Fundamenta Informaticae XXI (2001) 1001-1023 1001
10S Press

Compile the hypothesis space: do it once, use it often

Nuno A. Fonseca
Instituto de Biologia Molecular e Celular (IBMC) & CRACS, Warsity of Porto, Portugal, nf@ibmc.up.pt

Rui Camacho
FEUP & LIAAD, University of Porto, Portugal, rcamacho@fp.pt

Ricardo Rocha
DCC-FCUP & CRACS, University of Porto, Portugal, ricroc@d.up.pt

Vitor Santos Costa
DCC-FCUP & CRACS, University of Porto, Portugal, vsc@dcep.pt

Abstract. Inductive Logic Programming (ILP) is a powerful and wellvééoped abstraction for
multi-relational data mining techniques. Despite the @erable success of ILP, deployed ILP
systems still have efficiency problems when applied to cemptoblems. In this paper we propose
a novel technique that avoids the procedurdeducingeach example to evaluate each constructed
clause. The technique is based on the Mode Directed Inverséifaent approach to ILP, where a
bottom clause is generated for each example and the getiefateses are subsets of the literals of
such bottom clause. We propose to store prefix-treeall clauses that can be generated from all
bottom clauses together with some extra information. Wevshat this information is sufficient to
estimate the number of examples that can be deduced froraseciad present an ILP algorithm that
exploits this representation. We also present an extewsithre algorithm where each prefix-tree is
computed only once (compiled) per example. The evaluatitnypotheses requires only basic and
efficient operations on trees. This proposal avoids re-cdatipn of hypothesis’ value in theory-
level search, in cross-validation evaluation procedunekia parameter tuning. Both proposals are
empirically evaluated on real applications and considergbeedups were observed.

Keywords: Mode Directed Inverse Entailment, Efficiency, Data Stroesy Compilation

Address for correspondence: IBMC, AC Nuno Fonseca, Rua dopGalegre 823, 4150-180 Porto, Portugal

1002 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

1. Introduction

Multi-relational data-mining algorithms analyse compéed structured data (e.g., data stored in differ-
ent tables of a relational database). Recent years haveasgiele range of multi-relational data mining
approaches, in domains such as tree-mining, graph-miaingd,cross-relational mining [14, 22]. One
powerful and well-studied abstraction for multi-relarlata mining is through Inductive Logic Pro-
gramming (ILP) [31]. In ILP, the tables are abstractedeations and the goal is to learrules that
describe interesting patterns in the data, where rulessarally expressed in a language of First Order
Logic. ILP can be used as a framework for supervised and @ngiged learning and with a wide range
of learning algorithms [34], and has been successfullyiagpgb problems in very different application
domains [24]. ILP thus provides a very general frameworknfaoiti-relational data-mining. Unfortu-
nately, this generality comes at a computational cost. &fbeg, it has been argued that improvements in
efficiency and scalability are necessary to successfutiléaapplications that learn from large data sets
and/or require the search of large hypothesis spaces [40].

Most ILP systems execute by proposing and evaluating ruled, a good rule is found. Usually,
one has to search a huge space of rules, hence the perforofaateél P system primarily depends on
the size of the search space. This suggests that in ordeddogexecution time one should reduce the
actual number of rules generated, either through better (eig., [36, 7]) or through stochastic search
(e.g., [45]). If this is not possible or desirable, one ha®tms on the amount of time spent per node. At
each node, the ILP system will generate and score a new rialee §enerating a rule is straightforward,
research has focused on scoring in order to achieve speedufes are scored based on the number of
examples they cover, therefore faster scoring requirgésrfdseorem proving (see, e.g., [4, 43, 42]). Last,
one should observe that parallel systems can speed up ILRumber of ways [18], and that sequential
and parallel improvements may be combined.

In this paper we propose a novel approach to improve exetctitiee of ILP systems. Our approach
starts from the observation that most execution time in K. §pent in computingoveragethat is, which
examples are satisfied by a rule. In fact, most of this workd@sindant: the same clause can be generated
several times, and several clauses may be very similar. ydpamks [4] address this redundancy in an
interesting way: first, one generates a number of clausesndeone groups this clauses as a tree, so that
one can take advantage of common prefixes; last, for eachpdeame performs theorem proving over
the whole tree, or pack. Although query packs reduce receylghey do not totally prevent redundant
theorem proving; even within a query pack one may repeat atatipns [47]. Furthermore, because
storing the exact coverage of every rule is very expensive,has to restart the query pack from scratch
every time one needs to add a new rule to a theory.

Ideally, we would like to do theorem proving only once. Oneyww@do so is throughabling [42]
or memoing: one can avoid computation by always reusingiguely computing solutions. If one
tables conjunctions of goals, one needs to compute ansareascbnjunction only once, and reuse these
answers for all new queries. Unfortunately, the number ofwtctions, their query and answer patterns
grows memory usage rather quickly. In practice, one has ¢éosd a balance between re-computation
and saving space.

The approaches above assume that the problem is that we hagt space of rules, and that we
want to know how examples are covered by these rules. Thgseaghes take advantage of the fact
that rules are similar, or repeated, but they do not takerdadge of the fact thahe space of rules is
not independent from the space of examplEsmake our point more precise, consider Mode Directed

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1003

Inverse Entailment (MDIE) [32], a popular approach follal®y several ILP systems (e.g., Golem [33],
Progol [32], Aleph [46], Indlog [6], and April [19]). MDIE sstems do not just generate rules: instead,
they first select an example asedand create itbottom clause Intuitively, the bottom clause includes
the literals related to the seed. Thus, only clauses (rtiedg)subsume it need to be considered in order
to prove the seed. MDIE systems take advantage of this twediihe search space: they only enumerate
clauses that satisfy the seed.

In this work, we take advantage of a key observation: to adipgiroximation, MDIE can be used
to build an algorithm forenumerating the clauses that satisfy an examgileve can find such an al-
gorithm, the problem of whether a clause covers an exampgtghaneeds theorem-proving, reduces
to the problem of whether a clause is in the set of clausesf@at) the example. In practice, as it is
widely known, there are both theoretical and practicaldssim enumeratingll clauses entailed by an
example [32, 48, 3]. A first problem is that, as discussedisghper, the incompleteness of refinement
operators means that the enumeration algorithms need tpdrexamate. A second problem, is how
to represent compactly large sets of clauses. Given thectesistics of ILP searclprefix-treesare a
natural approach to storing sets of clauses.

We propose two algorithms that avoid the procedureleducingeach example to evaluate each
constructed clause. In our first algorithm, T-MDIE, we viesseamples one by one and store all entailing
clauses in a prefix-tree. The major contribution of T-MDIEhat, instead of actually evaluating these
clauses, we estimate the coverage of a clause by countimgithieer of bottom clauses that generated the
clause. Empirical results show that such an approach caethionprove execution time over standard
ILP search. In our second algorithm, TO-MDIE, we observe thal-MDIE the same set of clauses
is generated from the same example at different computatieps (i.e., at different steps of theory
construction or when performing cross-validation). The MIDIE algorithm thus separates execution in
two steps:

1. A compilation step defines the search space by generasey @ clauses per example. Such set
of clauses is encoded in a prefix-tree, as before.

2. The traditional search step is replaced by search aigasitconstructed from an algebra of set
operations implemented over these sets of clauses.

