
Scheduling OR-parallelism in YapOr and ThOr on Multi-Core Machines

Inês Dutra, Ricardo Rocha, Vı́tor Santos Costa, Fernando Silva and João Santos

CRACS & INESC-Porto TEC, Department of Computer Science, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

email:{ines,ricroc,vsc,fds,jsantos}@dcc.fc.up.pt

Abstract—In this work we perform a detailed study of differ-
ent or-scheduling strategies varying several parameters in two
or-parallel systems, YapOr and ThOr, running on multi-core
machines. Our results show that some kinds of applications
are sensitive to the choice of scheduling strategy adopted. In
particular, the choice of scheduling parameters mostly affect
applications that have short execution times, which, despite
having speedups, have their performance significantly affected.
Our results also show that topmost dispatching can be more
advantageous than bottommost dispatching, a finding that
contradicts previous works in this area. One last finding is
that YapOr and ThOr are affected differently by changes
in scheduling with ThOr performing significantly better than
YapOr in several applications.

Keywords-Scheduling strategies, Parallelism, Prolog imple-
mentation.

I. INTRODUCTION

The last years have seen wide availability of multicore

platforms, ensuring renewed interest in parallel program-

ming. The difficulties inherent to parallel programming have

motivated work in parallel execution of high-level declar-

ative languages, both functional [1] and logic-based [2].

Declarative languages have two main advantages for paral-

lelism. First, they allow high-level control of parallel execu-

tion. For example, the Prolog logic programming language

has been extended to allow easy interprocess communica-

tion [3], protecting users from the nitty-gritty of setting up

and managing parallel processes.

A second advantage of declarative systems is that they

also offer the promise of implicit parallelism, as the seman-

tics of a declarative program do not assume a sequence of ex-

ecution steps. For instance, parallel logic programming sys-

tems have implemented two major forms of implicit paral-

lelism: and-parallelism and or-parallelism. And-parallelism

takes place when two goals are run independently. It often

corresponds to divide-and-conquer or to producer-consumer

parallelism, and its implementation poses challenging prob-

lems, such as granularity control, sharing of variables by

different goals, and the need to perform parallel garbage

collection. Or-parallelism takes place when there are several

different alternative ways of solving the same goal. It is often

found in applications that perform search. Or-parallelism is

easier to implement, since different solutions for each goal

(or-branches) can be searched quite independently.

Or-parallelism is present in many application areas such

as parsing, optimization problems, and databases, and has

been used to program at large by several companies [4],

[5], [6], [7]. In contrast to and-parallelism, or-parallelism

can be often exploited without the need of user generated

annotations in the code. At the same time, its execution

model is very close to the sequential one. This helps reuse

of sequential implementation techniques. Indeed, efficient

implementations of or-parallelism use the multi-sequential
model. This approach is characterized by having a set of

processes, that we shall name workers, where each one

runs a full Prolog. In other words, each worker can solve a

complete branch of the search tree.

The fundamental technical problem to solve in an or-

parallel logic programming system is how to maintain mul-

tiple bindings for the same variable in different branches of

the search tree [8]. In theory, a new resolvent is generated

every time a goal is matched against the head of a clause,

by renaming all the free variables of the current goal.

In practice, such a copying process would be extremely

costly. Instead, sequential Prolog systems simply rewrite the

variables of the current goal in-place during the matching

process. The conditional bindings are annotated in a special

stack called Trail and will be undone later on backtracking.

Or-parallelism arises when the same goal matches several

different clauses. Each clause may produce its own different

set of bindings, and hence a system that allows the several

clauses to proceed in parallel needs a mechanism to associate

bindings to branches. Each processor needs to have its

own copy of the conditional binding, as processing of each

branch can be done separately and simultaneously with other

processors. Several solutions have been proposed to cope

with this problem. One of the frequently used classification

considers three major groups: copying, sharing and recom-

putation [9]. Copying and sharing of stacks are the two most

successful approaches.

