
Preprocessing Boolean Formulae for BDDs
in a Probabilistic Context

Theofrastos Mantadelis1, Ricardo Rocha2, Angelika Kimmig1 and Gerda
Janssens1

1 Departement Computerwetenschappen, K.U. Leuven
Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium

{Theofrastos.Mantadelis,Angelika.Kimmig,Gerda.Janssens}@cs.kuleuven.be
2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
ricroc@dcc.fc.up.pt

Abstract. Inference in many probabilistic logic systems is based on rep-
resenting the proofs of a query as a DNF Boolean formula. Assessing the
probability of such a formula is known as a #P-hard task. In practice,
a large DNF is given to a BDD software package to construct the corre-
sponding BDD. The DNF has to be transformed into the input format
of the package. This is the preprocessing step. In this paper we inves-
tigate and compare different preprocessing methods, including our new
trie based approach. Our experiments within the ProbLog system show
that the behaviour of the methods changes according to the amount
of sharing in the original DNF. The decomposition method is preferred
when there is not much sharing in the DNF, whereas DNFs with sharing
benefit from our trie based method. While our methods are motivated
and applied in the ProbLog context, our results are interesting for other
applications that manipulate DNF Boolean formulae.
Keywords: Boolean Formula Manipulation, Binary Decision Diagrams,
ProbLog, Probabilistic Logic Learning.

1 Introduction

The past few years have seen a surge of interest in the field of Probabilistic Logic
Learning (PLL) [1], also known as Statistical Relational Learning [2]. A multi-
tude of formalisms combining logical or relational languages with probabilistic
reasoning has been developed. One line of work, based on the distribution se-
mantics [3], extends Logic Programming (LP) with probabilistic facts, i.e., facts
whose truth values are determined probabilistically. Main representatives of this
approach are PRISM [4], ICL [5] and ProbLog [6]. Even in such simple proba-
bilistic logics, inference is computationally hard. As learning requires evaluating
large amounts of queries, efficient inference engines are crucial for PLL.

The core of inference in these LP-based languages is a reduction to proposi-
tional formulae in Disjunctive Normal Form (DNF). Such a DNF describes all
proofs of a query in terms of the probabilistic facts used, thus reducing proba-
bilistic inference to calculating the probability of a DNF formula. The PRISM

system requires programs to ensure that the probability of the DNF corresponds
to a sum of products. ProbLog has been motivated by a biological network min-
ing task where this is impossible, and therefore obtains the probability from an
external Binary Decision Diagram (BDD) tool. To this aim, the DNF is first con-
structed using logical inference, and then preprocessed into a sequence of BDD
definitions which builds up the final BDD by applying Boolean operations on
subformulae. While previous work on the efficient implementation of ProbLog
has been focused on obtaining the DNF, little attention has been devoted to its
further processing. However, as the performance of BDD construction depends
on the size and structure of the intermediate BDDs and on the operations among
them, the performance of this second phase is crucial for the overall performance
of inference in ProbLog.

In this paper, we therefore study different approaches to preprocessing with
special attention to the exploitation of repeated formulae to avoid redundant
work in BDD construction. To this aim, we introduce a new data structure,
named depth breadth trie, which facilitates detecting repeated subformulae in
the DNF. This results in an improvement of the performance of ProbLog’s pre-
processing step. At the same time, this new data structure allows one to eas-
ily identify more shared subformulae, which can be used to further simplify
BDD construction. A second contribution of this work is the implementation
in ProbLog of an alternative preprocessing method, called decomposition [7],
which we used to perform a comparative study of preprocessing methods in
ProbLog. Our experimental results show that in structured problems, our trie
based approaches are clearly outperforming the decomposition method, but in
less structured problems decomposition seems to be better.

The remainder of the paper is organized as follows. First, Section 2 briefly
introduces some background concepts about ProbLog, tries and BDDs. Next,
Section 3 reviews different preprocessing methods. Then, we present our new
approach in detail, including three new optimizations that can be performed
with the depth breadth trie in Section 4. We present experimental results in
Section 5 and end by outlining some conclusions in Section 6.

