
A Very Compact and Efficient Representation

of List Terms for Tabled Logic Programs

João Raimundo and Ricardo Rocha

DCC-FC & CRACS, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{jraimundo,ricroc}@dcc.fc.up.pt

Abstract. Tabling is an implementation technique that overcomes some
limitations of traditional Prolog systems in dealing with redundant sub-
computations and recursion. A critical component in the implementation
of an efficient tabling system is the design of the data structures and al-
gorithms to access and manipulate tabled data. Arguably, the most suc-
cessful data structure for tabling is tries, which is regarded as a very com-
pact and efficient data structure for term representation. Despite these
good properties, we found that, for list terms, we can design even more
compact and efficient representations. We thus propose a new represen-
tation of list terms for tries that avoids the recursive nature of the WAM
representation of list terms in which tries are based. Our experimental
results using the YapTab tabling system show a significant reduction in
the memory usage for the trie data structures and impressive gains in
the running time for storing and loading list terms.

Key words: Tabling Logic Programming, Table Space, Implementation.

1 Introduction

Tabling [1] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Tabling has become a popular and successful technique thanks to the
ground-breaking work in the XSB Prolog system and in particular in the SLG-
WAM engine [2]. The success of SLG-WAM led to several alternative implemen-
tations that differ in the execution rule, in the data-structures used to implement
tabling, and in the changes to the underlying Prolog engine. Implementations
of tabling are now widely available in systems like Yap Prolog, B-Prolog, ALS-
Prolog, Mercury and more recently Ciao Prolog.

A critical component in the implementation of an efficient tabling system
is the design of the data structures and algorithms to access and manipulate
tabled data. Arguably, the most successful data structure for tabling is tries [3].
Tries are trees in which common prefixes are represented only once. The trie
data structure provides complete discrimination for terms and permits lookup
and possibly insertion to be performed in a single pass through a term, hence
resulting in a very compact and efficient data structure for term representation.



When representing terms in the trie, most tabling engines, like XSB Prolog,
Yap Prolog and others, try to mimic the WAM [4] representation of these terms
in the Prolog stacks in order to avoid unnecessary transformations when stor-
ing/loading these terms to/from the trie. Despite this idea seems straightforward
for almost all type of terms, we found that this is not the case for list terms (also
known as pair terms) and that, for list terms, we can design even more compact
and efficient representations.

In Prolog, a non-empty list term is formed by two sub-terms, the head of the

list, which can be any Prolog term, and the tail of the list, which can be either a
non-empty list (formed itself by a head and a tail) or the empty list. WAM based
implementations explore this recursive nature of list terms to design a very simple
representation at the engine level that allows for very robust implementations
of key features of the WAM, like the unification algorithm, when manipulating
list terms. However, when representing terms in the trie, the recursive nature of
the WAM representation of list terms is negligible as we are most interested in
having a compact representation with fast lookup and insertion capabilities.

In this paper, we thus propose a new representation of list terms for tabled
data that gets around the recursive nature of the WAM representation of list
terms. In our new proposal, a list term is simply represented as the ordered
sequence of the term elements in the list, i.e., we only represent the head terms
in the sub-lists and avoid representing the sub-lists’ tails themselves. Our ex-
perimental results show a significant reduction in the memory usage for the trie
data structures and impressive gains in the running time for storing and loading
list terms with and without compiled tries. We will focus our discussion on a
concrete implementation, the YapTab system [5], but our proposals can be easy
generalized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
YapTab’s new design for list terms representation. Then, we discuss the implica-
tions of the new design and describe how we have extended YapTab to provide
engine support for it. At last, we present some experimental results and we end
by outlining some conclusions.

2 Tabling Tries

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls to tabled subgoals1 are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Within this model, the table space may be accessed in a number of ways: (i)
to find out if a subgoal is in the table and, if not, insert it; (ii) to verify whether

1 A subgoal repeats a previous subgoal if they are the same up to variable renaming.



a newly found answer is already in the table and, if not, insert it; and (iii) to
load answers to repeated subgoals. With these requirements, a correct design of
the table space is critical to achieve an efficient implementation. YapTab uses
tries which is regarded as a very efficient way to implement the table space [3].

