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Abstract

This paper reports on our work towards the development of a probabilistic logic
programming environment intended as a target language in which other proba-
bilistic languages can be compiled, thereby contributing to the digestion of the
“alphabet soup”.

1 Introduction

The vast interest in statistical relational learning, probabilistic (inductive) logic programming and
probabilistic programming languages has resulted in a wide variety of different formalisms, models
and probabilistic programming languages. Whereas on the one hand, this provides evidence for the
richness and maturity of the field, on the other hand, it also exhibits some important weaknesses
(which are sometimes referred to by the term “alphabet-soup”). In particular, the relationships
between the different formalisms are often unclear, there is not yet a common core theory or model,
and while there exist a few publicly available systems and benchmark data sets, it is often unclear
how to compare different systems on a fair basis.

We aim at alleviating this situation by developing a high-speed probabilistic logic programming en-
vironment (on top of the well-known YAP-Prolog [13, 8]). Our goal is not to design yet another
member of the alphabet soup, but rather a general probabilistic logic programming environment.
It would offer a low-level probabilistic language, to which other probabilistic (inductive) logic pro-
gramming and statistical relational learning formalisms can be ”compiled”. In addition, it would also
offer efficient implementations of a number of inference tasks for this low-level language, which can
be used to answer queries or perform learning tasks for the original languages.

2 Reducing Probabilistic Languages

Our compilation approach follows ideas similar to that of [5, 6] and the many reductions known
from theoretical computer science. For a source and a target probabilistic (programming) language
LS and LT , we define reductions ϕ : LS → LT mapping (at least) models and queries from the
source to the target language, and ψ : LT → LS mapping (at least) answer sets back. The bottom
line is that if the reductions can be computed efficiently and an efficient implementation of the
target language LT is available, language LS can be implemented or emulated by first applying the
reduction, then using the inference engine for LT and finally mapping results back to LS . That is, ϕ
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maps any model P ∈ LS onto a model (or program) ϕ(P ) ∈ LT and each query qP on P that can
be answered using LS onto a query ϕ(qP ) on ϕ(P ) that can be answered using LT . Furthermore, ψ
maps answers obtained in LT back to LS such that ansS(qP , P ) = ψ(ansT (ϕ(qP ), ϕ(P ))).

To alleviate the above sketched problems surrounding the “alphabet soup” in probabilistic program-
ming using this approach, two problems need to be solved:

1. identify a probabilistic programming language and environment that is sufficiently simple,
powerful and efficient to serve as a target language and a common core;

2. develop reductions between a wide range of probabilistic languages and the target language.

In the remainder of this note, we sketch the key ingredients of the probabilistic programming lan-
guage and technology that we are currently developing, and also provide evidence as to why a
significant range of statistical relational models and probabilistic programming languages can be
connected to our target language.

3 The Probabilistic Prolog Technology

The semantics of the probabilistic Prolog will be based on Sato’s distribution semantics [15], which
forms the basis of Sato’s PRISM [16], Poole’s ICL [10], De Raedt et al.’s ProbLog [3], and proba-
bilistic database technology (e.g., Suciu’s work [2]). The idea is to associate probabilities to (possi-
bly non-ground) facts using expressions of the form p : f(t1, ..., tm), where each ground instance of
such a fact f(t1, ..., tm) is independently true with probability p. In addition, constraints on possible
combinations of such facts can be specified, such as the disjoint statements of PRISM and ICL. To
simplify probabilistic inference, PRISM and ICL, however, assume that abductive explanations are
mutually exclusive, which is often too restrictive. While the ProbLog system does not make this
assumption, it does not yet allow for specifying constraints. Hence, our proposal is to merge prin-
ciples of PRISM and ProbLog, thereby avoiding additional assumptions but supporting the use of
constraints.

At the same time, it is essential that state-of-the-art programming language technology and prob-
abilistic inference methods can be used. Our recent work on ProbLog has focused on 1) the use
of Binary Decision Diagrams and tries for supporting inference, and 2) the incorporation in YAP-
Prolog, a state-of-the-art Prolog implementation; cf. [8].

4 Reductions

The literature contains ample evidence and arguments as to why one statistical relational learning
model is more expressive than another one. Although these arguments are sometimes informal, they
often indicate how one language (or parts thereof) can be reduced to another one. Certainly, for those
languages built on the logic programming paradigm (such as BLPs [7], PRISM, ICL, ProbLog, CP-
logic [17], CLP(BN ) [14] and SLPs [9]), the relationships and possible mappings are quite clear.
PRISM and ICL are very similar, and have been used as target language to which CP-logic and SLPs
can be reduced [18, 1] (and PRISM has actually been used to learn SLPs in this way). A common
core of BLPs and SLPs is identified in [11], where mappings from a subclass of one formalism to
the other are provided for both directions, along with an extension of SLPs to which arbitrary BLPs
can be reduced. At present the situation is less clear for languages not based on logic programming,
though also here some interesting results are known. For instance, [6] shows that MLNs [12] can be
reduced to RBNs [4].

We believe that a common probabilistic logic programming environment of the kind we are de-
veloping will make it significantly easier to address various open issues, including not only the
mere existence of reductions as sketched above, but also other questions such as e.g. whether they
preserve certain parts of the structure of a theory or are especially suited for specific inference or
learning tasks.
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