Experimental results for TO-MDIE do show a large reductionekecution time. Moreover, we
believe that the TO-MDIE approach provides a novel, moddtamework for ILP algorithm design,
where the search can be easily encoded using set operations.

The remainder of the paper is organised as follows. In Se@iwve provide a brief introduction
to ILP and MDIE. Section 3 introduces the reader to the ral®rmf seeing the examples as sets of
clauses and in Section 4 we present a first algorithm, cal®tDIE, that exploits this idea. Next,
in Section 5, we describe the proposed two step algorithintbacalled TO-MDIE. In Section 6, some
implementation details are discussed. In Section 7 we poiténd compare research work that is related
to ours. In Section 8 we present an empirical evaluation efrtipact in execution time and accuracy of
our two algorithms. Finally, in Section 9 we discuss our wankl draw conclusions.

1004 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

2. Background

This section briefly presents some basic concepts and telwgiy of Inductive Logic Programming but
is not meant as an introduction to ILP. For such introductiaarefer to [34, 13, 37]. Throughout the
text it is assumed that the reader is familiar with Logic Pamgming terminology, nevertheless we next
provide a very short and incomplete introduction to Logiog?amming for ease of reference (for a more
complete treatment we refer to [28]).

2.1. Logic Programming

The following concepts are often referred in ILP. Withouddmf generality we may consider each clause
¢ as a sequential definite clause [25], i.e., a sequence ddl$ten the formiy — 11,...,0, (n > 1)
wherelg is the head literal of the clause and eacfl < ¢ < n) is a body literal at depti. A literal I;
can be represented by(A4, ..., A;,) Wherep; is a predicate symbol with aritiy and A4, ..., A;, are
argument terms. A term is a variable (represented by an ugser letter followed by a string of lower
case letters and digits) or a function symbol (represeniédaMower case letter followed by a string of
lower case letters, digits or underscores) followed by aket#edn-tuple of terms. A variable represents
an unspecified term for which a value can be assigned (ustedlignated as instantiated or bound). A
variable can be instantiated only once with another vagiabla term. Let = { X /t1,..., X, /tn}, 0

is said to be substitutiorwhen eachX; is a variable and eaaf is a term. The application éfto a term

t, denoted by#, is the act of replacing every occurrenceXsfin ¢ by ¢;.

Aclausely < [y,...,l, (n > 1) can be interpreted dgif /; and ... and, and is usually represented
asly:—1I,...,1,". Afactis a body-less clause (e.g., representel) AsA recursive clause has at least
one literal in the body with the same predicate symbol as tredHiteral. A finite set of clauses is
called a clausal theory (or logic program) and representspinction of clauses. A theory that contains
recursive clauses is called a recursive theory.

2.2. ILP Problem

The most common task addressed by predictive ILP systembecdefined as follows. LeE™ be the
set of positive exampled;~ the set of negative examples,= E* U E~, andB the prior knowledge
(background knowleddeThe aim of an ILP system is to find an hypothesis (also refkto as a theory)
H, in the form of a logic program, such th& A E— A H ¥ [(Consistency) and3 A H F ET
(Completeness), assuming thHatA £~ ¥ O andB ¥ E™. In general,B and E can be arbitrary logic
programs. However, in this paper it is assumed & constituted only by facts.

A classical ILP example is thlichalski train problen{30]. In this problem, the theory to be found
should explain why trains are travelling eastbound. Figupgesents the set of positive and negative
examples, together with part of the background knowledgsdidbing the traireast1). There are five
examples of trains known to be travelling eastbound (the@fspositive examples) and five examples of
trains known to be travelling westbound (the set of negatkamples). All our observations about these
trains, such as size, number, position, contents of casiagic, constitutes the background knowledge.
We next describe a method used for learning a theory.

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1005

Posi tive Exanpl es Background Know edge
e ™
east bound(east 1). has_car (east 1, car_11). has_car (east1, car_12).
east bound(east 2) . has_car (east1, car_13). has_car (east1, car_14).
east bound(east 3). short (car_12). short (car_14).
east bound(east 4). cl osed(car_12). | ong(car_11).
east bound(east5) . | ong(car_13). open_car (car_11).
open_car (car_13). open_car (car_14).
shape(car_11, rectangl e). shape(car_12,rectangl e).
shape(car_13,rectangl e). shape(car _14,rectangl e).
Negat i ve Exanpl es wheel s(car _11, 2). wheel s(car_12, 2).
wheel s(car_13, 3). wheel s(car_14, 2).
| oad(car_11, rectangle, 3). | oad(car_12,triangle, 1).
east bound(east 6) . | oad(car_13, hexagon, 1) . | oad(car_14,circle, 1).
east bound(east 7).
east bound(east 8) . Y T .
east bound(east9). g =
east bound(east 10) . O O D D D l
J

.
Figure 1. Michalski train problem: examples and part of taekground knowledge (for the trasast1).

2.3. Mode-Directed Inverse Entailment

Mode-Directed Inverse Entailment (MDIE) [32] is an approdcllowed by several ILP systems to ad-
dress the ILP problem described above (e.g., [32, 46, 6,]1, BBIE usesinverse entailmentogether
with mode restrictions as the basis to perform induction. The key idea in MDIE is td fil literals
that could be used in hypotheses (clauses) that explainanmm® (seed). This is achieved through the
construction of a bottom clause, that can be consideredeasetiof all such literals.

In MDIE, the procedure to find a clause can be described amfsll

1. Pick an example from E (theseed.

2. Build a bottom clause (anost specific clau3el . that entails the selected seed exampglg.is a
clause that explains an exampleelatively to the background knowledde (and H if the target
predicate is recursivé) The bottom clause is usually a clause with several liteiiads, it has
the formiy : —I1,1s, ..., wherel; are ground consequencesBfA e. Since, in generall. can
have infinite cardinality, the ground consequences areetbfrom B using a depth-bound proof
procedure for some selected depth.

3. Find the best consistent clause(s) more generaldhgrperforming a general-to-specific search
in the space of clauses bounded below_hy The clauses’ bodies generated during the search
are subsets of the literals from.. The generation of clauses is performed by a function, tdrme
refinement operatomwhich computes (generates) a set of specializations l{glg&neralizations)
of a (set of) clause(s). Note that, in general, the humbelaafses generated can be arbitrarily

1The mode restrictions [32], more specifically the type ammlitfoutput mode declarations, supply information coniceythe
arguments of each predicate that may appear in the hypsth€ke type declarations of the predicate to be learned afalus
because the learner needs only to consider a subset of tbéhkegps space that is type-conform.

2In general, a bottom clause can also be constructed as #iwedbast general generalization of two (or more) examf88]
with respect to the given background knowledggeor as the most specific resolvent of an example [35] witheesio B.
SAlthough it is usual to perform a general-to-specific seaother directions may be pursued (see e.g., [39]).

1006 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

:-modeh(1,eastbound(+train)). % mode declaration for head literal eastbound/1
:-modeb(2,has_car(+train,-car)).% mode declaration for body literal has_car/2
:-modeb(1,short (+car)). % mode declaration for body literal short/1
:-modeb(1,closed(+car)). % mode declaration for body literal closed/1
:-modeb(1,long(+car)). % mode declaration for body literal long/1

Figure 2. Example of mode declarations using a Progol stgdentanguage for the trains problem. Each mode

declaration has two arguments: the first, the recall nunibdicates how many solutions to a goal can be intro-

duced in the bottom clause; the second argument has thegtedind predicate’s arguments type and input/output
(-/+) mode.

large, and the user needs to impose some further rests¢goich as a limit in clause length. Once
we have several clauses we need some way to rank them. Tleemgaay measures to assess the
quality of clauses [27], but all of them involve computing ttoverage of a clause, i.e., the number
of positive (positive cover) and negative examples (negatover) derivable from the background
knowledge.

