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SUMMARY

Inductive Logic Programming (ILP) is a sub-field of Machine Learning that provides
an excellent framework for Multi-Relational Data Mining applications. The advantages
of ILP have been successfully demonstrated in complex and relevant industrial and
scientific problems. However, to produce valuable models, ILP systems often require
long running times and large amounts of memory. In this article we address fundamental
issues that have direct impact on the efficiency of ILP systems. Namely, we discuss how
improvements in the indexing mechanisms of an underlying Logic Programming system
benefit ILP performance. Furthermore, we propose novel data structures to reduce
memory requirements and we suggest a new lazy evaluation technique to search the
hypothesis space more efficiently. These proposals have been implemented in the April
ILP system and evaluated using several well known data sets. The results observed show
significant improvements in running time without compromising the accuracy of the
models generated. Indeed, the combined techniques achieve several order of magnitudes
speedup in some data sets. Moreover, memory requirements are reduced in nearly half
of the data sets.
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1. Introduction

One of the main areas of research in the Machine Learning and Data Mining communities
is learning from structured data and relational databases. Arguably, most developments in
this area originate from Inductive Logic Programming (ILP) [13], a sub-field of Machine
Learning where one learns (induces) first-order logical theories from examples and, additionally,
from background knowledge. ILP provides an excellent, well-studied framework for learning
in multi-relational domains. Moreover, the theories learned by general purpose ILP systems
are in a high-level formalism often understandable and meaningful for the domain experts.
ILP systems have therefore been successful in both industrially and scientifically relevant
problems [51, 12, 27, 50] (see [1, 13, 20] for a detailed survey on ILP applications).

Most often, ILP systems learn by searching the best hypothesis over a very large space of
hypotheses. As the search space tends to grow rather quickly, ILP systems can take several
hours, if not days, to return a theory for complex applications. Improving efficiency of ILP
systems has thus been recognized as one of the main issues to be addressed by the ILP
community [33]. Initial research focused on reducing the search space [28, 7], and on efficiently
testing candidate hypotheses [4, 44]. Although such strategies have been largely successful, ILP
algorithms are sufficiently complex to offer a large scope for research on further improvements.
Opportunities range from improving the ILP algorithm down to low-level engine optimizations.
Arguably, improving the ILP algorithms may offer the most opportunities, but on the other
hand doing so may affect the learning quality. In contrast, it was not always clear whether
low-level optimization of an inference engine can have a substantial impact.

In this paper we study the performance of a number of optimizations that operate at different
levels in the search space: (i) we relax the coverage mechanism, which is used by ILP to quantify
the goodness of clauses; (ii) we study the performance of specialized storage algorithms that fit
ILP search; and, (iii) we study whether performance of the inference engine can be improved.
Next, we motivate each optimization.

Most ILP systems follow a generate-and-test approach. Hypotheses (or clauses) are
generated, usually by extending a previous clause, and then evaluated by computing how
many examples they cover, or coverage. Often, generating a new clause is straightforward.
On the other hand, the evaluation of individual hypothesis (theorem proving effort) can be
hard [5], or it can just become expensive if the number of examples is large, say in Data
Mining applications. Techniques such as query transformations [43, 44] and query-packs [4]
have been designed to speed-up query answering. Even though they significantly improve
performance, further gains can be obtained by estimating or predicting clause coverage [47, 48].
Unfortunately, such efforts may result in incorrect measures of an hypothesis’ value. We propose
a new technique, lazy evaluation of examples, such that we only evaluate the examples we have

to.

ILP systems search large spaces of hypotheses. In larger applications this space can quickly
grow to thousands and even millions of different clauses. Efficiently storing and searching in
this space can become a major overhead in ILP systems.

Our first concern is storing the search space itself. We start from the observation that the
ILP search space is highly redundant [29]: the same clause will be proposed over and over
again. Moreover, quite often clauses are very similar. This is partly because several clauses
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may result from expanding a common ancestor, and will therefore share a common prefix. The
query-packs technique first exploited this similarity to reduce computation [4] by compiling
the search-space before computing coverage. On the other hand, query-packs were designed
for a specific ILP approach. In contrast, our proposal is geared towards obtaining a compact
representation of the search space. Our goal is to improve memory usage, and to make it
efficient to verify whether some clause has already been explored. Note that to do so we
benefit from previous work in using tries to support Logic Programming [38]. Our proposal is
in fact closer to the work of Nijssen and Kok, where tries are used to represent item-sets in
a multi-relational setting [30], with significant performance improvements. However, the tries
proposed in this paper are also more fine-grained (they work at sub-term level) than those of
Nijssen and Kok, and are used to compactly store more information than just clauses.

ILP systems often keep an open list of clauses that deserve to be refined, or further explored.
For each such clause it is quite convenient to keep a list of examples covered, the coverage list.
This helps when we compute coverage for the new clauses. Experience with ILP systems such
as Aleph [52], IndLog [6], and April [15] suggests that these lists are a major source of space
overhead. As coverage lists represent sets of examples they do not have the nice incremental
property of clauses. On the other hand, these sets can become quite sparse as clauses cover less
examples. A similar problem is addressed by the quad-tree representation which has been so
successful at compactly representing sparse spaces. In this vein, we propose the RL-tree data

structure.

Ideally, ILP systems should spend most of their running time performing inference. To do so,
they often use the inference mechanism of a Prolog engine to do theorem proving. As it turns
out, it often becomes easier to implement the whole ILP system in Prolog. As ILP systems
address larger and larger applications, they challenge traditional Prolog engines. We show
that indexing is critical for good ILP performance [45]. Aggressive indexing is both required
for static data structures, representing the databases, and for the dynamic data structures
that represent the search space.

The proposed techniques have been implemented in the April [15]† ILP system, which runs
on top of the Yap Prolog engine [42]. We evaluated the different techniques through a large
set of ILP applications, that we believe represent the main application domains for ILP. The
results obtained show that our techniques achieve both significant speedups and memory usage
improvements. Most important, the results preserve the accuracy and quality of the models
found. The exception is that the quality of the model may be affected when adopting lazy
evaluation, as we lose information that could be used to help in navigating the search space.

The remainder of this article is organized as follows. Section 2 provides some ILP
background, including a description of an ILP procedure. Section 3 presents and discusses
the lazy evaluation technique. Next, in Sections 4 and 5, we present, respectively, the trie, and
RL-tree data structures. In Section 6 we discuss how improvements in the indexing algorithm
of a Prolog engine may benefit Prolog-based ILP systems. Section 7 presents and discusses the
experimental results. We draw some conclusions in Section 8 and point out future work.

†APRIL is currently available for academic purposes upon request to Nuno Fonseca (nf@ibmc.up.pt).
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2. Background

This section briefly presents some concepts and terminology of Inductive Logic Programming.
For a gentle introduction to the field, please refer to [25, 29].

2.1. The ILP Problem

Given a set of positive and negative examples of the concept to learn, and some prior knowledge,
or background knowledge, the fundamental goal of an ILP system is to induce a logic program
that entails all positive examples and none of the negative ones.

More formally, let E+ be the set of positive examples, E− the set of negative examples,
E = E+ ∪ E−, and B the background knowledge. In general, B and E can be arbitrary logic
programs and have to satisfy:

• Prior Satisfiability: B ∧ E−
2 2

• Prior Necessity: B 2 E+

The aim of an ILP system is to find a set of hypotheses (also referred to as a theory) H , in
the form of a logic program, such that the following conditions hold:

• Posterior Satisfiability: B ∧ E− ∧ H 2 2

• Posterior Sufficiency: B ∧ H � E+

• Posterior Necessity: B ∧ hi � e+

1 ∨ e+

2 ∨ . . . ∨ e+
n (∀hi ∈ H, ej ∈ E+)

The posterior sufficiency condition is known as completeness with regard to positive
evidence, and the posterior satisfiability condition is sometimes referred as consistency with
the negative evidence. The posterior necessity avoids the induction of clauses that do not entail
any of the positive examples.