2 ProbLog

A ProbLog program T [6] consists of a set of labeled ground facts pi :: ci to-
gether with a set of definite clauses. Each such fact ci is true with probabil-
ity pi, i.e., these facts correspond to random variables, which are assumed to
be mutually independent. Together, they define a distribution over subsets of
LT = {c1, . . . , cn}. The definite clauses allow one to add arbitrary background
knowledge (BK) to those sets of logical facts. Given the one-to-one mapping be-
tween ground definite clause programs and Herbrand interpretations, a ProbLog
program also defines a distribution over its Herbrand interpretations.

Inference in ProbLog calculates the success probability Ps(q|T) of a query q in
a ProbLog program T , i.e., the probability that the query q is provable in a pro-
gram that combines BK with a randomly sampled subset of LT . Figure 1 shows

a ProbLog program encoding a probabilistic graph. The success probability of
path(a,d) corresponds to the probability that a randomly sampled subgraph
contains at least one of the four possible paths from node a to node d.

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

0.8 :: edge(a,c). 0.9 :: edge(c,d).
0.7 :: edge(a,b). 0.8 :: edge(c,e).
0.6 :: edge(b,c). 0.5 :: edge(e,d).

a c d

b e

0.8 0.9

0.50.80.60.7

Fig. 1. A probabilistic graph and its
encoding in ProbLog.

As checking whether a query is prov-
able in each subprogram is clearly infeasi-
ble in most cases, ProbLog inference uses
a reduction to a Boolean formula in DNF.
This formula describes the set of programs
where the query is provable. Variables in
the formula correspond to probabilistic
facts in the program, conjunctions cor-
respond to specific proofs, and the en-
tire disjunction to the set of all proofs.
ProbLog then calculates the probability
of that formula being true.

While the probability of a single conjunction, which represents the programs
containing at least the facts used by the corresponding proof, is the product of
the probabilities of these facts, it is impossible to simply sum the probabilities
of conjunctions, as enumerating proofs does not partition the set of programs.
Instead, we face the so called disjoint-sum-problem, which is known to be #P-
hard [8]. By tackling this problem with (reduced ordered) BDDs [9], a graphical
representation of Boolean formulae that enables probability calculation by means
of dynamic programming, the ProbLog implementation scales to DNFs with tens
of thousands of conjunctions.

ProbLog programs are executed in three steps. Given a ProbLog program T
and a query q, the first step, SLD-resolution, collects all proofs for query q in
BK ∪ LT . Proofs are stored as lists of identifiers corresponding to probabilistic
facts in a trie data structure. This trie represents the DNF for query q. An
essential property of the trie data structure is that common prefixes are stored
only once, which in the context of ProbLog allows us to exploit natural prefix
sharing of proofs, as two proofs with common prefix will branch off from each
other at the first distinguishing probabilistic fact.

The second step, preprocessing, converts the DNF represented by the trie into
a so-called script. A script is a sequence of BDD definitions, which define BDDs
corresponding to Boolean random variables or Boolean formulae obtained by
applying Boolean operators to previously defined BDDs. The last BDD defined
in the script corresponds to the entire DNF.

Finally, the third step, BDD construction, follows the script to construct a
sequence of intermediate BDDs leading to the final BDD for probability cal-
culation. To this aim, ProbLog uses the front-end SimpleCUDD3 for the BDD
package CUDD4.

The complexity of combining BDDs by Boolean operators is proportional to
the product of their sizes, which depend on the variable order used by the BDD

3 http://people.cs.kuleuven.be/∼theofrastos.mantadelis/tools/simplecudd.html
4 http://vlsi.colorado.edu/∼fabio/CUDD/

package and can be exponential in the number of Boolean variables. As comput-
ing the order that minimizes the size of a BDD is a coNP-complete problem [9],
BDD packages include heuristics to reduce the size by reordering variables. While
reordering is often necessary to handle large BDDs, it can be quite expensive.
To control the complexity of BDD construction, it is therefore crucial to restrain
the size of the intermediate BDDs and the amount of operations performed. At
the very least, preprocessing should aim to avoid repeated construction of BDDs
for identical subformulae. In this work, we therefore use tries to exploit prefix
sharing on the level of proofs as well as – by means of the new data structure
depth breadth trie – on the level of BDD definitions.

