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Preface

This volume contains the proceedings of the 13th International Colloquium
on Implementation of Constraint and LOgic Programming Systems (CICLOPS
2013), held in Istanbul, Turkey during August 25, 2013. CICLOPS is a well
established line of workshops, traditionally co-located with ICLP, that aims at
discussing and exchanging experience on the design, implementation, and opti-
mization of constraint and logic programming systems, and other systems based
on logic as a means of expressing computations.

This year, CICLOPS received 8 paper submissions. Each submission was
reviewed by at least 3 Program Committee members and, at the end, 6 papers
were accepted for presentation at the workshop.

We would like to thank the ICLP organizers for their support, the EasyChair
conference management system for making the life of the program chairs easier
and arxiv.org for providing permanent hosting. Thanks should go also to the au-
thors of all submitted papers for their contribution to make CICLOPS alive and
to the participants for making the event a meeting point for a fruitful exchange
of ideas and feedback on recent developments. Finally, we want to express our
gratitude to the Program Committee members, as the symposium would not
have been possible without their dedicated work.

July 2013,
Ricardo Rocha

Christian Theil Have
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A Generic Analysis Server System
for Functional Logic Programs

Michael Hanus and Fabian Reck

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
{mh|fre}@informatik.uni-kiel.de

Abstract. We present a system, called CASS, for the analysis of functional logic
programs. The system is generic so that various kinds of analyses (e.g., ground-
ness, non-determinism, demanded arguments) can be easily integrated. In order to
analyze larger applications consisting of dozens or hundreds of modules, CASS
supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis en-
vironments, program optimizers, as well as Eclipse-based development environ-
ments. For this purpose, CASS can also be invoked as a server system to get
a language-independent access to its functionality. CASS is completely imple-
mented in the functional logic language Curry as a master/worker architecture to
exploit parallel or distributed execution environments.

1 Introduction

Automated program analyses are useful for various purposes. For instance, compil-
ers can benefit from their results to improve the translation of source into target pro-
grams. Analysis information can be helpful to programmers to reason about the behav-
ior and operational properties of their programs. Moreover, this information can also
be documented by program documentation tools or interactively shown to developers
in dedicated programming environments. On the one hand, declarative programming
languages provide interesting opportunities for analyzing programs. On the other hand,
their complex or abstract execution model demands for good tool support to develop
reliable programs. For example, the detection of type errors in languages with higher-
order features or the detection of mode problems in the use of Prolog predicates.

This work is related to functional logic languages that combine the most important
features of functional and logic programming in a single language (see [4,14] for recent
surveys). In particular, these languages provide higher-order functions and demand-
driven evaluation from functional programming together with logic programming fea-
tures like non-deterministic search and computing with partial information (logic vari-
ables). This combination has led to new design patterns [2,5] and better abstractions for
application programming. Moreover, program implementation and analysis aspects for
functional as well as logic languages can be considered in a unified framework. For in-
stance, test cases for functional programs can be generated by executing functions with
logic variables as arguments [9].

Automated program analyses have been already used for functional logic program-
ming in various situations. For instance, CurryDoc [11] is an automatic documentation



tool for the functional logic language Curry that analyzes Curry programs to document
various operational aspects, like the non-determinism behavior or completeness issues.
CurryBrowser [12] is an interactive analysis environment that unifies various program
analyses in order to reason about Curry applications. KiCS2 [7], a recent implementa-
tion of Curry that compiles into Haskell, includes an analyzer to classify higher-order
and deterministic operations in order to support their efficient implementation which
results in highly efficient target programs. Similar ideas are applied in the implementa-
tion of Mercury [24] which uses mode and determinism information to reorder predicate
calls. Non-determinism information as well as information about definitely demanded
arguments has been used to improve the efficiency of functional logic programs with
flexible search strategies [13]. A recent Eclipse-based development environment for
Curry [21] also supports the access to analysis information during interactive program
development.

These different uses of program analyses is the motivation for the current work.
We present CASS (Curry Analysis Server System) which is intended to be a central
component of current and future tools for functional logic programs. CASS provides a
generic interface to support the integration of various program analyses. Although the
current implementation is strongly related to Curry, CASS can also be used for simi-
lar declarative programming languages, like TOY [20]. The analyses are performed on
an intermediate format into which source programs can be compiled. CASS supports
the analysis of larger applications by a modular and incremental analysis. The analysis
results for each module are persistently stored and recomputed only if it is necessary.
Since CASS is implemented in Curry, it can be directly used in tools implemented in
Curry, like the documentation generator CurryDoc, the analysis environment Curry-
Browser, or the Curry compiler KiCS2. CASS can also be invoked as a server system
providing a text-based communication protocol in order to interact with tools imple-
mented in other languages, like the Eclipse plug-in for Curry. CASS is implemented as
a master/worker architecture, i.e., it can distribute the analysis work to different pro-
cesses in order to exploit parallel or distributed execution environments.

In the next section, we review some features of Curry. Section 3 shows how various
kinds of program analyses can be implemented and integrated into CASS. Some uses
of CASS are presented in Section 4 before its implementation is sketched in Section 5
and evaluated in Section 6.

2 Curry and FlatCurry

In this section we review some aspects of Curry that are necessary to understand the
functionality and implementation of our analysis tool. More details about Curry’s com-
putation model and a complete description of all language features can be found in
[10,18].

Curry is a declarative multi-paradigm language combining in a seamless way fea-
tures from functional, logic, and concurrent programming. Curry has a Haskell-like syn-
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tax1 [22] extended by the possible inclusion of free (logic) variables in conditions and
right-hand sides of defining rules. Curry also offers standard features of functional lan-
guages, like polymorphic types, modules, or monadic I/O which is identical to Haskell’s
I/O concept [25]. Thus, “IO α” denotes the type of an I/O action that returns values of
type α.

A Curry program consists of the definition of functions and the data types on which
the functions operate. Functions are defined by conditional equations with constraints
in the conditions. They are evaluated lazily and can be called with partially instantiated
arguments. For instance, the following program defines the types of Boolean values
and polymorphic lists and functions to concatenate lists (infix operator “++”) and to
compute the last element of a list:
data Bool = True | False
data List a = [] | a : List a

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last xs | _ ++ [x] =:= xs = x where x free

The data type declarations define True and False as the Boolean constants and []

(empty list) and : (non-empty list) as the constructors for polymorphic lists (a is a
type variable ranging over all types and the type “List a” is usually written as [a] for
conformity with Haskell). The (optional) type declaration (“::”) of the function (++)

specifies that (++) takes two lists as input and produces an output list, where all list
elements are of the same (unspecified) type.2

The operational semantics of Curry [1,10] is a conservative extension of lazy func-
tional programming (if free variables do not occur in the program or the initial goal) and
(concurrent) logic programming. To describe this semantics, compile programs, or im-
plement analyzers and similar tools, an intermediate representation of Curry programs
has been shown to be useful. Programs of this intermediate language, called FlatCurry,
contain a single rule for each function where the pattern matching strategy is repre-
sented by case/or expressions. The basic structure of FlatCurry is defined as follows:3

P ::= D1 . . . Dm e ::= x
| c e1 . . . en

D ::= f x1 . . . xn = e | f e1 . . . en

| case e0 of {pk → ek}
p ::= c x1 . . . xn | fcase e0 of {pk → ek}

| e1 or e2
| let xk free in e

A program P consists of a sequence of function definitions D with pairwise dif-

1 Variables and function names usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”).

2 Curry uses curried function types where α->β denotes the type of all functions mapping
elements of type α into elements of type β.

3 ok denotes a sequence of objects o1, . . . , ok.
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ferent variables in the left-hand sides. The right-hand sides are expressions e com-
posed by variables, constructor and function calls, case expressions, disjunctions,
and introduction of free (unbound) variables. A case expression has the form
(f )case e of {c1 xn1 → e1, . . . , ck xnk

→ ek}, where e is an expression, c1, . . . , ck are
different constructors of the type of e, and e1, . . . , ek are expressions. The pattern vari-
ables xni

are local variables which occur only in the corresponding subexpression ei.
The difference between case and fcase shows up when the argument e is a free variable:
case suspends (which corresponds to residuation) whereas fcase nondeterministically
binds this variable to the pattern in a branch of the case expression (which corresponds
to narrowing).

Note that it is possible to translate other functional logic languages, like TOY [20],
or even Haskell into this intermediate format. Since our analysis tool is solely based
on FlatCurry, it can also be used for other source languages provided that there is a
translator from such languages into FlatCurry.

Mature implementations of Curry, like PAKCS [15] or KiCS2 [7], provide support
for meta-programming by a library containing data types for representing FlatCurry
programs and an I/O action for reading a module and translating its contents into the
corresponding data term. For instance, a module of a Curry program is represented as
an expression of type
data Prog = Prog String [String] [TypeDecl] [FuncDecl] [OpDecl]

where the arguments of the data constructor Prog are the module name, the names
of all imported modules, the list of all type, function, and infix operator declarations.
Furthermore, a function declaration is represented as
data FuncDecl = Func QName Int Visibility TypeExpr Rule

where the arguments are the qualified name (of type QName, i.e., a pair of module and
function name), arity, visibility (Public or Private), type, and rule (of the form
“Rule arguments expr”) of the function. Finally, the data type for expressions just
reflects its formal definition:4

data Expr = Var Int
| Lit Literal
| Comb CombType QName [Expr]
| Case CaseType Expr [(Pattern,Expr)]
| Or Expr Expr
| Free [Int] Expr

data CombType = FuncCall | ConsCall

Thus, variables are numbered, literals (like numbers or characters) are distinguished
from combinations (Comb) which have a first argument to distinguish constructor appli-
cations and applications of defined functions. The remaining data type declarations for
representing Curry programs are similar but we omit them for brevity.

4 We present a slightly simplified version of the actual type definitions.
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3 Implementing Program Analyses

Basically, a program analysis can be considered as a mapping that associates a program
element with information about some aspect of its semantics. Since most interesting
semantical aspects are not computable, they are approximated by some abstract domain
where each abstract value describes some set of concrete values [8]. For instance, an
“overlapping rules” analysis determines whether a function is defined by a set of over-
lapping rules, which means that some ground call to this function can be reduced in
more than one way. An example for an operation that is defined by overlapping rules is
the “choice” operation
x ? y = x
x ? y = y

For this analysis one can use Bool as the abstract domain so that the abstract value
False is interpreted as “defined by non-overlapping rules” and True is interpreted as
“defined by overlapping rules”. Hence, the “overlapping rules” analysis has the type
FuncDecl → Bool

which means that we associate a Bool value to each function definition. Based on the
data type definitions sketched in Section 2 and some standard functions, such an anal-
ysis can be defined by looking for occurrences of Or in the defining expression as
follows:
isOverlapping :: FuncDecl → Bool
isOverlapping (Func _ _ _ _ (Rule _ e)) = orInExpr e

orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ _ es) = any orInExpr es
orInExpr (Case _ e bs) = orInExpr e || any (orInExpr . snd) bs
orInExpr (Or _ _) = True
orInExpr (Free _ e) = orInExpr e

Many interesting aspects require a more sophisticated analysis where dependencies are
taken into account. For instance, consider a “non-determinism” analysis with the ab-
stract domain
data DetDom = Det | NonDet

Here, Det is interpreted as “the operation evaluates in a deterministic manner on ground
arguments.” However, NonDet is interpreted as “the operation might evaluate in differ-
ent ways for given ground arguments.” The apparent imprecision is due to the approx-
imation of the analysis. For instance, if the function f is defined by overlapping rules
and the function g might call f, then g is judged as non-deterministic. In order to take
into account such dependencies, the non-determinism analysis requires to examine the
current function as well as all directly or indirectly called functions for overlapping
rules. Due to recursive function definitions, this analysis cannot be done in one shot but
requires a fixpoint computation. In order to make things simple for the analysis devel-
oper, CASS supports such fixpoint computations and requires from the developer only
the implementation of an operation of type
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FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type
[(QName,a)] represents the currently known analysis values for the functions directly
used in this function declaration. Hence, the non-determinism analysis can be imple-
mented as follows:
nondetFunc :: FuncDecl → [(QName,DetDom)] → DetDom
nondetFunc (Func f _ _ _ (Rule _ e)) calledFuncs =
if orInExpr e || freeVarInExpr e ||

any (==NonDet) (map snd calledFuncs)
then NonDet
else Det

Thus, it computes the abstract value NonDet if the function itself is defined by overlap-
ping rules or contains free variables that might cause non-deterministic guessing (we
omit the definition of freeVarInExpr since it is quite similar to orInExpr), or if it
depends on some non-deterministic function. The actual analysis is performed by defin-
ing some start value for all functions (the “bottom” value of the abstract domain, here:
Det) and performing a fixpoint computation for the abstract values of these functions.
CASS uses a working list approach as default but also supports other methods to com-
pute fixpoints. The termination of the fixpoint computation can be ensured by standard
assumptions in abstract interpretation [8], e.g., by choosing a finite abstract domain and
monotonic operations, or by widening operations.

To support the inclusion of different analyses in CASS, there are an abstract type
“Analysis a” denoting a program analysis with abstract domain “a” and several con-
structor operations for various kinds of analyses. Each analysis has a name provided as
a first argument to these constructors. The name is used to store the analysis information
persistently and to pass specific analysis tasks to workers (see below for more details).
For instance, a simple function analysis which depends only on a given function defini-
tion can be created by
funcAnalysis :: String → (FuncDecl → a) → Analysis a

where the analysis name and analysis function are provided as arguments. Thus, the
overlapping analysis can be specified as
overlapAnalysis :: Analysis Bool
overlapAnalysis = funcAnalysis "Overlapping" isOverlapping

A function analysis with dependencies can be constructed by
dependencyFuncAnalysis ::
String → a → (FuncDecl → [(QName,a)] → a) → Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the
bottom element of the abstract domain. Thus, the complete non-determinism analysis
can be specified as
nondetAnalysis :: Analysis DetDom
nondetAnalysis = dependencyFuncAnalysis "Deterministic" Det nondetFunc

It should be noted that this definition is sufficient to execute the analysis with CASS
since the analysis system takes care of computing fixpoints, calling the analysis func-

6



tions with appropriate values, analyzing imported modules, etc. Thus, the programmer
can concentrate on implementing the logic of the analysis and is freed from many te-
dious implementation details.