Note that constraints are imposed on 2) and 3) in order toreribat the algorithm terminates. The
great advantage of using a bottom clause is that it boundfi¢as) the search lattice.

As an example, consider the set of examples and backgrounaldéaige given for the train prob-
lem (Figure 1 and mode declarations in Figure 2). To buildbib#om clause we start by picking a
seed (positive) example (e.ggstbound(eastl)). Next, using the given mode declarations, all ground
consequences are deduced:

eastbound(eastl) :- has_car(eastl,car_11) ,has_car(eastl,car_12),
long(car_11), short(car_12), closed(car_12).

Then, the clause is variabilized by transforming the pr@ie’ input/output arguments, thus obtain-
ing the bottom clause for traitust1 (eastbound(eastl)):

L easti= eastbound(A) : —has_car(A, B), has_car(A,C),long(B), short(C), closed(C).

Having the bottom clause, the next step, is to search forékedmnsistent clause more general than
eastbound(eastl). The clauses’ bodies generated during the search are sudjsbe literals from the
bottom clause. For instance, using a clause length limit ah4LP system would generate the following
clauses given the bottom clause,:

eastbound(A) : - has_car(A,B).

eastbound(A) :- has_car(A,C).

eastbound(A) : - has_car(A,B), long(B).
eastbound(A) : - has_car(A,C), short(C).
eastbound(A) :- has_car(A,C), closed(C).
eastbound(A) : - has_car(A,C), short(C), closed(C).

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1007

We briefly described how a clause can be learned. The protgsserating a theory (set of clauses)
often involves the use of a kind of covering algorithm wheme glause is learnt at a time. In a nutshell,
the algorithm proceeds as follows. After learning a claadlecovered positive examples are separated
(removed) from the training set and the next clause is |ebfmoen the remaining examples. The process
repeats while the training set is not empty. In Section 4 atairce of this algorithm is outlined.

3. Examples as Sets of Clauses

The key idea of this work is that we can estimate a clause’sre@e by simply visiting the examples
where the clause can be refined from the example’s bottonselarhis raises a number of issues. The
first one is whether this estimate is exact or approximate. setond one is whether this estimate can be
implemented effectively, as otherwise it would be of liftierest.

We will address the first question next. Given a bottom clausewve have seen that the refinement
operator enumerates clauses that subsupfe We are interested in the connection between the clauses
that cover an exampleand the set of clause$. that subsume... Unfortunately, it is well known that
the set of clauses i§. does not correspond to all clauses that ceveFor instance, given a recursive
theory, we can generate clauses that cover an exasplech cannot be refined from, [48].

In this work, we are interested on non-recursive theorigsthis case, even thouglf-subsump-
tion and logical implication are equivalent [23], the prafl is that the refinement operator is known
to be not complete [32]. Incompleteness stems from onlyidenisg literals from left to right and
from considering them only once [3]. A weaker form of comefetss would be useful when comparing
clauses from different bottom clauses. Consider clauseS,,. Clearly, c must covere;. Consider
now a different example;. Can we prove it: coverse;, is it the case that € S,,;? Unfortunately, the
answer is again negative, and this follows immediately ftbeprevious results. For example, consider
the following example taken from [3]:

Le=9(A4) 1 —p(A, A)
Ley=g(A) : —p(A, A), p(A, B)
C1=g(A): —p(4, 4)
Cy=g(A) : —p(A, A),p(A, B)

Clearly,C;, satisfies both examples, b8, will only containCy, asC is never generated by the refine-
ment operator (remember that the refinement operator selditeral only once).

One could investigate this result further by researchimgHasses of clauses such that we can achieve
clause completeness. For example, it is straightforwastidav by constructive induction that if a ground
clause covers exampleg ande;, and it belongs td,, , then it belongs td&,, (just observe that the last
literal must be in bothL., and_L.,). In this work we follow a different approach: we study wtestls,
provides a convenierdgpproximationto whether the clause covets To do so, we try to validate this
argumenempirically.

Next, we discuss the second question, whether it is pratticapresent and manipulat. Our first
observation is that, as it is well known, the set of clauSgesan grow very quickly with bottom clause

“The subsumption order is the generality order most ofted irsé_P and is defined as follows. Let andc, be clauses. A
clausec; subsumes: if there exists a substitutiothsuch that10 C cs.

1008 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

size, since it corresponds to combinations of literals iithe bottom clause. Manipulating arbitrarily
large sets of clauses is clearly impractical. We addresspitablem through #&ngthrestriction on the
clauses contained if,: we defineS! as the set of clauses refined fram with at most! literals. We
can obtain this set in two ways: discarding all clauses oftlen- [from S., or, given the observation
that the refinement operator is incremental on length, by mfining clauses with up to length Note
that in both cases if a clausébelongs taS!, then it also belongs t6..

Given this restriction, the question is now whether we caresll clauses of lengtk [effectively.
In Section 6 we discuss in detail how prefix-trees can be usetthis purpose.

4. T-MDIE

Our first algorithm approximates traditional ILP by using getsS, to simulate full breadth-first search
up to a certain length [8]. For each example, we generate all clauses subsuming the bottom clause
and ifc € S!, state that: coverse. The algorithm uses two multisets to represent clausesteaiddov-
erage: M™ store clauses covering the positive examples, &fid stores clauses covering the negative
examples. It works as follows:

e ConstructM™ by generating all clauses subsuming the bottom clausebégpdsitive examples
ET.

e PruneM™ by discarding clauses with a multiplicity inferior to a pegithed minimum number of
positive examples.

e ConstructM~ by generating all clauses subsuming the bottom clausebdandgative examples
E-.

e PruneM™ and M~ by discarding clauses with a multiplicity v~ greater than a predefined
number of negative examples (also referred astisd.

e Enumerate the clauses.ivi™ and select the best clause by estimatiisgpositive coverage ass
multiplicity in M™, and its negative coverage @s multiplicity in M.

Figure 3 shows the actual T-MDIE algorithm. First the meltssare constructed (lines 1 to 10) and
then the best clause (according to some metric) is founddpeiction of the multisets (line 11).

Most often, we would use the T-MDIE algorithm as the innepsteany theory construction algo-
rithm. Figure 4 shows the algorithm being used to implemee¢dy coverage. The difference regarding
systems such as Progol and Aleph concerns the inner preckdun_17 — M DIE().

4.1. Details

When implementing T-MDIE we found it convenient to reducgungdancy as much as possible. Figure 5
shows, in more detail, the inner loop of the T-MDIE algorithm

The fillMultiSet() procedure starts by initializing an empty seto keep track of the clauses being
found. Then, it generates the bottom clause for the givemplee (line 2). Next, it uses the bottom
clause to generai@l valid clauses: satisfying the language and bias constraints (line 4). E&ulsec

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often

learn.T — MDIE(B,E*,E~,C):

CoNOGOR~WDNE

Given: background knowledg#, finite training set? = E* U E—, constraintgC'.
Return: thebestclause that explains some of the™ and satisfie€’.