A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term described by the tokens labelling the
nodes traversed. For example, the tokenized form of the term f(X, g(Y, X), Z) is
the sequence of 6 tokens < f/3, V AR0, g/2, V AR1, V AR0, V AR2 > where each
variable is represented as a distinct V ARi constant [6]. An essential property of
the trie structure is that common prefixes are represented only once. Two terms
with common prefixes will branch off from each other at the first distinguishing
token. Figure 1 shows an example for a trie with three terms. Initially, the trie
contains the root node only. Next, we store the term f(X, a) and three trie nodes
are inserted: one for the functor f/2, a second for variable X (V AR0) and one
last for constant a. The second step is to store g(X, Y ). The two terms differ on
the main functor, so tries bring no benefit here. In the last step, we store f(Y, 1)
and we save the two common nodes with f(X, a).

f/2

VAR0

a1

root

g/2

VAR0

VAR1

Fig. 1. Representing terms f(X, a), g(X,Y ) and f(Y, 1) in a trie

To increase performance, YapTab implements tables using two levels of tries:
one for subgoal calls; the other for computed answers. More specifically:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.
The subgoal frame data structure acts as an entry point to the answer trie.

– each different subgoal answer is represented as a unique path in the answer
trie. Contrary to subgoal tries, answer trie paths hold just the substitution
terms for the free variables which exist in the argument terms of the corre-
sponding subgoal call. This optimization is called substitution factoring [3].



An example for a tabled predicate t/2 is shown in Fig. 2. Initially, the subgoal
trie is empty2. Then, the subgoal t(X, f(1)) is called and three trie nodes are
inserted: one for variable X (V AR0), a second for functor f/1 and one last for
constant 13. The subgoal frame is inserted as a leaf, waiting for the answers. Next,
the subgoal t(X, Y ) is also called. The two calls differ on the second argument, so
we need an extra node to represent variable Y (V AR1) followed by a new subgoal
frame. At the end, the answers for each subgoal are stored in the corresponding
answer trie as their values are computed. Subgoal t(X, f(1) has two answers, X =
f(1) and X = f(Z), so we need three trie nodes to represent both: a common
node for functor f/1 and two nodes for constant 1 and variable Z (V AR0)

4.
For subgoal t(X, Y ) we have four answers, resulting from the combination of the
answers f(1) and f(Z) for variables X and Y , which requires nine trie nodes.

subgoal frame for
t(VAR0,f(1))

f/1

VAR0

VAR1

subgoal
trie

:- table t/2.

t(X,Y) :- term(X),
          term(Y).

term(f(1)).
term(f(Z)). 1

table entry for t/2

answer
trie

f/1

1VAR0

subgoal frame for
t(VAR0,VAR1)

answer
trie

f/1

1VAR0

f/1

1VAR1

f/1

1VAR1

f
i
r
s
t
 
a
n
s
w
e
r

l
a
s
t
 
a
n
s
w
e
r

Fig. 2. YapTab table organization

Leaf answer trie nodes are chained in a linked list in insertion time order,
so that we can recover answers in the same order they were inserted. The sub-
goal frame points to the first and last answer in this list. Thus, a repeated call

2 In order to simplify the presentation of the following illustrations, we will omit the
representation of the trie root nodes.

3 Note that for subgoal tries, we can avoid inserting the predicate name, as it is already
represented in the table entry.

4 The way variables are numbered in a trie is specific to each trie and thus there is no
correspondence between variables sharing the same number in different tries.



only needs to point at the leaf node for its last loaded answer, and consumes
more answers by just following the chain. To load an answer, the trie nodes are
traversed in bottom-up order and the answer is reconstructed.