3 From Tries to BDDs

ac ∧ cd
ac ∧ ce ∧ ed
ab ∧ bc ∧ cd

ab ∧ bc ∧ ce ∧ ed

cd

ab

bc

ed

ac

ce

ed

ce

cd

Fig. 2. Collected proofs and
respective trie for path(a,d).

In this section, we discuss the different ap-
proaches for preprocessing. Remember that pre-
processing converts a DNF (represented as trie)
to a script. We will use the example in Figure 1
as our running example. Figure 2 shows the set of
proofs and the trie for the query path(a,d). On
top, the four proofs of the query are represented
as conjunctions, where we use xy to denote the
Boolean variable corresponding to probabilistic
fact edge(x,y). The disjunction of those con-
junctions is depicted as a trie, where each branch
of the trie corresponds to one conjunction. For
simplicity of illustration, in the figures that fol-
low, we will use the same xy notation. In scripts,
we use ni to refer to the ith defined BDD.

The naive method directly mirrors the struc-
ture of the DNF by first constructing all conjunctions of the DNF formula and
then combining those in one big disjunction. Figure 3 shows, on the left, the
resulting script for the proofs of our example. The worst case complexity of this
preprocessing step is O(N ·M)5.

The decomposition method [7] recursively divides a Boolean formula in DNF
into smaller ones until only one variable remains. To do so, it first chooses a
Boolean variable from the formula, the so-called decomposition variable dv, and
then breaks the formula into three subformulae. The first subformula f ′1 contains
the conjunctions that include dv, the second subformula f ′2 those that include
the negation of dv and the third subformula f3 those that include neither of the
two. Then, by applying the distribution axiom, the original Boolean formula can
be re-written as f = f ′1 ∨ f ′2 ∨ f3 = (dv ∧ f1) ∨ (¬dv ∧ f2) ∨ f3.

As all three new subformulae f1, f2 and f3 do not contain dv, they can be
decomposed independently. The most basic choice for the decomposition variable
5 Complexity results for N proofs and M probabilistic facts. For more details see:

https://lirias.kuleuven.be/bitstream/123456789/270070/2/complexity.pdf.

Naive Method Decomposition Method Recursive Node Merging

n1 = ac ∧ cd n1 = ce ∧ ed n1 = ce ∧ ed
n2 = ac ∧ ce ∧ ed n2 = cd ∨ n1 n2 = cd ∨ n1

n3 = ab ∧ bc ∧ cd n3 = ce ∧ ed n3 = ac ∧ n2

n4 = ab ∧ bc ∧ ce ∧ ed n4 = cd ∨ n3 n4 = bc ∧ n2

n5 = n1 ∨ n2 ∨ n3 ∨ n4 n5 = bc ∧ n4 n5 = ab ∧ n4

n6 = ab ∧ n5 n6 = n3 ∨ n5

n7 = ac ∧ n2

n8 = n7 ∨ n6

Fig. 3. Scripts obtained by different preprocessing methods for the example DNF.

Algorithm 1 Recursive node merging. Takes a trie T representing a DNF and
an index i and writes a script. replace(T,C, ni) replaces each occurrence of C
in T by ni.

function Recursive Node Merging(T, i)
if ¬leaf(T) then

S∧ := {(C, P)| leaf C is the only child of P in T}
for all (C, P) ∈ S∧ do

write ni = P ∧ C
T := replace(T, (C, P), ni)
i := i + 1

S∨ := {[C1, . . . , Cn]| leaves Cj are all the children of some node P in T, n > 1}
for all [C1, . . . , Cn] ∈ S∨ do

write ni = C1 ∨ . . . ∨ Cn

T := replace(T, [C1, . . . , Cn], ni)
i := i + 1

Recursive Node Merging(T, i)

is the first variable of the current formula, however, various heuristic functions
can be used as well, cf. [7]. All definitions resulting from the same decomposition
step are written as a block at the end of that step, omitting those equivalent
to false to avoid unnecessary BDD operations. Figure 3 (middle column) again
shows the result for our example query. The worst case complexity is O(N ·M2).