Mt =0

M- =0

foreache € ET do
fillMultiSet(M™, B, e, C)

endforeach

prunePositives(M™,C)

foreache € E~ do
fillMultiSet(M~, B, e, C)

endforeach

10.pruneNegatives(M™, M~,C)
11.return bestClause(M*, M~,C)

Figure 3. The learning algorithm of T-MDIE.

generalise M DIE(B, EY,E~,C):

ONOGOR~WNE

Given: background knowledg#, finite training set? = E* U E—, constraintgC'.
Return: a theoryH that explains® given B and satisfieg’.

H =10
while ET # () do
h =learn.T — MDIE(B,E*,E~,C)
Et = E*\ covered(h)
H=HUh
B=BUh
endwhile
return H

Figure 4. The greedy cover algorithm of a MDIE system impletagon.

1009

is then normalised (line 5) before looking it up 8rin order to be added to the given multiset if not
repeated (lines 6 to 9). The normalisation consists of tepsst

e The first step is motivated by prior work on query optimisatjé3]. It removes redundant literals,

and separates independent components.

e The second step orders the literals according to the Prodoglard order relation. The standard
order relation in Prolog orders terms as follows [11]: vilés roughly by age; floating-point
numbers; integers; and compound terms ordered by the ftsoeime, arity, and arguments.

Notice that this algorithm will generate a number of clauses would never be generated by an
ordinary ILP system: namely, clauses that only cover negakamples. As we are only interested in

1010 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

fillMultiSet(M, B, e, C):
Given: multiset M, background knowledg®, examplee, constraints'.

1. 8§=0

2. bottom = saturate(e, B,C)
3. do

4 ¢ = findNewV alidClause(bottom, C')
5 normalise(c)

6. if ¢ ¢ S then

7 S=8SuU{c}

8 M = MU {c}

9. endif

10.while ¢ # 0

Figure 5. Filling the multisets.

clauses that at least cover a predefined minimum number divyeoexamples, we can implement the
following improvement when constructingyt—. When considering a clausdor a negative example, if
c ¢ M™, we can discard and all its refinements, as they do not cover sufficient pasikamples.

4.2. T-MDIE in the Real World

Next we address two major issues we found to be importantantige: completion of the saturated
clause and syntactic redundancy.

Completeness and Recall Number In almost every data set, ILP can only generate a subset @iilthe
saturated clause. This subset is controlled by a depthrfactothe maximum length of variable chains,
and also by theecall number Next, we discuss how these two factors affect our algorithm

As we discussed, theconstraint is a syntactic constraint that is applied unifigrto every goal
while generating the bottom clause. By induction, it shduddclear that if a variable chain respects the
i constraint in a saturated clause, it will respect the samstaint on every other saturated clause.

Therecall numbemparameter indicates how many solutions to a goal can bedunted in the bottom
clause. If set tox, it will include every answer. On the other hand, if set towdothreshold than the
actual number of different answers a goal can generatep#h@émneter becomes a source of incomplete-
ness. As the answer order will be different with differenamples, using low-values of this parameter
results in incorrect execution when using our algorithm.

Syntactically Redundant Clauses It is very important to reduce the size of the multisdtt The
switching lemmd28] tells us that if a conjunction of goalsy, ..., G, is satisfiable, then any permu-
tation of these goals is also satisfiable. ILP systems ofika &dvantage of this principle to reduce the
number of clauses they actually need to generate: if onergise (X), b(X) there is no point in also
generatingh(X), a(X). On the other hand, traditional ILP systems cannot use atgriog of goals, as
they must respect an ordering that respects the mode dimtergiven by the user. Since our algorithm

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1011

does not actually evaluate goals, this is unnecessary: wetwaose any ordering between goals when
checking for redundant goals. In this vein, we try to simphll syntactically redundant clauses into
normalised clauses, as described in the previous sectdhasall syntactically equivalent clauses will
have a canonical representation. However, when the clawnegzresented to the user, the literals in the
body are reordered so that the clause is in accordance todtie declarations.

5. TO-MDIE

It is often necessary to perform repeated runs on the sanmepdes. For example, the greedy covering
algorithm (Figure 4) needs to consider examples repeatelgnever it tries to add a clause to a theory.
The same examples will also be considered whenever we tgigloeithm with different parameters, or
when we perform cross-validation.

In all these cases, we repeatedly perform saturation antselgeneration steps. The TO-MDIE
algorithm addresses this problem tigcouplingthe generation of, from its usage. With TO-MDIE,
induction is divided into two steps:

e A compilation stepwhere a sef, is generated for each exampl@nd stored on disk.

e A learning stepwhere the set§, are loaded from disk at run-time, therefore avoiding tharsat
tion and generation of clauses.

The compilation algorithm is outlined in Figure 6. It badigdollows the fill MultiSet() algorithm
(Figure 5), except that at the very end it generates a sepfleaper example.

compileClauses(B,E*, E~,C):
Given: background knowledgé, finite training set? = E* U E—, constraintg’'.

1. foreache € E do

2 Se=10

3 bottom = saturate(e, B, C')
4. do

5. ¢ = findNewV alidClause(bottom, C')
6 normalise(c)

7 if ¢ € S, then

8 Se = Se U {c}

9 endif

10. whilec!=10

11. saveToFile(Se,e,C)
12.endforeach

Figure 6. Compiling a set of clauses per example.
The learning algorithm is motivated by the observation thatT-MDIE algorithm can be described

as the operation of adding every clauseSinto the currentM. If S, is a set, it is also a multiset, so
T-MDIE can be seen as implementing the multiset jainpf every example.

1012 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

Figure 7 shows in more detail how such operations can be geghm implement greedy coverage
in a MDIE-based ILP system using the compiled multisetseltlie algorithm presented in the previous
section, thdearn TO — M DIE() algorithm has two main stages. First, it generates the setdtivi
and M~ by loading the compiled examples and by merging them usiagrthltiset join operation and
then, the best clause is selected. Next, it uses a multis&astion operation to implement greedy cover
removal. It should be clear that the same or similar oparatican be used to implement other ILP
algorithms.

learn. TO — MDIE(Et,E~,C):
Given: finite training set? = E* U E—, constraint'.
Return: atheoryH that explainsZ’ and satisfies’'.

Mt =0
foreache € E* do
Se = loadFromFile(e,C)
MT =Mt yS,
endforeach
M- =0
foreache € E~ do
Se = loadFromkFile(e,C)
M =M uS,)
10.endforeach
11.prunePositives(M™,C)
12.H = ()
13.while ET # 0 do
14. h = bestClause(M™, M~ ,C)
15. ET = E*\ covered(h)
16. H=HUh
17. MT=M* \ u'J(‘S'covered(h))
18.endwhile
19.return H

CoeNoO kWb

Figure 7. The TO-MDIE algorithm. Eachi. is assumed to have been compiled and stored in disk.

6. Implementation Issues

The implementation of our algorithms depends on the effidimplementation of operations such as
unionandsubtractionof multisets. Furthermore, we need a data structure to gtermultisets. To do so
efficiently, we used tries [20]. Tries were originally inted to index dictionaries, and have since been
generalised to index recursive data structures such as.t&iease refer to [2, 21, 41] for the use of tries
in automated theorem proving, term rewriting and tabledclggograms. An essential property of the
trie data structure is that common prefixes are stored ordg.omhis naturally applies to ILP since the
hypothesis space is structured as a lattice and clauses tdame another in the lattice have common

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1013

prefixes (literals).