On completion of a subgoal, a strategy exists that avoids answer recovery
using bottom-up unification and performs instead what is called a completed

table optimization. This optimization implements answer recovery by top-down
traversing the completed answer tries and by executing dynamically compiled
WAM-like instructions from the answer trie nodes. These dynamically compiled
instructions are called trie instructions and the answer tries that consist of these
instructions are called compiled tries [3]. Compiled tries are based on the obser-
vation that all common prefixes of the terms in a trie are shared during execution
of the trie instructions. Thus, when backtracking through the terms of a trie that
is represented using the trie instructions, each edge of the trie is traversed only
once. Figure 3 shows the compiled trie for subgoal call t(V AR0, V AR1) in Fig. 2.

f/1

1VAR0

f/1

1VAR1

f/1

VAR1

try_var

do_struct

try_var

do_struct

trust_atom

trust_atom

do_struct

try_var 1trust_atom

Fig. 3. Compiled trie for subgoal call t(V AR0, V AR1) in Fig. 2

Each trie node is compiled accordingly to its position in the list of sibling
nodes and to the term type it represents. For each term type there are four
specialized trie instructions. First nodes in a list of sibling nodes are compiled
using try ? instructions, intermediate nodes are compiled using retry ? instruc-
tions, and last nodes are compiled using trust ? instructions. Trie nodes without
sibling nodes are compiled using do ? instructions. For example, for atom terms,
the trie instructions are: try atom, retry atom, trust atom and do atom. As the
try ?/retry ?/trust ? instructions denote the choice possibilities when travers-
ing top-down an answer trie, at the engine level, they allocate and manipulate
a choice point in a manner similar to the generic try/retry/trust WAM instruc-
tions, but here the failure continuation points to the next sibling node. The do ?

instructions denote no choice and thus they don’t allocate choice points.

The implementation of tries requires the following fields per trie node: a first
field (token) stores the token for the node, a second (child), third (parent) and
fourth (sibling) fields store pointers respectively to the first child node, to the
parent node, and to the next sibling node. For the answer tries, an additional
fifth field (code) is used to support compiled tries.



3 Representation of List Terms

In this section, we introduce YapTab’s new design for the representation of list
terms. In what follows, we will refer to the original design as standard lists and
to our new design as compact lists. Next, we start by briefly introducing how
standard lists are represented in YapTab and then we discuss in more detail the
new design for representing compact lists.

3.1 Standard Lists

YapTab follows the seminal WAM representation of list terms [4]. In YapTab,
list terms are recursive data structures implemented using pairs, where the first
pair element, the head of the list, represents a list element and the second pair
element, the tail of the list, represents the list continuation term or the end of
the list. In YapTab, the end of the list is represented by the empty list atom [ ].
At the engine level, a pair is implemented as a pointer to two contiguous cells,
the first cell representing the head of the list and the second the tail of the list.
In YapTab, as we will see next, the tail of a list can be any term. Figure 4(a)
shows YapTab’s WAM representation for lists in more detail.

Alternatively to the standard notation for list terms, we can use the pair
notation [H |T ], where H denotes the head of the list and T denotes its tail. For
example, the list term [1, 2, 3] in Fig. 4 can be alternatively denoted as [1|[2, 3]],
[1|[2|[3]]] or [1|[2|[3|[ ]]]]. The pair notation is also useful when the tail of a list
is neither a continuation list nor the empty list. See, for example, the list term
[1, 2|3] in Fig. 4(a) and its corresponding WAM representation. In what follows,
we will refer to these lists as term-ending lists and to the lists ending with the
empty list atom as empty-ending lists.

(a) WAM Representation

PAIR

PAIR

1

PAIR

3

[]

1

PAIR

...

2

PAIR

...

2

3

[]

PAIR

...

(b) Original Trie Design

1

PAIR

...

2

3

...

PAIR

...

List Term
[1,2,3]

List Term
[1,2|3]

PAIR

3

1

PAIR

2

List Term
[1,2,3]

List Term
[1,2|3]

Fig. 4. YapTab’s WAM representation and original trie design for standard lists



Regarding the trie representation of lists, the original YapTab design, as most
tabling engines, including XSB Prolog, tries to mimic the corresponding WAM
representation. This is done by making a direct correspondence between each
pair pointer at the engine level and a trie node labelled with the special token
PAIR. For example, the tokenized form of the list term [1, 2, 3] is the sequence
of 7 tokens < PAIR, 1, PAIR, 2, PAIR, 3, [ ] >. Figure 4(b) shows in more detail
YapTab’s original trie design for the list terms represented in Fig. 4(a).

