MDIE and TO-MDIE have two clauses. This is a consequenceof the covering algorithm itself.
Recall that the values of the clauses may be slightly different when computed in DTD-BF and T-MDIE
or TO-MDIE, which may change the ranking of clauses and lead to the selection of different clauses
in DTD-BF than in T-MDIE or TO-MDIE. Therefore, the selection of a particular clause in DTD-BF
prevents that further clauses are added to the theory.

Accuracy
Data set

DTD-BF T-MDIE TO-MDIE

Carcinogenesis63 ( 6) / 63 ( 6)/ 63 (6) / n.a. 66 (7) / 63 (7) / 62 ( 8) / n.a. 66 (7) / 63 (7) / 62 ( 8) / 62 (9)

Mutagenesis * /75 (10) / n.a. / n.a. * / 67 (8) / 72 (11) / n.a. * / 67 (7) / 72 (11) / 76 (7)

NCTRER * / * / 42 (3) / 44 (5) * / * / * / 75 ( 9) * / * / * / 75 (9)

Pyrimidines * / * /51 (0) / 51 (1) * / * / 51 ( 0) / 54 ( 2) * / * / 51 ( 0) / 54 (2)

Table 3. Accuracy (in each cell the 4 values obtained with a maximum clause length of 2/3/4/5 respectively) and
standard deviation (bracketed). The ’*’ means that no theory was found with the settings provided.

To conclude, TO-MDIE reduced considerably the execution time without significantly reducing the
accuracy. In fact, overall, there is no significant difference in accuracy when using either of the three
algorithms.

9. Conclusions

We presented two novel approaches to improve the execution time of ILP algorithms based on MDIE
were presented. The first approach (T-MDIE) attempts to improve performance by reducing the theorem
proving effort on all clauses constructed during the searchstage of a MDIE algorithm. This was possible
by using a tree-like data structure to store all generated clauses, and their coverage. Coverage information
allows the system to estimate efficiently the value of clauses. The reduction in the theorem proving effort
is paid with an increase of the search space considered in thesearches.

The second approach, that we name TO-MDIE, involves the compilation of the search space of each
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example. It proceeds in two steps. In the first step we compileeach example as a set of clauses. In
the second step we implement ILP search as a set of set operations over these sets of clauses. Since
such operations can be implemented very efficiently, our approach can generate major speedups over
traditional ILP execution and, also, when compared to the first approach.

The reuse of the initial computation of the compilation steppays-off whenever there is a large amount
of repetition in clause evaluation. That happens when the induced theory has several clauses. In this case,
after each iteration the covered examples areremovedand we only need to perform subtraction operations
between the sets of clauses, an operation that can be efficiently implemented using tries. The technique
also pays-off when using cross-validation and theory-level search.

A further advantage of the approach is that it can be easily parallelisable, as the first step runs inde-
pendently for every example. Moreover, we believe that our approach is a step forward in facilitating
experimentation with different parameters, and namely in using internal cross-validation for parameter
selection in ILP. On the other hand, the approach applies to MDIE-based algorithms only, and it needs
further investigation when exploring longer clauses or in data sets with large numbers of examples (some
techniques from [5] may help in that direction). It would also be interesting to experiment with other
refinement operators, and to study whether our ideas can be used effectively for recursive programs.

Last, an interesting insight from our approach is that we canabstract the ILP search procedure as a
process oftree-miningover the trees representing individual examples [16]. We believe that this suggests
new and exciting directions for future research in this area.
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