6.1. Using Tries to Store Clauses

A trie is a tree structure where each different path throbghtie data units, thigie nodes corresponds

to a term. At the entry point we have the root node. Interndescstore tokens in terms and leaf nodes
specify the end of terms. Each root-to-leaf path represarttsm described by the tokens labelling
the nodes traversed. For example, the tokenized form ofettm #(X, ¢(Y, X), Z) is the stream of 6
tokens:p/3, X, q/2,Y, X, Z. Two terms with common prefixes will branch off from each othethe
first distinguishing token.

Trie’s internal nodes are four field data structures. Ond B&dres the node’s token, one second field
stores a pointer to the node’s first child, a third field stareginter to the node’s parent and a fourth field
stores a pointer to the node’s next sibling. Each interndeigooutgoing transitions may be determined
by following the child pointer to the first child node and, indhere, continuing sequentially through
the list of sibling pointers. When a list of sibling nodes twexes larger than a threshold value (8 in our
implementation), we dynamically index the nodes throughshhable to provide direct node access and
therefore optimise the search. Further hash collisiongexeced by dynamically expanding the hash
tables.

In order to minimize the number of nodes when storing clauses trie, we use Prolog lists to
represent clauses. A clause of the forin:- 1, ... 1, is thus stored in the trie structure as the list
[lo,11,...,1,]. Figure 8 presents an example of a trie storing three clalisiéially, the trie contains the
root node only. Next, we store the clausestbound(T) :- has_car(T,C),long(C)’ and nine nodes
(corresponding to nine tokens) are added to representgu(€&i8(a)). The clause:dstbound(T) :-
has_car (T, C), closed(C), short(C)’ is then stored which requires eleven nodes. As it sharesra co
mon prefix with the previous clause, we save the six initimlesocommon to both representations (Fig-
ure 8(b)). The clausectstbound(T)) :- has_car (T, C), closed(C'),long(C)" is stored next and we save
eight nodes, the same six as before plus two more nodes comitiothe second stored clause (Fig-
ure 8(c)). TheMDIE framedata structure, at the end of each path, extends the origjieadtructure
to store associated information with each clause. Thigim&ion is the number of times a clause ap-
pears on each multiset, i.e., the number of positive andtivegexamples covered by the clause. This
representation is discussed in more detail next.

An important point when using tries to store terms is thetinemt of variables. We follow the
formalism proposed by Bachmagt al. [2], where each variable in a term is represented as a distinc
constant. Formally, this corresponds to a functienmbervar() from the set of variables in a term
to the sequence of constants VAR. . VAR y, such thatrumbervar(X) < numbervar(Y) if X is
encountered befor® in the left-to-right traversal of. For example, in the clausedstbound(T) :-
has_car(T,C),long(C)’, numbervar(T) andnumbervar(C') are respectively VARand VAR.

6.2. Multiset Operations

A multiset can be formally defined as a p&iv/, m) where M is the underlying multiset ang: is a
mapping from the elements i to the natural numbers. This provides a natural intuitioimtplement
multisets over tries. Given that each clausa the underlying multiset will ultimately correspond to a
leaf in the trie, we extend leaves with the mapping In fact, we can do better: given that in practice

1014 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

root node root node

closed/ 1)

| (| onlg/ 1 H cl os:ed/ 1)
VAlRl) C v) (VAlRl)
C

short/1) eotist) ((short/1
MDI E frane MDI E frane
g J g J
(a) (b) (©)

Figure 8. Using tries to store clauses. Initially, the tramtins the root node only. Next, we store the clauses:
(@) ‘eastbound(T) :- has_car(T, C),long(C)"; (b) ‘ eastbound(T) :- has_car(T, C), closed(C), short(C)’; and
(c) ‘eastbound(T) - has_car(T,C), closed(C), long(C)'.

both M™ and bothM ™~ have the same underlying set of clausespaethe same trifor both multisets.

To implement the proposed TO-MDIE algorithm, we need to be &b perform some basic trie
operations such as the union and subtraction of tries. €g@and 10 show respectively thée.Join()
andtrieSubtract() procedures that implement these operations.

Given two multiset tries7y and 75, the trieJoin(Ty,T) procedure returns in the first argument
trie, Tlf, the multiset join of both given tries, that is, if a tetme Ty ort € T, thent € Tlf and
frameMDIE(tTlf) = frameMDIE(tr,) + frameM DIE(tr,), where frameM DIE(t) repre-
sents the information concerning the number of positive aegative examples covered by The
trieSubtract(Ty,T») procedure returns in the first argument tr]é[,, a trie equivalent to the initial
T; trie but with the information concerning the number of pgsitand negative examples covered by
the terms inT, subtracted from the terms ify,. More formally, if a termt¢ € T; thent € Tlf and
frameMDIE(tTlf) = frameM DIE(tr,) — frameM DIE(tr,). Terms stored i, but not inT;

are ignored.

Since tries provide complete discrimination for terms amdnpt lookup and possibly insertion
to be performed in a single pass through a term, the time adatplof the trieJoin(Ty,T>) and
trieSubtract(Ty,T») procedures is linear in the total number of nodes in botls ieand75.

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1015

trieJoin(parent_dest, parent_src):
Given: two internal trie nodes.

1. child_src = nodeChild(parent_src)
2. while child_src do
3 child_dest = getChildWithT oken(parent_dest, nodeT oken(child_src))

4 if child_dest then

5 if isLeaf(child_dest) then

6. frameM DIE(child_dest)+ = frameM DIE(child_src)
7 else

8. trieJoin(child_dest, child_src)
9. endif

10. else

11. trieCopy(parent_dest, child_src)
12. endif

13. child_src = nodeSibling(child_src)
14.endwhile

Figure 9. TherieJoin() procedure.

trieSubtract(parent_dest, parent_src):
Given: two internal trie nodes.

1. child_src = nodeChild(parent_src)
2. while child_src do
3 child_dest = getChildWithT oken(parent_dest, nodeT oken(child_src))

4 if child_dest then

5 if isLeaf(child_dest) then

6. frameM DIE(child_dest)— = frameM DIE(child_src)
7 else

8. trieSubtract(child_dest, child_src)

9. endif

10. endif

11. child_src = nodeSibling(child_src)

12.endwhile

Figure 10. ThérieSubtract() procedure.

7. Related Work

The work presented in this paper is a new proposal to theigplof efficiency of ILP systems. Let us
remember that the main sources of long execution times irahePi) the size of the search space; ii) the

1016 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

highly search space redundancy and; iii) the theorem pgo®ifort, either because of a large number of
examples or because theorem proving is hard. We can find iite¢reture proposals for all of the above
cases.

Techniques to reduce the search space size include lanbizegas described in [36] and [7], and/or
improved search methods such as parallel search ([18])ochastic search (e.g., [45]). Notice also
that parallel and sequential improvements can be combiReducing the search space redundancy has
been handled by the use of query transformations [43] and/epaecks [4]. Query transformations and
guery-packs may also be used to reduce the theorem provioy éVherever the number of examples
is too large, a technique such as lazy evaluation[6] haspaltseed to be very useful. Evaluating indi-
vidual hypotheses may also be speed up using stochastibimgitnethods as described in [44] taking a
constraint satisfaction approach as in [29] or by desigaimgfficient algorithm for matching clauses as
in[12].