In short, the problem that an ILP system must solve is to find a consistent and complete
theory, i.e., find a set of hypotheses that explains all the given positive examples, while being
consistent with the given negative examples. Since it is not usually obvious which set of
hypotheses should be retrieved as the theory, an ILP system must search through the permitted
hypotheses to find a set with the desired properties.

The states in the search space, the hypothesis space, are concept descriptions, or hypotheses,
and the goal is to find one or more states satisfying some quality criterion. To evaluate the
quality of the hypotheses generated during the search, there are several evaluation measures
that can be applied [21, 18]. The two most widely used measures are accuracy and coverage.
Accuracy is the percentage of examples correctly classified by an hypothesis. Coverage of an
hypothesis h is the number of positive (positive cover) and negative examples (negative cover)
derivable from B ∧ h. The time needed to compute the coverage of an hypothesis depends
primarily on the cardinality of E (i.e., E+ and E−) and on the theorem proving effort required
to evaluate the background knowledge.
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induce(B,C,E)
Input: Background knowledge B, hypotheses constraints C, and a finite training set E =
E+ ∪ E−.
Output: A set of complete and consistent hypotheses H .
1. i = 0
2. Hi = ∅

3. if E+ = ∅ then return Hi

4. i = i + 1
5. Train = E+ ∪ E−

6. e+

i = select an example from E+

7. ⊥i= saturate(B, C, Hi−1, e
+

i )
8. hi = search(B, C, T rain, Hi−1, e

+

i ,⊥i)
9. Hi = Hi−1 ∪ hi

10. Ecovered = {e | e ∈ E+ ∧ B ∪ Hi � e}
11. E+ = E+ \ Ecovered

12. goto step 3

Figure 1. A general induction procedure based on MDIE.

2.2. The Mode-Directed Inverse Entailment approach to ILP

From the point of view of an ILP system, induction can be seen as an iterative process of
repeatedly applying an algorithm to traverse the hypothesis space searching for a satisfactory
clause. Next, we discuss a widely implemented algorithm, Mode-Directed Inverse Entailment

(MDIE), a procedure that uses inverse entailment together with mode restrictions to find new
clauses [24]. Figure 1 shows a general implementation of an induction procedure based on
MDIE.

Starting from a set of examples E, a background knowledge B, and some constraints C,
the induce() procedure follows a greedy cover set approach to induce a theory H . The most
interesting steps in the algorithm are saturation (step 7), reduction (step 8) and cover removal

(steps 10 and 11). Saturation constructs the most specific clause ⊥i (B, C, Hi−1, e
+

i ) a definite
clause that is used to constrain the search space. The search() procedure does most of the
work. MDIE systems work top-down, by adding literals from the bottom-clause to an existing
clause. Bottom-clauses can grow to thousands of literals: one of the constraints in C imposes
a limit on the number of hypotheses generated, thus ensuring that search() terminates. If
no hypothesis is found by search() then example ei is returned. The cycle then continues by
cover removal : it removes the examples covered by the new rule and searches for a clause that
covers the remaining examples.
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2.3. Coverage Lists and Coverage Caching

Coverage computation is performed for each generated hypothesis during the search procedure
(step 8 in Figure 1). To reduce the time spent on computing hypotheses’ coverage, ILP systems
such as Aleph [52], FORTE [37], IndLog [6], and April [15], maintain lists of examples covered
(coverage lists) for each hypothesis that is generated during execution. Coverage lists are used
in these systems as follows. An hypothesis hi is generated by applying a refinement operator
to another hypothesis hj. Let Cover(hj) = {all e ∈ E such that B ∧ hj � e}, where B is
the background knowledge and E is the set examples. Since hj is more general than hi then
Cover(hi) ⊆ Cover(hj). Taking this into account, when testing the coverage of hi it is only
necessary to consider examples of Cover(hj), thus reducing the coverage computation time.

Cussens [9] extended this scheme by proposing a kind of coverage caching. The coverage lists
are permanently stored and reused whenever necessary, thus avoiding the need to recompute
the coverage of some hypotheses. Coverage caching reduces the effort in coverage computation
at the cost of significantly increasing memory consumption. Efficient data structures should
be used to represent coverage lists to minimize memory consumption.

Another approach is taken in the FOIL [35] system. FOIL keeps all possible bindings for the
variables appearing in the hypothesis, thus reducing the theorem proving effort in coverage
computation when new literals are added to it. This approach is limited in two ways: first, it
requires large amounts of memory, as in the case of coverage lists; second, it is restricted to
algorithms that greedily explore the search space due to the amount of memory required.

3. Lazy Evaluation of Examples

A general ILP system spends most of its time generating and evaluating hypotheses. Generating
hypotheses is computationally very cheap. A significant percentage of the overall time of an ILP
system is spent in the evaluation of hypotheses, either because the number of examples is large
or because testing each example is computationally hard [5]. Lazy evaluation of examples [8] is
a technique that aims at speeding up the evaluation of hypotheses by avoiding the unnecessary
use of examples in the coverage computations. It is usable in any general purpose ILP system
and does not affect the completeness of the hypotheses search. The term lazy evaluation is
used in the sense of making the minimal computation to obtain useful information.

We distinguish between lazy evaluation of positive examples, lazy evaluation of negative
examples and total laziness. Figure 2 presents the complete lazy evaluation algorithm. We
next describe in more detail each form of lazy evaluation.

3.1. Lazy Evaluation of Negatives

One can observe that, in any case, an hypothesis will only be accepted if it is consistent
with the negative examples. We will designate a clause that is inconsistent with the negative
examples (the hypothesis being too general) a partial clause. Lazy evaluation takes advantage
of this observation.
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lazy evaluation(h,B,H,C,E+
cur,E

−,LazyType)
Input: Hypothesis h, Background knowledge B, current theory H , hypotheses constraints C,
set of positive examples E+

cur, set of negative examples E−, and type of evaluation LazyType.
Output: The number of positive (Pos) and negative (Neg) examples covered by h.
Neg = 0
Pos = 0
Noise = C(NOISE)
MinCover = C(MINCOV ER)
MaxNegs =| E− |
MaxPos =| E+ |
if LazyType = NEGATIV ES then

Pos = compute coverage(h, B, H, E+
cur)

if Pos < MinCover then Neg = MaxNegs
else Neg = compute lazy coverage(h, B, H, E−, Noise + 1)

elseif LazyType = POSITIV ES then
Pos = compute lazy coverage(h, B, H, E+

cur, MinCover)
if Pos < MinCover then Neg = MaxNegs
else

Neg = compute lazy coverage(h, B, H, E−, Noise + 1)
if Neg > Noise then Pos = MaxPos, Neg = MaxNegs
else Pos = compute coverage(h, B, H, E+)

elseif LazyType = TOTAL then
Neg = compute lazy coverage(h, B, H, E−, Noise + 1)
if Neg > Noise then Pos = MaxPos
else Pos = compute coverage(h, B, H, E+

cur)
return (Pos, Neg)

compute lazy coverage(h,B,H,E,Limit)
Counter = 0
for each e in E do

if h ∧ B ∧ H ⊢ e then
Counter = Counter + 1
if Counter = Limit then break

return Counter

Figure 2. Lazy evaluation algorithm. The type of laziness (lazy evaluation of positive examples, lazy
evaluation of negative examples and total laziness) is defined by the parameter LazyType.
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In some applications, an hypothesis is allowed to cover a small number of negative examples
(the noise level). If a clause covers more than the allowed number of negative examples it must
be specialized. Otherwise, the search for further refinements of the partial clause terminates
there. In these circumstances lazy evaluation of the negative examples should be useful. When
using the lazy evaluation of negatives, we are only interested in knowing if the hypothesis
covers more than the allowed number of negative examples or not. One is not really interested
to know how much more negative examples a hypothesis covers than allowed. Hence, testing
stops as soon as the number of negative examples covered exceeds the allowed noise level or
when there are no more negative examples to be tested. The noise level is quite often very close
to zero and therefore the number of negative examples tested in each clause may be very small.
It is also common that the negative examples largely outnumber the positives. If the heuristic
does not use the negative counting then this produces exactly the same results (clauses and
accuracy) as the non-lazy approach but with a reduction on the number of negative examples
tested.