3.2 Compact Lists

In this section, we introduce the new design for the representation of list terms.
The discussion we present next tries to follow the different approaches that we
have considered until reaching our current final design. The key idea common to
all these approaches is to avoid the recursive nature of the WAM representation
of list terms and have a more compact representation where the unnecessary
intermediate PAIR tokens are removed.

Figure 5 shows our initial approach. In this first approach, all intermediate
PAIR tokens are removed and a compact list is simply represented by its term
elements surrounded by a begin and a end list mark, respectively, the BLIST
and ELIST tokens. Figure 5(a) shows the tokenized form of the empty-ending
list [1, 2, 3] that now is the sequence of 6 tokens < BLIST, 1, 2, 3, [ ], ELIST >
and the tokenized form of the term-ending list [1, 2|3] that now is the sequence
of 5 tokens < BLIST, 1, 2, 3, ELIST >.

Our approach clearly outperforms the standard lists representation when
representing individual lists (except for the base cases of list terms of sizes 1 to
3). It requires about half the nodes when representing individual lists. For an
empty-ending list of S elements, standard lists require 2S + 1 trie nodes and

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

[]

ELIST

4

ELIST

4

BLIST

[]

1

2

ELIST

3

[]

ELIST

4

3

2

List Term
[1,2,3]

List Term
[1,2|3]

List Terms
[1,2,3]
[2,3,4]

List Terms
[1,2,3]
[1,2,4]

List Terms
[1,2|3]
[1,2|4]

(a) (b)

Fig. 5. Trie design for compact lists: initial approach



compact lists require S +3 nodes. For a term-ending list of S elements, standard
lists require 2S − 1 trie nodes and compact lists require S + 2 nodes.

Next, in Fig. 5(b) we try to illustrate how this approach behaves when we
represent more than a list in the same trie. It presents three different situations:
the first situation shows two lists with the first element different (a kind of worst
case scenario); the second and third situations show, respectively, two empty-
ending and two term-ending lists with the last element different (a kind of best
case scenario).

Now consider that we generalize these situations and represent in the same
trie N lists of S elements each. Our approach is always better for the first
situation, but this may not be the case for the second and third situations. For
the second situation (empty-ending lists with last element different), standard
lists require 2N + 2S − 1 trie nodes and compact lists require 3N + S nodes
and thus, if N > S − 1 then standard lists is better. For the third situation
(term-ending lists with last element different), standard lists require N + 2S− 2
trie nodes and compact lists require 2N + S nodes and again, if N > S − 2 then
standard lists is better.

The main problem with this approach is that it introduces an extra token in
the end of each list, the ELIST token, that do not exists in the representation
of standard lists. To avoid this problem, we have redesigned our compact lists
representation in such a way that the ELIST token appears only once for lists
with the last element different. Figure 6 shows our second approach for the
representation of compact lists.

In this second approach, a compact list still contains the begin and end list
tokens, BLIST and ELIST, but now the ELIST token plays the same role of
the last PAIR token in standard lists, i.e., it marks the last pair term in the
list. Figure 6(a) shows the new tokenized form of the empty-ending list [1, 2, 3]

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

4

[]

4

BLIST

3

1

2

[]

ELIST

4

[]

ELIST

3

2

List Term
[1,2,3]

List Term
[1,2|3]

List Terms
[1,2,3]
[2,3,4]

List Terms
[1,2,3]
[1,2,4]

List Terms
[1,2|3]
[1,2|4]

(a) (b)

Fig. 6. Trie design for compact lists: second approach



that now is < BLIST, 1, 2, ELIST, 3, [ ] >, and the new tokenized form of the
term-ending list [1, 2|3] that now is < BLIST, 1, ELIST, 2, 3 >.

Figure 6(b) illustrates again the same three situations showing how this sec-
ond approach behaves when we represent more than a list in the same trie. For
the first situation, the second approach is identical to the initial approach. For
the second and third situations, the second approach is not only better than the
initial approach, but also better than the standard lists representation (except
for the base cases of list terms of sizes 1 and 2).