Assuming that we have a working binding model, a

second major decision in or-parallel systems is how to

manage the highly irregular parallelism. The or-scheduler is

responsible for task switching and has the function of choos-

ing the best choice-point from which to take an alternative to

be explored. As usual, a scheduler should not incur too high

costs in task switching, and it should be able to cope with a

limited number of processors in the system. Ideally, it should

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.199

1575

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.199

1575

reduce to the minimum the amount of interaction between

workers. Some schedulers also deal with the problem of

speculativeness. This means that whereas some branches

of the search tree are to be executed compulsorily, others

(speculative or-branches) might be pruned because of a cut

or commit operator.
Several schedulers have been proposed and used in shared

memory systems implementations such as Aurora [10], and

Muse [11], that are close to modern multi-core architecture.

Decisions the scheduler has to make include:

• When to make work (or-branches) available, or pub-
lic? Making work public too late may result in idle

workers; making it too soon may result in fine-grained

parallelism and increase overheads.

• Where to make idle workers go? Should they take work

close-by, or should they look at the root of the search–

tree?

• Should workers be proactive or lazy? Lazy workers will

hope for new work to appear near-by, so they may lose

interesting work. On the other hand, too many proactive

workers may lead to contention in the tree.

The literature shows significant discussion on this sub-

ject [12], [13], [14], with systems such as Aurora eventually

supporting five different schedulers. In contrast, Muse fol-

lowed a very tightly integrated design, based on distributing

work bottom-up. The approach was followed in the YapOr

system [15], with some flexibility in allowing some decisions

to be user-controlled. Recent work [16] showed that YapOr

was still effective in modern multi-core systems. Moreover,

it showed that the process-based design of YapOr could be

transformed into an effective thread-based design, ThOr.
In this work we investigate the issues in or-scheduling

strategies for YapOr and ThOr. Both ThOr and YapOr share

the original YapOr scheduler, itself based on decisions taken

by the Muse and Aurora developers. We address two main

questions. First, we investigate whether the schedulers are

effective: are we close to optimal performance, or do we need

significant work to make or-schedulers effective in novel

machines with very different hardware. Second, we study

sensitivity: how do the differences between YapOr and Thor

affect performance, and whether we need substantial tuning

effort.
Our work shows that YapOr and Thor seem indeed to

perform quite well in terms of exploiting available work,

and that are not very sensitive to, nor do they require

much, parameter tuning. On the other hand, we show that

the best scheduling decision may depend on the type of

application and on the number of available cores. Last,

although performance of YapOr and Thor is similar, as

expected, they do react in different ways to differences in

scheduling.
The remainder of the paper is organized as follows.

First, we briefly introduce the YapOr and ThOr models and

describe their main data structures, memory organization and

default scheduling strategies. Then, we discuss the main or-

scheduler parameters and different values that they can take.

Next, we present the benchmarks used in this study, show

our results and discuss the impact of the different strategies

and parameters in the applications. Finally, we present our

conclusions and draw perspectives of future work.

II. THE YAPOR MODEL

The initial implementation of or-parallelism in YapOr was

largely based on the stack copying model as first introduced

by Ali and Karlsson in the Muse system [17], [18]. YapOr

is an example of a multi-sequential model [19], where each

processor or worker maintains its own copy of the search

tree. Only when a worker runs out of work, it searches for

work from fellow workers. If a fellow worker has work, it

can make some or all of its open alternatives available: this

operation is called sharing. First, the sharer will make some

or all of its choice-points public, so that backtracking to

these choice-points can be synchronized between different

workers. Second, in a copying model, the execution stacks

of the sharer are copied to the requester. The sharer then

continues forward execution, while the requester backtracks

to the shared choice-points and exploits alternatives.

YapOr follows a scheduling strategy based on bottommost

dispatching of work. Both, for stack copying and stack

sharing, this was shown to be more efficient than topmost

strategies [18], [13]. Synchronization between workers is

mainly done through choice-points. In a copying model,

each worker has a separate copy of the public choice-points.

Synchronization requires an auxiliary data structure, called

or-frame, to be associated with the public choice-points. The

or-frames form a tree that represents the public search tree.