Sometimes one is also interested in analyzing information about data types rather
than functions. For instance, the Curry implementation KiCS2 [7] has an optimization
for higher-order deterministic operations. This optimization requires some information
about the higher-order status of data types, i.e., whether a term of some type might
contain functional values. CASS supports such analyses by appropriate analysis con-
structors. A simple type analysis which depends only on a given type declaration can
be specified by
typeAnalysis :: String → (TypeDecl → a) → Analysis a

A more complex type analysis depending also on information about the types used in
the type declaration can be specified by
dependencyTypeAnalysis ::
String → a → (TypeDecl → [(QName,a)] → a) → Analysis a

Similarly to a function analysis, the second argument is the start value of the fixpoint
analysis and the third argument computes the abstract information about the type names
used in the type declaration.

The remaining entities in a Curry program that can be analyzed are data construc-
tors. Since their definition only contains the argument types, it may seem uninteresting
to provide a useful analysis for them. However, sometimes it is interesting to analyze
their context so that there is a analysis constructor of type
constructorAnalysis :: String → (ConsDecl → TypeDecl → a)

→ Analysis a

Thus, the analysis operation of type (ConsDecl -> TypeDecl -> a) gets for each
constructor declaration the corresponding type declaration. This information could be
used to compute the sibling constructors, e.g., the sibling for the constructor True is
False. The information about sibling constructors is useful to check whether a func-
tion is completely defined, i.e., contains a case distinction for all possible patterns. For
instance, the operation (in FlatCurry notation)
not x = case x of True → False

False → True

is completely defined whereas
cond x y = case x of True → y

is incompletely defined since it fails on False as the first argument. To check this
property, information about sibling constructors is obviously useful. But how can we
provide this information in an analysis for functions?

For this and similar purposes, CASS supports the combination of different analyses.
Thus, an analysis developer can define an analysis that is based on information com-
puted by another analysis. To make analysis combination possible, there is an abstract
type “ProgInfo a” to represent the analysis information of type “a” for a given mod-
ule and its imports. In order to look up analysis information about some entity, there is
an operation
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lookupProgInfo:: QName → ProgInfo a → Maybe a

One can use the analysis constructor
combinedFuncAnalysis :: String → Analysis b

→ (ProgInfo b → FuncDecl → a) → Analysis a

to implement a function analysis depending on some other analysis. The second ar-
gument is some base analysis computing abstract values of type “b” and the analysis
function gets, in contrast to a simple function analysis, the analysis information com-
puted by this base analysis.

For instance, if the sibling constructor analysis is defined as
siblingCons :: Analysis [QName]
siblingCons = constructorAnalysis . . .

then the pattern completeness analysis might be defined by
patCompAnalysis :: Analysis Bool
patCompAnalysis =
combinedFuncAnalysis "PatComplete" siblingCons isPatComplete

isPatComplete :: ProgInfo [QName] → FuncDecl → Bool
isPatComplete siblinginfo fundecl = . . .

Similarly, other kinds of analyses can be also combined with some base analysis by
using the following analysis constructors:
combinedTypeAnalysis :: String → Analysis b

→ (ProgInfo b → TypeDecl → a) → Analysis a
combinedDependencyFuncAnalysis :: String → Analysis b → a

→ (ProgInfo b → FuncDecl → [(QName,a)] → a) → Analysis a
combinedDependencyTypeAnalysis :: String → Analysis b → a

→ (ProgInfo b → TypeDecl → [(QName,a)] → a) → Analysis a

For instance, an analysis for checking whether a function is totally defined, i.e., always
reducible for all ground arguments, can be based on the pattern completeness analysis.
It is a dependency analysis so that it can be defined as follows (in this case, True is the
bottom element since the abstract value False denotes “might not be totally defined”):
totalAnalysis :: Analysis Bool
totalAnalysis =
combinedDependencyFuncAnalysis "Total" patCompAnalysis True isTotal

isTotal :: ProgInfo Bool → FuncDecl → [(QName,Bool)] → Bool
isTotal pcinfo fdecl calledfuncs =
(maybe False id (lookupProgInfo (funcName fdecl) pcinfo))
&& all snd calledfuncs

Hence, a function is totally defined if it is pattern complete and depends only on totally
defined functions.

Further examples of combined analyses are the higher-order function analysis used
in KiCS2 (see above) where the higher-order status of a function depends on the higher-
order status of its argument types, and the non-determinism analysis of [6] where non-
determinism effects are analyzed based on groundness information.
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In order to integrate some implemented analysis in CASS, one has to register it.
In principle, this could be done dynamically, but currently only a static registration is
supported. For the registration, the implementation of CASS contains a constant
registeredAnalysis :: [RegisteredAnalysis]

keeping the information about all available analyses. To register a new analysis, it has
to be added to this list of registered analyses and CASS has to be recompiled. Each
registered analysis must provide a “show” function to map abstract values into strings to
be shown to the user.5 This allows for some flexibility in the presentation of the analysis
information. For instance, showing the results of the totally definedness analysis can be
implemented as follows:
showTotal :: Bool → String
showTotal True = "totally defined"
showTotal False = "possibly partially defined"

An analysis can be registered with the auxiliary operation
cassAnalysis :: Analysis a → (a → String) → RegisteredAnalysis

For instance, we can register our analyses presented in this section by the definition
registeredAnalysis = [cassAnalysis overlapAnalysis showOverlap

,cassAnalysis nondetAnalysis showDet
,cassAnalysis siblingCons showSibling
,cassAnalysis patCompAnalysis showComplete
,cassAnalysis totalAnalysis showTotal ]

in the CASS implementation. After compiling CASS, they are immediately available as
shown in the next section.

4 Using the Analysis System

As mentioned above, a program analysis is useful for various purposes, e.g., the im-
plementation and transformation of programs, tool and documentation support for pro-
grammers, etc. Therefore, the results computed by some analysis registered in CASS
can be accessed in various ways. Currently, there are three methods for this purpose:

Batch mode: CASS is started with a module and analysis name. Then this analysis is
applied to the module and the results are printed (using the analysis-specific show
function, see above).

API mode: If the analysis information should be used in an application implemented
in Curry, the application program could use the CASS interface operations to start
an analysis and use the computed results for further processing.

Server mode: If the analysis results should be used in an application implemented in
some language that does not have a direct interface to Curry, one can start CASS
in a server mode. In this case, one can connect to CASS via some socket using a
communication protocol that is specified in the documentation of CASS.

5 Alternative visualizations of analysis information, e.g., as graphs, are planned for the future.
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Eclipse Curry Browser
ND-Optimizer

Fig. 1. Using CASS in different contexts

Figure 1 shows some uses of CASS which are discussed in the following. The use of
CASS in batch mode is obvious. This mode is useful to get a quick access to analysis in-
formation so that one can experiment with different abstractions, fixpoint computations,
etc.

If one wants to access CASS inside an application implemented in Curry, one can
use some interface operation of CASS. For instance, CASS provides an operation
analyzeGeneric :: Analysis a → String

→ IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the sec-
ond argument). The result is either the analysis information computed for this module
or an error message in case of some execution error. This access to CASS is used in the
documentation generator CurryDoc [11] to describe some operational aspects of func-
tions (e.g., pattern completeness, non-determinism, solution completeness), the Curry
compiler KiCS2 [7] to get information about the determinism and higher-order status of
functions, and the non-determinism optimizer described in [13] to obtain information
about demanded arguments and non-deterministic functions. Furthermore, there is also
a similar operation
analyzeModule :: String → String

→ IO (Either (ProgInfo String) String)

10



which takes an analysis name and a module name as arguments and yields the textual
representation of the computed analysis results. This is used in the CurryBrowser [12]
which allows the user to browse through the modules of a Curry application and apply
and visualize various analyses for each module or function. Beyond some specific anal-
yses like dependency graphs, all function analyses registered in CASS are automatically
available in the CurryBrowser.

The server mode of CASS is used in a recently developed Eclipse plug-in for Curry
[21] which also supports the visualization of analysis results inside Eclipse. Since
this plug-in is implemented in a Java-based framework, the access to CASS is imple-
mented via a textual protocol over a socket connection. This protocol has a command
GetAnalysis to query the names of all available analyses. This command is used to
initialize the analysis selection menus in the Eclipse plug-in. Furthermore, there are
commands to analyze a complete module or individual entities inside a module. The
analysis results are returned as plain strings or in XML format. Currently, we are work-
ing on more options to visualize analysis information in the Eclipse plug-in rather than
strings, e.g., term or graph visualizations.

5 Implementation

As mentioned above, CASS is implemented in Curry using the features for meta-
programming as sketched in Section 2. Since the analysis programmer only provides
operations to analyze a function, type, or data constructor, as shown in Section 3, the
main task of CASS is to supply these operations with the appropriate parameters in
order to compute the analysis results.

CASS is intended to analyze larger applications consisting of many modules. Thus,
a simple implementation by concatenating all modules into one large program to be
analyzed would not be efficient enough. Hence, CASS performs a separate analysis of
each module by the following steps:

1. The imported modules are analyzed.
2. The analysis information of the interface of the imported modules are loaded.
3. The module is analyzed. If the analysis is a dependency analysis, they are evaluated

by a fixpoint computation where the specified start value is used as initial values
for the locally defined (i.e., non-imported) entities.

Obviously, this scheme can be simplified in case of a simple analysis without depen-
dencies, since such an analysis does not require the imported entities. For a combined
analysis, the base analysis is performed before the main analysis is executed.

It should be noted that the separate analysis of each module allows only a bottom-
up but not a top-down analysis starting with the initial goal. A bottom-up analysis is
sufficient for interactive systems where the initial goal is not known at analysis time.
Nevertheless, it is sometimes possible to express “top-down oriented” analyses, like a
groundness analysis, in a bottom-up manner by choosing appropriate abstract domains,
as shown in [6] where a type and effect system is used to analyze groundness and non-
determinism information.
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In order to speed up the complete analysis process, CASS implements a couple
of improvements to this general analysis process sketched above. First, the analysis
information for each module is persistently stored. Hence, before a module is analyzed,
it is checked whether there already exists a storage with the analysis information of
this module and whether the time stamp of this information is newer than the source
program with all its direct or indirect imports. If the storage is found and is still valid,
the stored information is used. Otherwise, the information is computed as described
above and then persistently stored. This has the advantage that, if only the main module
has changed and needs to be re-analyzed, the analysis time of a large application is still
small.

To exploit multi-core or distributed execution environments, the implementation of
CASS is designed as a master/worker architecture where a master process coordinates
all analysis activities and each worker is responsible to analyze a single module. Thus,
when CASS is requested to analyze some module, the master process computes all
import dependencies together with a topological order of all dependencies. Therefore,
the standard prelude module (without import dependencies) is the first module to be
analyzed and the main module is the last one. Then the master process iterates on the
following steps until all modules are analyzed:

– If there is a free worker and all imports of the first module are already analyzed,
pass the first module to the free worker and delete it from the list of modules.

– If the first module contains imports that are not yet analyzed, wait for the termina-
tion of an analysis task of a worker.

– If a worker has finished the analysis of a module, mark all occurrences of this
module as “analyzed.”

Since contemporary Curry implementations do not support thread creation, the workers
are implemented as processes that are started at the beginning and terminated at the
end of the entire execution. The number of workers can be defined by some system
parameter.

The current distribution of CASS6 contains fourteen program analyses, including
the analyses discussed in Section 3. Further analyses include a “solution complete-
ness” analysis (which checks whether a function might suspend due to residuation), a
“right-linearity” analysis (used to improve the implementation of functional patterns
[3]), an analysis of demanded arguments (used to optimize non-deterministic compu-
tations [13]), or a combined groundness/non-determinism analysis based on a type and
effect system [6]. New kinds of analyses can easily be added, since, as shown in Sec-
tion 3, the infrastructure provided by CASS simplifies their definition and integration.

6 Practical Evaluation

We have already discussed some practical applications of CASS in Section 4. These
applications demonstrate that the current implementation with a module-wise analysis,
storing analysis information persistently, and incremental re-analysis is good enough

6 CASS is part of the distributions of the Curry systems KiCS2 [7] and PAKCS [15].
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Application: KiCS2 REPL CASS CurryBrowser ModuleDB
Modules: 32 46 71 85
Analysis: Demand Ground Demand Ground Demand Ground Demand Ground
1 worker: 8.09 8.25 10.25 10.30 19.53 19.36 27.97 28.15
2 workers: 5.75 5.82 6.87 7.48 12.33 12.49 18.32 18.56
4 workers: 5.41 5.47 6.17 6.47 10.20 10.38 16.98 17.15

Re-analyze: 1.40 1.38 1.26 1.26 2.01 1.99 2.34 2.34

Table 1. Using CASS in different contexts

to use CASS in practice. In order to get some ideas about the efficiency of the current
implementation, we made some benchmarks and report their results in this section.
Since all analyses contained in CASS have been developed and described elsewhere
(see the references above), we do not evaluate their precision but only their execution
efficiency.

CASS is intended to analyze larger systems. Thus, we omit the data for analyzing
single modules but present the analysis times for four different Curry applications: the
interactive environment (read/eval/print loop) of KiCS2, the analysis system presented
in this paper, the interactive analysis environment CurryBrowser [12], and the module
database, a web application generated from an entity/relationship model with the web
framework Spicey [17]. In order to get an impression of the size of each application, the
number of modules (including imported system modules) is shown for each application.
Typically, most modules contain between 100-300 lines of code, where the largest one
has more than 900 lines of code.

Table 1 contains the elapsed time (in seconds) needed to analyze these applications
for different numbers of workers. We ran two kinds of fixpoint analysis: an analysis of
demanded arguments [13] and a groundness analysis [6]. Each analysis has always been
started from scratch, i.e., all persistently stored information were deleted at the begin-
ning, except for the last row which shows the times to re-analyze the application where
only the main module has been changed. In this case, the actual analysis time is quite
small but most of the total time is spent to check all module dependencies for possible
updates. The benchmarks were executed on a Linux machine running Ubuntu 12.04
with an Intel Core i5 (2.53GHz) processor where CASS was compiled with KiCS2
(Version 0.2.4).