The above mentioned proposals to improve the executiondfriid® systems assume that hypotheses
are dynamically evaluated during the search for the beaseland that theorem proving is required for
such evaluation. This assumption is basically quite dgffiéfrom our proposal. In the method presented
in this paper there is no theorem proving effort associatéltve evaluation of hypotheses. That crucial
point, that is responsible for the long execution time of ByBtems, is replaced by operations of trees
that have extremely low execution times. Although we stid to explicitly generate the clauses of the
search space, that is done only once. Because of this stepnwgrafit from techniques that reduce the
search space, techniques that avoid reduncamog from using parallelism to speed up our system (by
compiling each example search space in parallel).

The idea of having a compilation step to improve speed carobadf in the Inductive Mercury
Programming (IMP) system [15]. The IMP approach is howeviernt from the one described here
because IMP performs the usual search step with dynamiciai@h of each hypotheses generated.
Compilation is used to allow for optimizations on the codackground knowledge and examples) in
order to execute faster. The IMP uses the Mercury declarédivguage which requires the compilation
of the background knowledge and examples but implies stresigictions of the programs to use.

In our implementation tries are used to store efficientlydlagises of the search space. To the best
of our knowledge, FARMER [38] was the first system where theyensed as a technique to improve
efficiency when learning Association Rules, in this casagishe Warmr approach [10]. In a similar
fashion, April uses them as a technique to reduce the amdumeimory storage [17].

8. Experiments and Results

The goal of the experiments is to evaluate the proposed appes on real application problems. The
impact is assessed through considering execution time aweéinquality.
8.1. Experimental Settings

We followed a 10-fold cross validation methodology to asdbe training time and accuracy. The data
sets used were downloaded from the Machine Learning repiesitat the Universities of Oxfo?dand

SAlthough some redundancy is already avoided by the useasf &md by the way clauses are stored in the tries.
Shttp://www.comlab.ox.ac.uk/oucl/groups/machlearn

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1017

York’. The NCTRER data set [26] was kindly provided by the Leuvercivize Learning research
group. Table 1 characterises the data sets in terms of nuofipesitive and negative examples as well
as background knowledge size (number of relations used. tdtal number of examples ranges from
205 in the Mutagenesis data set up to 1762 in the Pyrimidiats skt.

Dataset |ET| |E~| | B|
Carcinogenesis 202 174 44

Mutagenesis 136 69 21
NCTRER 131 101 5
Pyrimidines 881 881 244

Table 1. Data sety. ET | is the number of positive exampldsE~ | is the number of negative examples, and
| B | is the number of relations in the background knowledge.

The algorithms were implemented in the April ILP system [1%or each data set we compare
T-MDIE and TO-MDIE to a standard MDIE implementation usin@aterministic Top-Down Breadth-
First search (DTD-BF). In this algorithm, DTD-BF, no limihdhe number of clauses generated was
imposed since T-MDIE and TO-MDIE consider all clauses upht® maximum clause length given (4
literals in the body, unless otherwise stated — clause hgpgyiameter set to 5). This means that in all algo-
rithms considered, all valid clauses up to the given claesgth are generated. The covering algorithm
used in all algorithms tested follows the so-calieduce-maxapproach implemented in Aleph [46]:
each time a clause is committed to the theory, it is the besisel found using all uncovered positive
examples as seed. We implemented DTD-BF using two techsikjewn to speedup the execution of
ILP systems: query-transformations [43] and coverageingdB®]. Other relevant experimental settings
(see [46] for a full description of the parameters) aréwpos = 5, i = 2 andnoise = 30%. The ex-
periments were performed on an AMD Athlon(tm) MP 2000+ duaeessor PC with 2 GB of memory,
running Fedora Linux (kernel 2.6.12). The runs that tookertban 2 days were aborted:a. (stands
for data not available) is used for the outcomes of such a@xpeis.

8.2. Results

First, we discuss how the running time for the three algorgltompares on the four data sets. Figure 11
depicts the execution times needed by the three algoritsmsaaimum clause length ranges from 2 (one
literal in the body) to 5 (4 literals in the body). Notice thhe time-scale in Figure 11 is logarithmic.
Also, notice that some configurations exceed the maximura limit of two days.

The results clearly show that TO-MDIE outperforms T-MDIBdahat T-MDIE outperforms DTD-
BF. The T-MDIE algorithm outperforms DTD-BF in almost all @jgations and at almost all clause
lengths. The only exception is for Carcinogenesis at snalles of clause lengths, where the overhead
of the method is most significant. Notice that the improveimends to grow for larger clause lengths,
and is often of more than an order of magnitude, even thougB-BF performs more sophisticated
pruning than T-MDIE. In fact, DTD-BF is not practical for cise length 5 on these data sets. Clearly,
estimating the coverage of the clauses instead of using@relkolution pays off in terms of running
time.

"http://www.cs.york.ac.uk/mlg

1018 Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often

Carcinogenesis Mutagenesis

Execution Time Execution Time
200000 200000
20000 20000
2000 2000
200 200
20 20
2 2
02 0.2

2 3 4 5 2 3 4 5
mOTD-BF @T-MDIE @ TO-MDIE BOTDBF @ T-MDIE O TO-MDIE
NCTRER Pyrimidines

Execution Time Execution Time

200000

200000

20000 20000
2000 2000
200 200
20 20

N f 'l
02 -= 02
2 3 4 5 2 3 4 5
WDTDEBF ET-MDIE OTO-MDIE mDTDEF @T-MDIE [TO-MDIE

Figure 11. Performance evaluation (time in seconds) fodiffierent strategies from 2 to 5 literals in the clause.

TO-MDIE further outperforms T-MDIE, and thus DTD-BF, in applications and with different
clause lengths. The only exception is observed in Carcimegje when the clause limit is set to 2 or 3.
In these cases, DTD-BF is quite fast and the generation od elduses by TO-MDIE does not pay off.
Nevertheless, the performance improvements, when usinyiDZE, increase as the maximum depth is
increased. In practise, this is very useful since the mastasting clauses have rarely one or two literals
in the body.

It is interesting to study algorithm TO-MDIE in more detailable 2 presents information about the
time and size of search space explored to obtain each exartijgethe size of the actual tries, and the
time spent using the tries to learn. As expected, the sepaztess much larger than the size of the actual
tries: tries are in fact at most 10KB per example, even wistusé length equals 5. Table 2 also clearly
shows that the average time taken to generate a theory,cafigpiling the examples, is very low (1 or
2 seconds). TO-MDIE time is mostly spent compiling the trigsggesting that further improvements
should focus there. On the other hand, we remember the rézateas compilation is performed only
once, subsequent runs have no need to recompile the seawh agsociated to each example (unless
parameters are changed).

Notice that the number of clauses generated by TO-MDIE cambemous, e.g., almost 700 million
clauses generated in Carcinogenesis for a search space milkimum depth of 5. The large number of
clauses generated by TO-MDIE will become a problem as themmanr clause length increases. Hence,
improving the refinement operator to generate less clatrsegdsimprove the performance of TO-MDIE
and also T-MDIE.