Sharing work is a major source of overhead in YapOr, as it

requires copying the execution stacks between workers. The

incremental copying strategy [17] is designed to reduce this

overhead by allowing the receiving worker to keep those

parts of its execution stacks that are consistent with the

giving worker, and only to copy the differences between

the two workers’ stacks.

The YapOr memory is divided into two major shared
address spaces: the global space and a collection of local
spaces. The global space contains the code area inherited

from Yap and all the data structures necessary to support

parallelism. Each local space represents one system worker

and contains the four execution stacks inherited from Yap:

heap, local, trail, and auxiliary stack.

In order to efficiently meet the requirements of incre-

mental copy, the set of local spaces are mapped as follows.

The starting worker asks for shared memory in the system’s

initialization phase. Afterward, the remaining workers are

created and inherit the previously mapped address space.

Then, each new worker rotates the local spaces, in such a

way that all workers will see their own spaces at the same

virtual memory addresses.

15761576

III. THE THOR MODEL

The ThOr model builds upon two major components of

Yap: the YapOr implementation, as discussed in the previous

section, and the Yap threads library [20]. The Yap thread

library can be seen as a high-level interface to the POSIX

threads library, where each thread runs on a separate stack

but shares access to the global data structures (code area,

atom table and predicate table). As each thread operates its

own stack, thus, it is natural to associate each parallel worker

to a thread: threads can run in parallel and they already

include the machinery to support shared access and updates

to the global data structures and input/output structures.

Notice however that not all threads have to be workers:

some threads may be used to support specialized tasks,

possibly running in parallel with the workers. We believe this

is an important advantage of ThOr. Traditionally, we expect

to find a single or-parallel program, and issues such as

side-effects must be addressed within the or-parallel system.

In ThOr, we can easily construct independent threads that

collaborate or even control the workers (or-parallel threads).

Natural applications are the collection of solutions, and

performing input/output tasks.

As YapOr, the memory model in ThOr is also based on

stack copying. Thor uses copying for several reasons. First,

copying allows us to preserve a key notion in the thread

library: independent and separate workers have a private
stack. In this way, we can reuse the existing code for threads

so that workers can independently perform garbage collec-

tion and stack shifting. Second, as workers see a contiguous

stack, copying imposes less overheads on the engine and has

higher performance compared with other approaches [21].

Ultimately copying is less intrusive on the sequential engines

than other approaches. As a small experiment, we evaluated

what kind of changes would be needed in the emulator. In

both models, support for or-parallelism, including copying,

requires about 60 changes to the emulator, mostly in order to

adapt choice-point manipulation and to perform pruning on

the shared tree. Support for a model based on SBA (Shared

Binding Arrays)requires 90 additional changes that affect a

complex operation, unification. On the other hand, YapOr’s

copying model relies on every worker having its own stacks
at the same virtual address position. This clearly will not

work with threads.

In a thread-based model, all memory areas should be

visible to all threads at the same virtual memory address
positions. Moreover, in order to take full advantage of

memory (especially on 32 bit machines), it is convenient

not to assume any preconditions on memory organization.

In Yap, threads may actually move their stacks in the virtual

memory space during execution.

ThOr has been designed to take advantage of the existing

YapOr code-base but, having each stack at the same virtual

memory addresses, does not hold true in ThOr. Namely,

to share work we need to have several copies of the same

choice-point at different virtual memory addresses. In ThOr,

to address this problem, our key idea is shifted copying,

which essentially consists of two steps: copy the memory

between the workers sharing work and then adjust pointers.

Although shifted copying adds a linear overhead to copying

operations, it offers some important advantages: (1) it allows

using the thread infra-structure as is, and (2) it allows

shifting between stacks with different sizes, and we can

actually reuse preexisting code from the Yap stack shifter.

IV. DEFAULT SCHEDULING STRATEGY

When a worker runs out of work, the scheduler tries to

find a busy worker with excess of work load to share work.