The speedup related to the number of workers is not optimal. This might be due to
the fact that the dependencies between the modules are complex so that there are not
many opportunities for an independent analysis of modules, i.e., workers might have
to wait for the termination of the analysis of modules which are imported by many
other modules. Nevertheless, the approach shows that there is a potential to exploit the
computing power offered by modern computers. Furthermore, the absolute run times
are acceptable. It should also be noted that, during system development, the times are
lower due to the persistent storing of analysis results.
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7 Conclusions

In this paper we presented CASS, a tool to analyze functional logic programs. CASS
supports various kinds of program analyses by a general notion of analysis functions
that map program entities into analysis information. In order to implement an analysis
that also depends on information about other entities used in a definition, CASS sup-
ports “dependency analyses” that require a fixpoint computation to yield the final anal-
ysis information. Moreover, different analyses can be combined so that one can define
an analysis that is based on the results of another analysis. Using these different con-
structions, the analysis developer can concentrate on defining the logic of the analysis
and is freed from the details to invoke the analysis on modules and complete application
systems. To analyze larger applications efficiently, CASS performs a modular and in-
cremental analysis where already computed analysis information is persistently stored.
Thus, CASS does not support top-down or goal-oriented analyses but only bottom-up
analyses which is acceptable for large applications or interactive systems with unknown
initial goals. The implementation of CASS supports different modes of use (batch, API,
server) so that the registered analyses can be accessed by various systems, like com-
pilers, program optimizers, documentation generators, or programming environments.
Currently, CASS produces output in textual form. The support for other kinds of visu-
alizations is a topic for future work.

The analysis of programs is an important topic for all kinds of languages so that
there is a vast body of literature. Most of such works is related to the development and
application of various analysis methods (where some of them related to functional logic
programs have already been discussed in this paper), but there are less works on the
development or implementation of program analyzers. An example of such an approach,
that is in some aspects similar to our work, is Hoopl [23]. Hoopl is a framework for data
flow analysis and transformation. As our framework does, Hoopl eases the definition of
analyses by offering high-level abstractions and releases the user from tasks like writing
fixpoint computations. In contrast to our work, Hoopl works on a generic representation
of data flow graphs, whereas CASS performs incremental, module-wise analyses on an
already existing representation of functional logic programs. Another related system
is Ciao [19], a logic programming system with advanced program analysis features to
optimize and verify logic programs. CASS has similar goals but supports strongly typed
analysis constructors to make the analysis construction reliable.

There are only a few approaches or tools directly related to the analysis of combined
functional logic programs, as already discussed in this paper. The examples in this pa-
per show that this combination is valuable since analysis aspects of pure functional
and pure logic languages can be treated in this combined framework, like demand and
higher-order aspects from functional programming and groundness and determinism as-
pects from logic programming. An early system in this direction is CIDER [16]. CIDER
supports the analysis of single Curry modules together with some graphical tracing fa-
cilities. A successor of CIDER is CurryBrowser [12], already mentioned above, which
supports the analysis and browsing of larger applications. CASS can be considered as
a more efficient and more general implementation of the analysis component of Curry-
Browser.
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For future work, we will add further analyses in CASS with more advanced abstract
domains. Since this might lead to analyses with substantial run times, the use of parallel
architectures might be more relevant. Thus, it would be also interesting to develop ad-
vanced methods to analyze module dependencies in order to obtain a better distribution
of analysis tasks between the workers.

Acknowledgements. The authors are grateful to Heiko Hoffmann for his contribution
to an initial version of the analysis system and Sandra Dylus for her suggestions to
improve the paper.
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Abstract. The tree based representation described in this paper, heredi-
tarily binary numbers, applies recursively a run-length compression mech-
anism that enables computations limited by the structural complexity of
their operands rather than by their bitsizes. While within constant fac-
tors from their traditional counterparts for their worst case behavior, our
arithmetic operations open the doors for interesting numerical computa-
tions, impossible with traditional number representations.

We provide a complete specification of our algorithms in the form of a
purely declarative Prolog program.

Keywords: hereditary numbering systems, compressed number represen-
tations, arithmetic computations with giant numbers, tree-based number-
ing systems, Prolog as a specification language.

1 Introduction

While notations like Knuth’s “up-arrow” [1] or tetration are useful in describing
very large numbers, they do not provide the ability to actually compute with
them - as, for instance, addition or multiplication with a natural number results
in a number that cannot be expressed with the notation anymore.

The novel contribution of this paper is a tree-based numbering system that
allows computations with numbers comparable in size with Knuth’s “arrow-up”
notation. Moreover, these computations have a worst case complexity that is
comparable with the traditional binary numbers, while their best case com-
plexity outperforms binary numbers by an arbitrary tower of exponents factor.
Simple operations like successor, multiplication by 2, exponent of 2 are practi-
cally constant time and a number of other operations of practical interest like
addition, subtraction and comparison benefit from significant complexity reduc-
tions. For the curious reader, it is basically a hereditary number system similar to
[2], based on recursively applied run-length compression of a special (bijective)
binary digit notation.

A concept of structural complexity is also introduced, based on the size of
our tree representations. It provides estimates on worst and best cases for our
algorithms and it serves as an indicator of the expected performance of our
arithmetic operations.



We have adopted a literate programming style, i.e. the code contained in the
paper forms a self-contained Prolog program (tested with SWI-Prolog, Lean Pro-
log and Styla), also available as a separate file at http://logic.cse.unt.edu/
tarau/research/2013/hbn.pl . We hope that this will encourage the reader to
experiment interactively and validate the technical correctness of our claims.

The paper is organized as follows. Section 2 gives some background on rep-
resenting bijective base-2 numbers as iterated function application and section 3
introduces hereditarily binary numbers. Section 4 describes practically constant
time successor and predecessor operations on tree-represented numbers. Section
5 shows an emulation of bijective base-2 with hereditarily binary numbers and
section 6 discusses some of their basic arithmetic operations. Section 7 defines a
concept of structural complexity studies best and worst cases and comparisons
with bitsizes. Section 8 discusses related work. Section 9 concludes the paper and
discusses future work. Finally, an optimized general multiplication algorithm is
described in the Appendix.

2 Bijective base-2 numbers as iterated function
applications

Natural numbers can be seen as represented by iterated applications of the func-
tions o(x) = 2x + 1 and i(x) = 2x + 2 corresponding the so called bijective
base-2 representation [3] together with the convention that 0 is represented as
the empty sequence. As each n ∈ N can be seen as a unique composition of these
functions we can make this precise as follows:

Definition 1 We call bijective base-2 representation of n ∈ N the unique se-
quence of applications of functions o and i to ε that evaluates to n.

With this representation, and denoting the empty sequence ε, one obtains 0 =
ε, 1 = o(ε), 2 = i(ε), 3 = o(o(ε)), 4 = i(o(ε)), 5 = o(i(ε)) etc. and the following
holds:

i(x) = o(x) + 1 (1)

2.1 Properties of the iterated functions on and in

Proposition 1 Let fn denote application of function f n times. Let o(x) = 2x+
1 and i(x) = 2x+2, s(x) = x+1 and s′(x) = x−1. Then k > 0⇒ s(on(s′(k)) =
k2n and k > 1 ⇒ s(s(in(s′(s′(k)))) = k2n. In particular, s(on(0)) = 2n and
s(s(in(0))) = 2n+1.

Proof. By induction. Observe that for n = 0, k > 0, s(o0(s′(k)) = k20 because
s(s′(k))) = k. Suppose that P (n) : k > 0 ⇒ s(on(s′(k))) = k2n holds. Then,
assuming k > 0, P(n+1) follows, given that s(on+1(s′(k))) = s(on(o(s′(k)))) =
s(on(s′(2k))) = 2k2n = k2n+1. Similarly, the second part of the proposition also
follows by induction on n.
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The underlying arithmetic identities are:

on(k) = 2n(k + 1)− 1 (2)

in(k) = 2n(k + 2)− 2 (3)

and in particular
on(0) = 2n − 1 (4)

in(0) = 2n+1 − 2 (5)

3 Hereditarily binary numbers

3.1 Hereditary Number Systems

Let us observe that conventional number systems, as well as the bijective base-2
numeration system described so far, represent blocks of contiguous 0 and 1 digits
appearing in the binary representation of a number somewhat naively - one digit
for each element of the block. Alternatively, one might think that counting the
blocks and representing the resulting counters as binary numbers would be also
possible. But then, the same principle could be applied recursively. So instead
of representing each block of 0 or 1 digits by as many symbols as the size of the
block – essentially a unary representation – one could also encode the number
of elements in such a block using a binary representation.

This brings us to the idea of hereditary number systems.

3.2 Hereditarily binary numbers as a data type

First, we define a data type for our tree represented natural numbers, that we
call hereditarily binary numbers to emphasize that binary rather than unary
encoding is recursively used in their representation.

Definition 2 The data type T of the set of hereditarily binary numbers is defined
inductively as the set of Prolog terms such that:

X ∈ T if and only if X = e or X is of the form v(T, Ts) or w(T, Ts) (6)

where T ∈ T and Ts stands for a finite sequence (list) of elements of T.
The intuition behind the set T is the following:

– The term e (empty leaf) corresponds to zero
– the term v(T, Ts) counts the number T + 1 (as counting starts at 0) of o ap-

plications followed by an alternation of similar counts of i and o applications
in Ts

– the term w(T, Ts) counts the number T + 1 of i applications followed by an
alternation of similar counts of o and i applications in Ts

– the same principle is applied recursively for the counters, until the empty
sequence is reached
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One can see this process as run-length compressed bijective base-2 numbers, rep-
resented as trees with either empty leaves or at least one branch, after applying
the encoding recursively.

Definition 3 The function n : T → N shown in equation 7 defines the unique
natural number associated to a term of type T.

n(T ) =

8>>>>>><>>>>>>:

0 if T = e,

2n(X)+1 − 1 if T = v(X,[]),

(n(U) + 1)2n(X)+1 − 1 if T = v(X,[Y|Xs]) and U = w(Y,Xs),

2n(X)+2 − 2 if T = w(X,[]),

(n(U) + 2)2n(X)+1 − 2 if T = w(X,[Y|Xs]) and U = v(Y,Xs).

(7)

For instance, the computation of N in ?- n(w(v(e, []), [e, e, e]),N) ex-
pands to (((20+1 − 1 + 2)20+1 − 2 + 1)20+1 − 1 + 2)220+1−1+1 − 2 = 42. The
Prolog equivalent of equation (7) (using bitshifts for exponents of 2) is:

n(e,0).

n(v(X,[]),R) :-n(X,Z),R is 1<<(1+Z)-1.

n(v(X,[Y|Xs]),R):-n(X,Z),n(w(Y,Xs),K),R is (K+1)*(1<<(1+Z))-1.

n(w(X,[]),R):-n(X,Z),R is 1<<(2+Z)-2.

n(w(X,[Y|Xs]),R):-n(X,Z),n(v(Y,Xs),K),R is (K+2)*(1<<(1+Z))-2.

The following example illustrates the values associated with the first few natural
numbers.

0:e, 1:v(e,[]), 2:w(e,[]), 3:v(v(e,[]),[]), 4:w(e,[e]), 5:v(e,[e])

Note that a term of the form v(X,Xs) represents an odd number ∈ N+ and a
term of the form w(X,Xs) represents an even number ∈ N+. The following holds:

Proposition 2 n : T → N is a bijection, i.e., each term canonically represents
the corresponding natural number.

Proof. It follows from the identities (2), (3) by replacing the power of 2 functions
with the corresponding iterated applications of o and i.

4 Successor and predecessor

We will now specify successor and predecessor through a reversible Prolog pred-
icate s(Pred,Succ) holding if Succ is the successor of Pred.
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s(e,v(e,[])).

s(v(e,[]),w(e,[])).

s(v(e,[X|Xs]),w(SX,Xs)):-s(X,SX).

s(v(T,Xs),w(e,[P|Xs])):-s(P,T).

s(w(T,[]),v(ST,[])):-s(T,ST).

s(w(Z,[e]),v(Z,[e])).

s(w(Z,[e,Y|Ys]),v(Z,[SY|Ys])):-s(Y,SY).

s(w(Z,[X|Xs]),v(Z, [e,SX|Xs])):-s(SX,X).

It can be proved by structural induction that Peano’s axioms hold and as a
result < T, e, s > is a Peano algebra.

Note that recursive calls to s in s happen on terms that are (roughly) log-
arithmic in the bitsize of their operands. One can therefore assume that their
complexity, computed by an iterated logarithm, is practically constant1. Note
also that by using a single reversible predicate s for both successor and prede-
cessor, while the solution is always unique, some backtracking occurs in the latest
case. One can eliminate this by using two specialized predicates for successor and
predecessor.

5 Emulating the bijective base-2 operations o, i

To be of any practical interest, we will need to ensure that our data type T
emulates also binary arithmetic. We will first show that it does, and next we will
show that on a number of operations like exponent of 2 or multiplication by an
exponent of 2, it significantly lowers complexity.

Intuitively, the first step should be easy, as we need to express single appli-
cations or “un-applications” of o and i in terms of their iterated applications
encapsulated in the terms of type T.

First we emulate single applications of o and i seen in terms of s. Note that
o/2 and i/2 are also reversible predicates.

o(e,v(e,[])).

o(w(X,Xs),v(e,[X|Xs])).

o(v(X,Xs),v(SX,Xs)):-s(X,SX).

i(e,w(e,[])).

i(v(X,Xs),w(e,[X|Xs])).

i(w(X,Xs),w(SX,Xs)):-s(X,SX).

Finally the “recognizers” o and i simply detect v and w corresponding to o
(and respectively i) being the last operation applied and s detects that the
number is a successor, i.e., not the empty term e.

1 Empirically, when computing the successor on the first 230 = 1073741824 natural
numbers (with a deterministic, functional equivalent of our reversible s and its in-
verse), there are in total 2381889348 calls to s, averaging to 2.2183 per successor
and predecessor computation. The same average for 100 successor computations on
5000 bit random numbers also oscillates around 2.21.
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s_(v(_,_)). s_(w(_,_)).

o_(v(_,_)). i_(w(_,_)).

Note that each of the predicates o and i calls s and on a term that is (on
the average) logarithmically smaller. As a worst case, the following holds:

Proposition 3 The costs of o and i are within a constant factor from the cost
of s.

Definition 4 The function t : N→ T defines the unique tree of type T associated
to a natural number as follows:

t(x) =


e if x = 0,

o(t(x−1
2 )) if x > 0 and x is odd,

i(t(x
2 − 1)) if x > 0 and x is even

(8)

We can now define the corresponding Prolog predicate that converts from
terms of type T to natural numbers. Note that we use bitshifts (>>) for division
by 2.

t(0,e).

t(X,R):-X>0, X mod 2=:=1,Y is (X-1)>>1, t(Y,A),o(A,R).

t(X,R):-X>0, X mod 2=:=0,Y is (X>>1)-1, t(Y,A),i(A,R).