The approach followed in ProbLog, as described in [6], exploits the sharing
of both prefixes – as directly given by the tries – and suffixes, which have to be
extracted algorithmically. We will call this approach recursive node merging.

Recursive node merging traverses the trie representing the DNF bottom-
up. In each iteration it applies two different operations that reduce the trie by
merging nodes. The first operation (depth reduction) creates the conjunction
of a leaf node with its parent, provided that the leaf is the only child of the
parent. The second operation (breadth reduction) creates the disjunction of all
child nodes of a node, provided that these child nodes are all leaves. Algorithm 1
shows the details for recursive node merging and Figure 4 illustrates its step-
by-step application to the example trie in Figure 2. The resulting script can be
found on the right in Figure 3.

n cd 1

ab

bc

ac

n cd 1

(a)

n 2

ab

bc

ac

n 2

(b)

n 4

n 3 ab

(c)

n 5n 3

(d)

Fig. 4. Tries obtained during recursive node merging applied to the trie for path(a,d).

For both reduction types, a subtree that occurs multiple times in the trie
is reduced only once, and the resulting conjunction/disjunction is used for all
occurrences of that subtree, thus performing some suffix sharing. Note however
that the replace() procedure can be quite costly when fully traversing the trie
to search for repeated occurrences of subtrees.

4 Depth Breadth Trie

n 3

n 1

ce

ed

n 3

ac

n 4

bc

n 5

ab

n 6 n 2

cd

breadth/2

n 2 n 2 n 4 n 5 n 1

depth/2

Fig. 5. Depth breadth trie containing a
complete set of definitions (right column
of Figure 3) for the DNF Boolean for-
mula representing path(a,d). Each leaf
node contains a unique reference identi-
fying the corresponding path’s definition.
Each branch in the depth/2 (breadth/2)
part defines the conjunction (disjunction)
of the entries in its white nodes (Boolean
variables or definition references).

In this section, we introduce our
new approach to implementing re-
cursive node merging. The ini-
tial implementation explicitly per-
formed the costly replace() pro-
cedure of Algorithm 1. The new
approach avoids this by storing
all BDD definitions during recur-
sive node merging. Once merging
is completed, the script is obtained
from this store. For each defini-
tion encountered during merging,
we first check if it is already present
in the store, and if so, reuse the cor-
responding reference ni. As such a
check/insert operation can be done
in a single pass for tries, we intro-
duce an additional and specific trie
configuration for this purpose, that
we named depth breadth trie. Apart
from this improvement, the depth breadth trie has the additional advantage of
allowing one to easily identify common prefixes on the level of BDD definitions,
which was not possible before. As we will see, this leads to the definition of
three new (optional) optimizations that can be performed during recursive node
merging to further reduce the number of Boolean operations to be performed in
BDD construction.

A depth breadth trie is divided in two parts corresponding to the two reduc-
tion types of recursive node merging: the depth part collects the conjunctions,
the breadth part the disjunctions. This separation is achieved by two specific
functors of arity two, depth/2 and breadth/2. Their first argument is a Prolog
list containing the literals that participate in the formula, the second argument
is the unique reference ni assigned to the corresponding BDD definition.

For example, the definitions n1 = ce ∧ ed and n2 = cd ∨ n1 are represented
respectively by the terms depth([ce,ed],n1) and breadth([cd,n1],n2). Note
that reference n1 introduced by the first term is used in the second term to refer
to the corresponding subformula. At the same time, those references provide the
order in which BDDs are defined in the script. Figure 5 shows the complete
depth breadth trie built by recursive node merging for our example.

In the following, we introduce the three new optimizations that can be ex-
ploited with the depth breadth trie. The motivation is again to decrease the
amount of operations performed in BDD construction. The optimizations are
illustrated in Figure 6. Figure 6(a) presents the initial trie used in all cases,
Figures 6(b), 6(c) and 6(d) show Optimizations I, II and III, respectively. The
worst case complexity is O(N ·M) in all cases.

depth/2

a

b

c

n r

(a) Initial trie

depth/2

a

b

c

n r

d

n r+1

n r

(b) Adding [a, b, c, d]

n r-1

depth/2

a

b c

n r

n r-1

(c) Adding [a, b]

n r-1

depth/2

a

b c

n r

n r-1

d

n r+1

(d) Adding [a, b, d]

Fig. 6. Examples of definitions that trigger (b) Optimization I, (c) Optimization II
and (d) Optimization III when added to the depth breadth trie in (a).

