
Thread-Based Competitive Or-Parallelism⋆

Paulo Moura1,3, Ricardo Rocha2,3, and Sara C. Madeira1,4

1 Dep. of Computer Science, University of Beira Interior, Portugal
{pmoura, smadeira}@di.ubi.pt

2 Dep. of Computer Science, University of Porto, Portugal
ricroc@dcc.fc.up.pt

3 Center for Research in Advanced Computing Systems, INESC–Porto, Portugal
4 Knowledge Discovery and Bioinformatics Group, INESC–ID, Portugal

Abstract. This paper presents the logic programming concept of thread-

based competitive or-parallelism, which combines the original idea of com-
petitive or-parallelism with committed-choice nondeterminism and spec-
ulative threading. In thread-based competitive or-parallelism, an explicit
disjunction of subgoals is interpreted as a set of concurrent alternatives,
each running in its own thread. The subgoals compete for providing
an answer and the first successful subgoal leads to the termination of
the remaining ones. We discuss the implementation of competitive or-
parallelism in the context of Logtalk, an object-oriented logic program-
ming language, and present experimental results.

1 Introduction

Or-parallelism is a simple form of parallelism in logic programs, where the bodies
of alternative clauses for the same goal are executed concurrently. Or-parallelism
is often explored implicitly, without input from the programmer to express or
manage parallelism. In this paper, we introduce a different, explicit form of
or-parallelism, thread-based competitive or-parallelism, that combines the origi-
nal idea of competitive or-parallelism [1] with committed-choice nondetermin-
ism [2] and speculative threading [3]. Committed-choice nondeterminism, also
known as don’t-care nondeterminism, means that once an alternative is taken,
the computation is committed to it and cannot backtrack or explore in par-
allel other alternatives. Committed-choice nondeterminism is useful whenever
a single solution is sought among a set of potential alternatives. Speculative
threading allows the exploration of different alternatives, which can be inter-
preted as competing to provide an answer for the original problem. The key idea
is that multiple threads can be started without knowing a priori which of them,
if any, will perform useful work. In competitive or-parallelism, different alterna-
tives are interpreted as competing for providing an answer. The first successful
alternative leads to the termination of the remaining ones. From a declarative
programming perspective, thread-based competitive or-parallelism allows one to

⋆ This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and MOGGY (PTDC/EIA/70830/2006).



specify alternative procedures to solve a problem without caring about the de-
tails of speculative execution and thread handling. Another important key point
of thread-based competitive or-parallelism is its simplicity and implementation
portability when compared with classical, low-level or-parallelism implementa-
tions. The ISO Prolog multi-threading standardization proposal [4] is currently
implemented in several systems including SWI-Prolog, Yap and XSB, providing
a highly portable solution given the number of operating systems supported by
these Prolog systems. In contrast, most or-parallelism systems described in the
literature [5] are no longer available, due to the complexity of maintaining and
porting their implementations.

Our competitive or-parallelism research is driven by the increasing availabil-
ity of multi-core personal computing systems. These systems are turning into a
viable high-performance, low-cost and standardized alternative to the traditional
(and often expensive) parallel architectures. The number of cores per processor
is expected to continue to increase, further expanding the areas of application
of competitive or-parallelism.

2 Thread-Based Competitive Or-Parallelism

The concept of thread-based competitive or-parallelism is based on the interpre-
tation of an explicit disjunction of subgoals as a set of concurrent alternatives,
each running in its own thread. Each individual alternative is assumed to imple-
ment a different procedure that, depending on the problem specifics, is expected
to either fail or succeed with different performance results. For example, one al-
ternative may converge quickly to a solution, other may get trapped into a local,
suboptimal solution, while a third may simply diverge. The subgoals are inter-
preted as competing for providing an answer and the first subgoal to complete
leads to the termination of the threads running the remaining subgoals.

