
Global Storing Mechanisms

for Tabled Evaluation

Jorge Costa and Ricardo Rocha ⋆

DCC-FC & CRACS
University of Porto, Portugal

c0607002@alunos.dcc.fc.up.pt ricroc@dcc.fc.up.pt

Abstract. Arguably, the most successful data structure for tabling is
tries. However, while tries are very efficient for variant based tabled evalu-
ation, they are limited in their ability to recognize and represent repeated
terms in different tabled calls or/and answers. In this paper, we propose
a new design for the table space where tabled terms are stored in a
common global trie instead of being spread over several different tries.

1 Introduction

Tabling is an implementation technique where intermediate answers for subgoals
are stored and then reused whenever a repeated call appears. The performance
of tabled evaluation largely depends on the implementation of the table space
– being called very often, fast lookup and insertion capabilities are mandatory.
Applications can make millions of different calls, hence compactness is also re-
quired. Arguably, the most successful data structure for tabling is tries [1].

However, while tries are very efficient for variant based tabled evaluation,
they are limited in their ability to recognize and represent repeated terms in
different tabled calls or/and answers. In [2], Rao et al. proposed a Dynamic

Threaded Sequential Automata (DTSA) that recognizes reusable subcomputa-
tions for subsumption based tabling. In [3], Johnson et al. proposed an alterna-
tive to DTSA, called Time-Stamped Trie (TST), which not only maintains the
time efficiency of the DTSA but has better space efficiency.

In this paper, we propose a different approach. We propose a new design for
the table space where all terms in a tabled subgoal call or/and answer are stored
in a common global trie instead of being spread over several different trie data
structures. Our approach resembles the hash-consing technique [4], as it tries to
share data that is structurally equal. An obvious goal is to save memory usage
by reducing redundancy in term representation to a minimum. We will focus
our discussion on a concrete implementation, the YapTab system [5], but our
proposals can be easy generalized and applied to other tabling systems.

⋆ This work has been partially supported by the research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/ EIA/66924/2006) and by Fundação
para a Ciência e Tecnologia.



2 Table Space

A trie is a tree structure where each different path through the trie data units,
the trie nodes, corresponds to a term. Each root-to-leaf path represents a term
described by the tokens labelling the nodes traversed. Two terms with common
prefixes will branch off from each other at the first distinguishing token. For
example, the tokenized form of the term p(X, q(Y, X), Z) is the stream of 6
tokens: p/3, V AR0, q/2, V AR1, V AR0, V AR2. Variables are represented using
the formalism proposed by Bachmair et al. [6], where the set of variables in
a term is mapped to the sequence of constants V AR0, ..., V ARN .

Internally, the trie nodes are 4-field data structures. One field stores the
node’s token, one second field stores a pointer to the node’s first child, a third
field stores a pointer to the node’s parent and a fourth field stores a pointer
to the node’s next sibling. Each node’s outgoing transitions may be determined
by following the child pointer to the first child node and, from there, continuing
through the list of sibling pointers. A threshold value controls whether to dynam-
ically index the sibling nodes through a hash table. Further, hash collisions are
reduced by dynamically expanding the hash tables. YapTab implements tables
using two levels of tries - one for subgoal calls, the other for computed answers.
More specifically, the table space of YapTab is organized in the following way:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.

– the subgoal frame data structure acts as an entry point to the answer trie.

– each different subgoal answer is represented as a unique path in the an-

swer trie. To increase performance, answer trie paths enforce the substitu-

tion factoring mechanism [1] and hold just the substitution terms for the
free variables which exist in the argument terms.

– the subgoal frame has internal pointers to the first and last answer on the
trie and the leaf’s child pointer of answers are used to point to the next
available answer, a feature that enables answer recovery in insertion time
order. Answers are loaded by traversing the answer trie nodes bottom-up.

An example for a tabled predicate t/2 is shown in Fig. 1. Initially, the subgoal
trie is empty. Then, subgoal t(a(1),X) is called and three trie nodes are inserted:
one for the functor a/1, a second for the constant 1 and one last for variable X.
The subgoal frame is inserted as a leaf, waiting for the answers. Next, subgoal
t(a(2),X) is also called. It shares one common node with t(a(1),X) but, having
a/1 a different argument, two new trie nodes and a new subgoal frame are
inserted. At the end, the answers for each subgoal are stored in the corresponding
answer trie as their values are computed. Note that, for this particular example,
the completed answer trie for both subgoal calls is exactly the same.



3 Global Trie

subgoal frame for
t(a(1),VAR0)

1

a/1

2

subgoal
trie

t(a(X),a(Y)) :- a(X), a(Y).
a(1).
a(2).

VAR0VAR0

table entry for t/2

answer
trie

a/1

12

subgoal frame for
t(a(2),VAR0)

answer
trie

a/1

12

Fig. 1. YapTab’s original table organization

We next describe the YapTab’s
new design for the table space.
In this new design, all terms in
a tabled subgoal call or/and an-
swer are now stored in a com-
mon global trie (GT) instead of
being spread over several different
trie data structures. The GT data
structure still is a tree structure
where each different path through
the trie nodes corresponds to a
term. However, here a term can
end at any internal trie node and
not necessarily at a leaf trie node.