The following holds:

Proposition 4 Let id denote λx.x and “◦” function composition. Then, on
their respective domains

t ◦ n = id, n ◦ t = id (9)

Proof. By induction, using the arithmetic formulas defining the two functions.

Note also that the cost of t is proportional to the bitsize of its input and the
cost of n is proportional to the bitsize of its output.

6 Arithmetic operations

6.1 A few low complexity operations

Doubling a number db and reversing the db operation (hf) are quite simple, once
one remembers that the arithmetic equivalent of function o is λx.2x+ 1.

db(X,Db):-o(X,OX),s(Db,OX).

hf(Db,X):-s(Db,OX),o(X,OX).

Note that efficient implementations follow directly from our number theoretic
observations in section 2. For instance, as a consequence of proposition 1, the
operation exp2 computing an exponent of 2 , has the following simple definition
in terms of s.
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exp2(e,v(e,[])).

exp2(X,R):-s(PX,X),s(v(PX,[]),R).

Proposition 5 The costs of db, hf and exp2 are within a constant factor from
the cost of s.

Proof. It follows by observing that at most 2 calls to s, o are made in each.

6.2 Reduced complexity addition and subtraction

We now derive efficient addition and subtraction operations similar to the suc-
cessor/predecessor s, that work on one run-length encoded bloc at a time, rather
than by individual o and i steps.

We first define the predicates otimes corresponding to on(k) and itimes
corresponding to in(k).

otimes(e,Y,Y).

otimes(N,e,v(PN,[])):-s(PN,N).

otimes(N,v(Y,Ys),v(S,Ys)):-add(N,Y,S).

otimes(N,w(Y,Ys),v(PN,[Y|Ys])):-s(PN,N).

itimes(e,Y,Y).

itimes(N,e,w(PN,[])):- s(PN,N).

itimes(N,w(Y,Ys),w(S,Ys)):-add(N,Y,S).

itimes(N,v(Y,Ys),w(PN,[Y|Ys])):-s(PN,N).

They are part of a chain of mutually recursive predicates as they are already
referring to the add predicate, to be implemented later. Note also that instead of
naively iterating, they implement a more efficient “one bloc at a time” algorithm.
For instance, when detecting that its argument counts a number of applications
of o, otimes just increments that count. On the other hand, when the last
predicate applied was i, otimes simply inserts a new count for o operations.
A similar process corresponds to itimes. As a result, performance is (roughly)
logarithmic rather than linear in terms of the bitsize of argument N. We will use
this property for implementing a low complexity multiplication by exponent of
2 operation.

We also need a number of arithmetic identities on N involving iterated ap-
plications of o and i.

Proposition 6 The following hold:

ok(x) + ok(y) = ik(x+ y) (10)

ok(x) + ik(y) = ik(x) + ok(y) = ik(x+ y + 1)− 1 (11)

ik(x) + ik(y) = ik(x+ y + 2)− 2 (12)

Proof. By (2) and (3), we substitute the 2k-based equivalents of ok and ik, then
observe that the same reduced forms appear on both sides.
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The corresponding Prolog code is:

oplus(K,X,Y,R):-add(X,Y,S),itimes(K,S,R).

oiplus(K,X,Y,R):-add(X,Y,S),s(S,S1),itimes(K,S1,T),s(R,T).

iplus(K,X,Y,R):-add(X,Y,S),s(S,S1),s(S1,S2),itimes(K,S2,T),s(P,T),s(R,P).

Note that the code uses add that we will define later and that it is part of a chain
of mutually recursive predicate calls, that together will provide an intricate but
efficient implementation of the intuitively simple idea: we want to work on one
run-length encoded block at a time.

The corresponding identities for subtraction are:

Proposition 7

x > y ⇒ ok(x)− ok(y) = ok(x− y − 1) + 1 (13)

x > y + 1 ⇒ ok(x)− ik(y) = ok(x− y − 2) + 2 (14)

x ≥ y ⇒ ik(x)− ok(y) = ok(x− y) (15)

x > y ⇒ ik(x)− ik(y) = ok(x− y − 1) + 1 (16)

Proof. By (2) and (3), we substitute the 2k-based equivalents of ok and ik, then
observe that the same reduced forms appear on both sides. Note that special
cases are handled separately to ensure that subtraction is defined.

The Prolog code, also covering the special cases, is:

ominus(_,X,X,e).

ominus(K,X,Y,R):-sub(X,Y,S1),s(S2,S1),otimes(K,S2,S3),s(S3,R).

iminus(_,X,X,e).

iminus(K,X,Y,R):-sub(X,Y,S1),s(S2,S1),otimes(K,S2,S3),s(S3,R).

oiminus(_,X,Y,v(e,[])):-s(Y,X).

oiminus(K,X,Y,R):-s(Y,SY),s(SY,X),exp2(K,P),s(P,R).

oiminus(K,X,Y,R):-

sub(X,Y,S1),s(S2,S1),s(S3,S2),s_(S3), % S3 <> e

otimes(K,S3,S4),s(S4,S5),s(S5,R).

iominus(K,X,Y,R):-sub(X,Y,S),otimes(K,S,R).

Note the use of sub, to be defined later, which is also part of the mutually
recursive chain of operations.

The next two predicates extract the iterated applications of on and respec-
tively in from v and w terms:

osplit(v(X,[]), X,e).

osplit(v(X,[Y|Xs]),X,w(Y,Xs)).
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isplit(w(X,[]), X,e).

isplit(w(X,[Y|Xs]),X,v(Y,Xs)).

We are now ready for defining addition. The base cases are:

add(e,Y,Y).

add(X,e,X):-s_(X).

In the case when both terms represent odd numbers, we apply with auxAdd1 the
identity (10), after extracting the iterated applications of o as a and b with the
predicate osplit.

add(X,Y,R):-o_(X),o_(Y),osplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxAdd1(R1,A,As,B,Bs,R).

In the case when the first term is odd and the second even, we apply with
auxAdd2 the identity (11), after extracting the iterated application of o and i as
a and b.

add(X,Y,R):-o_(X),i_(Y),osplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxAdd2(R1,A,As,B,Bs,R).

In the case when the first term is even and the second odd, we apply with
auxAdd3 the identity (11), after extracting the iterated applications of i and o
as, respectively, a and b.

add(X,Y,R):-i_(X),o_(Y),isplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxAdd3(R1,A,As,B,Bs,R).

In the case when both terms represent even numbers, we apply with auxAdd4
the identity (12), after extracting the iterated application of i as a and b.

add(X,Y,R):-i_(X),i_(Y),isplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxAdd4(R1,A,As,B,Bs,R).

Note the presence of the comparison operation cmp, to be defined later, also
part of our chain of mutually recursive operations. Note also that in each case
we ensure that a block of the same size is extracted, depending on which of the
two operands a or b is larger. Beside that, the auxiliary predicates auxAdd1,
auxAdd2, auxAdd3 and auxAdd4 implement the equations of Prop. 6.

auxAdd1(’=’,A,As,_B,Bs,R):- s(A,SA),oplus(SA,As,Bs,R).

auxAdd1(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),oplus(SB,R1,Bs,R).

auxAdd1(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),oplus(SA,As,R1,R).

auxAdd2(’=’,A,As,_B,Bs,R):- s(A,SA),oiplus(SA,As,Bs,R).

auxAdd2(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),oiplus(SB,R1,Bs,R).

auxAdd2(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),oiplus(SA,As,R1,R).
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auxAdd3(’=’,A,As,_B,Bs,R):- s(A,SA),oiplus(SA,As,Bs,R).

auxAdd3(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),oiplus(SB,R1,Bs,R).

auxAdd3(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),oiplus(SA,As,R1,R).

auxAdd4(’=’,A,As,_B,Bs,R):- s(A,SA),iplus(SA,As,Bs,R).

auxAdd4(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),iplus(SB,R1,Bs,R).

auxAdd4(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),iplus(SA,As,R1,R).

The code for the subtraction predicate sub is similar:

sub(X,e,X).

sub(X,Y,R):-o_(X),o_(Y),osplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxSub1(R1,A,As,B,Bs,R).

In the case when both terms represent odd numbers, we apply the identity (13),
after extracting the iterated applications of o as a and b. For the other cases, we
use, respectively, the identities 14, 15 and 16:

sub(X,Y,R):-o_(X),i_(Y),osplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxSub2(R1,A,As,B,Bs,R).

sub(X,Y,R):-i_(X),o_(Y),isplit(X,A,As),osplit(Y,B,Bs),cmp(A,B,R1),

auxSub3(R1,A,As,B,Bs,R).

sub(X,Y,R):-i_(X),i_(Y),isplit(X,A,As),isplit(Y,B,Bs),cmp(A,B,R1),

auxSub4(R1,A,As,B,Bs,R).

Note also the auxiliary predicates auxSub1, auxSub2, auxSub3 and auxSub4
that implement the equations of Prop. 7.

auxSub1(’=’,A,As,_B,Bs,R):- s(A,SA),ominus(SA,As,Bs,R).

auxSub1(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),ominus(SB,R1,Bs,R).

auxSub1(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),ominus(SA,As,R1,R).

auxSub2(’=’,A,As,_B,Bs,R):- s(A,SA),oiminus(SA,As,Bs,R).

auxSub2(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),otimes(S,As,R1),oiminus(SB,R1,Bs,R).

auxSub2(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),oiminus(SA,As,R1,R).

auxSub3(’=’,A,As,_B,Bs,R):- s(A,SA),iominus(SA,As,Bs,R).

auxSub3(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),iominus(SB,R1,Bs,R).

auxSub3(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),otimes(S,Bs,R1),iominus(SA,As,R1,R).
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auxSub4(’=’,A,As,_B,Bs,R):- s(A,SA),iminus(SA,As,Bs,R).

auxSub4(’>’,A,As,B,Bs,R):-

s(B,SB),sub(A,B,S),itimes(S,As,R1),iminus(SB,R1,Bs,R).

auxSub4(’<’,A,As,B,Bs,R):-

s(A,SA),sub(B,A,S),itimes(S,Bs,R1),iminus(SA,As,R1,R).

6.3 Defining a total order: comparison

The comparison operation cmp provides a total order (isomorphic to that on
N) on our type T. It relies on bitsize computing the number of applications
of o and i that build a term in T, which is also part of our mutually recursive
predicates, to be defined later.

We first observe that only terms of the same bitsize need detailed compar-
ison, otherwise the relation between their bitsizes is enough, recursively. More
precisely, the following holds:

Proposition 8 Let bitsize count the number of applications of o or i opera-
tions on a bijective base-2 number. Then bitsize(x) < bitsize(y)⇒ x < y.

Proof. Observe that, given their lexicographic ordering in “big digit first” form,
the bitsize of bijective base-2 numbers is a non-decreasing function.

cmp(e,e,’=’).

cmp(e,Y,(’<’)):-s_(Y).

cmp(X,e,(’>’)):-s_(X).

cmp(X,Y,R):-s_(X),s_(Y),bitsize(X,X1),bitsize(Y,Y1),

cmp1(X1,Y1,X,Y,R).

cmp1(X1,Y1,_,_,R):- \+(X1=Y1),cmp(X1,Y1,R).

cmp1(X1,X1,X,Y,R):-reversedDual(X,RX),reversedDual(Y,RY),

compBigFirst(RX,RY,R).

The predicate compBigFirst compares two terms known to have the same
bitsize. It works on reversed (big digit first) variants, computed by reversedDual
and it takes advantage of the block structure using the following proposition:

Proposition 9 Assuming two terms of the same bitsizes, the one starting with
i is larger than one starting with o.

Proof. Observe that “big digit first” numbers are lexicographically ordered with
o < i.

As a consequence, cmp only recurses when identical blocks head the sequence
of blocks, otherwise it infers the “<” or “>” relation.

compBigFirst(e,e,’=’).

compBigFirst(X,Y,R):- o_(X),o_(Y),

osplit(X,A,C),osplit(Y,B,D),cmp(A,B,R1),

fcomp1(R1,C,D,R).
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compBigFirst(X,Y,R):-i_(X),i_(Y),

isplit(X,A,C),isplit(Y,B,D),cmp(A,B,R1),

fcomp2(R1,C,D,R).

compBigFirst(X,Y,(’<’)):-o_(X),i_(Y).

compBigFirst(X,Y,(’>’)):-i_(X),o_(Y).

fcomp1(’=’,C,D,R):-compBigFirst(C,D,R).

fcomp1(’<’,_,_,’>’).

fcomp1(’>’,_,_,’<’).

fcomp2(’=’,C,D,R):-compBigFirst(C,D,R).

fcomp2(’<’,_,_,’<’).

fcomp2(’>’,_,_,’>’).

The predicate reversedDual reverses the order of application of the o and i
operations to a “biggest digit first” order. For this, it only needs to reverse the
order of the alternative blocks of ok and ik. It uses the predicate len to compute
with auxRev1 and auxRev2 the number of these blocks. Then, it infers that if the
number of blocks is odd, the last block is of the same kind as the first; otherwise
it is of its alternate kind (w for v and vice versa).
reversedDual(e,e).

reversedDual(v(X,Xs),R):-reverse([X|Xs],[Y|Ys]),len([X|Xs],L),

auxRev1(L,Y,Ys,R).

reversedDual(w(X,Xs),R):-reverse([X|Xs],[Y|Ys]),len([X|Xs],L),

auxRev2(L,Y,Ys,R).

auxRev1(L,Y,Ys,R):-o_(L),R=v(Y,Ys).

auxRev1(L,Y,Ys,R):-i_(L),R=w(Y,Ys).

auxRev2(L,Y,Ys,R):-o_(L),R=w(Y,Ys).

auxRev2(L,Y,Ys,R):-i_(L),R=v(Y,Ys).

len([],e).

len([_|Xs],L):- len(Xs,L1),s(L1,L).

6.4 Computing bitsize

The predicate bitsize computes the number of applications of the o and i
operations. It works by summing up the counts of o and i operations composing
a tree-represented natural number of type T.
bitsize(e,e).

bitsize(v(X,Xs),R):-tsum([X|Xs],e,R).

bitsize(w(X,Xs),R):-tsum([X|Xs],e,R).

tsum([],S,S).

tsum([X|Xs],S1,S3):-add(S1,X,S),s(S,S2),tsum(Xs,S2,S3).