3.2. Lazy Evaluation of Positives

One may also allow the positive cover to be evaluated lazily. A partial clause must be either
specialized (if it covers more positives than the best consistent clause found so far) or justifiably
pruned away otherwise. When using lazy evaluation of positives we start by determining if an
hypothesis covers more positives than the current best consistent hypothesis. If it does, we then
evaluate the positive examples just until we exceed the best cover so far. If the best cover is
exceeded we retain the hypothesis (either accept it as final if consistent or refine it otherwise),
otherwise we may justifiably discard it. We need to evaluate its exact positive cover only when
accepting a consistent hypothesis. In the event of this latter case we do not need to restart
the positive coverage computation from scratch, we may simply continue the test at the point
where we left it before the negative coverage computation. Also in this later case we update
the best positive counting.

3.3. Total Laziness

As pointed out earlier, generating hypotheses is computationally very cheap. We may thus
consider the possibility of generating more hypotheses if that contributes to the reduction
of the effort of evaluating them. We may therefore go a bit further with the lazy evaluation
proposal and simply do not evaluate the positive cover at all for partial clauses. We may
design the evaluation of an hypothesis in a two step process. In the first step we perform a
lazy evaluation of negatives examples. If the clause is inconsistent then we are done, no extra
evaluation effort is required and the clause is retained for specialization. On the other hand
if we find a consistent clause then an exact positive coverage is carried out. The advantage of
the total laziness is that for each partial clause we only test it on the negatives until it covers
a number of negative examples equal to the noise level plus one.

One should note that in systems that constrain the number of hypotheses generated, it is
necessary to relax the nodes limit (i.e., increase the limit of generated hypotheses). Although
we may generate more hypotheses, we may still gain by the increase in speed of their evaluation
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process since computational cost of generating hypotheses is usually much smaller than that
of evaluating them.

3.4. Lazy Evaluation Considerations

When performing lazy evaluation of positive and negative examples we may use a breadth-first
search strategy. This seems a good choice given that, in most applications, one looks for short
clauses, that are very close to the top of the subsumption lattice.

Some systems like Progol [24], Aleph [52] or IndLog [6] rely on heuristics to guide the search
for an hypothesis. If the search is complete then the role of the heuristic is just to improve
speed, the final hypothesis should be independent of the heuristic used. Progol, for example,
uses a best first algorithm in which the heuristic value of each clause is computed on the basis of
the number of positive and negative examples covered and length of the clause. It is important
for such heuristic to determine the exact number of examples covered. Note that performing
lazy evaluation limits the use of heuristics and pruning, because the computed coverage for a
given clause may be inaccurate.

Lazy evaluation may be used together with other ILP speedup techniques to further increase
the efficiency of the system. Lazy evaluation of negative examples may be used with the
coverage caching technique described in Section 2.3. Lazy evaluation of either negative or
positive examples cannot be used simultaneously with the technique called lazy evaluation of

literals [49]. To compute the constant values of the lazily evaluated literals, all of the positive
and negative covered examples have to be computed exactly. Furthermore, lazy evaluation of
negatives is not applicable in data sets with positive examples only, or when a compression
measure [24] or an user defined cost function[49], as available in Aleph and IndLog, is used.

The lazy evaluation technique is also directly applicable to stochastic search [48] since this
type of search does not rely on heuristics. Stochastic search has been shown to be adequate
for very large search spaces. Hence, combining lazy evaluation with stochastic search may be
useful to search very large (intractable) search spaces.

4. Tries

Tries were originally invented by Fredkin [17] to index dictionaries and have since been
generalized to index recursive data structures such as terms. Please refer to [31, 23, 3, 19, 36]
for the use of tries in automated theorem proving, term rewriting and tabled logic programs.

The basic idea behind the trie data structure is to partition a set T of terms based upon
their structure so that looking up and inserting these terms will be efficiently done. The trie
data structure provides complete discrimination for terms and permits look up and possibly
insertion to be performed in a single pass through a term.

4.1. Applicability

An essential property of the trie structure is that common prefixes are represented only once.
The efficiency and memory consumption of a particular trie data structure largely depends on

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 00:1–7
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the percentage of terms in T that have common prefixes. For ILP systems, this is an interesting
property that we can take advantage of because the hypothesis space is structured as a lattice
and hypotheses close to one another in the lattice have a largely common structure. More
specifically, hypotheses in the search space have common prefixes (literals), and some related
information is also similar (e.g. the list of variables in an hypothesis is similar to other lists of
variables of nearby hypotheses). This clearly matches the common prefix property of tries. We
thus argue that tries form a promising alternative for storing hypotheses and some associated
information.

4.2. Description

At the entry point of a trie we have the root node. Internal nodes represent symbols in terms
and leaf nodes specify the end of terms. Each root-to-leaf path represents a term described by
the symbols labelling the nodes traversed. Two terms with common prefixes will branch off
from each other at the first distinguishing symbol. Inserting a new term requires traversing the
trie starting at the root node. Each child node specifies the next symbol to be inspected in the
input term. A transition is taken if the symbol in the input term at a given position matches a
symbol on a child node. Otherwise, a new child node representing the current symbol is added
and an outgoing transition from the current node is made to point to the new child node. On
reaching the last symbol in the input term, we reach a leaf node in the trie.

Figure 3 presents an example for a trie with three terms. Initially, the trie contains the root
node only (not shown in the figure). Next, we insert f(X, a). As a result, we create three nodes:
one for the functor f/2, next for the variable X , and last for the constant a (Figure 3(a)). The
second step is to insert g(X, b, Y ). The two terms differ on the main functor, so tries bring
no benefit here (Figure 3(b)). In the last step, we insert f(Y, 1) and we save the two nodes
common with term f(X, a) (Figure 3(c)).

Notice the way term tries represent variables. We follow the formalism proposed by Bachmair
et al. [3], where each variable in a term is represented as a distinct constant. Formally,
this corresponds to a function, numbervar(), from the set of variables in a term t to the
sequence of constants <VAR0, ...,VARN>, such that numbervart(X) < numbervart(Y ) if X
is encountered before Y in the left-to-right traversal of t.

4.3. Implementation

The trie data structure was implemented in C as a shared library. Since the ILP system we
used for testing is implemented in Prolog, we developed an interface to tries as an external
Prolog module.

Tries are implemented by representing each trie node by a data structure with four fields
each. The first field stores the symbol for the node. The second and third fields store pointers
respectively to the first child node and to the parent node. The fourth field stores a pointer
to the sibling node, in such a way that the outgoing transitions from a node can be collected
by following its first child pointer and next the list of sibling pointers of this child. Figure 4
illustrates the actual implementation for the trie presented in Figure 3. Observe that we can
collect all children of a node, and that we can always reach the root from a leaf node.
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Figure 3. Using tries to represent terms.
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Figure 4. The implementation of the trie in Figure 3(c).
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Inserting a term requires in the worst case allocating as many nodes as necessary to represent
its complete path. On the other hand, inserting repeated terms requires traversing the trie
structure until reaching the corresponding leaf node, without allocating any new node.

Searching through a chain of sibling nodes that represent alternative paths could be too
expensive if we have a large number of nodes. To avoid this problem we extended the trie
data structure with an hashing mechanism. A threshold value (8 in our implementation)
controls whether to dynamically index the sibling nodes through a hash table, hence providing
direct node access and optimizing search. Further, hash collisions are reduced by dynamically
expanding the hash tables.