There are two alternatives to search for busy workers in

the search tree: search below or search above the current

node. In YapOr idle workers always start to search below

the current node, and only if they do not find any busy

worker there, then they search above. The main advantage

of selecting a busy worker below instead of above is that the

idle worker can immediately perform the sharing operation,

because its current node is already common to the busy

worker, thus avoiding the need to backtrack in the tree until

finding a common ancestor.

When the scheduler does not find any busy worker with

excess of work load, it tries to move the idle worker to

a better position in the search tree. By default, the idle

worker backtracks until it reaches a node where there is at

least one busy worker below. Another option is to backtrack

until reaching the node that contains all the busy workers

below. The goal of these strategies is to distribute the idle

workers in such a way that the probability of finding, as

soon as possible, busy workers with excess of work below

is substantially increased.

Busy workers may choose to make their work public.

In the YapOr and ThOr implementations, workers make

their work public whenever their load exceeds a threshold.

This is parametrized. Each worker annotates its load (total

accumulated number of alternatives in its branch) at each

choice-point. After following the default search order in

the code, idle workers have a choice of hanging around

for a while and wait for work to become available. This is

controlled by a second scheduler parameter. We will study

in this work whether the order of searching for work and

changes in parameter values can affect the performance of

or-parallel applications.

V. METHODOLOGY AND EXPERIMENTAL RESULTS

Our performance evaluation focuses on answering the

question: up to which extent different scheduling strategies

and choices of scheduling parameters affect the parallel

execution of Prolog programs?

We would need to consider an enormous number of

possible combinations in order to fully answer this question.

15771577

In this study, we chose to first explore different search

strategies, while using default parameter values, and ob-

tain a performance trend. Later, using the best choice of

search order, we vary the parameter values for the search.

It turns out that the choice of an order for the search

is not straightforward and indeed depends on the number

of processors used and on the application. Therefore, we

performed experiments for three different search orders

with default parameter values, and using the default order

of searching for work, we varied the parameter values.

Whenever we found a trend, we performed complementary

experiments varying parameters for search orders different

from the default.

The following programs were used as benchmarks:

• cubes: a known benchmark taken from Tick’s

book [22]. This program implements the solution of

a magic cube of size 7.

• ham: checks if a given graph forms a Hamiltonian

cycle. The graph instance used here has 26 nodes.

• magic: a solution to the 3x3x3 magic cube.

• map and mapbigger: a solution for the map coloring

problem using four colors. We used two maps rep-

resenting diverse size and graph density. The smaller

version has 15 nodes and the bigger version has 17

nodes.

• puzzle: one version of sudoku where the diagonals

must add up to the same amount.

• puzzle4x4: a solution for a 4x4 maze.

• queens: a solution for the n-queens problem using

forward checking. The size of the board used in testing

was 13x13.

First, we studied the execution patterns of each applica-

tion:

• cubes: generates a top-level sequence choice-point

with 7 alternatives, and each alternative creates a

choice-point with four alternatives. The process repeats

itself on each branch. The maximum depth of the tree

is 7.

• ham: the choice-points in this program always have

only two alternatives. The depth of the tree is 26, with

a choice-point of size 2 created at each level.

• magic: the first choice-point created has ten alter-

natives. Each alternative recursively creates another

choice-point of size 10. The maximum depth of the

tree is 7.

• map: the choice-points in this application have only

two alternatives. The minimum depth of the tree is 15

and the maximum is limited by the maximum number

of neighbors a country can have. As the maximum

number of neighbors for this problem in this study is

five, the maximum depth is 20. For each level in a

branch, a two-alternative choice-point is created.

• mapbigger: it has the same execution pattern of

map, but a larger tree, with a minimum depth of 17

and maximum, 22.

• puzzle: this has a computational pattern that starts

with a choice-point with 19 alternatives. For each

branch, new choice-points of consecutive sizes 18 down

to 12 are created.

• puzzle4x4 this tree has maximum depth of 12. At

each level of the tree choice-points are created, whose

number of alternatives vary from one to 48.

• queens this instance of n-queens creates an initial

choice-point of size 13, with each branch recursively

creating successive choice-points of size two.