Optimization I (Contains Prefix): The first optimization occurs when a new
formula [p1, . . . , pn] to be added to the depth breadth trie contains as prefix
an existing formula [p1, . . . , pi], i ≥ 2, with reference nr. In this case, the
existing formula will be reused and, instead of inserting [p1, . . . , pn], we will
insert [nr, pi+1, . . . , pn] and assign a new reference to it.

Optimization II (Is Prefix): The second optimization considers the inverse
case of the first optimization. It occurs when a new formula [p1, . . . , pi],
i ≥ 2, to be added to the depth breadth trie is a prefix of an existing formula
[p1, . . . , pn] with reference nr. In this case, we split the existing subformula
representing [p1, . . . , pn] in two: the first one representing the new formula

Algorithm 2 Depth breadth trie optimizations. Takes a T representing either
the depth or breadth part of the depth breadth trie and a list L with the formula
to be added and returns the reference ni assigned to L in T . COUNTER is a
global counter and replace(L,C, ni) replaces C in L by ni.

function Update Depth Breadth Trie(T , L)
if (L, ni) ∈ T then

return ni

for all (list, ni) ∈ T do
if list is prefix of L then

/* Optimization I */
L := replace(L, list, ni)
return Update Depth Breadth Trie(T, L)

if L is prefix of list then
/* Optimization II */
T := remove((list, ni), T)
T := add((L, ni−(length(list)−length(L))), T)
list := replace(list, L, ni−(length(list)−length(L)))
T := add((list, ni), T)
return ni−(length(list)−length(L))

if L and list have a common prefix prefix with length(prefix) > 1 then
/* Optimization III */
nj := Update Depth Breadth Trie(T, prefix)
L := replace(L, prefix, nj)
return Update Depth Breadth Trie(T, L)

COUNTER := COUNTER + length(L)
T := add ((L, nCOUNTER), T)
return nCOUNTER

[p1, . . . , pi] with a new reference nr−1, the other representing the existing
formula, but modified to re-use the new reference nr−1, i.e., [p1, . . . , pn] is
replaced by [nr−1, pi+1, . . . , pn].

Optimization III (Common Prefix): The last optimization exploits defini-
tions branching off from each other. It occurs when a new formula [p1, . . . , pn]
shares a common prefix [p1, . . . , pi], n > i ≥ 2, with an existing formula
[p1, . . . , pi, p

′
i+1, . . . , p

′
m], m > i, with reference nr. In this case, first, the

common prefix is inserted as a new formula with reference nr−1, triggering
the second optimization, and second, the original new formula is added as
[nr−1, pi+1, . . . , pn] using nr−1 as in the first optimization.

Each repeated occurrence of a prefix of length P identified by one of the
optimizations decreases the total number of operations required by P − 1. For
example, if Optimization III identifies a common prefix fP of length P of two
formulae fM and fN of length M and N respectively, the number of operations
decreases from (N−1)+(M−1) to (P−1)+(N−P)+(M−P) = N+M−P−1,
and if a third formula fK shares the same prefix, the number of operations it
requires again reduces to (K − 1)− (P − 1) = K − P .

Algorithm 2 formalizes the implementation of these three optimizations,
which roughly speaking replaces the write and replace operations in Algorithm 1.
One should notice that with the depth breadth trie, the references ni are no
longer incremented by one but by the length of the formula being added. This is
necessary as Optimizations II and III insert additional subformulae that have to
be created before the current formula being added, and thus need to be assigned
a smaller reference. As our formulae always contain at least two elements, using
the length of the formula to increment ni is sufficient to leave enough free places
for later use with Optimizations II and III. The order given by those references
will therefore ensure that subformulae will be generated before being referred
to. Moreover, as we are using tries, these optimizations can be performed while
adding the new formulae. Note that the optimizations require a modification of
the trie insertion procedure6: if the new definition first differs from an existing
one after two or more steps, the insertion of the new formula is frozen while the
appropriate optimization is performed and resumed afterwards.