When reconstructing a term back as a Prolog term, the trie nodes for the term in hand are
traversed in bottom-up order, starting from its leaf node until reaching the root node. The trie
structure is not traversed in a top-down manner because the insertion and retrieval of terms is
an asynchronous process, new trie nodes may be inserted at anytime and anywhere in the trie
structure. This induces complex dependencies that limit the efficiency of alternative top-down
reconstructing schemes.

As a final note we should mention that besides atoms, integers, variables and compound
terms (functors) presented in the examples, our implementation also supports terms with
floats and pairs (lists).

5. RL-Trees

The RL-tree (RangeList-Tree) data structure is based on a generic data structure called
quadtree [39] that has been largely used in application areas such as Image Processing,
Computer Graphics, or Geographic Information Systems. Quadtree is a term used to represent
a class of hierarchical data structures whose common property is that they are based
on the principle of recursive decomposition of space. Quadtrees based data structures are
differentiated by the type of data that they represent, the principle guiding the decomposition
process, and the number of times the space is decomposed. The RL-tree data structure
is designed to store lists of intervals representing integer numbers. For example, the list
[1, 2, 5, 6, 7, 8, 9, 10] is represented as the list of intervals [1− 2, 5− 10].

5.1. Applicability

To reduce the time spent on computing clauses coverage some ILP systems, such as Aleph [52],
FORTE [37], IndLog [6], and April [15], maintain lists of examples covered (coverage lists) for
each hypothesis that is generated during execution.

The data structure used to maintain coverage lists in systems like IndLog and Aleph are
Prolog lists of integers. Two lists are kept for each clause: the list of positive examples covered
(numbered from 1 to | E+ |) and the list of negative examples covered (numbered from 1 to
| E− |). Each example is represented by a number in the list. The above mentioned systems
reduce the size of the coverage lists by transforming a list of numbers into a list of intervals.
Using a list of intervals to represent coverage lists is an improvement over lists of numbers
but it still presents some problems. First, the efficiency of performing basic operations on the
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interval list is linear on the number of intervals. Second, the representation of lists in Prolog is
not very efficient regarding memory usage. To tackle these problems, we propose the RL-tree
data structure to achieve efficient storage and manipulation of coverage lists, including fast
insertion, removal and retrieval of data. The RL-trees can be implemented in any ILP system
be it Prolog based or not.

5.2. Description

In the design and implementation of RL-trees, the following assumptions were made: intervals
are disjoint; updates consist of adding or removing numbers; and, the domain (an integer
interval) is known at creation time.

RL-trees have two distinct types of nodes: list nodes (represent a fixed interval of size LI)
and range nodes (represent an interval that is subdivided into sub-intervals). The number of
sub-intervals in each range node is B (an implementation parameter).

In the vein of quadtrees, each “cell” (square) in a node is painted black if the example is
covered (list nodes) or the interval is completely covered (range nodes). It is painted gray if
the interval is partially covered (range nodes) and is white if the example is not covered (list
nodes) or the interval is not covered at all (range nodes).

Again, as in quadtrees, the underlying idea of RL-trees is to represent a disjoint set of
intervals in a domain by recursively partitioning the domain interval into equal sub-intervals.
The number of partitions performed depend on B, the size of the domain, and the size of list
node interval LI. Since we are using RL-trees to represent coverage lists, the domain is [1, NE]
(denoted as RL-tree(NE)) where NE is the number of positive or negative examples.

A RL-tree(N) has the following properties: LN = ceil(N/LI) is the maximum number of
list nodes in the tree; H = ceil(logB(LN)) is the maximum height of the tree; all list nodes are
at depth H ; root node interval range is RI = BH ∗LI; all range node interval bounds (except
the root node) are inferred from its parent node.

Figure 5 represents different intervals in a RL-tree(65) with the LI and B parameters set
to 16 and 4, respectively. Each group of four squares represents a range node and each square
in a range node corresponds to a sub-interval. A sixteen square group represents a list node
and each square in a list node corresponds to an integer. By applying the properties described
above one knows that the maximum height of an RL-tree(65) is 2 and that the maximum
root node range is [1− 256]. Thus, each sub-interval of the root node represents an interval of
64 integers. Figure 5(a) and 5(b) show, respectively, the empty ([ ]) and complete ([1 − 65])
intervals. Figure 5(c) presents a more elaborated interval ([1 − 32, 53 − 54, 56 − 58, 60 − 65]).
Note however that, even though it seems more complex, the number of nodes is the same as
for interval [1] .

5.3. Implementation

As the trie data structure, the RL-tree was implemented in C as a shared library. We have
also developed an interface to RL-tree as an external Prolog module for the ILP system used
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[49-64]

[65-65][1-64]

[1-65]

[17-32][1-16] [33-48] [49-64]

[1-64]

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

[---] [---]

RL-tree(65)

[65-65][1-64]

[1-65]

[---] [---]

RL-tree(65)

[65-65][1-64]

[1-65]

[---] [---]

RL-tree(65)

(a) Interval []

(b) Interval [1-65]

(d) Interval [1-32,53-54,56-58,60-65]

Figure 5. Representing intervals in a RL-tree(65).

in the experiments. Both Tries and RL-trees are now publicly available and integrated in the
Yap Prolog system‡.

Like other quadtree data structures [40], a RL-tree can be implemented with or without
pointers. We chose to do a pointerless implementation (using an array) to reduce memory
consumption. The LI and B parameters were set to 16 and 4 respectively.

The range node is implemented using 16 bits. Since we divide the intervals by a factor of
4, each range node may have 4 sub-intervals. Each sub-interval has a color associated (white,
black, or gray) that is coded using 2 bits (thus a total of 8 bits are used for the 4 sub-intervals).
The other 8 bits are used to store the number of sub-nodes of a node. This information is used
to improve efficiency by reducing the need to traverse the tree to determine the position, in
the array, of a given node. The list nodes use 16 bits, one bit for each number (example). The
number interval represented by a list node is inferred from its parent range node.

‡http://www.dcc.fc.up.pt/∼vsc/Yap
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The operations implemented for a RL-tree(N) and their complexity (regarding the number
of sub-intervals considered) are:

• Create a RL-tree: O(1);
• Delete a RL-tree: O(1);
• Check if a number is in a RL-tree: O(H).
• Add a number to a RL-tree: O(H)
• Remove a number from a RL-tree: O(H)

Current implementation of RL-trees uses, in the worst case, (4H+1 − 1)/3 nodes.
The worst case occurs when the tree requires all LN list nodes. Since each node in

the tree requires 2 bytes, a RL-tree(N) will require, in the worst case, approximately
((4H+1 − 1)/3) ∗ 2+ C bytes, where C is the memory needed to store tree header information.
In our implementation C = 20.

There are other data structures that may be used to achieve the same purpose of RL-Trees,
namely bit-vectors and C-lists. In the worst case scenario, a RL-Tree consumes more memory
than the bit-vectors and substantially less memory than C-lists. However, this worst case
scenario should not occur, or occur very rarely. On average, a RL-tree consumes less memory
than bit-vectors or C-lists but is slightly slower than bit-vectors. Note that in the best case
scenario a RL-Tree only requires a single byte compared to a constant size for the bit-vectors,
which is specially important for large data sets.

6. Indexing Logic Programs

Many ILP systems use logic programming technology in their implementation. It is therefore
legitimate to ask whether inefficiencies in logic programming impact ILP system performance,
and whether logic programming systems can be improved towards achieving greater scalability
in ILP.