These programs have been used in previous work; most of

them obtained very good performance up to 24 processors

with versions of YapOr and ThOr that used the default search

order and the default parameter settings [16].

We performed our experiments on a dual Six-Core AMD

Opteron(tm) Processor 2435, with 64 GBytes of RAM,

running Red Hat Enterprise Linux in 64-bit mode. Each

experiment was run 30 times and results are the average

of the 30 runs reported in seconds. We ran each experiment

using one, two, four and eight processors. Statistical signifi-

cance tests were applied to compare average execution times.

We use the two-tailed t-test for the statistical significance

tests. Whenever applicable, we report the p-values. In the

t-test, the closest the p-value is to zero, the greater the

probability of refusing the null hypothesis that states that

the two algorithms being compared are the same.

We perform three types of experiments. First, we ex-

periment with varying the order used by workers when

searching for available work. to publish work. We follow

three strategies: bottom-most first, the default strategy; top-

most work first; and best work in the tree first.

Second, we experimented with varying how eager a

worker is to search for work. To control how a worker

searches for work we use the parameter sl, where sl is the

number of times the worker must loop before looking for

hidden shared work. The default parameter values for sl is

10. We varied sl around this value with sl taking values 8,

6, 4 and 12, 14, 16, 18;

Last, we experimented with varying the amount of work

shareable in the tree. The d parameter is the load threshold

above which an idle worker can claim work from a peer.

This parameter works as a delay in getting work, since an

idle work hangs waiting that some busy worker publishes

its excess work. The default setting for d is 3, and we vary

d to take the values 2, 1, 0 and 4, 5, 6, 7.

A. Performance of YapOr and ThOr, varying the search
order

Our first set of experiments addresses the question of

scheduling strategy: what is the impact of using different

scheduling strategies, and how does it vary between appli-

cation and model? To study this problem, we vary the order

15781578

of searching for work and actually create three different

versions of YapOr and ThOr. We called the first version

BELOW. It was compiled to follow the default order search

order: first, look for work below; if work is not found below,

look for work above; if work is not found above, look for a

better position in the search tree (this strategy was explained

in Section IV). The second version was called ABOVE. It

was compiled to search first for work above, and if no such

work is available, to search for work below and then look

for a better position. The third version was called BETTER.

It was compiled to first find a better position in the tree,

then look for work below and then look for work above.

Results for the first set of experiments are shown in

Figures 1 and 2. For each application, the X-axis shows the

number of workers (2, 4 and 8), and the Y -axis shows aver-

age execution times in seconds. Notice that we do not show

execution times for a single CPU. Each graph shows the

performance of an application either using YapOr or ThOr

and three curves representing the three ways of searching for

work (below, above and finding a better position). YapOr and

ThOr are always run with default parameters.

In Figure 1, we show smaller applications. They run from

0.14 to 7.31 seconds on 1 processor. In Figure 2, we show

applications with the longest run-times, that run from 19

to 52 seconds on a single processor. The first important

conclusion we can take from these pictures is that, even

using mechanisms that used to work in old shared memory

machines, YapOr can still achieve very good speedups.

This is especially the case for applications with longer run-

times, with some applications reaching linear or quasi-linear

speedups.

The results show that with two workers some applications

are significantly affected by the way workers search for

work, with a variation of almost 4s in 30s (mapbigger,

YapOr, two workers). This effect holds true even in appli-

cations with long running-times, and is less noticeable for

larger configurations, four or eight workers.

For two workers, the p-value is less than .0008 for most of

the comparisons between below-above and below-better. As

mentioned before, such a low values of p strongly suggests a

statistical significant difference between two strategies. The

overall best order of search for this number of processors to

search for work above. This is not true for every application,

even at two workers, the application cubes does not seem

to be affected by a change from searching first for work

below and searching for work from above (p = .076), but

it is affected if we change the search to look for a better

location in the tree (p < .0009). The application ham,

running with YapOr, two workers, is affected by a change

from seeking for work below to seeking for a better location

(p = .11). The application puzzle also is not affected by a

change from seeking for work below to seeking for a better

location, for both YapOr and ThOr, two workers (p = .53
for YapOr and p = .13 for ThOr).