Bitsize concludes our chain of mutually recursive predicates. Note that it also
provides an efficient implementation of the integer log2 operation ilog2.
ilog2(X,R):-s(PX,X),bitsize(PX,R).
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6.5 Fast multiplication by an exponent of 2

The predicate leftshiftBy uses Prop. 1, i.e., the fact that repeated application
of the o operation (otimes) provides an efficient implementation of multiplica-
tion with an exponent of 2.

leftShiftBy(_,e,e).

leftShiftBy(N,K,R):-s(PK,K),otimes(N,PK,M),s(M,R).

The following holds:

Proposition 10 Assuming s constant time, leftshiftBy is (roughly) logarith-
mic in the bitsize of its arguments.

Proof. It follows by observing that at most one addition on data logarithmic in
the bitsize of the operands is performed.

7 Structural complexity

As a measure of structural complexity we define the predicate tsize that counts
the nodes of a tree of type T (except the root).

tsize(e,e).

tsize(v(X,Xs),R):- tsizes([X|Xs],e,R).

tsize(w(X,Xs),R):- tsizes([X|Xs],e,R).

tsizes([],S,S).

tsizes([X|Xs],S1,S4):-tsize(X,N),add(S1,N,S2),s(S2,S3),tsizes(Xs,S3,S4).

It corresponds to the function c : T→ N defined by equation (17):

c(T ) =


0 if T = e,∑

Y ∈[X|Xs] (1 + c(Y )) if T = v(X,Xs),∑
Y ∈[X|Xs] (1 + c(Y )) if T = w(X,Xs).

(17)

The following holds:

Proposition 11 For all terms T ∈ T, tsize(T) ≤ bitsize(T).

Proof. By induction on the structure of T , by observing that the two predicates
have similar definitions and corresponding calls to tsize return terms assumed
smaller than those of bitsize.

The following example illustrates their use:

?- t(123456,T),tsize(T,S1),n(S1,TSize),bitsize(T,S2),n(S2,BSize).

T = w(e, [w(e, [e]), e, v(e, []), e, w(e, []), w(e, [])]),

S1 = w(e, [e, e]), TSize = 12,

S2 = w(e, [w(e, [])]), BSize = 16 .

After defining the predicate iterated, that applies K times the predicate F
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iterated(_,e,X,X).

iterated(F,K,X,R):-s(PK,K),iterated(F,PK,X,R1),call(F,R1,R).

we can exhibit a best case, of minimal structural complexity for its size

bestCase(K,Best):-iterated(wtree,K,e,Best).

wtree(X,w(X,[])).

and a worst case, of maximal structural complexity for its size

worstCase(K,Worst):-iterated(io,K,e,Worst).

io(X,Z):-o(X,Y),i(Y,Z).

The following examples illustrate these predicates:

?- t(3,T),bestCase(T,Best),n(Best,N).

T = v(v(e, []), []), Best = w(w(w(e, []), []), []), N = 65534 .

?- t(3,T),worstCase(T,Worst),n(Worst,N).

T = v(v(e, []), []), Worst = w(e, [e, e, e, e, e]), N = 84 .

It follows from identity (5) that the predicate bestCase computes the iter-
ated exponent of 2 (tetration) and then applies the predecessor to it twice, i.e.,
it computes 22...2 − 2. A simple closed formula (easy to proof by induction) can
also be found for worstCase:

Proposition 12 The predicate worstCase k computes the value in T corre-
sponding to the value 4(4k−1)

3 ∈ N.

The average space-complexity of our number representation is related to the
average length of the integer partitions of the bitsize of a number [4]. Intuitively,
the shorter the partition in alternative blocks of o and i applications, the more
significant the compression is, but the exact study, given the recursive application
of run-length encoding, is likely to be quite intricate.

The following example shows that computations with towers of exponents 20
and 30 levels tall become possible with our number representation.

?- t(20,X),bestCase(X,A),t(30,Y),bestCase(Y,B),add(A,B,C),

| tsize(C,S),n(S,TSize),write(TSize),nl,fail.

314

Note that the structural complexity of the result (that we did not print out) is
still quite manageable: 250. This opens the door to a new world where tractabil-
ity of computations is not limited by the size of the operands but only by their
structural complexity.

8 Related work

Several notations for very large numbers have been invented in the past. Exam-
ples include Knuth’s arrow-up notation [1] covering operations like the tetration
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(a notation for towers of exponents). In contrast to our tree-based natural num-
bers, such notations are not closed under addition and multiplication, and con-
sequently they cannot be used as a replacement for ordinary binary or decimal
numbers.

The first instance of a hereditary number system, at our best knowledge,
occurs in the proof of Goodstein’s theorem [2], where replacement of finite num-
bers on a tree’s branches by the ordinal ω allows him to prove that a “hailstone
sequence” visiting arbitrarily large numbers eventually turns around and termi-
nates.

Arithmetic packages similar to our bijective base-2 view of arithmetic oper-
ations are part of libraries of proof assistants like Coq [5].

Arithmetic computations based on recursive data types like the free magma
of binary trees (isomorphic to the context-free language of balanced parentheses)
are described in [3], where they are seen as Gödel’s System T types, as well as
combinator application trees. In [6] a type class mechanism is used to express
computations on hereditarily finite sets and hereditarily finite sequences. In [7]
integer decision diagrams are introduced providing a compressed representation
for sparse integers, sets and various other data types.

9 Conclusion and future work

We have shown that computations like addition, subtraction, exponent of 2 and
bitsize can be performed with giant numbers in constant time or time propor-
tional to their structural complexity rather than their bitsize. As structural com-
plexity is bounded by bitsize, our computations are within constant time from
their traditional counterparts, as also illustrated by our best and worst case
complexity cases.

The fundamental theoretical challenge raised at this point is the follow-
ing: can more number-theoretically interesting operations expressed succinctly
in terms of our tree-based data type? Is it possible to reduce the complexity of
some other important operations, besides those found so far?

The general multiplication algorithm in the Appendix shows a first step in
that direction.
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Appendix

Reduced complexity general multiplication

We can devise a similar optimization as for add and sub for multiplication

Proposition 13 The following holds:

on(a)om(b) = on+m(ab+ a+ b)− on(a)− om(b) (18)

Proof. By 2, we can expand and then reduce as follows: on(a)om(b) = (2n(a +
1) − 1)(2m(b + 1) − 1) = 2n+m(a + 1)(b + 1) − (2n(a + 1) + 2m(b + 1) + 1 =
2n+m(a+ 1)(b+ 1)− 1− (2n(a+ 1)− 1 + 2m(b+ 1)− 1 + 2) + 2 = on+m(ab+
a+ b+ 1)− (on(a) + om(b))− 2 + 2 = on+m(ab+ a+ b)− on(a)− om(b)

The corresponding Prolog code starts with the obvious base cases:
mul(_,e,e).

mul(e,Y,e):-s_(Y).

When both terms represent odd numbers we apply the identity (18):
mul(X,Y,R):-o_(X),o_(Y),osplit(X,N,A),osplit(Y,M,B),

add(A,B,S),mul(A,B,P),add(S,P,P1),s(N,SN),s(M,SM),

add(SN,SM,K),otimes(K,P1,P2),sub(P2,X,R1),sub(R1,Y,R).

The other cases are reduced to the previous one by the identity i = s ◦ o.
mul(X,Y,R):-o_(X),i_(Y),s(PY,Y),mul(X,PY,Z),add(X,Z,R).

mul(X,Y,R):-i_(X),o_(Y),s(PX,X),mul(PX,Y,Z),add(Y,Z,R).

mul(X,Y,R):-i_(X),i_(Y),

s(PX,X),s(PY,Y),add(PX,PY,S),mul(PX,PY,P),add(S,P,R1),s(R1,R).

Note that when the operands are composed of large blocks of alternating on and
im applications, the algorithm works (roughly) in time proportional to the num-
ber of blocks rather than the number of digits. The following example illustrates
a multiplication with two “tower of exponent” terms:

?- t(30,X),bestCase(X,A),s(A,N),t(40,Y),bestCase(Y,B),s(B,M),

mul(M,N,P),tsize(P,S),n(S,TSize),write(TSize),nl,fail.

668

The structural complexity of the result, 668 is in indicator that such compu-
tations are still tractable. Note however, that the predicate mul can be still
optimized, by using in its last 3 clauses identities similar to (18), so that it
works in all cases one block at a time and it reduces to addition / subtraction
operations proportional to the number of blocks.
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Abstract. In this study, we have investigated the adequacy of the PGAS
parallel language X10 to implement a Constraint-Based Local Search
solver. We decided to code in this language to benefit from the ease of use
and architectural independence from parallel resources which it offers.
We present the implementation strategy, in search of different sources of
parallelism in the context of an implementation of the Adaptive Search
algorithm. We extensively discuss the algorithm and its implementation.
The performance evaluation on a representative set of benchmarks shows
close to linear speed-ups, in all the problems treated.

1 Introduction

Constraint Programming has been successfully used to model and solve many
real-life problems in diverse areas such as planning, resource allocation, schedul-
ing and product line modeling [18, 19]. Classically constraint satisfaction prob-
lems (CSPs) may be solved exhaustively by complete methods which are able
to find all solutions, and therefore determine whether any solutions exist. How-
ever efficient these solvers may be, a significant class of problems remains out of
reach because of exponential growth of search space, which must be exhaustively
explored. Another approach to solving CSPs entails giving up completeness and
resorting to (meta-) heuristics which will guide the process of searching for so-
lutions to the problem. Solvers in this class make choices which limit the part
of the search space which actually gets visited, enough so to make problems
tractable. For instance a complete solver for the magic squares benchmark will
fail for problems larger than 15 × 15 whereas a local search method will easily
solve a 100 × 100 problem instance within the lower resource bounds. On the
other hand, a local search procedure may not be able to find a solution, even
when one exists.

However, it is unquestionable that the more computational resources are
available, the more complex the problems that may be solved. We would therefore
like to be able to tap into the forms of augmented computational power which
are actually available, as conveniently as feasible. This requires taming various
forms of explicitly parallel architectures.



Present-day parallel computational resources include increasingly multi-core
processors, General Purpose Graphic Processing Units (GPGPUs), computer
clusters and grid computing platforms. Each of these forms requires a different
programming model and the use of specific software tools, the combination of
which makes software development even more difficult.

The foremost software platforms used for parallel programming include POSIX
Threads [1] and OpenMP [17] for shared-memory multiprocessors and multicore
CPUs, MPI [22] for distributed-memory clusters or CUDA [16] and OpenCL [13]
for massively parallel architectures such as GPGPUs. This diversity is a chal-
lenge from the programming language design standpoint, and a few proposals
have emerged that try to simultaneously address the multiplicity of parallel com-
putational architectures.

Several modern language designs are built around the Partitioned Global
Address Space (PGAS) memory model, as is the case with X10 [21], Unified
Parallel C [9] or Chapel [6]. Many of these languages propose abstractions which
capture the several forms in which multiprocessors can be organized. Other, less
radical, approaches consist in supplying a library of inter-process communication
which relies on and uses a PGAS model.

In our quest to find a scalable and architecture-independent implementation
platform for our exploration of high-performance parallel constraint-based local
search methods, we decided to experiment with one of the most promising new-
generation languages, X10 [21].

The remainder of this article is organized as follows: Section 2 present some
necessary background in Constraint-Based Local Search. Section 3 discusses the
PGAS Model and presents X10 language. The sources of parallelism in the Adap-
tive Search algorithm and its X10 implementation are the object of Section 4.
Section 5 describes the benchmarks used in our experiments. The results and
a discussion of the performance evaluation may be found in Section 6. A short
conclusion ends the paper.

2 Constraint-Based Local Search

It is possible to classify the method for constraint solving in two groups: com-
plete or incomplete methods. Complete methods always find a solution of the
problem, if any exists. There are two main groups of algorithms: search and
inference. Firstly, a representative complete search method is depth-first back-
tracking, which incrementally builds a solution exploring as far as possible along
each branch of the search space, such that no constraint is violated. If from some
point no value allows to extend the current partial assignment, it backtracks and
a previous assignment is reconsidered. Secondly, the inference methods use con-
straints to reduce the number of legal values for a variable, and propagate this
new domain to reduce other domain variables, finding a solution.

Incomplete methods, like Local Search, try to found a solution using limited
resources, however this type of methods does not guarantee neither to find one
solution nor to detect an inconsistency problem (no possible solution). Local
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search is suitable for optimization problems with a cost function which makes
possible to evaluate the quality of a given configuration (assignment of variables
to current values). It also needs a transition function which defines, for each
configuration, a set of neighbors. The simplest Local Search algorithm start from
a random configuration, explores the neighborhood and then selects a promising
neighbor and moves there. This is a iteratively process that continues until a
solution is found.

In this study, a Local Search method, the Adaptive Search algorithm is se-
lected. The Adaptive Search [3, 4] is a generic, domain-independent constraint-
based local search method. This meta-heuristic takes advantage of the CSP
formulation and makes it possible to structure the problem in terms of variables
and constraints and to analyze the current assignment of variables more precisely
than an optimization of a global cost function e.g. the number of constraints that
are not satisfied. Adaptive Search also includes an adaptive memory inspired in
Tabu Search [11] in which each variable leading to a local minimum is marked
and cannot be chosen for the next few iterations. A local minimum is a config-
uration for which none of the neighbors improve the current configuration. The
input of the Adaptive Search algorithm is a CSP, for each constraint an error
function is defined. This function is a heuristic value to represent the degree of
satisfaction of a constraint and gives an indication on how much the constraint
is violated.

Adaptive Search is based on iterative repair from the variables and constraint
error information, trying to reduce the error in the worse variable. The basic
idea is to calculate the error function for each constraint, and then combine for
each variable the errors of all constraints in which it appears, thus projecting
constraint errors on involved variables. Then, the algorithm chooses the variable
with the maximum error as a “culprit” and selects it to modify later its value.

The purpose is to select the best neighbor move for the culprit variable,
this is done by considering all possible changes in the value of this variable
(neighbors) and selecting the lower value of the overall cost function. Finally,
the algorithm also includes partial resets in order to escape stagnation around
local minima; and it is possible to restart from scratch when the number of
iterations becomes too large. Algorithm 1 presents a particular implementation
of the Adaptive Search algorithm dedicated to permutation problems. In this
case all N variables have the same initial domain of size N and are subject to
an implicit all-different constraint.

3 PGAS model and X10

The current arrangement of tools to exploit parallelism in machines are strongly
linked to the platform used. As it was said above, two broad programming mod-
els stand out in this matter: distributed and shared memory models. For large
distributed memory systems, like clusters and grid computing, Message Passing
Interface (MPI) [22] is a de-facto programming standard. The key idea in MPI is
to decompose the computation over a collection of processes with private mem-

35



ory space. This processes can communicate with each other through message
passing, generally over a communication network.