Consider, for example, the water jugs problem. In this problem, we have
several jugs of different capacities and we want to measure a certain amount
of water. We may fill a jug, empty it, or transfer its contents to another jug.
Assume now that we have implemented several methods to solve this problem,
e.g. breadth-first, depth-first, and hill-climbing. In Logtalk, we may then write:

solve(Jugs, Moves) :-
threaded((

breadth_first::solve(Jugs, Moves)
; depth_first::solve(Jugs, Moves)
; hill_climbing::solve(Jugs, Moves)
)).

The semantics of a competitive or-parallelism call implemented by the Logtalk
built-in predicate threaded/1 is simple. Given a disjunction of subgoals, a com-
petitive or-parallelism call blocks until one of the subgoals succeeds, all the
subgoals fail, or one of the subgoals generates an exception. All the remaining
threads are terminated once one of the subgoals succeeds or throws an exception.
The competitive or-parallelism call is deterministic and opaque to cuts; there is



no backtracking over completed calls. The competitive or-parallelism call suc-
ceeds if and only if one of the subgoals succeeds. When one of the subgoals
generates an exception, the competitive or-parallelism call terminates with the
same exception.

3 Implementation

In this section, we discuss the Logtalk [6] implementation of competitive or-
parallelism, based on the core predicates found on the ISO standardization pro-
posal for Prolog threads [4]. Logtalk is an open source object-oriented logic pro-
gramming language that can use most Prolog systems as a back-end compiler.
Logtalk takes advantage of modern multi-processor and multi-core computers
to support high level multi-threading programming, allowing objects to support
both synchronous and asynchronous messages without worrying about the de-
tails of thread management. Using Prolog core multi-threading predicates to
support competitive or-parallelism allows simple and portable implementations
to be written. Nevertheless, three major problems must be addressed when im-
plementing or-parallelism systems: (i) multiple binding representation, (ii) work
scheduling, and (iii) predicate side-effects.

Multiple Binding Representation A significant implementation advantage
of competitive or-parallelism is that only the first successful subgoal in a dis-
junction of subgoals can lead to the instantiation of variables in the original call.
This greatly simplifies our implementation as the Prolog core support for multi-
threading programming can be used straightforward. In particular, we can take
advantage of the Prolog thread creation predicate thread create/3. Threads
created with this predicate run a copy of the goal argument using its own set of
data areas (stack, heap, trail, etc). Its implementation is akin to the environment
copying approach [7], but much simpler as only the goal is copied. Because it
is running a copy, no variable is shared between threads. Thus, the bindings of
shared variables occurring within a thread are independent of bindings occurring
in other threads. This operational semantics simplifies the problem of multiple
binding representation in competitive or-parallelism, which results in a simple
implementation with only a small number of lines of Prolog source code.

Work Scheduling Unrestricted competitive or-parallelism can lead to com-
plex load balancing problems, since the number of running threads may easily
exceed the number of available computational units. In our implementation,
load balancing is currently delegated to the operating system thread scheduler.
This is partially a consequence of our use of the core Prolog multi-threading
predicates. However, and although we have postponed working on an advanced,
high-level scheduler, we can explicitly control the number of running threads
using parametric objects with a parameter for the maximum number of running
threads. This is a simple programming solution, used in most of the Logtalk
multi-threading programming examples.



Side-Effects and Dynamic Predicates The subgoals in a competitive or-
parallelism call may have side-effects that may clash if not accounted for. Two
common examples are input/output operations and asserting and retracting
clauses for dynamic predicates. To prevent conflicts, Logtalk and the Prolog
compilers implementing the ISO Prolog multi-threading standardization pro-
posal allow predicates to be declared synchronized, thread shared (the default),
or thread private. Synchronized predicates are internally protected by a mutex,
thus allowing for easy thread synchronization. Thread private dynamic pred-
icates may be used to implement thread local dynamic state. Thread shared
dynamic predicates are required by the ISO Prolog multi-threading standard-
ization proposal to follow logical update semantics.