In the case of two workers, it is interesting to notice

that all, but one application, have higher average execution

times with the version of YapOr that looks for work below

(bottom-most dispatching). The same holds true for most

of the ThOr executions. This contradicts previous works,

in particular the ones related to the Muse system (whose

implementation is the basis of YapOr), that reported bottom-

most dispatching as the better search strategy. In modern

machines the access to memory is faster than in older shared

memory machines. Therefore, bottom-most dispatching may

not be a good choice because of memory contention when

more than one worker needs to access the same region of

the Prolog stack.

YapOr and ThOr perform different for four workers.

The applications that present statistically different execu-

tion times using ThOr are ham and puzzle (p = .008
comparing below with better) and puzzle4x4 (p = .0005
comparing below with better). Both have better average

execution times using search for a better location instead

of searching for bottom-most work. The exception is the

map application, that has a statistically significant differ-

ence between below and better (p = .0009), with below

having the best average execution time. In practice, the

more workers we have, the more contention. Therefore,

dispatching on topmost or looking for a better location

prevents workers from competing for the same choice-point.

This is particularly true for the applications mentioned,

because they have many choice-points left on the topmost

part of the tree.

For YapOr, four workers, the only statistically signif-

icant difference is found for mapbigger with bottom-

most dispatching being the best strategy. We believe that

this difference of behavior between YapOr and ThOr is

related to the memory organization of both systems. While

ThOr is thread-based and has to manipulate a single page

table, YapOr overheads associated to the maintenance of

the several page tables per process. Therefore, moving to

topmost parts of the tree in ThOr can be beneficial.

Except for ham, puzzle, puzzle4x4 and map, in the

cases mentioned, all the other results are not statistically

significant, indicating that any order of search could be used

for the remaining applications.

For eight workers, results show again that the default

search order is not always the best strategy. For the short-

running applications (Figure 1), we can see a statistically

significant difference for cubes and ham, running with

YapOr. On the other hand, the ThOr executions with eight

workers are not significantly affected by a change in the

search order. For longer-running applications (Figure 2),

there are no statistically significant differences among the

three strategies: they all perform quite well.

Table I summarizes the best search order for different

numbers of processors for all applications. The value “any”

corresponds to non significant differences among the search

15791579

Figure 1. Varying the search order in cubes, ham, puzzle and puzzle4x4. The X-axis shows the number of workers (2, 4 and 8), and the Y -axis
shows average execution times in seconds.

(a) cubes, YapOr (b) cubes, ThOr

(c) ham, YapOr (d) ham, ThOr

(e) puzzle, YapOr (f) puzzle, ThOr

(g) puzzle4x4, YapOr (h) puzzle4x4, ThOr

15801580

Figure 2. Varying the search order for magic, map, mapbigger, and queens. The X-axis shows the number of workers (2, 4 and 8), and the Y -axis
shows average execution times in seconds.

(a) magic, YapOr (b) magic, ThOr

(c) map, YapOr (d) map, ThOr

(e) mapbigger, YapOr (f) mapbigger, ThOr

(g) queens, YapOr (h) queens, ThOr

15811581

orders. All the other values are significantly different with

p < .00823, with almost all p-values equal to zero. For two

workers, as mentioned before, search for work above favors

performance in both YapOr and ThOr.

Table I shows almost no statistical difference among the

search orders for four workers. For eight workers the statis-

tical difference reappears, with YapOr being more affected

by a change of search order than ThOr.

B. Performance of YapOr and ThOr, varying parameters

In this set of experiments, we keep the default order of

search for work (look for work below) and vary parameter

values for the search.

Figure 3 shows the variation in average execution times

(for 30 runs, per application, per parameter setting). as

we increase the number of workers. The applications

are mappbigger, queen, map, puzzle4x4, ham, and

puzzle. We organize the graph by pairs sl, d. Notice also

that the graph shows absolute running times.