With the recent growth of many-core architectures, the shared memory ap-
proach have increased its popularity. This model decomposes the computation in
multiple threads of execution sharing a common address space, communicating
with each other by reading and writing shared variables. Actually, this is the
model used by traditional programming tools like Fortran or C through libraries
like pthreads [1] or OpenMP [17].

The PGAS model tries to combine the advantages of the two approaches
mentioned so far. This model extends shared memory to a distributed memory
setting. The execution model allows having multiple processes (like MPI), multi-
ple threads in a process (like OpenMP), or a combination (see Figure 1). Ideally,
the user would be allowed to decide how tasks get mapped to physical resources.
X10 [21], Unified Parallel C [24] and Chapel [6] are examples of PGAS-enabled
languages, but there exist also PGAS-based IPC libraries such as GPI [15], for
use in traditional programming languages. For the experiments described herein,
we used the X10 language.

Fig. 1. PGAS Model

3.1 X10 in a Nutshell

X10 [21] is a general-purpose language developed by IBM, which provides a
PGAS variation: Asynchronous PGAS (APGAS). APGAS extends the PGAS
model making it flexible, even in non-HPC platforms [20]. Through this model
X10 can support different levels of concurrency with simple language constructs.

There are two main abstractions in X10 model: places and activities. A place
is the abstraction of a virtual shared-memory process, it has a coherent portion
of the address space together with threads (activities) that operate on that
memory. The X10 construct for creating a place in X10 is at, and is commonly
used to create a place for each processing unit in the platform. An activity is
the mechanism to abstract the single threads that perform computation within
a place. Multiple activities may be active simultaneously in a place.
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With these two components of X10 implement the main concepts of the
PGAS model. Howevere, the language includes other interesting tools with the
goal of improving the abstraction level of the language. Synchronization is sup-
ported thanks to various operations such as finish, atomic and clock. The opera-
tion finish is used to wait the termination of a set of activities, it behaves like a
traditional barrier. The constructs atomic ensures an exclusive access to a criti-
cal portion of code. Finally, the construct clock is the standard way to ensure the
synchronization between activities or places. X10 supports the distributed array
construct, which makes it possible to divide an array into sub-arrays which are
mapped to available places. Doing this ensures a local access from each place to
the related assigned sub-array. A detailed examination of X10, including tutorial,
language specification and examples can be consulted at http://x10-lang.org.

4 X10 Adaptive Search Parallel Implementation

In order to get advantage of the parallelism it is necessary to identify the sources
of parallelism of the algorithm. In [5], the authors survey the state-of-the-art of
the main parallel meta-heuristic strategies and discuss general design and im-
plementation principles. This study raises a number of important issues in the
taxonomy of parallel sources that lies in meta-heuristics. They classify the de-
composition of activities for parallel work in two main groups: functional paral-
lelism and data parallelism.

On the one hand, in functional parallelism generally different tasks work in
parallel on the same data, allocated in different compute instances. On the other
hand, data parallelism refers to the methods in which the problem domain or the
associated search space is decomposed. A particular solution methodology is used
to address the problem on each of the resulting components of the search space.
Based on this study, we explored the parallelism in the Adaptive Search method
in both functional parallelism and data parallelism and this article mostly reports
on the latter, because this is where we expect the most significant gains to show.

4.1 Adaptive Search X10 sequential implementation

The first stage of the X10 implementation was to develop a sequential algorithm,
which is described as algorithm 1.

Figure 2 shows the class diagram of the basic X10 project. The class ASPer-
mutSolver contains the Adaptive Search permutation specialized method imple-
mentation. This class inherits the basic functionality from a general implemen-
tation of the Adaptive Search solver (in class AdaptiveSearchSolver), which in
turn inherits a very simple Local Search method implementation from the class
LocalSearchSolver. This class is then specialized for different parallel approaches,
which we experimented with.3

3 We experimented with two versions of Functional Parallism (FP1 and FP2) and a
Random Walk version (RW.)
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Algorithm 1 Adaptive Search Base Algorithm

Input: problem given in CSP format:

– set of variables V = {X1, X2 · · ·} with their domains
– set of constraints Cj with error functions
– function to project constraint errors on vars (positive) cost function to minimize
– T : Tabu tenure (number of iterations a variable is frozen on local minima)
– RL: number of frozen variables triggering a reset
– MI: maximal number of iterations before restart
– MR: maximal number of restarts

Output: a solution if the CSP is satisfied or a quasi-solution of minimal cost otherwise.

1: Restart← 0
2: repeat
3: Restart← Restart + 1
4: Iteration← 0
5: Compute a random assignment A of variables in V
6: Opt Sol← A
7: Opt Cost← cost(A)
8: repeat
9: Iteration← Iteration + 1

10: Compute errors constraints in C and project on relevant variables
11: Select variable X with highest error: MaxV
12: . not marked Tabu
13: Select the move with best cost from X: MinConflictV
14: if no improvement move exists then
15: mark X as Tabu for T iterations
16: if number of variables marked Tabu ≥ RL then
17: randomly reset some variables in V
18: . and unmark those Tabu
19: end if
20: else
21: swap(MaxV ,MinConflictV ),
22: . modifying the configuration A
23: if cost(A) < Opt Cost then
24: Opt Sol← A
25: Opt Cost← costs(A)
26: end if
27: end if
28: until Opt Cost = 0 (solution found) or Iteration ≥MI
29: until Opt Cost = 0 (solution found) or Restart ≥MR
30: output(Opt Sol, Opt Cost)

Moreover, a simple CSP model is described in the class CSPModel, and
specialized implementations of each CSP benchmark problem are contained in
the classes PartitModel, MagicSquareModel, AllIntervallModel and CostasModel,
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which have all data structures and methods to implement the error function of
each problem.

Fig. 2. X10 Class Diagram basic project

Listing 1.1 shows a simplified skeleton code of our X10 sequential imple-
mentation, based on Algorithm 1. The core of the Adaptive Search algorithm
is implemented in the method solve. The solver method receives a CSPModel
instance as a parameter. In line 8, the CSP variables of the model are initialized
with a random permutation, in the next line the total cost of the current config-
uration is computed. The sentence while on line 10 begins the main loop of the
algorithm. The selectVarHighCost function (Line 12) selects the variable with
the maximum error and saves the result in maxI variable. The selectVarMin-
Conflict function (Line 13) selects the best neighbor move from the high cost
variable maxI, and saves the result index in minJ variable. Finally, if no local
minimum is detected, the algorithm swaps the variables maxI and minJ (per-
mutation problem) and recompute the total cost of the current configuration
(Line 16). The solver function ends if the totalCost variable reaches the 0 value
or if the algorithm reaches the maximum number of iterations.

Listing 1.1. Simplified AS X10 Sequential Implementation
1 class ASPermutSolver {
2 var t o ta lCos t : Int ;
3 var maxI : Int ;
4 var minJ : Int ;
5
6 public def s o l v e ( csp : CSPModel ) : Int {
7 // ( . . . l o c a l v a r i a b l e s . . . )
8 csp . i n i t i a l i z e ( ) ;
9 to ta lCos t = csp . co s tOfSo lu t i on ( ) ;

10 while ( t o ta lCos t != 0) {
11 // ( . . . r e s t a r t code . . . )
12 maxI = se lectVarHighCost ( csp ) ;
13 minJ = se l e c tVarMinCon f l i c t ( csp ) ;
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14 // ( . . . l o c a l min tabu l i s t , r e s e t code . . . )
15 csp . swapVariables (maxI , minJ ) ;
16 to ta lCos t = csp . co s tOfSo lu t i on ( ) ;
17 }
18 return t o ta lCos t ;
19 }
20 }

4.2 Adaptive Search X10 Parallel Implementation

We first experimented with functional parallelism which consisted in executing
the inner loop in parallel, but the results were not expressive, mostly because of
thread handling overhead. We then implemented a data parallel variant, which
turns out natural because the sequential Adaptive Search algorithm can be used
as an isolated search instance. Furthermore, the search space is divided using
different random start points (i.e configurations). This strategy is called Ran-
dom Walks (RW) or Multi Search (MPSS, Multiple initial Points, Same search
Strategies) [5] and has proven to be very efficient [7, 14]. The main point of our
study is to explore the adequacy of a programming language based on a PGAS
model: we will discuss the strengths and weaknesses of this language when ap-
plied to Independent Random Walks, without any further tuning of the parallel
execution.

The implementation strategy is very different from the functional parallelism:
the key of this algorithm is to have several independent and isolated instances of
the Adaptive Search Solver applied to the problem model. Then it is necessary to
initialize the problem variables with a random assignment of values for the vari-
ables and to distribute it to the available processing resources in the computer
platform. Finally, when one instance reaches a solution, a termination detection
communication strategy is used to finalize the remaining running instances. This
simple parallel version has no inter-process communication, making it Embar-
rassingly or Pleasantly Parallel. The skeleton code of the algorithm is shown in
the Listing 1.2.

Listing 1.2. Adaptive Search data parallel X10 implementation
1 public class ASSolverRW{
2 val s o l D i s t : DistArray [ ASPermutSolver ] ;
3 val cspDis t : DistArray [ CSPModel ] ;
4 def this ( ) {
5 s o l D i s t=DistArray . make [ ASPermutSolver ] ( Dist . makeUnique ( ) ) ;
6 cspDis t=DistArray . make [ CSPModel ] ( Dist . makeUnique ( ) ) ;
7 }
8 public def s o l v e ( ) {
9 val random = new Random( ) ;

10 f in ish for (p in Place . p l a c e s ( ) ) {
11 val seed = random . nextLong ( ) ;
12 at (p) async {
13 cspDis t (here . id ) = new CSPModel ( seed ) ;
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14 s o l D i s t (here . id ) = new ASPermutSolver ( seed ) ;
15 co s t = s o l D i s t (here . id ) . s o l v e ( cspDis t (here . id ) ) ;
16 i f ( co s t==0){
17 for ( k in Place . p l a c e s ( ) )
18 i f (here . id != k . id )
19 at ( k ) async{
20 s o l D i s t (here . id ) . k i l l = true ;
21 }
22 }
23 }
24 }
25 return co s t ;
26 }

For this implementation the ASSolverRW class was created. This class has
two global distributed arrays solDist and cspDist (lines 2 and 3). As explained
in Section 3.1, the DistArray class creates an array which is spread across mul-
tiple X10 places. In this case, an instance of ASPermutSolver and CSPModel
are spread over all the available places in the program. On line 10 a finish
operation is executed over a for loop that goes through all the places in the
program (Place.places()). Then, an activity is created in each place with the
sentence at(p) async on line 12. Into the async block, a new instance of the
solver (new ASPermutSolver(seed)) and the problem (new CSPModel(seed)) are
created (lines 13 and 14) and a random seed is passed. In line 15, the solving
process is executed and the returned cost is assigned to the cost variable. If this
cost is equal to 0, the solver in a place has reached a valid solution, it is then
necessary to send a termination signal to the remaining places (lines 16- 22). For
this, every place (i.e. every solver), checks the value of a kill variable at each
iteration. When it becomes equal to true the main loop of the solver is broken
and the activity is finished. To set a kill remote variable from any X10 place
it was necessary to create a new activity into each remaining place (sentence
at(k) async in line 19) and into the async block to change the value of the kill
variable. Line 18 with the sentence if (here.id != k.id) filters all the places that
not are the winner place (here). Finally, the function returns the solution of the
fastest place in line 25.

5 Benchmark description

In this study we used a set of benchmarks composed by four classical problems
in constraint programming: the magic square problem, the number partitioning
problem and the all-interval problem, all three taken from the CSPLib [10]; also
we include the Costas Array Problem (CAP) introduced in [12], which is a very
challenging real problem.

Magic Square Problem (MSP) The Magic Square Problem (prob019 in
CSPLib) consists of placing on a N×N square all the numbers in {1, 2, . . . , N2}
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such as the sum of the numbers in all rows, columns and the two diagonal are
the same. It can therefore be modeled in CSP by considering N2 variables with
initial domains {1, 2, . . . , N2} together with linear equation constraints and a
global all-different constraint stating that all variables should have a different
value. The constant value that should be the sum of all rows, columns and the
two diagonals can be easily computed to be N(N2 + 1)/2.

All-Interval Problem (AIP) The All-Interval Problem (prob007 in CSPLib)
consists of composing a sequence of N notes such that all are different and tonal
intervals between consecutive notes are also distinct. This problem is equivalent
to finding a permutation of the N first integers such that the absolute difference
between two consecutive pairs of numbers are all different. This amounts to
finding a permutation (X1, . . . , XN ) of (0, . . . , N−1) such that the list (abs(X1−
X2), abs(X2 −X3), . . . , abs(XN−1 −XN )) is a permutation of (1, . . . , N − 1). A
possible solution for N = 8 is (3, 6, 0, 7, 2, 4, 5, 1) because all consecutive distances
are different.

Number Partitioning Problem (NPP) The Number Partitioning Problem
(prob049 in CSPLib) consists of finding a partition of numbers {1, . . . , N} into
two groups A and B of the same cardinality such that the sum of numbers in
A is equal to the sum of numbers in B and the sum of squares of numbers in
A is equal to the sum of squares of numbers in B. A solution for N = 8 is
A = {1, 4, 6, 7} and B = {2, 3, 5, 8}.

Costas Array Problem (CAP) The Costas Array Problem consists of filling
an N ×N grid with N marks such that there is exactly one mark per row and
per column and the N(N − 1)/2 vectors joining the marks are all different. It
is convenient to see the Costas Array Problem as a permutation problem by
considering an array of N variables (X1, . . . , Xn) which forms a permutation
of {1, 2, . . . , N} subject to some all-different constraints (see [8] for a detailed
modeling). This problem has many practical applications and currently it has a
whole community active working around it (http://www.costasarrays.org/).

6 Performance Analysis

This section presents and discusses our experimental results of the X10 imple-
mentation of the Adaptive Search algorithm.

We present the experimental results of the Adaptive Search algorithm in its
X10 data parallel implementation. We do not present results for functional par-
allelism because the tests we carried out show that the granularity of individual
threads is too fine to yield any performance improvement.

The testing environment used in each running was a non-uniform memory
access (NUMA) computer, with 2 Intel Xeon W5580 CPUs each one with 4
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hyper-threaded cores running at 3.2GHz. This system has 12 GB of main mem-
ory.