To assess the effect of optimizations, our implementation in fact offers four
choices of optimization level: no optimizations, Optimization I only, Optimiza-
tions I and II, or all three optimizations. Furthermore, the minimal length of
common prefixes (2 by default) can be adapted. Note that depending on the
order in which the formulae are inserted, different optimizations might trigger
and the resulting trie might be slightly different.

5 Experimental Results

We next report on experiments comparing the four preprocessing methods: naive,
decomposition (dec), recursive node merging as described in [6] (rnm) and
recursive node merging with the depth breadth trie (dbt). The environment for
our experiments was a C2Q 2.83 GHz 8 GB machine running Linux using a single
core. The entire ProbLog engine, including preprocessing, is implemented in Yap
Prolog 6.0, except for dbt, which is implemented in C as its optimizations require
modifications to Yap’s trie insertion, which is itself implemented in C. BDD
construction uses the CUDD BDD package with automatic triggering of variable
reordering by group sifting [10]. As rnm has been developed to exploit structure
sharing in the trie, whereas dec is a general purpose method, we consider two
benchmarks that contrast in this aspect.

The first benchmark is a three-state Markov model, where we query for the
probability of an arbitrary sequence of N steps (starting in a random state at
time point 0) ending in a given state. Each of the N time steps in such a sequence
involves two new random variables (jointly encoding the three different start
states of the step), and the number of proofs is thus 3N .

6 A definition is inserted term by term incrementally and each term is compared for
identical prefix.

N naive dec rnm dbt
7 251 45 28 25
8 786 87 28 25
9 3,698 188 31 25
10 20,854 539 35 29
11 256,330 1,638 43 31
12 / 5,024 96 31
13 / - 205 48
14 / - - 75

Table 1. Average runtimes for
BDD construction on three-
state Markov model, for se-
quence length N . Cases with
(/) exceeded the time limit for
BDD construction, cases with
(−) fail for memory reasons.

The second benchmark comes from the
domain of connectivity queries in biological
graphs that originally motivated ProbLog. In
this case, we consider two different ProbLog in-
ference methods which lead to different types
of formulae. Exact inference as discussed in
Section 2 produces formulae with high sharing
in both prefixes and suffixes of proofs (which
correspond to paths starting and ending at spe-
cific nodes). On the other hand, upper bound
formulae as encountered in bounded approxi-
mation [6] typically contain small numbers of
proofs and large numbers of so-called stopped
derivations, i.e., partial proofs cut off at a prob-
ability threshold. While the latter still share
prefixes, their suffixes are a lot more diverse.
This type of formulae has been observed to be
particularly hard for ProbLog. In our experi-
ments, we use a graph with 144 edges (and thus 144 random variables) extracted
from the Biomine network also used in [6], and query for acyclic paths between
given pairs of nodes. We use a set of 45 different queries, some chosen randomly,
and some maximizing the degrees of both nodes. In exact inference, the number
of conjunctions in the DNF ranges from 13136 to 351600, with an average of
90127, for upper bound formulae, it ranges from 53 to 26085, with an average of
9516. The number of trie nodes in the exact case varies from 44479 to 1710621
(average 387073), representing between 161100 and 5776734 virtual nodes (aver-
age 1376030)7. In the upper bound case, tries have 126 to 60246 nodes (average
22251), corresponding to 334 to 232618 virtual nodes (average 80525).

We set up experiments to study the following questions:

Q1: How do the different preprocessing methods compare on more, or less struc-
tured problems?

Q2: What is the impact of each optimization and which parameters affect them?

As the main goal of this work is to optimize the performance of BDD con-
struction, we will focus on the runtime of this last step of ProbLog inference as
central evaluation criterion. The time to calculate probabilities on the final BDD
is included in the construction time; it typically is a very small fraction thereof.