The previous subgoal trie and
answer trie data structures are
now represented by a unique level
of trie nodes that point to the cor-
responding terms in the GT (see
Fig. 2 for details). For the subgoal
tries, each node now represents a
different subgoal call where the
node’s token is the pointer to the
unique path in the GT that rep-
resents the argument terms for the subgoal call. The organization used in the
subgoal tries to maintain the list of sibling nodes and to access the corresponding
subgoal frames remains unaltered. For the answer tries, each node now repre-
sents a different subgoal answer where the node’s token is the pointer to the
unique path in the GT that represents the substitution terms for the free vari-
ables which exist in the argument terms. The organization used in the answer
tries to maintain the list of sibling nodes and to enable answer recovery in in-
sertion time order remains unaltered. With this organization, answers are now
loaded by following the pointer in the node’s token and then by traversing the
corresponding GT’s nodes bottom-up.

Figure 2 uses again the example from Fig. 1 to illustrate how the GT’s design
works. Initially, the subgoal trie and the GT are empty. Then, the first subgoal
t(a(1),X) is called and three nodes are inserted on the GT: one to represent
the functor a/1, another for the constant 1 and a last one for variable X. Next,
a node representing the path inserted on the GT is stored in the subgoal trie
(node labeled call1). The token field for the call1 node is made to point to
the leaf node of the GT’s inserted path and the child field is made to point to
a new subgoal frame. For the second subgoal call, t(a(2),X), we start again by
inserting the call in the GT and then we store a node in the subgoal trie (node
labeled call2) to represent the path inserted on the GT.



a/1

12

VAR0 VAR0

subgoal frame for
t(a(1),VAR0)

call
1

call
2

subgoal
trie

table entry for t/2

subgoal frame for
t(a(2),VAR0)

answer trie
answer

1
answer

2

answer trie
answer

1
answer

2

global
trie

Fig. 2. YapTab’s new table organization

For each subgoal call we
have two answers: the terms
a(1) and a(2). However, as
these terms are already rep-
resented on the GT, we need
to store only two nodes, in
each answer trie, to represent
them (nodes labeled answer1

and answer2). The token field
for these answer trie nodes are
made to point to the corre-
sponding term representation
on the GT. With this example
we can see that terms in the GT
can end at any internal trie node
(and not necessarily at a leaf
trie node) and that a common
path on the GT can simulta-
neously represent different sub-
goal and answer terms.

4 Preliminary Experimental Results

To evaluate the impact of our proposal, we have defined a tabled predicate t/5

that stores in the table space terms of a certain kind, and then we use a top
query goal test/0 that recursively calls t/5 with all combinations of one and
two free variables in the arguments. We next show the code example used in the
experiments for functor terms of arity 1 (500 terms in total).

t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail. term(f(1)).
... term(f(2)).
test :- t(A,B,f(1),f(1),f(1)), fail. ...
... term(f(499)).
test. term(f(500)).

The environment for our experiments was an AMD Athlon XP 2800+ with 1
GByte of main memory and running the Linux kernel 2.6.24-19. Table 1 shows
the memory usage and the running times to store to the tables (first execu-
tion) and to load from the tables (second execution) the complete set of sub-
goals/answers for YapTab with and without support for the global trie data
structure. We tested 5 different programs with functor terms of arity 1 to 5.

The results show that GT support can significantly reduce memory usage
proportionally to the depth and redundancy of the terms stored in the GT.
On the other hand, the results indicate that this reduction comes at a price
in execution time. With GT support, we need to navigate in two tries when



Table 1. Memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for the global trie data structure

Terms
YapTab (a) YapTab+GT (b) Ratio (b)/(a)

Mem Store Load Mem Store Load Mem Store Load

500 f/1 49172 693 242 52811 1029 243 1.07 1.48 1.00
500 f/2 98147 842 314 56725 1298 310 0.58 1.54 0.99
500 f/3 147122 1098 377 60640 1562 378 0.41 1.42 1.00
500 f/4 196097 1258 512 64554 1794 435 0.33 1.43 0.85
500 f/5 245072 1418 691 68469 2051 619 0.28 1.45 0.90

checking/inserting a term. Moreover, in some situations, the cost of inserting
a new term in an empty/small trie can be less than the cost of navigating in
the GT, even when the term is already stored in the GT. However, our results
seem to suggest that this cost also decreases proportionally to the depth and
redundancy of the terms stored in the GT. The results obtained for loading
terms do not suggest significant differences. However and surprisingly, the GT
approach showed to outperform the original YapTab design in some experiments.

5 Conclusions

We have presented a new design for the table space that uses a common global
trie to store terms in tabled subgoal calls and answers. Our preliminary experi-
ments showed very significant reductions on memory usage. This is an important
result that we plan to apply to real-world applications that pose many subgoal
queries with a large number of redundant answers, such as ILP applications.

References

1. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (1999)
31–54

2. Rao, P., Ramakrishnan, C.R., Ramakrishnan, I.V.: A Thread in Time Saves Tabling
Time. In: Joint International Conference and Symposium on Logic Programming,
The MIT Press (1996) 112–126

3. Johnson, E., Ramakrishnan, C.R., Ramakrishnan, I.V., Rao, P.: A Space Efficient
Engine for Subsumption-Based Tabled Evaluation of Logic Programs. In: Fuji In-
ternational Symposium on Functional and Logic Programming. Number 1722 in
LNCS, Springer-Verlag (1999) 284–300

4. Goto, E.: Monocopy and Associative Algorithms in Extended Lisp. Technical Report
TR 74-03, University of Tokyo (1974)

5. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction. (2000)
77–87

6. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-
nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74