At the software level, the X10 runtime system can be deployed in two different
backends: Java backend and C++ backend; they differ in the native language used
to implement the X10 program (Java or C++), also they present different trade-
offs on different machines. Currently, the C++ backend seems relatively mature
and faster, therefore, we have chosen it for this experimentation.

Regarding the stochastic nature of the Adaptive Search behavior, several
executions of the same problem were done and the times averaged. We ran 100
samples for each experimental case in the benchmark.

In this presentation, all tables use the same format: the first column identifies
the problem instance, the second column is the execution time of the problem
in the sequential implementation, the next group of columns contains the corre-
sponding speed-up obtained with a varying number of cores (activities or places),
and the last column presents the execution time of the problem with the highest
number of cores.

Magic Square Problem. Table 1 presents the data obtained solving several
large instances of MSP. Both raw times (average of 100 runs) and relative speed-
ups are reported. The results show quasi-linear speed-ups (which seem indepen-
dent of the size of the problem).

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

40 0.47 2.12 3.20 4.14 4.42 0.11
60 1.59 1.58 2.68 3.25 3.62 0.44
80 5.10 1.84 2.92 3.72 4.19 1.22
100 11.88 1.69 2.92 3.64 4.36 2.72

Table 1. Magic Square: data parallel (timings and speed-ups)

All-Interval Problem. Table 2 shows the average time of several instances of
AIP together with the speed-ups acquired with different number of places. Here
again the speed-ups are practically linear up to 5.38 with 8 places. Moreover, in
this case the speed-up tends to increase with the size of the problem.

Number Partitioning Problem. Table 3 shows the results of NPP. From this
data, it can be seen that the corresponding speed-up obtained is almost the ideal
speed-up for each number of places used. Also, the speed-up increases linearly
with the number of cores to reach a maximum of 7.64 with 8 places. Moreover,
this speed-up seems to increase with the size of the problem.
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Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

50 0.027 2.25 3.24 4.46 4.94 0.005
100 0.47 2.12 3.21 4.32 4.96 0.09
150 2.36 1.74 3.47 4.65 5.15 0.46
200 8.29 1.84 3.66 5.28 5.38 1.54

Table 2. All-interval: data parallel (timings and speed-ups)

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

1400 1.07 1.50 2.60 4.49 5.00 0.21
1600 1.94 1.78 3.59 5.10 6.97 0.28
1800 2.30 1.62 3.48 3.98 5.49 0.42
2000 4.31 2.34 4.87 7.06 7.64 0.56

Table 3. Partition: data parallel (timings and speed-ups)

Costas Array Problem. Table 4 presents the average time for several instances
of the Costas Array Problem together with the speed-up obtained when using
different numbers of places. The data confirm the trends above observed. Note
that the best speed-up (9.56) is super-linear and is obtained for the most difficult
instance of CAP (size of 19): the execution time is drastically reduced from 103.98
seconds to only 10.87 seconds on 8 places.

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

16 0.26 1.79 3.52 4.00 7.09 0.04
17 1.94 1.96 4.46 6.47 9.84 0.19
18 10.90 1.68 4.05 5.09 6.88 1.59
19 103.98 2.13 4.63 5.81 9.56 10.87

Table 4. Costas Array: data parallel (timings and speed-ups)

Figure 3 shows the speed-ups reached on the most difficult instance of each
problem. It can be seen that the speed-up increases almost linearly with the
number of places used in the X10 program.

The performance evaluation developed in this work shows that a parallel
Local Search solver implemented in X10 has good performance4 using a data
parallel strategy. The study has identified constant behavior of the speed-up with
relation to the size of the problem (for some problems the speed-up improves
4 Within a bound of 4-5 w.r.t. our sequential C implementation.
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Fig. 3. Speed-ups for the most difficult instance of each problem

with the size of the problem). The resulting average runtime and the speed-ups
obtained in the entire experimental test performed are as good as reported in
the literature when using other IPC frameworks such as MPI [7, 8, 2] and seems
to lie within the predictable bounds proposed by [23].

7 Conclusion and Future Work

We presented a parallel X10 implementation of an effective Local Search algo-
rithm, Adaptive Search. We first experimented with functional parallelism, i.e.
trying to divide the inner loop of the algorithm into various concurrent tasks. As
expected, this yielded no speed-up, mainly because of the bookkeeping overhead
(creation, scheduling and synchronization) that are too fine-grained.

We then proceeded with a data parallel implementation, in which the search
space is decomposed in possible different random initial configurations of the
problem and getting isolated solver instances to work on each point concurrently.
We got a good level of performance for the X10 data-parallel implementation,
reaching a maximum speed-up of 9.84 with 8 places for the Costas Array Prob-
lem. Linear (or close) speed-ups have been recorded in all problems we studied
and they remain constant (or increasing) wrt the size of the problem.

X10 has proved a suitable platform to exploit parallelism in different ways for
constraint-based local search solvers, ranging from single shared memory inter-
process parallelism to more external distributed memory programming model.
Additionally, the use of the X10 implicit communication mechanisms shows that
X10 enables one to abstract the complexity of the parallelism with a very simple
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model, e.g. the distributed arrays and the termination detection system in our
data parallel implementation.

Future work will focus on the implementation of a cooperative Local Search
parallel solver using data parallelism. The key idea is to take advantage of all
communications tools available in this APGAS model, to exchange information
between different solver instances in order to obtain a more efficient and scal-
able solver implementation. We also plan to test the behavior of a cooperative
implementation, under different HPC architectures, such as the many-core Xeon
PHI, GPGPU accelerators and grid computing platforms like Grid5000.
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Abstract. We propose in this article a framework for compilation of
quantified constraint satisfaction problems (QCSP). We establish the
semantics of this formalism by an interpretation to a QCSP. We specify
an algorithm to compile a QCSP embedded into a search algorithm and
based on the inductive semantics of QCSP. We introduce an optimality
property and demonstrate the optimality of the interpretation of the
compiled QCSP.

1 Introduction

A constraint satisfaction problem (CSP) requires a value, selected from a given
finite domain, to be assigned to each variable in the problem, so that all con-
straints relating the variables are satisfied [14, 8]. A quantified constraint satis-
faction problem (QCSP) [9, 6] is an extension of a constraint satisfaction problem
in which some of the variables are universally quantified (since the remaining
variables are still existentially quantified). In this latter framework, variables
take value in discrete domains. Universally quantified variables may be consid-
ered to represent certain kind of uncertainty: a choice of nature or an opponent.
A QCSP can formalize many AI problems including planning under uncertainty
and playing a game against an opponent. In this second application, the goal
of the QCSP is to make a robust plan against the opponent. Whereas finding
a solution of a CSP is generally NP-complete, finding a solution for a QCSP is
generally PSPACE-complete [9].

Most of the recent decision procedure for QCSP [3, 5, 12, 7] are based on a
search algorithm (except [18] which is based on a bottom-up approach and [13]
which is based on a translation to quantified boolean formulas) and off-line proce-
dures (except [2] which is an on-line real-time algorithm based on Monte Carlo
game tree search and [17] which is based on standard game tree search tech-
niques). Such an algorithm chooses a variable, branches on the different values
of the domain, verifies if the subproblems have some solutions and combines,
according to the semantics of the quantifier associated to the variable, those
solutions into a solution to the problem.

Knowledge compilation is considered in many AI applications where quick on-
line responses are expected. In general, a knowledge base is compiled off-line into
a target language which is then used on-line to answer some queries. The goal is
to have a lesser complexity for the query computation of the compiled knowledge



base than for the initial knowledge base. This principle is for example applied in
product configuration where the set of possible configurations is compiled [1].

As far as we know, the problem of compiling a knowledge base represented
as a QCSP has not been treated but only for the related domain of quantified
Boolean formulas [16, 11]. Our first contribution is a new formalism as compila-
tion target language: the QCSP base. Our second contribution is a definition of
an optimality property for QCSP bases in order to give a polytime answer to the
next move choice problem [16] which raises the issue of whether one can change
for another solution during the game. Our third contribution is a compilation
algorithm embedded in a search algorithm which is proved to compile a QCSP
in an optimal QCSP base.

This article is organized as follows: Section 2 establishes the necessary pre-
liminaries, section 3 presents our framework and target language for the compi-
lation of QCSP, section 4 specifies an algorithm to compile a QCSP in our target
language, section 5 concludes with a discussion and some further works.

2 Preliminaries

Symbol ∃ stands for existential quantifier and symbol ∀ stands for universal
quantifier. Symbol ∧ stands for logical conjunction, symbol > stands for what
is always true and symbol ⊥ stands for what is always false. A QCSP is a tuple
(V, rank, quant, D, C): V is a set of n variables, rank is a bijection from V to
[1..n], quant is a mapping from V to {∃,∀} (quant(v) is the quantifier associated
to the variable v), D is a mapping from V to a set of domains {D(v1), . . . , D(vn)}
where, for every variable vi ∈ V, D(vi) is the finite domain of all the possible
values (D(v) is the domain associated to the variable v), C is a set of contraints.
If vj1 , . . . , vjm

are the variables of a constraint cj ∈ C then the relation associ-
ated to cj is a subset of the Cartesian product D(vj1) × . . . ×D(vjm). In what
follows, we denote for every i ∈ [1..n], qi = quant(vi) and Di = D(vi). A QCSP
(V, rank, quant, D, C) on n variables will be denoted as follows to simplify no-
tation:

q1v1 . . . qnvn

∧
cj∈C

cj

with v1 ∈ D1, . . . , vn ∈ Dn, rank(vi) = i, for every i ∈ [1..n] ; q1v1 . . . qnvn is
the binder.

The QCSP ({x, y, z, t}, rank, quant, {{0, 1, 2}}, C) with
rank = {(1, x), (2, y), (3, z), (4, t)},
quant = {(x, ∃), (y,∃), (z,∀), (t,∃)},
D(x) = D(y) = D(z) = D(t) = {0, 1, 2} and
C = {(x = (y ∗ z) + t)}

is, for example, denoted : ∃x∃y∀z∃t(x = (y ∗ z) + t) with x, y, z, t ∈ {0, 1, 2}.
In a binder, a maximal homogeneous sequence of quantifiers forms a bloc ;

the first one (and also the outermost) is the leftmost.
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The set Ti(Q) with v1 ∈ D1, . . . , vn ∈ Dn, Q = q1v1 . . . qnvn for 1 ≤ i ≤ n is
the set of trees such that
– every leaf node is labeled by the symbol 2 and is at depth i,
– every internal node at depth k, 0 ≤ k < i − 1 is labeled with the variable

vk+1,
– every edge linking a node at depth k to one of its children’s nodes is labeled

with an element of Dk,
– all the labels of the edges linking a node to its children nodes are different.

The following tree is, for example, an element of the set T2(∃x∃y∀z∃t) with
x, y, z, t ∈ {0, 1, 2} :

x

y

0 1 2

0

y

1

1

y

1 2

2

Let (V, rank, quant, D, C) be a QCSP such that V = {v1, . . . , vn}, with
v1 ∈ D1, . . . , vn ∈ Dn, then a scenario is the sequence of the labels val1, . . . , valn
on the path (v1, val1), . . . , (vn, valn), vali ∈ Di for every i, 1 ≤ i ≤ n, of a tree
of Tn(q1v1 . . . qnvn) and a strategy is a tree of Tn(q1v1 . . . qnvn) such that
– every node labeled with an existentially quantified variable has a unique

child node and
– every node labeled with a universally quantified variable whose associated

domain is of size k admits k children nodes.

A scenario val1, . . . , valn for a QCSP (V, rank, quant, D, C) such that V =
{v1, . . . , vn} is a winning scenario if (

∧
1≤i≤n vi = vali)∧(

∧
cj∈C cj) is true ; such

a scenario corresponds to the complete instantiation [v1 ← val1], . . . , [vn ← valn]
; it is a winning scenario if the instantiation satisfies all the constraints. A strat-
egy is a winning strategy if all the scenarios are winning scenarios. If there is no
quantifier, the 2 strategy is always a winning strategy.

The scenario 0, 0, 2, 0, which corresponds to the complete instantiation [x←
0], [y ← 0], [z ← 2] and [t← 0], is a winning scenario, since 0 = (0 ∗ 2) + 0. The
following strategy is a winning strategy

x

y

z

t

0

0

t

0

1
t

0

2

0

0
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for the QCSP ∃x∃y∀z∃t(x = (y ∗ z) + t), x, y, z, t ∈ {0, 1, 2} since (0 =
(0 ∗ 0) + 0), (0 = (0 ∗ 1) + 0) and (0 = (0 ∗ 2) + 0).

We can give a more intuitive and recursive decision semantics for QCSP as
follows: A QCSP ∀xQC with x ∈ D admits a winning strategy if and only if, for
every val ∈ D, Q(C ∧ (x = val)) admits a winning strategy and a QCSP ∃xQC
with x ∈ D admits a winning strategy if and only if, for at least one val ∈ D,
Q(C ∧ (x = val)) admits a winning strategy.

3 Base for QCSP

From a complexity point of view and under some classical assumptions, winning
strategies are exponential in space in worst case w.r.t. the number of variables
of the QCSP [10]. But the number of winning strategies may also be exponential
in worst case. A naive way to compile a QCSP would be to store all the winning
strategies in a set but this approach is intractable in practice. For example,
the QCSP ∀x∀y∃z∃t(x = (y ∗ z) + t), x, y, z, t ∈ {0, 1, 2} admits 324 winning
strategies. Another way is to store a tree which contains only the scenarios
present in the winning strategies. This approach is not very useful too from the
knowledge representation point of view since there is no direct access to the
possibilities of an existentially quantified variable except for those of the first
bloc.

We define in this section our formalism as a target language for QCSP com-
pilation: the QCSP base. We also define the semantics of QCSP bases in terms
of QCSP. We introduce a property of optimality for QCSP bases and prove a
very interesting result about optimal QCSP.

3.1 Definitions for QCSP bases

Intuitively, a QCSP base is a set of strategies organized according to a mecha-
nism of guards for every existentially quantified variable and every value of the
domain. Such a guard is a pair of a value and a tree which is the expression of
what have already been played by both opponents.