Table 1 presents BDD construction times for the Markov model. In this
benchmark, no extra optimizations are triggered for dbt. Times are given in
milliseconds and are averages over three runs. BDD construction uses a timeout
of 600 seconds, when a method reaches this timeout, it is not applied to larger
problems. These cases are marked with (/). Cases marked with (-) fail due to

7 The number of virtual nodes roughly corresponds to the number of occurrences of
Boolean variables in the DNF written in uncompressed form. Each trie branch is
represented by a node for each variable and by two special start and end nodes.

memory during script preprocessing; this also occurs when using dbt at length
15. In this experiment, both trie based methods clearly outperform the naive
and dec methods, and BDD construction also seems to benefit slightly from the
modifications used in the dbt-based version of rnm. As a first answer to Q1,
we thus conclude that for structured problems, trie-based methods are indeed
the first choice to optimize BDD construction.

Method
Preprocessing BDD Constr
avg sdev avg sdev

dec 40,076 38,417 2,235 1,313
rnm 3,694 3,632 1,844 1,150
dbt 124 117 1,998 1,318
dbt1 125 118 1,891 1,697
dbt2 125 118 1,481 630
dbt3 128 120 1,446 769

Table 2. BDDs for exact inference: average
and standard deviation of times over 45 queries
(dbti uses all optimization levels l ≤ i).

For the graph domain, we
use a timeout of 300 seconds on
BDD construction, and a cut-
ting threshold δ = 0.05 for ob-
taining upper bound formulae.
As the naive method always
performs worst, it is excluded
from the following discussion.
Typically, all optimizations for
the dbt method are triggered,
with type I being most frequent
(note that type III increases
type I usage).

Group Method
BDD Constr Time

avg sdev outs
dec 9,351 2,323 0
rnm 24,710 6,415 0

Easy dbt 10,148 2,192 0
19/44 dbt1 10,714 2,389 0

dbt2 14,417 3,263 0
dbt3 15,311 4,055 0
dec 21,785 5,197 0
rnm 46,428 9,084 0

Medium dbt 29,719 4,029 0
14/44 dbt1 39,914 9,084 0

dbt2 28,522 3,165 0
dbt3 46,263 19,231 0
dec 28,979 9,172 0
rnm 114,870 18,225 0

Hard dbt 62,612 16,350 3
11/44 dbt1 121,442 29,052 2

dbt2 94,454 28,753 3
dbt3 122,150 37,751 3

Table 3. BDDs for upper bounds at
threshold 0.05: average and standard devi-
ation of times over 44 queries grouped into
categories according to runtimes.

In exact inference, cf. Table 2,
BDD construction times for all
methods are very close and rarely
exceed 4 seconds. However, pre-
processing time for dec is one or-
der of magnitude higher than for
rnm (remember that dbt should
not directly be compared, as it
is implemented in a different lan-
guage). Again, this is due to the
high amount of suffix sharing in
those tries, which is exploited by
our method, but causes repeated
work during construction for the
decomposition method. These re-
sults clearly enforce our first con-
clusions about Q1. Regarding Q2,
these results show that the dbt op-
timizations are incrementally effec-
tive in reducing construction time
without introducing costs in pre-
processing time.

For upper bound BDDs, the re-
sults are more diverse. Here, we fo-
cus on the comparison between dec
and dbt with different optimiza-

tion levels. For presentation of results in Table 3, we partition queries in cat-
egories by using two thresholds on BDD construction time (t < 15, 000ms for
Easy, 15, 000ms ≤ t < 50, 000ms for Medium and t ≥ 50, 000ms for Hard),
and majority vote among the methods (as one single test query finishes in few
milliseconds, it is omitted from the results). The last column gives the number
of queries reaching the timeout in BDD construction.

Upper bound DNFs contain less conjunctions than those obtained in ex-
act inference, and preprocessing times are one order of magnitude lower for all
methods. BDD construction times, however, are generally higher when consider-
ing upper bounds. On average, BDDs obtained by dec have smaller construction
times than those obtained from rnm and dbt, even though variation is high.