Most of the applications of ILP we have seen largely learn from extensional data, that is, from
large static tables of symbols or numbers. Computation of numerical values or manipulation
of data structures seems to be less frequent. Relations often have large arities (although some
practitioners do prefer binarised relations) and queries follow a variety of instantiation patterns.
This suggests the need for a sophisticated indexing mechanism.

ILP systems further need to maintain a large search space. This is a database maintenance
problem, but now over a dynamic data structure which suffers frequent updates. This creates
a rather more complex situation where the effort in building indices may be more than the
actual advantages gained from their usage.

In the following discussion we give a brief overview of how these issues have been studied in
the Yap Prolog system [42, 45].

6.1. Static Indexing

Many modern Prolog systems follow David H. D. Warren’s work on the Warren Abstract
Machine (WAM) [53] and implement a simple form of indexing which relies on the main
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Try_me

Trust_me

append([],L,L).

append([H|T],L,[H|NT]...

A1
VAR CONS PAIR APPL

Figure 6. WAM indexing for append/3.

functor of the first argument to select a subset of all clauses. If this subset has several clauses,
Prolog systems try clauses one by one. As an example, consider a well-known list concatenation
predicate that says that the third argument is the concatenation of the first two arguments:

append([], L, L).

append([H|T], L, [H|NT]) :- append(T, L, NT).

Figure 6 shows the basic structure of the WAM-based indexing code for the predicate. The
top node is known as a type-switch node: it dispatches according to the first argument’s type.
If the first argument, A1 is unbound, all clauses will be tried in sequence. If A1 is a non-empty
list, only the second clause needs to be considered. If A1 is a constant the first clause will be
tried. Last, if A1 is bound to something else the procedure is guaranteed to fail. Note that, in
this code, each clause can be accessed in two different ways: one is when A1 is unbound, the
other when A1 is bound.

Using traditional WAM indexing on ILP applications shows several limitations. First, ILP
systems do not always have the first argument bound. It is quite possible that the second
argument is the only one bound. It is also possible that the first and the second would be
bound together. Or maybe only the third. In such cases, the WAM indexing code may result
in having to try every clause. On the other hand, generating indexing code for every argument
would be extremely space-expensive [34, 46].

We propose just-in-time indexing: our idea is to apply the Just-In-Time compilation
strategy [2] so that we will generate all indices required, and only the indices required. We
build the tree from similar building blocks to the WAM but we (i) generate indices based on
the instantiation on the current goal; and (ii) expand indices given different instantiations for
the same goal.

Figure 7(a) shows a compact representation of an indexing tree for the atm/5 predicate that
is part of the background knowledge in the Carcinogenesis data set. In what follows we assume
that the background knowledge contains definitions of the atm/5 predicate for 3 molecules:
d1, d2 and d3 (the A1 argument). The tree is built given the initial query:
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d2

c

22

d1 d3

A1

A3 A3

A4

d2

c

22

d1 d3

A3 A3

A4

A5
-0.003 var

A1

(a) (b)

Figure 7. JIT indexing for atm/5: (a) after the initial query ?- atm(d2,B,c,22,X); (b) after the
query?- atm(d2,B,c,22,-0.003).

?- atm(d2,B,c,22,X).

Through query observation we find three bound arguments: A1, A3, and A4. In its first
invocation, the algorithm builds all indices for A1. If A1 does not determine a clause, the
algorithm builds a sub-tree for A3, and last it uses A4. As an example, if A1 is d1, we can
commit to a clause immediately, so the algorithm stops there. If A1 is d2, we have to walk
through the other two arguments. In the case A3 = c and A4 = 22 we still have three matching
clauses, so we need to setup a chain of clauses. Last, if A1 is bound to d3 it is sufficient use A3

to commit. The full tree gives us perfect indexing for the cases where A1, A3, A4 are bound,
and that A2 and A5 are unbound.

As the ILP search generates more hypotheses, we may again call atm/5, for example with
more instantiated queries, say:

?- atm(d2,B,c,22,-0.003).

Figure 7(b) shows the result. The algorithm expand the existing tree using the extra
information that A5 is also bound. The algorithm follows a lazy heuristic and only expands
the path A1 = d2, A3 = c, A4 = 22. Other paths may be expanded later, if they benefit from
more instantiated arguments.
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d2d1 d3

c

22

A3 A3

A4

A5

-0.003 var-1.0

first occurrence
of -1.0

A1 A1

d2d1 d3

c

22

A3 A3

A4

A5

-0.003 var-1.0

(a) (b)

Figure 8. (a) Assert on atm/5. (b) Retract on atm/5.

The tree is thus expanded to support checking A5. Notice that we do not throw the previous
code away: the switch node for A4 forks depending on whether A5 is bound or not. The new
code supports the case when A5 is bound, the old case corresponds to the case A5 is unbound.
Actual implementation is achieved by leaving hooks in the switching tree whenever we skip
originally unbound arguments. Although such hooks can spend a significant amount of space
and somewhat delay execution, they do bring flexibility.

6.2. Dynamic Indexing

Consider now that we have update operations such as assert or retract. One alternative
would be simply to destroy the indexing tree every time we change the database. Unfortunately,
in the worst case doing so might result in generating an entire tree every time we query. A less
expensive solution is to to manipulate the indexing tree so that it is always consistent with
the database.

Figure 8 (a) shows an example where we insert a new clause for atm/5:

?- assert(atm(d2,B,c,22,-1.0)).
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The clause differs from a previous one only in the last argument, so we only actually have
to update the value switch node for A5 and insert the new clause in the unbound chain for A5.
Our algorithm walks the index tree in order to find the minimal set of expansions to a tree. If
we cannot find such a set, the algorithm kills the tree and restarts from scratch.

The algorithm for retracting follows the same lines. Consider:

?- retract(atm(d2,B,c,22,-1.0)).

That is, we now decide to remove the clause we just added. The necessary operations are the
reverse of the insert operations: we remove the branch for A5 = −1.0 and we contract the
chain for var(A5), as shown in Figure 8 (b).

7. Experiments and Results

In order to assess the impact of our proposals on memory usage and execution time, we next
present a detailed study for a diverse set of ILP applications. Most of these techniques do not
affect accuracy, but regarding the lazy evaluation technique, we also study the impact on the
accuracy of the models found.

7.1. Experimental Settings

Our experiments were performed on an AMD Athlon(tm) MP 2000+ dual-processor PC with
2 GB of memory, running the Linux RedHat (kernel 2.4.25) operating system. We used the
Yap Prolog system versions 4.4 (last release with the traditional indexing scheme) and 4.5
(first release with the new indexing scheme), and the April ILP system version 0.9 [15]. We
chose Yap because it is one of the fastest available Prolog systems [41, 11] and April due to
our knowledge regarding its implementation. However, we should point out that our proposals
are also applicable to other ILP systems. We performed 3-fold cross-validation. The values
presented throughout this section are the average of the values obtained on the three folds.

The April system uses Prolog. It implements a greedy covering algorithm similar to the
one described in Section 2. April was configured to perform breadth-first search to find each
hypothesis. The hypotheses generated during a search are evaluated using a heuristic that
relies on the number of positive and negative examples. Recall that with lazy evaluation we
do not have the exact coverage value for an hypothesis, thus potentially leading to a different
ordering of hypotheses and, therefore, different final theories.

We used a total of thirteen data sets in our experiments. The data sets were downloaded
from repositories at the Universities of Oxford§, York¶, Tokyo‖, Torino ∗∗, and from the MLnet
Online Information Service††.

§http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn
¶http://www.cs.york.ac.uk/mlg
‖http://www.ia.noda.sut.ac.jp/ilp
∗∗http://www.di.unito.it/ mluser/challenge
††http://www.mlnet.org
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Table I. Data sets and settings used in the experiments.