Consider again the generalization to represent in the same trie N lists of S
elements each. For the second situation (empty-ending lists with last element
different), compact lists now require 2N + S + 1 trie nodes (the initial approach
for compact lists require 3N + S nodes and standard lists require 2N + 2S − 1
nodes). For the third situation (term-ending lists with last element different),
compact lists now require N +S +1 trie nodes (the initial approach for compact
lists require 2N +S nodes and standard lists require N +2S−2 nodes). Despite
these better results, this second approach still contains some drawbacks that
can be improved. Figure 7 shows our final approach for the representation of
compact lists.

In this final approach, we have redesigned our previous approach in such a
way that the empty list token [ ] was avoided in the representation of empty-
ending lists. Note that, in our previous approaches, the empty list token is what
allows us to distinguish between empty-ending lists and term-ending lists. As we
need to maintain this distinction, we cannot simply remove the empty list token
from the representation of compact lists. To solve that, we use a different end
list token, EPAIR, for term-ending lists. Hence, the ELIST token marks the last
element in an empty-ending list and the EPAIR token marks the last element
in an term-ending list. Figure 7(a) shows the new tokenized form of the empty-
ending list [1, 2, 3] that now is < BLIST, 1, 2, ELIST, 3 >, and the new tokenized
form of the term-ending list [1, 2|3] that now is < BLIST, 1, 2, EPAIR, 3 >.

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

4 4

BLIST

3

1

2

ELIST

4

ELIST

3

2

List Term
[1,2,3]

List Term
[1,2|3]

List Terms
[1,2,3]
[2,3,4]

List Terms
[1,2,3]
[1,2,4]

List Terms
[1,2|3]
[1,2|4]

(a) (b)

Fig. 7. Trie design for compact lists: final approach



Figure 7(b) illustrates again the same three situations showing how this final
approach behaves when we represent more than a list in the same trie. For the
three situations, this final approach clearly outperforms all the other represen-
tations for standard and compact lists. For lists with the first element different
(first situation), it requires NS + N + 1 trie nodes for both empty-ending and
term-ending lists. For lists with the last element different (second and third situ-
ations), it requires N +S +1 trie nodes for both empty-ending and term-ending
lists. Table 1 summarizes the comparison between all the approaches regarding
the number of trie nodes required to represent in the same trie N list terms of
S elements each.

List Terms
Standard Compact Lists

Lists Initial Second Final

First element different
N [E1, ..., ES−1, ES ] 2NS + 1 NS + 2N + 1 NS + 2N + 1 NS + N + 1
N [E1, ..., ES−1|ES ] 2NS − 2N + 1 NS + N + 1 NS + N + 1 NS + N + 1

Last element different
N [E1, ..., ES−1, ES ] 2N + 2S − 1 3N + S 2N + S + 1 N + S + 1
N [E1, ..., ES−1|ES ] N + 2S − 2 2N + S N + S + 1 N + S + 1

Table 1. Number of trie nodes to represent in the same trie N list terms of S elements
each, using the standard lists representation and the three compact lists approaches

4 Compiled Tries for Compact Lists

We then discuss the implications of the new design in the completed table opti-
mization and describe how we have extended YapTab to support compiled tries
for compact lists.

We start by presenting in Fig. 8(a) the compiled trie code for the standard
list [1, 2, 3]. For standard lists, each PAIR token is compiled using one of the
? list trie instructions. At the engine level, these instructions create a new pair
term in the heap stack and then they bind the previous tail element of the list
being constructed to the new pair.

Figure 8(b) shows the new compiled trie code for compact lists. In the new
representation for compact lists, the PAIR tokens were removed. Hence, we need
to include the pair terms creation step in the trie instructions associated with
the elements in the list, except for the last list element. To do that, we have
extended the set of trie instructions for each term type with four new specialized
trie instructions: try ? in list, retry ? in list, trust ? in list and do ? in list. For
example, for atom terms, the new set of trie instructions is: try atom in list,
retry atom in list, trust atom in list and do atom in list. The ELIST tokens are
compiled using ? ending list instructions and the BLIST and EPAIR tokens
are compiled using ? void instructions. At the engine level, the ? ending list