Method All rnm/dbt rnm/dbt* dbt*
dec 26 - - -
rnm 2 14 6 -
dbt 6 30 13 16
dbt1 2 - 9 10
dbt2 5 - 9 9
dbt3 3 - 7 9

Table 4. Upper bound BDDs: number of
queries where a given method leads to fastest
BDD construction, comparing all methods
(All), the two implementations of recur-
sive node merging without optimizations
(rnm/dbt) or including different optimiza-
tion levels (rnm/dbt*), and different depth
breadth trie optimization levels only (dbt*).

Table 4 compares methods
by counting the number of
queries for which they achieve
fastest upper bound BDD con-
struction compared to compet-
ing methods. As dec performs
best in the overall comparison
for this type of problem, we
further compare the two im-
plementations of recursive node
merging. While the BDDs ob-
tained from the implementation
using depth breadth tries often
outperform those from the pre-
vious implementation, there is
no clear winner between the var-
ious optimization levels for this
type of problem. Together, those results provide the second part of the answer
to Q1: for problems with less suffix sharing, scripts obtained from dec often
outperform those obtained from dbt.

Concerning the optimization levels, Tables 3 and 4 indicate that for the graph
case, their effect varies greatly. For all levels, we observe cases of improvement
as well as deterioration. We suspect that optimizations are often performed too
greedily. Initial experimentation on artificially created formulae indicates that
several factors influence performance of optimizations, among which are: (i) the
length of the shared prefix; (ii) the number of times it occurs; (iii) the structure
of the subformulae occurring in the prefix; and (iv) the structure of the suffixes
sharing the prefix. While the latter three are harder to control during prepro-
cessing, we performed a first experiment where we only trigger the optimizations
for shared prefixes of minimal length n > 2. Results on upper bound formulae
confirm that this parameter indeed influences BDD construction, again to the
better or the worse. We conclude that, while we identified certain parameters
influencing the success of optimizations in synthetic data, in the case of less
regular data, the answer to Q2 remains an open issue for further investigation.

6 Conclusions and Future Work

We introduced depth breadth tries as a new data structure to improve prepro-
cessing in ProbLog, and compared the resulting method and its variations to
the method used so far as well as to the decomposition method presented by [7].
Our experiments with the three-state Markov model and with exact inference
confirm that our trie based method outperforms the other methods on problems
with high amount of suffix sharing between proofs. At the same time they reveal
that the decomposition method is more suited if this is not the case, and thus
is a valuable new contribution to ProbLog.

While the three new optimizations, aimed at reducing the number of BDD
operations, can greatly improve performance in some cases, in others, they have
opposite effects. Initial experiments suggest that those optimizations should be
applied less greedily. Future work therefore includes a more in depth study of
the factors influencing the effects of optimizations. We also plan to further inves-
tigate the respective strengths of our trie based approach and the decomposition
method, and to exploit those in a hybrid preprocessing method. Finally, we need
to further explore existing work on BDD construction in other fields, which might
provide valuable insights for our specific application context.

Acknowledgments T. Mantadelis is supported by the GOA/08/008 Proba-
bilistic Logic Learning, A. Kimmig is supported by the Research Foundation
Flanders (FWO Vlaanderen) and R. Rocha has been partially supported by
the FCT research projects STAMPA (PTDC/EIA/67738/2006) and HORUS
(PTDC/EIA-EIA/100897/2008).

References

1. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Induc-
tive Logic Programming. Volume 4911 of LNCS. (2008)

2. Getoor, L., Taskar, B., eds.: Statistical Relational Learning. The MIT press (2007)
3. Sato, T.: A statistical learning method for logic programs with distribution se-

mantics. In: Proceedings of ICLP. (1995) 715–729
4. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical

modeling. JAIR 15 (2001) 391–454
5. Poole, D.: The independent choice logic and beyond. [1] 222–243
6. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the

efficient execution of ProbLog programs. In: Proceedings of ICLP. (2008) 175–189
7. Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C.: A practical comparison of

methods to assess sum-of-products. Reliab Eng Syst Safe 79(1) (2003) 33 – 42
8. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM

Journal on Computing 8(3) (1979) 410–421
9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE

Trans. Computers 35(8) (1986) 677–691
10. Panda, S., Somenzi, F.: Who are the variables in your neighborhood. In: Proceed-

ings of ICCAD. (1995) 74–77