Characterisation Settings
Data Set

| E+ | | E− | | B | nodes i-depth noise minpos

Amine uptake 343 343 32 2,500 2 10 20
Carcinogenesis 182 155 38 5,000 2 5% 20%
Choline 663 663 32 4,000 3 5% 22
Krki 342 658 1 2,000 1 10 2
Krki II 3,241 6,760 1 2,000 1 10 2
Mesh 2841 290 29 2,000 3 25 100
Mutagenesis 125 63 21 2,000 2 2% 20%
Pyr imidines 1394 1394 244 2,500 2 25 50
Susi 252 8,979 18 2,000 7 4% 75%
P.m5.l15 200 200 5 30,000 1 0 100%
P.m8.l12 200 200 8 8,000 1 0 100%
Doc understanding 177 708 57 3,000 3 0 2
Throughdoor 21 135 6 10,000 2 0 10%

Table I characterizes the data sets in terms of number of examples (positive and negative)
as well as background knowledge size. Furthermore, it shows the main settings used on
each data set. The parameter nodes specifies an upper bound on the number of hypotheses
generated during the search for an acceptable hypothesis. In order to reduce the run time of
the experiments we limited the search space using relatively small search spaces, through a
low value for the nodes parameter. This has the effect of reducing the total memory usage and
execution time needed to process a data set, but at the cost of finding possible worse theories.
The i-depth [26] corresponds to the maximum depth of a literal with respect to the head literal
of the hypothesis. The noise parameter defines the maximum number or percentage of negative
examples that an hypothesis may cover in order to be accepted. Finally, minpos specifies the
minimum number or percentage of positive examples that an hypothesis must cover in order
to be accepted.

7.2. JIT Indexing

We start by studying the impact of the new indexing scheme. Figure 9 shows the impact
in execution time (a) and memory usage (b) that resulted from using April with Yap 4.5
compared to Yap 4.4. Remember that Yap 4.4 performs indexing on the first argument of
static predicates and no indexing for dynamic predicates, while Yap 4.5 implements the new
indexing scheme. A more complete set can be found in Table AI in the Appendix.

The results clearly show that Yap 4.5 is significantly faster than Yap 4.4. Yap 4.5 achieves
best improvements for data sets with long running times such as Ami and Carc, with superb
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a. Speedup

b. Variation in memory usage

Figure 9. Impact of the JIT indexing scheme.
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speedups up to 100 times faster. The worst results are observed in Kr and KrII , where the
two versions of Yap achieve almost the same performance. These are also the two data sets
that take less time to run. The Mut data set is also interesting in that it has long running
times but a relatively small speedup (only twofold). This happens because the most time is
spent on recursive procedures where the more sophisticated indexing does not help as much.

Building the intermediate indices may result in significant increases in memory usage. This
is indeed the case for Mut , P.m5 , and P.m8 . Note that the P.m data sets have a 10 fold
increase in performance at the cost of increasing memory usage. It is interesting to observe that
the newer version of Yap can actually require less space for one specific data set, Mesh . The
newer implementation of indexing simplifies the implementation of logical update semantics,
thus allowing recovering space more easily.

The results demonstrate that indexing is indeed a major factor in the performance of ILP
applications. Although further work should be done to improve performance in data sets such
as Mut and memory usage in P.m5 and P.m8 , we believe that the results show that we are
following the correct path. Therefore, in the remainder of the study we use Yap 4.5.

7.3. Lazy Evaluation

We next study the impact of using lazy evaluation. Table II shows the impact of using the three
different forms of lazy evaluation: on the negatives, on the positives, and on both. We measure
the variation in: the number of hypotheses generated (|S|); accuracy on unseen examples (Acc);
and execution time (T ime). The references for the values in the tables of this section are the
values obtained by April using no optimization and the same breadth-first search strategy.

The results presented reflect the impact of using lazy evaluation over coverage caching. Both
techniques, lazy evaluation and coverage caching, aim at reducing the number of examples
used during hypotheses evaluation, hence reducing the execution time. Thus we believe it is
paramount to see how these two techniques behave together. For completeness, Table AII in
the Appendix presents results of using only lazy evaluation.

Best results were obtained with lazy evaluation of negatives and total laziness, both with
an average reduction of 20% in the execution time. Accuracy and search space were largely
unchanged. Total laziness does not always improve execution time over laziness in negatives.
An example is P.m5 , where using total laziness results in increased search space, and, in
turn, in longer execution times. The worst results were observed with the lazy evaluation of
positives, with an average increase in the execution time of 146%. The impact on accuracy is
practically nonexistent.

Overall, lazy evaluation of negatives reduced execution time and had a small effect on search
space and accuracy. To explain these results it is important to recall how cover removal proceeds
in MDIE systems. Theory construction in MDIE systems use a greedy cover algorithm that
proceeds seed by seed. In general, the algorithm prefers focusing the search on clauses with
high positive cover. On the other hand, the number of clauses constructed per seed is bound by
the nodes parameter. Most of the time, in our experiments, this limit is actually reached. When
search stops because the limit is reached, only a part of the search space is explored. Thus,
the algorithm may terminate without finding a clause or a with a clause that only covers few
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Negative Positive Total Laziness
Data Set | S | Acc Time | S | Acc Time | S | Acc Time
Ami -1% 0% -24% 20% -1% 31% 3% 0% -26%
Carc 0% 0% -10% 6% 7% -5% 4% 4% -3%
Cho 4% 0% -12% 66% 0% 204% -5% 0% 21%
Kr 0% 0% -20% 38% 0% 141% 0% 0% -41%
KrII 0% 0% -43% 276% 0% -75% 6% 0% -75%
Mesh 0% 0% -1% 30% -4% 132% 3% -1% -22%
Mut -4% -1% -1% 0% 0% 1460% -5% -1% -49%
Pyr 2% 0% -33% 11% 2% -44% -1% 0% -78%
Susi 0% 0% -88% 191% 0% -86% 0% 0% -84%
P.m5 0% 0% 2% 39% 0% 95% 39% 0% 92%
P.m8 0% 0% 2% 3% 0% -2% 3% 0% 8%
Doc 2% 0% -35% 12% 0% -25% 11% 0% -32%
Thr 0% 0% -3% 4162% 0% 70% 26% 0% 24%

Table II. Impact of lazy evaluation.

examples. In either case, the cover removal step will only remove a small number of examples.
This leads to more seeds being considered (more iterations of the algorithm).

Lazy evaluation of negatives preserves “correct” counting for the positives and uses that
information to, while searching, first expand clauses with high positive cover. Therefore we
would not expect significant differences from search without lazy evaluation of negatives.
However, if positives are counted “incorrectly” (lazy evaluation of positives and total laziness)
the clauses with high positive cover may not be chosen first and the search may terminate (due
to the nodes limit) before they are generated. In this later case, the number of constructed
clauses may differ significantly from a search that does not use lazy evaluation since the
algorithm will need more iterations to complete, i.e., to cover all the positive examples.

We next present a more detailed analysis of the results for each lazy evaluation approach.

7.3.1. Lazy Evaluation of Negatives

Lazy evaluation of negatives reduces the execution time in almost all data sets considered, and
it has a small effect on search space and accuracy.

Figure 10 gives more information about the behavior of lazy evaluation of negatives. It shows
that the improvements in the execution time tend to be better on the data sets with greater
percentage of negative examples. This is supported by the results observed in the Kr and
KrII data sets where, in spite of differing only on the number of examples, the reduction in
the second data set was twice the reduction observed in the first. The Susi data set, the data
set with the largest number of negative examples, has the best results with a reduction in the
execution time of 88%.
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Figure 10. Impact of lazy evaluation of negatives. It presents the variation in the number of positive (+)
and negative (−) examples evaluated, the variation in the execution time, the weight of the negative
examples on the total number of examples (%Neg), and the variation in the number of examples

evaluated (Eval).