The results indicate that the choice of parameter values af-

fects performance, especially under ThOr. For two workers,

the p-value for cubes, when comparing the performance of

YapOr using parameter settings 6-0 and 6-7 (sl = 6, d = 0
and sl = 6, d = 7, the ones that produced the lowest average

execution times) is 0.000032. This value confirms that the

different settings of parameters definitely affect performance

with a high statistical significance (with confidence close to

100%). For two workers, it seems that the dominant param-

eter setting for most of the applications is the combination

of sl = 6 and d = 0 (the setting that produces the lowest

average execution times) indicating that the values of sl and

d, used as default by YapOr and ThOr, may be overestimated

and underestimated, respectively. More precisely, compared

with the default parameters (sl = 10 and d = 3), this means

that it is better to look for work earlier instead of being

too conservative, and it is better not to delay the sharing of

work.

We performed an additional set of experiments, where

we vary the sl and d parameters for two, four and eight

workers, using search for work above, because it showed

a good performance with default parameters for almost all

applications with two workers. Results for this experiment

can be found in Figure 3. Further results, not presented here

for lack of space, show that YapOr and ThOr consistently

perform better with the order of search above than with the

default search order.

The results in Figure 3, show that for applications like

mapbigger and map, which have a rather deep tree with at

most two alternatives per checkpoint, and with high average

execution times, the variation of parameters makes the exe-

cution very unstable for ThOr. However for all combinations

of parameters, ThOr can execute faster than YapOr, although

YapOr is less affected by a change in parameter values.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we studied how or-scheduling strategies

implemented in or-parallel Prolog systems affect the perfor-

mance of Prolog applications in modern multi-core archi-

tectures. We performed a thorough study, where we vary:

(1) the main strategies to search for work: bottom-most

dispatching, top-most dispatching and looking for better

work, and (2) parameter values to control when looking for

work and sharing available work. Our main conclusions are:

(1) contrary to what is discussed in the literature, a choice of

top-most dispatching or looking for better work can produce

statistically significant better results than dispatching on

bottom-most work; (2) ThOr is more sensitive to a change

on parameter values for a larger number of processors; (3)

YapOr is more sensitive to a change on searching strategy

order; (4) applications that take longer to execute, with deep

depth and few alternatives per choice-point can run faster in

Thor for a large number of processors, but at the cost of

being less stable to a variation on parameter values.

This work uncovered several interesting issues not yet

investigated in or-parallel Prolog systems. Work is being car-

ried out to delve more deeply into these differences between

YapOr and Thor. Ultimately, our results will contribute to our

goal of dynamically deciding what is the best search strategy

and better combination of parameters, based on architectural

and application parameters.

ACKNOWLEDGMENTS

This work has been partially supported by the FCT re-

search projects LEAP (PTDC/EIA-CCO/112158/2009) and

HORUS (PTDC/ EIA-EIA/100897/2008).

REFERENCES

[1] K. Hammond and G. Michelson, Eds., Research Directions in
Parallel Functional Programming. London, UK: Springer-
Verlag, 2000.

[2] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. V.
Hermenegildo, “Parallel Execution of Prolog Programs: A
Survey,” ACM Transactions on Programming Languages and
Systems, vol. 23, no. 4, pp. 472–602, 2001.

[3] N. A. Fonseca, A. Srinivasan, F. M. A. Silva, and R. Ca-
macho, “Parallel ILP for distributed-memory architectures,”
Machine Learning, vol. 74, no. 3, pp. 257–279, 2009.

[4] M. Aref, “Logic for enterprise decision automation appli-
cations,” in Commercial Users of Logic Programming, in
conjunction with ICLP, 2009, 2009, company: LogicBlox.

[5] L. Spratt, “The ontology works deductive database system,”
in Commercial Users of Logic Programming, in conjunction
with ICLP, 2009, 2009, company: Ontology Works Inc.

[6] D. Warren, “From data to knowledge,” in Commercial Users
of Logic Programming, in conjunction with ICLP, 2009, 2009,
company: XSB Inc.