Table 3 shows for each application and clause length lingitatverage accuracy and standard devi-
ation. With one exception, we found that variations are mgriiBcant, and result only from different

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1019

Data set Search Space Trie Size . _Tlme .
Compilation Learning
Carcinogenesis 683,883,665 10.04 76,206 1
Mutagenesis 529,054,555 2.34 78,205 1
NCTRER 10,261,522 0.82 7,003 1
Pyrimidines 54,138,100 8.47 4,777 2

Table 2. Average search space (in clauses per example) arglled file size (in KB per example), compilation
time (in seconds), and learning time (in seconds) at claarsgh=>5.

orders in clause generation, which affects the generatahtrand thus their predictive power. The ex-
ception is NCTRER, where DTD-BF has worst performance tharnother two methods. We observed
that the theories produced by DTD-BF for NCTRER have a siotfase while the theories produced
by T-MDIE and TO-MDIE have two clauses. This is a consequerfcie covering algorithm itself.
Recall that the values of the clauses may be slightly diffevehen computed in DTD-BF and T-MDIE
or TO-MDIE, which may change the ranking of clauses and leathe¢ selection of different clauses
in DTD-BF than in T-MDIE or TO-MDIE. Therefore, the seleati@f a particular clause in DTD-BF
prevents that further clauses are added to the theory.

Data set Accuracy

DTD-BF T-MDIE TO-MDIE
Carcinogenesis63 () / 63 (6)/ 63 (6)/ n.a. 66 (7)/63(7)/62(8)/ mn.a. 66 (z)/63(7)/62(s)/62(s)
Mutagenesis * N5 (10) /] n.a. | n.a. * 167 ()72 () n.a. * 67 ()72 (11) /76 (v)
NCTRER * [* 142 (s) 144 (s) *[*[*] 75(9) *[*]*] 75(s)
Pyrimidines * [* /51 (o) /51 (1) *[*] 51(0)/54(2) *[*[51(0)/54(2)

Table 3. Accuracy (in each cell the 4 values obtained with gimam clause length of 2/3/4/5 respectively) and
standard deviation (bracketed). The ™ means that no theas found with the settings provided.

To conclude, TO-MDIE reduced considerably the executioretwithout significantly reducing the
accuracy. In fact, overall, there is no significant differenn accuracy when using either of the three
algorithms.

9. Conclusions

We presented two novel approaches to improve the executiendf ILP algorithms based on MDIE
were presented. The first approach (T-MDIE) attempts to @avgpperformance by reducing the theorem
proving effort on all clauses constructed during the seatape of a MDIE algorithm. This was possible
by using a tree-like data structure to store all generatmakels, and their coverage. Coverage information
allows the system to estimate efficiently the value of clau3ée reduction in the theorem proving effort
is paid with an increase of the search space considered setdrehes.

The second approach, that we name TO-MDIE, involves the datigm of the search space of each

1020 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

example. It proceeds in two steps. In the first step we congaitsh example as a set of clauses. In
the second step we implement ILP search as a set of set aperaiver these sets of clauses. Since
such operations can be implemented very efficiently, ouraggh can generate major speedups over
traditional ILP execution and, also, when compared to tts¢ dipproach.

The reuse of the initial computation of the compilation stags-off whenever there is a large amount
of repetition in clause evaluation. That happens when ttheded theory has several clauses. In this case,
after each iteration the covered examplesameovedand we only need to perform subtraction operations
between the sets of clauses, an operation that can be dffidieplemented using tries. The technique
also pays-off when using cross-validation and theoryllsgarch.

A further advantage of the approach is that it can be easilgllptisable, as the first step runs inde-
pendently for every example. Moreover, we believe that quoreach is a step forward in facilitating
experimentation with different parameters, and namelysingiinternal cross-validation for parameter
selection in ILP. On the other hand, the approach applies@dBvbased algorithms only, and it needs
further investigation when exploring longer clauses oratadsets with large numbers of examples (some
techniques from [5] may help in that direction). It wouldalse interesting to experiment with other
refinement operators, and to study whether our ideas candokeetfectively for recursive programs.

Last, an interesting insight from our approach is that weatastract the ILP search procedure as a
process ofree-miningover the trees representing individual examples [16]. Wietethat this suggests
new and exciting directions for future research in this area

Acknowledgements

This work has been partially supported by projects STAMPARE/EIA/67738/2006), JEDI (PTDC/
EIA/66924/2006), ILP-Web-Service (PTDC/EIA/70841/2p0é&nd by Fundacao para a Ciéncia e Tec-
nologia. Nuno A. Fonseca is funded by the FCT grant SFRH/BBT87/2006.

References

[1] Anthony, S., Frisch, A. M.: Cautious Induction: An Alteative to Clause-at-a-time Induction in Inductive
Logic ProgrammingNew Generation Computing7(1), January 1999, 25-52.

[2] Bachmair, L., Chen, T., Ramakrishnan, I. V.: Associei@ommutative Discrimination Net$roceedings
of the 4th International Joint Conference on Theory and Becacof Software Developmemtumber 668 in
Lecture Notes in Computer Science, Springer-Verlag, Qisance, 1993.

[3] Badea, L., Stanciu, M.: Refinement Operators Can Be (We&lerfect, Inductive Logic Programming, 9th
International Workshop, ILP-99, Bled, Slovenia, June 24-1999, ProceedingéS. Dzeroski, P. A. Flach,
Eds.), 1634, Springer, 1999, ISBN 3-540-66109-3.

[4] Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G. dRath, Vandecasteele, H.: Improving the Efficiency
of Inductive Logic Programming through the Use of Query Badournal of Machine Learning Reseatch
16, 2002, 135-166.

[5] Blockeel, H., Raedt, L. D., Jacobs, N., Demoen, B.: S$zalip Inductive Logic Programming by Learning
from InterpretationsPata Mining and Knowledge Discover§(1), 1999, 59-93.

[6] Camacho, R.inducing Models of Human Control Skills using Machine LéagrAlgorithms Ph.D. Thesis,
Department of Electrical Engineering and Computationyvgrsidade do Porto, 2000.

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1021

[7] Camacho, R.: Improving the efficiency of ILP systems gsam Incremental Language Level Searghnual
Machine Learning Conference of Belgium and the Netherlah082.

[8] Camacho, R., Fonseca, N. A, Rocha, R., Costa, V. S.: {LJst Trie It. Proceedings of the 17th Interna-
tional Conference on Inductive Logic Programming (ILP 2D(H. Blockeel et al., Eds.), 4894, Springer-
Verlag, 2008.

[9] Cussens, JPart-of-Speech Disambiguation Using ILFechnical Report PRG-TR-25-96, Oxford University
Computing Laboratory, 1996.

[10] Dehaspe, L., Toironen, H.Relational Data Mining chapter Discovery of relational association rules,
Springer-Verlag, Berlin, 2000, 189-208.

[11] Deransart, P., Ed-Dbali, A., Cervoni, L., Ed-Ball, A.:A#rolog, The Standard : Reference Manugpringer
Verlag, 1996.

[12] Di Mauro, N., Basile, T., Ferilli, S., Esposito, F., kazi, N.: An Exhaustive Matching Procedure for the
Improvement of Learning Efficiencynductive Logic Programming: 13th International Confecen(ILP03)
(T. Horvath, A. Yamamoto, Eds.), 2835, Springer-Verla@)2.

[13] DZeroski, S., Lavracg, NInductive Logic Programming: Techniques and Applicatjdalis Horwood, 1994.
[14] Dzeroski, S., Lavrac, N., EdsRelational Data Mining Springer-Verlag New York, Inc., 2000.