One can also observe that, in general, the reduction in the execution time follows the
variation on the number of examples evaluated. The exception is observed in the P.m8 and
P.m5 data sets, where the decrease in the total number of examples evaluated lead to an
increase in the execution time of 2%. We know, from observing Table AII (in the Appendix),
that lazy evaluation of negatives reduces the execution time when not used together with
coverage caching. Therefore, the cause of the 2% increase in the execution time is the overhead
of using coverage caching with lazy evaluation.

In summary, lazy evaluation of negatives reduced considerably the execution time without
affecting negatively the accuracy of the models found. The reduction on the execution time
tends to increase as the number of negative examples increases.

7.3.2. Lazy Evaluation of Positives

The results observed using lazy evaluation of positives are, in general, considerable worse
compared to those of lazy evaluation of negatives. In most cases, lazy evaluation of positives
increased considerably the execution time and search space. The exceptions were only observed
in KrII , Pyr , Susi , P.m8 , and Doc data sets, where the execution time decreased (ranging
from 2% to 86%). We show in Figure 11 a more detailed analysis using the same parameters
as in the previous approach.
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Figure 11. Impact of lazy evaluation of positives.

The good results on the data sets mentioned above can be explained by the reduction on
the number of examples evaluated (Eval), and, simultaneously, by the small increase in the
search space. The bad results follow from an increase of the search space, together with an
increase in the number of positive examples evaluated.

It is curious to note that, for Thr , the execution time increased, notwithstanding of the
reduction on the number of examples evaluated. This indicates that, at least in this case, the
time to evaluate a positive example is higher than the time to evaluate a negative example.
The figure also makes it clear that the cost of evaluating examples varies significantly among
the data sets. For instance, an increase of 50% in the number of examples evaluated in Mut
resulted in a increase of more than 1400% in the execution time, while in Mesh an increase of
700% on the number of examples evaluated only increased the execution time by 100%. This
clearly shows that the cost of evaluating an example in Mut is significantly higher than in
Mesh .

In summary, lazy evaluation of positives can lead to significant increases in the search space.
As it turns out, this can actually result in evaluating more positive examples, thus leading to
longer runtimes.

7.3.3. Total Laziness

The results observed with total laziness show large variations depending on the data set.
For nine data sets the execution time decreased (46% on average), and for the other four it
increased (36% on average). Figure 12 shows more details. It presents the variation in the
number of positive (+) and negative (−) examples evaluated, the variation in the execution
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Figure 12. Impact of total laziness.

time, the variation in the number of hypotheses generated (| S |), and the variation in the
number of examples evaluated (Eval).

The major reduction in the execution time was observed on the Mut data set, mainly
because this data set pays a high cost of evaluating the examples against the hypotheses
generated. Curiously, in the P.m5 and Thr data sets there was an increase in the execution
time, in spite of the decrease in the number of examples evaluated. In these data sets, the cost
of evaluating an example against an hypothesis is very low, even when compared to the cost of
generating one hypothesis. Thus, the increase on the number of hypotheses generated results
in an increase in execution time.

In summary, for total laziness, the gains on the execution time depend, mainly, on the cost
of evaluating the hypotheses against the examples. Thus, this technique seems to be well suited
for data sets where the cost of evaluating an hypothesis against all examples is high.

7.4. Tries

We have used the trie data structure in the April system to store information about the
hypotheses. In fact, the trie data structure was used as a repository of Prolog terms (hypotheses
and lists), i.e., it was a substitute for Prolog’s internal database. It was used to store the
hypotheses themselves (Prolog clauses), the lists of variables in the hypotheses, the lists of
unbound variables in the hypotheses heads, and the lists of free variables in the hypotheses.
For each hypothesis, the quartet of references that represents this information in the trie, is
grouped together and stored by the April system in the Prolog internal database in an unique
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record associated with the hypothesis. When a record is fetched, the four references are used
to reconstruct the terms previously stored in the trie.

We next show, in Table III, the variation in the execution time and memory usage when
using tries compared to not using them. Note that the Memory parameter only includes the
memory used to store the information described above. The table shows that tries significantly
reduced memory consumption on all data sets. This reduction on memory usage increased 30%
when compared to initial results [14]. This improvement was a consequence of modifications on
April’s code that reduced the data stored outside the trie for the hypotheses generated, thus
increasing the weight of the terms stored in the trie. Regarding execution time, we expected a
slightly overhead as a result of using tries. This overhead is, on average, 5%.

Figure 13 shows, in more detail, how the variation in the execution time and memory usage
of each data set relates with the total number of examples (%E), total number of hypotheses
(| S |), total execution time (%T ime), and total memory usage (%Mem) on all data sets. More
precisely, we present the percentage in the total for each data set. In general, the overhead
in the execution time is more reduced in the data sets with longest execution times. This
suggests that the overhead of using tries tends to decrease as the execution time increases.
Further experiments are required to confirm this.

In conclusion, the tries data structure significantly reduces memory consumption with minor
costs in the execution time.

7.5. RL-Trees

Table III shows the impact on execution time and memory usage of using RL-trees. The
Memory parameter only accounts for the memory used to store coverage lists.

RL-trees accomplish our goal on reducing memory consumption. Compared to Prolog range
lists, the use of RL-tree reduced memory usage by 36%, on average. In general, these reductions
are achieved almost with no execution time overhead. In fact, we observed an average reduction
of 39% in the execution time. This is a substantial improvement when compared to the initially
reported results on RL-trees [14]. This improvement is mainly due to optimizations in the RL-
trees implementation.

The worst results were observed in the two artificial data sets, P.m8 and P.m5 . In these
data sets the use of RL-trees lead to an increase in execution time and memory usage. The
behaviour, in these cases, results from the fact that most of the hypotheses in the search space
cover all positive and almost all of the negative examples. Thus, for these data sets, RL-trees
are being compared with the best case for Prolog range lists.

Figure 14 shows more details about the variation in the execution time and memory usage
for each data set. By observing the figure, it is clear that the reductions on the execution time
and memory usage are directly related with the total number of examples (parameter %E).
Therefore, better performance is achieved in data sets with greater number of examples.

In conclusion, the RL-tree data structure clearly reduces memory usage without degrading
the execution time. In fact, for almost all data sets, it also significantly reduces execution time.
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a. Time analysis

b. Memory analysis

Figure 13. Impact of tries in more detail.
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a. Time analysis

b. Memory analysis

Figure 14. Impact of RL-trees in more detail.
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Tries RL-Trees Tries and RL-Trees
Data Set Time Mem Time Mem Time Total Mem
Ami +5% -47% -48% -40% -43% -14%
Carc +13% -51% -16% -31% -4% -6%
Cho +6% -50% -34% -30% -29% -8%
Kr +2% -44% -52% -37% -50% -1%
KrII 0% -40% -91% -81% -91% -12%
Mesh +1% -49% -83% -50% -82% -22%
Mut 0% -50% 0% -26% 0% 0%
Pyr +1% -53% -80% -65% -79% -32%
Susi 0% -47% -97% -85% -97% -4%
P.m5 +11% -51% +4% +3% +10% -4%
P.m8 +14% -46% +4% +4% +11% -1%
Doc +3% -42% -11% -28% -13% -5%
Thr +16% -6% 0% -2% +18% -5%

Table III. Impact of Tries and RL-trees alone and combined.

7.6. Tries and RL-Trees

We next evaluate the impact of using simultaneously tries and RL-trees. Table III shows the
variation in April’s execution time and total memory usage when using both data structures.
The impact of using both data structures is clearly positive.

In general, all data sets show less memory usage, with an average reduction of 9% on April’s
total memory usage. This reduction is more significant in the data sets that required more
memory, like Ami , Carc, Mesh and Pyr . We should point out that, on average, the data
stored in tries and RL-trees are, respectively, 11% and 13% of April’s total memory. These
weights increase as number of hypotheses generated and/or the number of examples of a data
set also increases. Obviously, these weights should also vary from ILP system to ILP system.