15821582

(i) Two workers, YapOr (j) Two workers, ThOr

(k) Two workers, YapOr (l) Four workers, ThOr

(m) Eight workers, YapOr (n) Eight workers, ThOr

Figure 3. Varying parameters with search = above

15831583

Table I
BEST SEARCH ORDER

Benchmark Two workers Four workers Eight workers
YapOr ThOr YapOr ThOr YapOr ThOr

cubes below/above better any any below any
ham above above any better better any
magic above above any any above any
map above better any below better below
mapbigger above better below any better below
puzzle above above any better any any
puzzle4x4 better better any better above better
queens better above any any above below/above

[7] M. Elston, “From prolog to porsche: experiences developing
a large scale financial application in prolog,” in Commercial
Users of Logic Programming, in conjunction with ICLP, 2009,
2009, company: Scientific Software and Systems Ltd.

[8] J. A. Crammond, “A Comparative Study of Unification Algo-
rithms for OR-Parallel Execution of Logic Languages,” in Int.
Conf. on Parallel Processing, D. DeGroot, Ed. St. Charles,
Ill.: IEEE, August 1985, pp. 131–138.

[9] J. C. Kergommeaux and P. Codognet, “Parallel logic pro-
gramming systems,” Computing Surveys, vol. 26, no. 3, pp.
295–336, September 1994.

[10] E. Lusk et al., “The Aurora or-parallel Prolog system,” New
Generation Computing, vol. 7, no. 2,3, pp. 243–271, 1990.

[11] K. Ali and R. Karlsson, “The Muse Or-parallel Prolog Model
and its Performance,” in Proceedings of the North American
Conference on Logic Programming. MIT Press, October
1990, pp. 757–776.

[12] ——, “Scheduling Speculative Work in MUSE and Perfor-
mance Results,” International Journal of Parallel Program-
ming, vol. 21, no. 6, pp. 449–476, 1992.

[13] A. Beaumont, S. Raman, P. Szeredi, and D. H. D. Warren,
“Flexible Scheduling of OR-Parallelism in Aurora: The Bris-
tol Scheduler,” in Conference on Parallel Architectures and
Languages Europe, ser. LNCS, no. 506. Springer-Verlag,
1991, pp. 403–420.

[14] R. Sindaha, “Branch-Level Scheduling in Aurora: The
Dharma Scheduler,” in International Logic Programming
Symposium. The MIT Press, 1993, pp. 403–419.

[15] R. Rocha, F. M. A. Silva, and V. Santos Costa, “Yapor: an
or-parallel prolog system based on environment copying.” in
EPIA’99, 1999, pp. 178–192.

[16] V. Santos Costa, I. Dutra, and R. Rocha, “Threads and or-
parallelism unified,” Theory and Practice of Logic Program-
ming, 26th International Conference on Logic Programming
(ICLP 2010), Special Issue, vol. 10, no. (4–6), pp. 417–432,
July 2010.

[17] K. Ali and R. Karlsson, “The Muse Approach to OR-
Parallel Prolog,” International Journal of Parallel Program-
ming, vol. 19, no. 2, pp. 129–162, 1990.

[18] ——, “Full Prolog and Scheduling OR-Parallelism in Muse,”
International Journal of Parallel Programming, vol. 19, no. 6,
pp. 445–475, 1990.

[19] K. Ali, “Or-parallel Execution of Prolog on a Multi-
Sequential Machine,” International Journal of Parallel Pro-
gramming, vol. 15, no. 3, pp. 189–214, 1986.

[20] V. Santos Costa, “On Supporting Parallelism in a Logic
Programming System,” in Workshop on Declarative Aspects
of Multicore Programming, 2008, pp. 77–91.

[21] V. Santos Costa, R. Rocha, and F. M. A. Silva, “Novel Models
for Or-Parallel Logic Programs: A Performance Analysis,”
in EuroPar 2000 Parallel Processing, ser. LNCS, no. 1900.
Springer-Verlag, 2000, pp. 744–753.

[22] E. Tick, Memory Performance of Prolog Architectures.
Kluwer Academic Publishers, 1987.

15841584