(b) Compact Lists

PAIR

1

PAIR

2

do_atom

do_list

do_atom

do_list

PAIR

3

[]

do_list

do_atom

do_atom

BLIST

1

2

ELIST

do_atom_in_list

do_atom_in_list

do_ending_list

do_void

3do_atom

(a) Standard Lists

BLIST

1

2

EPAIR

do_atom_in_list

do_atom_in_list

do_void

do_void

3do_atom

Fig. 8. Comparison between the compiled trie code for standard and compact lists

instructions also create a new pair term in the heap stack to be bound with the
previous tail element of the list being constructed. Besides, in order to denote
the end of the list, they bind the tail of the new pair with the empty list atom
[ ]. The ? void instructions do nothing. Note however that the trie nodes for
the tokens BLIST and EPAIR cannot be avoided because they are necessary to
mark the beginning and the end of list terms when traversing the answer tries
bottom-up, and to distinguish between a term t and the list term whose first
element is t.

Next we present in Fig. 9, two more examples showing how list terms includ-
ing compound terms, the empty list term and sub-lists are compiled using the
compact lists representation. The tokenized form of the list term [f(1, 2), [ ], g(a)]
is the sequence of 8 tokens < BLIST, f/2, 1, 2, [ ], ELIST, g/1, a > and
the tokenized form of the list term [1, [2, 3], [ ]] is the sequence of 8 tokens
< BLIST, 1, BLIST, 2, ELIST, 3, ELIST, [ ] >. To see how the new trie in-
structions for compact lists are associated with the tokens representing list ele-
ments, please consider a tokenized form where the tokens representing common
list elements are explicitly aggregated:

[f(1, 2), [ ], g(a)]: < BLIST, < f/2, 1, 2 >, [ ], ELIST, < g/1, a >>
[1, [2, 3], [ ]]: < BLIST, 1, < BLIST, 2, ELIST, 3 >, ELIST, [ ] >.

The tokens that correspond to first tokens in each list element are the ones
that need to be compiled with the new ? in list trie instructions (please see
Fig. 9 for full details).

5 Experimental Results

We next present some experimental results comparing YapTab with and without
support for compact lists. The environment for our experiments was an Intel(R)



BLIST

f/2

1

2

do_struct_in_list

do_atom

do_atom

do_void

[]do_atom_in_list

List Term
[f(1,2),[],g(a)]

ELIST

g/1

do_ending_list

do_struct

ado_atom

BLIST

1

BLIST

2

do_atom_in_list

do_void_in_list

do_atom_in_list

do_void

ELISTdo_ending_list

List Term
[1,[2,3],[]]

3

ELIST

do_atom

do_ending_list

[]do_atom

Fig. 9. Compiled trie code for the compact lists [f(1, 2), [ ], g(a)] and [1, [2, 3], [ ]]

Core(TM)2 Quad 2.66GHz with 2 GBytes of main memory and running the
Linux kernel 2.6.24-24-generic with YapTab 6.0.0.

To put the performance results in perspective, we have defined a top query
goal that calls recursively a tabled predicate list terms/1 that simply stores in
the table space list terms facts. We experimented the list terms/1 predicate
using 100,000 list terms of sizes 60, 80 and 100 for empty-ending and term-ending
lists with the first and with the last element different.

Tables 2 and 3 show the table memory usage (columns Mem), in KBytes,
and the running times, in milliseconds, to store (columns Store) the tables (first
execution) and to load from the tables (second execution) the complete set of
answers without (columns Load) and with (columns Cmp) compiled tries for
YapTab using standard lists (column YapTab) and using the final design for
compact lists (column YapTab+CL / YapTab). For compact lists, we only
show the memory and running time ratios over YapTab using standard lists. The
running times are the average of five runs.

As expected, the memory results obtained in these experiments are consistent
with the formulas presented in Table 1. The results in Tables 2 and 3 clearly
confirm that the new trie design based on compact lists can decrease significantly
memory usage when compared with standard lists. In particular, for empty-
ending lists, with the first and with the last element different, and for term-
ending lists with the first element different, the results show an average reduction
of 50%. For term-ending lists with the last element different, memory usage is
almost the same. This happens because the memory reduction obtained in the
representation of the common list elements (respectively 59, 79 and 99 elements