4 Experimental Results

In order to validate our implementation, we used competitive or-parallelism
(COP) to simultaneously explore depth-first (DF), breadth-first (BF), and hill-
climbing (HC) search strategies for the water jugs problem. Our experimental
setup used Logtalk 2.33.0 with SWI-Prolog 5.6.59 64 bits as the back-end com-
piler on an Intel-based computer with four cores running Fedora Core 8 64 bits.5

Table 1 shows the running times, in seconds, when 5-liter and 9-liter jugs
were used to measure from 1 to 14 liters of water. It allows us to compare the
running times of single-threaded DF, BF, and HC search strategies with the
COP multi-threaded call where one thread is used for each individual search
strategy. The results show the average of thirty runs. We highlight the fastest
method for each measure. The last column shows the number of steps of the
solution found by the competitive or-parallelism call. The maximum solution
length was set to 14 steps for all strategies.

The results show that the use of competitive or-parallelism allows us to
quickly find a sequence of steps of acceptable length to solve different configura-
tions of the water jugs problem. Moreover, given that we do not know a priori

which individual search method will be the fastest for a specific measuring prob-
lem, competitive or-parallelism is a better solution than any of the individual
search methods. The overhead of the competitive or-parallelism calls is due to
the implicit thread and memory management. In particular, the initial thread
data area sizes and the amount of memory that must be reclaimed when a thread
terminates play a significant role on observed overheads. We are optimizing our
implementation in order to minimize the thread management overhead. There
is also room for further optimizations on the Prolog implementations of the ISO
Prolog multi-threrading standardization proposal. Nevertheless, even with the
current implementations, our preliminary experimental results are promising.

5 The experiments can be easily reproduced by the reader by running the query
logtalk load(mtbatch(loader)), mtbatch(swi)::run(search, 30).



Table 1. Measuring from 1 to 14 liters with 5-liter and 9-liter jugs.

Liters DF HC BF COP Overhead Steps

1 26.373951 0.020089 0.007044 0.011005 0.003961 5
2 26.596118 12.907172 8.036822 8.324970 0.288148 11
3 20.522287 0.000788 1.412355 0.009158 0.008370 9
4 20.081001 0.000241 0.001437 0.002624 0.002383 3
5 0.000040 0.000240 0.000484 0.000907 0.000867 2
6 3.020864 0.216004 0.064097 0.098883 0.034786 7
7 3.048878 0.001188 68.249278 0.008507 0.007319 13
8 2.176739 0.000598 0.127328 0.007720 0.007122 7
9 2.096855 0.000142 0.000255 0.003799 0.003657 2
10 0.000067 0.009916 0.004774 0.001326 0.001295 4
11 0.346695 5.139203 0.587316 0.404988 0.058293 9
12 14.647219 0.002118 10.987607 0.010785 0.008667 14
13 0.880068 0.019464 0.014308 0.029652 0.015344 5
14 0.240348 0.003415 0.002391 0.010367 0.007976 4

5 Conclusions and Future Work

We have presented the logic programming concept of thread-based competitive
or-parallelism supported by an implementation in the object-oriented logic pro-
graming language Logtalk. This concept is orthogonal to the object-oriented fea-
tures of Logtalk and can be implemented in plain Prolog and in non-declarative
programming languages supporting the necessary threading primitives. Future
work will include exploring the role of tabling in competitive or-parallelism calls
and implementing a load-balancing mechanism. We also plan to apply com-
petitive or-parallelism to non-trivial problems, seeking real-world experimental
results allowing us to improve and expand our current implementation.

References

1. Ertel, W.: Performance Analysis of Competitive Or-Parallel Theorem Proving.
Technical report fki-162-91, Technische Universität München (1991)

2. Shapiro, E.: The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys 21(3) (1989) 413–510

3. González, A.: Speculative Threading: Creating New Methods of Thread-Level Par-
allelization. Technology@Intel Magazine (2005)

4. Moura, P.: ISO/IEC DTR 13211–5:2007 Prolog Multi-threading Support Available
from http://logtalk.org/plstd/threads.pdf.

5. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.V.: Parallel Execu-
tion of Prolog Programs: A Survey. ACM Transactions on Programming Languages
and Systems 23(4) (2001) 472–602

6. Moura, P.: Logtalk – Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior (2003)

7. Ali, K., Karlsson, R.: The Muse Approach to OR-Parallel Prolog. International
Journal of Parallel Programming 19(2) (1990) 129–162