[15] Fisher, B., Cussens, J.: Inductive Mercury Prograngninductive Logic Programming, 16th International
Conference, ILP 20065. Muggleton, R. P. Otero, A. Tamaddoni-Nezhad, Eds.)5485ringer, 2007, ISBN
978-3-540-73846-6.

[16] Fonseca, N. A., Camacho, R., Costa, V. S., Rocha, R.NKFR-Relational Nearest Neighbour Algorithm,
Proceedings of 2008 ACM Symposium on Applied Computing 2888) ACM, March 2008.

[17] Fonseca, N. A., Rocha, R., Camacho, R., Silva, F.. EffitData Structures for Inductive Logic Program-
ming, Proceedings of the 13th International Conference on Inidectogic ProgrammingT. Horvath,
A. Yamamoto, Eds.), 2835, Springer-Verlag, Szeged, Hungao03.

[18] Fonseca, N. A., Silva, F., Camacho, R.: Strategies talledize ILP Systems,Proceedings of the 15th
International Conference on Inductive Logic ProgrammihigP(2005) (S. Kramer, B. Pfahringer, Eds.),
3625, Springer-Verlag, Bonn, Germany, August 2005.

[19] Fonseca, N. A, Silva, F., Camacho, R.: April - An InduetLogic Programming SystenfProceedings of the
10th European Conference on Logics in Atrtificial Intelliger(JELIA06) 4160, Springer-Verlag, Liverpool,
September 2006.

[20] Fredkin, E.: Trie MemoryCommunications of the ACM, 1962, 490—499.
[21] Graf, P.: Term Indexing, Number 1053 in Lecture Notegitificial Intelligence, Springer-Verlag, 1996.

[22] Han, J., Kimber, M.:Data Mining: Concepts and Techniquedorgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007.

[23] Idestam-Almquist, P.: Generalization of Clauses urdglication, Journal of Artificial Intelligence Re-
search 3, 1995, 467-489.

[24] ILP Applications, http://www-ai.ijs.si/ ilpnet2/ggs/index.html, 2002.

[25] Van der Laag, PAn analysis of refinement operators in inductive logic pesgming Ph.D. Thesis, Erasmus
Universiteit, Rotterdam, the Netherlands, 1995.

[26] Landwehr, N., Passerini, A., Raedt, L. D., FrasconiKPOIL: Learning Simple Relational KernelsRro-
ceedings of the National Conference on Atrtificial Intellige 2006.

1022 Fonseca, Camacho, Rocha and Costa/Compile the hypothEsie:sdo it once, use it often

[27] Lavrac, N., Flach, P., Zupan, B.: Rule Evaluation Meas: A Unifying View, Proceedings of the 9th In-
ternational Workshop on Inductive Logic Programm(i®y DZeroski, P. Flach, Eds.), 1634, Springer-Verlag,
Berlin, June 1999.

[28] Lloyd, J. W.: Foundations of Logic Programmin@nd edition, Springer-Verlag, Berlin, 1997.

[29] Maloberti, J., Sebag, M.: Fast Theta-Subsumption Witimstraint Satisfaction AlgorithmsjJachine Learn-
ing, 55(2), 2004, 137-174, ISSN 0885-6125.

[30] Michalski, R. S., Larson, J. BSelection of Most Representative Training Examples aneinental Gener-
ation of VL918 Hypotheses: The Underlying Mehtodology &edescription of Programs ESEL and AQ11
Technical Report 867, Department of Computer Science,&ssity of lllinois at Urbana-Champaign, 1978.

[31] Muggleton, S.: Inductive logic programmingiroceedings of the 1st Conference on Algorithmic Learning
Theory Ohmsma, Tokyo, Japan, 1990.

[32] Muggleton, S.: Inverse Entailment and Progdééw Generation Computing, Special issue on Inductive Logic
Programming13(3-4), 1995, 245-286.

[33] Muggleton, S., Feng, C.: Efficient induction of logicograms, Proceedings of the First Conference on
Algorithmic Learning TheoryOhmsha, Tokyo, 1990.

[34] Muggleton, S., Raedt, L. D.: Inductive Logic Programgri Theory and MethodsJournal of Logic Pro-
gramming 19,2Q 1994, 629-679.

[35] Muggleton, S. H.: Inductive Logic Programminiyew Generation Computing(4), 1991, 295-317.

[36] Nédellec, C., Rouveirol, C., Adé, H., Bergadano,Tlaysend, B.: Declarative Bias in ILP, ikdvances in
Inductive Logic Programming.-. De Raedt, Ed.), IOS Press, 1996, 82—103.

[37] Nienhuys-Cheng, S.-H., de Wolf, REoundations of Inductive Logic Programmingpl. 1228 ofLecture
Notes in Artificial IntelligenceSpringer-Verlag, 1997, ISBN 3-540-62927-0.

[38] Nijssen, S., Kok, J. N.: Faster Association Rules forlfiple Relations., Proceedings of the Seventeenth
International Joint Conference on Atrtificial IntelligenddCAI 2001, Seattle, Washington, USA, August 4-
10, 2001 2001.

[39] Ong, I. M., Dutra, I. d. C., Page, C. D., Santos Costa,Wade Directed Path FindingProceedings of the
16th European Conference on Machine Learni®g20, 2005.

[40] Page, D.: ILP: Just Do IRroceedings of the 10th International Conference on Indedtogic Programming
(J. Cussens, A. Frisch, Eds.), 1866, Springer-Verlag, 2000

[41] Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift, T.rnéfa, D. S.: Efficient Access Mechanisms for Tabled
Logic Programs,Journal of Logic Programming38(1), 1999, 31-54.

[42] Rocha, R., Fonseca, N. A., Costa, V. S.: On Applying Trapto Inductive Logic Programmingproceedings
of the 16th European Conference on Machine Learning, ECBILF@rto, Portugal, October 2005720,
Springer-Verlag, Berlin, 2005.

[43] Santos Costa, V., Srinivasan, A., Camacho, R., Blockée Demoen, B., Janssens, G., Struyf, J., Vande-
casteele, H., Laer, W. V.. Query Transformations for Imimgvhe Efficiency of ILP SystemsJournal of
Machine Learning Researgch, 2003, 465—-491.

[44] Sebag, M., Rouveirol, C.: Tractable induction and sification in first-order logic via stochastic matching,
Proceedings of the 15th International Joint Conference difigial Intelligence Morgan Kaufmann, 1997.

[45] Srinivasan, A.: A study of two sampling methods for ais@tig large datasets with ILFData Mining and
Knowledge Discoveryd(1), 1999, 95-123.

Fonseca, Camacho, Rocha and Costa/Compile the hypottpegis:sdo it once, use it often 1023

[46] Srinivasan, A.:.The Aleph Manual University of Oxford, 2004 http://www.comlab.ox.ac.uk/oucl/
research/areas/machlearn/Aleph/.

[47] Troncon, R., Janssens, G., Vandecasteele, H.: Fasty@valuation with (Lazy) Control Flow Compilation,
Logic Programming, 20th International Conference, ICLR20Saint-Malo, France, September 6-10, 2004,
Proceeding¢B. Demoen, V. Lifschitz, Eds.), 3132, Springer, 2004, ISB{840-22671-0.

[48] Yamamoto, A.:Which Hypotheses Can Be Found with Inverse Entailmem®f@ceedings of the 7th Inter-

national Workshop on Inductive Logic Programmifiy Lavrac, S. Dzeroski, Eds.), 1297, Springer-Verlag,
1997.