Empty-Ending Lists
YapTab YapTab+CL / YapTab

Mem Store Load Cmp Mem Store Load Cmp

First element different
100, 000 [E1, ..., E60] 234,375 1036 111 105 0.51 0.52 0.71 0.69
100, 000 [E1, ..., E80] 312,500 1383 135 128 0.51 0.52 0.73 0.64
100, 000 [E1, ..., E100] 390,625 1733 166 170 0.51 0.53 0.67 0.55

Last element different
100, 000 [E1, ..., E60] 3,909 138 50 7 0.50 0.75 0.64 0.56
100, 000 [E1, ..., E80] 3,909 171 71 8 0.50 0.81 0.61 0.40
100, 000 [E1, ..., E100] 3,910 211 82 9 0.50 0.76 0.62 0.44

Table 2. Table memory usage (in KBytes) and store/load times (in milliseconds) for
empty-ending lists using YapTab with and without support for compact lists

Term-Ending Lists
YapTab YapTab+CL / YapTab

Mem Store Load Cmp Mem Store Load Cmp

First element different
100, 000 [E1, ..., E59|E60] 230,469 1028 113 97 0.52 0.54 0.67 0.64
100, 000 [E1, ..., E79|E80] 308,594 1402 138 134 0.51 0.53 0.69 0.63
100, 000 [E1, ..., E99|E100] 386,719 1695 162 163 0.51 0.55 0.66 0.60

Last element different
100, 000 [E1, ..., E59|E60] 1,956 121 45 4 1.00 0.86 0.82 1.00
100, 000 [E1, ..., E79|E80] 1,956 150 59 4 1.00 0.88 0.72 1.00
100, 000 [E1, ..., E99|E100] 1,957 194 96 4 1.00 0.88 0.53 1.00

Table 3. Table memory usage (in KBytes) and store/load times (in milliseconds) for
term-ending lists using YapTab with and without support for compact lists

in these experiments) is residual when compared with the number of different
last elements (100,000 in these experiments).

Regarding running time, the results in Tables 2 and 3 indicate that compact
lists can achieve impressive gains for storing and loading list terms. In these
experiments, the storing time using compact lists is around 2 times faster for
list terms with the first element different, and around 1.15 to 1.30 times faster
for list terms with the last element different. Note that this is the case even for
term-ending lists, where there is no significant memory reduction. This happens
because the number of nodes to be traversed when navigating the trie data
structures for compact lists is considerably smaller than the number of nodes for
standard lists.

These results also indicate that compact lists can outperform standard lists
for loading terms, both with and without compiled tries, and that the reduction
on the running time seems to decrease proportionally to the size of the list
terms being considered. The exception is compiled tries for term-ending lists
with the last element different, but the 4 milliseconds of the execution time in
these experiments is too small to be taken into consideration.



6 Conclusions

We have presented a new and more compact representation of list terms for
tabled data that avoids the recursive nature of the WAM representation by
removing unnecessary intermediate pair tokens. Our presentation followed the
different approaches that we have considered until reaching our current final
design. We focused our discussion on a concrete implementation, the YapTab
system, but our proposals can be easy generalized and applied to other tabling
systems. Our experimental results are quite interesting, they clearly show that
with compact lists, it is possible not only to reduce the memory usage overhead,
but also the running time of the execution for storing and loading list terms,
both with and without compiled tries.

Further work will include exploring the impact of our proposal in real-world
applications, such as, the recent works on Inductive Logic Programming [7] and
probabilistic logic learning with the ProbLog language [8], that heavily use list
terms to represent, respectively, hypotheses and proofs in trie data structures.

Acknowledgements

This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/EIA/66924/2006).

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20–74

2. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3) (1998) 586–634

3. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (1999)
31–54

4. Aı̈t-Kaci, H.: Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT
Press (1991)

5. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Theory and Practice of Logic Programming 5(1 & 2) (2005) 161–205

6. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-
nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74

7. Fonseca, N.A., Camacho, R., Rocha, R., Costa, V.S.: Compile the hypothesis space:
do it once, use it often. Fundamenta Informaticae 89(1) (2008) 45–67

8. Kimmig, A., Costa, V.S., Rocha, R., Demoen, B., Raedt, L.D.: On the Efficient Ex-
ecution of ProbLog Programs. In: International Conference on Logic Programming.
Number 5366 in LNCS, Springer-Verlag (2008) 175–189