Execution time was also significantly reduced, 35% on average, when using tries and RL-
trees simultaneously. The only exceptions were observed in the the two artificial data sets,
p.m5 and p.m8 , and the Thr data set. This is closely related to the fact that the search
space or/and the number of examples in these data sets are smaller than for others.

In summary, by using tries and RL-trees we are able to improve April’s efficiency
significantly, both in the execution time and memory usage.

7.7. Lazy Evaluation of Negatives with Tries and RL-Trees

At last, we show in Table IV the impact of using simultaneously both data structures, together
with lazy evaluation of negatives, the globally best approach of the three presented. The table
shows the variation in April’s execution time and total memory usage.
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Data Set Time Total Mem
Ami -50% -14%
Carc -8% -6%
Cho -32% -9%
Kr -54% -1%
KrII -93% -12%
Mesh -82% -22%
Mut -1% -1%
Pyr -84% -34%
Susi -98% -4%
p.m5 +6% -9%
p.m8 +27% -9%
Doc -32% -6%
Thr +13% -5%

Table IV. Impact of lazy evaluation of negatives with tries and RL-trees.

The results observed when combining the techniques are, in general, slightly better than the
ones obtained using tries and RL-trees simultaneously.

7.8. Global Results

We conclude our study by presenting, in Table V, the impact of using all proposals: JIT
indexing, lazy evaluation of negatives, tries and RL-trees. The time values are in seconds and
memory values are in Kb.

The results show a speedup in all data sets, ranging from 1.85 to 600. From the previous
analysis we may conclude that these results are a consequence, primarily, of the new indexing
algorithm and, secondly, of the use of the proposed data structures together with lazy
evaluation. The overall results in memory usage are not so good. In half of data sets there is a
reduction in memory usage, substantial in some cases (like in Mesh), while in the remaining
data sets there is an increase. The increase was expected once we take into consideration the
increase in memory usage that results of JIT indexing. However, the proposed data structures
attenuated the increase, and in half of the cases, it was possible to reduce memory usage.

In short, the results demonstrate that our proposals significantly reduce the execution time
by several orders of magnitude on all data sets. In terms of memory usage, there is a reduction
in some cases and an increase in others. Thus, additional work should be done to further reduce
memory consumption.
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Reference All Together
Data Set

Time Mem Time Mem Speedup Mem (%)
Ami 4,628.92 20,593 19.58 19,272 236.45 -6.4
Carc 7,887.36 31,726 46.14 38,038 170.96 19.9
Cho 4,484.50 19,986 62.38 18,543 71.89 -7.2
Kr 0.62 2,791 0.24 3,084 2.63 10.5
KrII 39.77 5,807 2.99 4,874 13.29 -16.1
Mesh 5,740.76 35,425 30.73 12,822 186.83 -63.8
Mut 30,072.32 7,064 16,268.26 11,140 1.85 57.7
Pyr 3,731.91 18,080 20.47 12,287 182.31 -32.0
Susi 3,144.35 18,773 5.24 21,902 600.07 16.7
P.m5 159.16 36,739 11.43 59,891 13.93 63.0
P.m8 3,596.87 47,259 244.46 85,929 14.71 81.8
Doc 929.70 12,338 10.27 12,328 90.5 -0.1
Thr 3.26 5,228 1.31 5,482 2.49 4.9

Table V. Combined effect of all techniques.

8. Discussion and Conclusions

Inductive Logic Programming is a well established field of Machine Learning that addresses
learning from structured and multi-relational data in a logical framework. The usefulness of
ILP largely depends on its ability to scale up over larger and more complex applications. We
study three strategies to improve the scalability of ILP: at the lower-level we address theorem
proving performance in a very general and ILP independent fashion; at the mid-level we present
novel data structures that allow current ILP algorithms to perform better; at the high-level,
we propose alterations to the ILP algorithms themselves.

Each solution has advantadges and drawbacks. Prolog engines were developed for a very
different style of programming, so optimizing ILP queries, in this case via indexing, brings
substancial benefits at relatively little cost. On the other hand, improving a Prolog engine
requires the ability to understand and improve the engine’s implementation, a difficult task
for most ILP implementors. At the opposite extreme, we can relax the ILP algorithm for
better performance. This is the easiest solution for the ILP implementor, but the effects on
system accuracy may be hard to gauge. In fact, the significant amount of previous work on ILP
research makes it hard to propose novel solutions that are always effective. Our experiment
with lazy evaluation illustrates this point: we do achieve significant benefits, but not always.

A different answer is to focus on data structures that better support current ILP algorithms.
Tries are a pre-existing data structure that naturally fits the ILP search space. In practice, ILP
systems do not spend much time searching this space, so time benefits are not impressive; but
space usage can almost halve. The critical data structure is the open list: RL-trees address this
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problem by improving the most expensive component of the coverage-list, and they achieve
significant speedups and space compaction.

Overall, our results indicate that ILP performance can be substantially improved, mainly
through understanding the main data structures involved in representing the search-space and
by doing fast inference. Moreover, the results suggest a real need for collaboration between the
ILP researchers and Prolog system designers, as applications grow ever larger and other points
in the algorithm become bottlenecks. In a different vein, further opportunities for progress will
stem from the parallelization of ILP systems [22, 32, 10, 16].
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APPENDIX A. Results

Yap 4.4 Yap 4.5Data Set
|S| Acc Time Mem ∆Time ∆Mem

Ami 79,065 78.13 4,628.92 20,593 -4,590.05 +1,883
Carc 272,258 53.36 7,887.36 31,726 -7,836.98 +8,618
Cho 203,663 72.17 4,484.50 19,986 -4,392.35 +339
Kr 273 99.00 0.62 2,791 -0.11 +338
KrII 952 99.43 39.77 5,807 +0.05 -242
Mesh 27,901 80.76 5,740.76 35,425 -5,569.99 -18,936
Mut 42,624 82.45 30,072.32 7,064 -13,669.11 +4,150
Pyr 30,109 75.54 3,731.91 18,080 -3,605.35 +631
Susi 722 95.81 3,144.35 18,773 -2,924.57 +4,138
P.m5 35,763 99.49 159.16 36,739 -148.33 +29,210
P.m8 664,487 66.18 3,596.87 47,259 -3,404.08 +46,665
Doc 31,674 97.74 929.70 12,338 -914.66 +841
Thr 6,981 92.95 3.26 5,228 -2.10 +518

Table AI. Results obtained without JIT indexing (Yap 4.4) and with JIT indexing (Yap 4.5). Time is
measured in seconds and memory in Kb. Accuracy did not change between Yap4.4 and Yap 4.5 runs.

Negative Positive Total Laziness
Data Set | S | Acc Time | S | Acc Time | S | Acc Time
Ami -1% 0% -23% 20% -1% 1% 3% 0% 1%
Carc 0% 0% -19% 6% 7% -22% 4% 4% -28%
Cho 0% 0% -19% 66% 0% 33% -5% 0% 42%
Kr -4% 0% -11% 38% 0% 20% 0% 0% 13%
KrII 0% 0% -32% 276% 0% -32% 6% 0% -35%
Mesh 0% 0% -1% 30% -4% 938% 3% -1% 598%
Mut 8% 0% 13% 9% 1% 43% 9% 1% -92%
Pyr -2% 0% -29% 11% 2% -22% -1% 0% -45%
Susi 0% 0% -52% 191% 0% -55% 0% 0% -53%
P.m5 0% 0% -18% 39% 0% 59% 39% 0% 45%
P.m8 0% 0% -30% 3% 0% -45% 3% 0% -58%
Doc 0% 0% -41% 12% 0% -46% 11% 0% -54%
Thr 0% 0% -7% 4162% 0% 58% 26% 0% 19%

Table AII. Impact of lazy evaluation without coverage caching compared to not using optimizations.
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