Definition 1 (QCSP base). A QCSP base is either

– the symbol bl top
– the symbol bl bottom
– a pair 〈Q | G〉 with n > 0, Q = q1v1 . . . qnvn and G = [Ge1 , . . . , Gem ] a list

such that
• e1, . . . , em is the set of indexes of the existentially quantified variables1 ;
• every Gek

, 1 ≤ k ≤ m is a function with non-empty graph {(val1 7→
T1), . . . , (valjk

7→ Tjk
)}, val1, . . . , valjk

∈ D(vek
) and T1, . . . , Tjk

∈
Tek

(Q).
1 u1, . . . , up is the set of indexes of the universally quantified variables, {e1, . . . , em}∪
{u1, . . . , up} = [1..n], {e1, . . . , em} ∩ {u1, . . . , up} = ∅, quant(vei) = ∃, for every i,
1 ≤ i ≤ n, quant(vui) = ∀, for every i, 1 ≤ i ≤ p.
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A pair (val, T ) ∈ Gek
is a guard for the existentially quantified variable vek

.

In what follows, the QCSP bases bl top and bl bottom are semantically in-
terpreted as respectively what is always true and what is always false and al-
gorithmically as respectively what admits every strategy as a winning strategy
and what admits no winning strategy at all.

Example 1. The following guard sets Gx, Gy and Gz are guard sets of the QCSP
base B = 〈∃x∃y∀z∃t | [Gx, Gy, Gt]〉 with x, y, z, t ∈ {0, 1, 2}.

Gx = [(0, 2), (1, 2), (2, 2)],

Gy = [(0,

x

0 1 2
), (1,

x

0 1 2
), (2,

x

0 1 2
)]

Gt = [(0,

x

y

z

0 1 2

0

z

0

1
z

0

2

0

y

z

1

1

1
y

z

2

1
z

1

2

2

),

(1,

x

y

z

0 1 2

0

z

0

1
z

0

2

1
y

z

1

1

2

), (2,

x

y

z

0 1 2

0

z

0

1
z

0

2

2

)

3.2 Interpretation

The semantics of a QCSP base is expressed by an interpretation to the QCSP.
First of all, we interpret the trees of the guards of the QCSP bases as tuples of
values.

Definition 2 (interpretation of a tree). The interpretation of a tree T of a
guard (val, T ) according to a value val is the set

Ival(T ) = {(val, e1, . . . , en)|e1 . . . en a branch of a tree T}.
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In particular, Ival(2) = {val}. The interpretation of a set G of guards (value,
tree) is by extension :

I(G) =
⋃

(val,T )∈G

Ival(T ).

Example 2. (Example 1 continued.) The interpretation of the tree T extracted
from the set of guards Gt :

x

y

z

0 1 2

0

z

0

1
z

0

2

0

y

z

1

1

1
y

z

2

1
z

1

2

2

according to the value 0 is the set

I0(T ) = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2),
(0, 0, 1, 0), (0, 0, 2, 0), (0, 1, 1, 1),
(0, 2, 1, 2), (0, 2, 2, 1)}.

and

I(Gt) = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2),
(0, 0, 1, 0), (0, 0, 2, 0), (0, 1, 1, 1), (0, 2, 1, 2),
(0, 2, 2, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 0, 2),
(1, 1, 1, 0), (1, 1, 2, 0), (1, 2, 1, 1), (2, 2, 0, 0),
(2, 2, 0, 1), (2, 2, 0, 2), (2, 2, 1, 0), (2, 2, 2, 0)}

One can remark that for all (valt, valx, valy, valz) ∈ I(Gt), the instantiation
[t← valt][x← valx][y ← valy][z ← valz] satisfies the constraint (x = (y ∗z)+ t).

We now define the interpretation of a QCSP base.

Definition 3 (interpretation of a QCSP base). The interpretation function
(·)∗ of a QCSP base to a QCSP is defined as follows (Q = q1v1 . . . qnvn) :

(bl top)∗ = >
(bl bottom)∗ = ⊥
(〈Q | [Ge1 , . . . , Gem

]〉)∗ =
Q

∧
ei∈[e1,...,em]((vek

, v1, . . . , vek−1) ∈ I(Gek
))

The interpretation of a QCSP base is a QCSP but only on table constraints.

Example 3. (Examples 1 and 2 continued.)

(B)∗ = ∃x∃y∀z∃t((x ∈ I(Gx)) ∧ ((y, x) ∈ I(Gy)) ∧ ((t, x, y, z) ∈ I(Gt)))

with x, y, z, t ∈ {0, 1, 2}, I(Gx) = {0, 1, 2} and I(Gy) = {0, 1, 2}2.
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3.3 Properties of QCSP bases

To a given QCSP, many different QCSP bases may be such that their interpre-
tations have exactly the same set of winning strategies as that QCSP. We define
this property as the compatibility property.

Definition 4 (compatibility of a QCSP base). A QCSP base is compatible
with a QCSP if its interpretation has exactly the same winning strategy.

In what follows, we will see that the set of compatible QCSP bases may be
seen as a good candidate as a target for a compilation language.

Example 4. (Examples 1, 2 and 3 continued.) The QCSP base B is compatible
with the QCSP ∃x∃y∀z∃t(x = (y∗z)+t) with x, y, z, t ∈ {0, 1, 2}. If, for example,
the pair (2, 2) of Gx is discarded then the resulting QCSP base is no more
compatible with the QCSP since two of the four winning strategies are lost.

The following theorem establishes immediately the completeness of the QCSP
base formalism w.r.t. QCSP.

Theorem 1 (completeness). For every QCSP there exists a compatible base.

When a QCSP represents a finite two-player game, one of the most important
issues for the existential player, at each turn during the game, is the following:
“What do I have to play to be certain to win the game?” If a winning strategy
has been already computed before the game begins, the player has only to follow
it. But if the uncertainty was not completely known and if the current winning
strategy can not be applied anymore, the existential player has to compute again
a new strategy and has to pay also the complete algorithmic price.

Definition 5 (next move choice problem). The next move choice problem
is defined as follows.

– Instance : A QCSP q1v1 . . . qnvn

∧
c∈C c with v1 ∈ D1, . . . , vn ∈ Dn and

a sequence of instantiations [v1 ← val1], . . . , [vi ← vali] obtained from a
winning strategy for a QCSP with quant(vi) = ∃ and val1 ∈ D1, . . . , vali ∈
Di.

– Query : Is there any winning strategy for a QCSP

qi+1vi+1 . . . qnvn

∧
c∈C

c ∧ (v1 = val1) ∧ (vi−1 = vali−1) ∧ (vi = val′i)

with vi+1 ∈ Di+1, . . . , vn ∈ Dn, val′i ∈ Di, val′i 6= vali ?

Clearly enough the next move choice problem is still a PSPACE-complete
problem since qi+1vi+1 . . . qnvn

∧
c∈C c∧(v1 = val1)∧(vi−1 = vali−1)∧(vi = val′i)

with vi+1 ∈ Di+1, . . . , vn ∈ Dn, val′i ∈ Di, val′i 6= vali is a QCSP.
We introduce a new property for a QCSP base which guarantees that the

next move choice problem is no more PSPACE-complete but polytime w.r.t. the
size of the QCSP base. A QCSP base is optimal if all the guards associated to
the moves played by the existential player are verified then this player is sure to
follow a winning strategy.
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Definition 6 (optimality). Let B = 〈q1v1 . . . qnvn | [Ge1 , . . . , Gem
]〉 be a QCSP

base and (B)∗ = q1v1 . . . qnvnC with v1 ∈ D1, . . . , vn ∈ Dn. This base is optimal
if the following property is verified. For every i, i ∈ [1 . . . m], let Ci be the set
of constraints {(vek

= valek
)|1 ≤ k < i} such that (valek

, vale1 , . . . , valek−1) ∈
Ivalek (aek

), (valek
, aek

) ∈ Gek
.

Then for every guard (val, a) ∈ Gei
, (val, vale1 , . . . , valei−1) ∈ Ival(a) if and

only if qei+1vei+1 . . . qnvn(C ∧ (vei
= val) ∧

∧
c∈Ci

c) admits a winning strategy.

The underlying order of this notion of optimality is the number of winning
scenarios which are not a branch of any winning strategy. In case of the inter-
pretation of an optimal base this number is zero.

Example 5. The following guard sets Gopt
x , Gopt

y and Gopt
t are guard sets for

the QCSP base Bopt = 〈∃x∃y∀z∃t | [Gopt
x , Gopt

y , Gopt
t ]〉 which is optimal and

compatible with the QCSP : ∃x∃y∀z∃t(x = (y ∗ z) + t) with x, y, z, t ∈ {0, 1, 2}.

Gopt
x = [(0, 2), (1, 2), (2, 2)]

Gopt
y = [(0, T y

0 =

x

0 1 2

), (1, T y
1 =

x

2

)]

Gopt
t = [(0, T t

0 =

x

y

z

0 1 2

0

0

y

z

2

1

2

),

(1, T t
1 =

x

y

z

0 1 2

0

1

y

z

1

1

2

), (2, T t
2 =

x

y

z

0 1 2

0

z

0

1

2

)]

Fig. 1. Guard sets for an optimal QCSP base.

We explicit hereafter the optimality of the QCSP base but we use the QCSP
constraint (x = (y ∗ z) + t) instead of the table constraints in order to simplify.
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– i = 1 (i.e. vei
= x) then Ci = ∅ and for every K ∈ {0, 1, 2}, K ∈ IK(2) =

{K} and ∃y∀z∃t(x = (y ∗ z) + t) ∧ (x = K), with y, z, t ∈ {0, 1, 2}, admits a
winning strategy.

– i = 2 (i.e. vei = y) then
• for every K ∈ {0, 1, 2} (K, 2) ∈ Gopt

x , I0(T y
0 ) = {(0, 0), (0, 1), (0, 2)} and

for every K ∈ {0, 1, 2}, (0, K) ∈ I0(T y
0 ) and ∀z∃t(x = (y ∗ z) + t) ∧ (y =

0) ∧ (x = K), with z, t ∈ {0, 1, 2}, admits a winning strategy ;
• (1, 2) ∈ Gopt

x , I1(T y
1 ) = {(1, 1)} and (1, 1) ∈ I1(T y

1 ) and ∀z∃t(x =
(y ∗ z) + t) ∧ (y = 1) ∧ (x = 1), with z, t ∈ {0, 1, 2}, admits winning
strategy ; (1, 0) 6∈ I1(T y

1 ) and ∀z∃t(x = (y ∗ z) + t) ∧ (y = 1) ∧ (x = 0),
with z, t ∈ {0, 1, 2}, does not admit a winning strategy ; (1, 2) 6∈ I1(T y

1 )
and ∀z∃t(x = (y ∗ z) + t) ∧ (y = 1) ∧ (x = 2), with z, t ∈ {0, 1, 2}, does
not admit a winning strategy ;

• for y = 2, the is no pair (2, T y
2 ) ∈ Gy and ∃x∀z∃t(x = (y∗z)+t)∧(y = 2),

with x, z, t ∈ {0, 1, 2}, does not admit a winning strategy.
– i = 3 (i.e. vei

= t) then (we only treat the case t = 0, the others are similar)
• (2, 2) ∈ Gopt

x , (1, T y
1 ) ∈ Gopt

y with (1, 2) ∈ I1(T y
1 ) and (0, 2, 1, 2) ∈ I0(T t

0)
and (x = (y ∗ z) + t) ∧ (x = 2) ∧ (y = 1) ∧ (z = 2) ∧ (t = 0) admits a
winning strategy ; it is similar for (0, 0, 0, 0), (0, 0, 0, 1) and (0, 0, 0, 2) ;

• for all the other cases (0, valx, valy, valz) 6∈ I0(T t
0) and (x = (y ∗z)+ t)∧

(x = valx) ∧ (y = valy) ∧ (z = valz) ∧ (t = 0) does not admit a winning
strategy.

The most important property of optimal QCSP base is that the next move
choice problem for the interpretation of compatible optimal base with a QCSP
is no more PSPACE-complete but polytime.

Theorem 2 (next move choice problem). The next move decision problem
for the interpretation of an optimal base is polytime in the size of the base.

4 Compilation of a QCSP to an optimal QCSP base

We present in this section an algorithm based on a search algorithm and establish
that the result of the application of this algorithm is an optimal QCSP base
compatible with the initial QCSP. Algorithm 1 rec comp computes a compatible
QCSP base from a QCSP following the inductive definition of the semantics of
the QCSP. This algorithm first computes a fix-point for the set of constraints
and returns bl bottom if a contradiction is detected. If it is not the case and the
binder is not empty then bl top is returned. Otherwise for every value val of
the domain of the outermost variable x of the binder, the constraint (x = val)
is added to the constraint store and the algorithm is recursively called. If the
variable is universally quantified and at least one subproblem returns bl bottom
then bl bottom is returned. If the variable is existentially quantified and all the
subproblems return bl bottom then bl bottom is returned. In any other cases,
operators ⊕∃ or ⊕∀ are called to combine the resulting QCSP bases together.
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Algorithm 1 rec comp

In: Q : a binder of a QCSP
In: C : a set of constraints of a QCSP
Out: a QCSP base or bl top or bl bottom

if reach fixpoint(C) = failure then
return bl bottom

end if
if empty(Q) then return bl top end if
qxD ← head(Q); listV alBase← []; d← D
while !empty(d) do
val← head(d); d← tail(d)
base← rec comp(tail(Q), C ∪ {x = val})
if base = bl bottom&q = ∀ then
return bl bottom

end if
listV alBase← [(val, base)|listV alBase]

end while
if empty(listV alBase) then
return bl bottom

end if
if q = ∃ then
return ⊕∃(xD, Q, listV alBase)

else
return ⊕∀(xD, Q, listV alBase)

end if

Operators ⊕∀ and ⊕∃ specified respectively by the algorithms 2 and 3 work
as follows. First we describe the ⊕∀ operator. Function constants(l) checks if
the list of pairs as argument l does not contain only bl top or bl bottom for
second element. If the check constants(l) is verified, it is necessarily only a list
of bl top associated with all the values of the domain of the variable in case of an
innermost bloc of universal quantifiers and then bl top is returned. Otherwise,
the operator ⊕ defined hereafter is applied and the result is returned since the
universally quantified variables are not associated to guards. Now we describe the
⊕∃ operator. If the check constants(l) is verified, it is necessarily an innermost
existential quantifier and a QCSP base containing only the values associated
to the bl top is built thanks to the function base case defined by base case(l) =
{(val,2)|(val, bl top) ∈ l}. Otherwise, the returned QCSP base is built by adding
to the result of the ⊕ operator the list of the values associated to each of the
QCSP bases thanks to the function first values defined by first values(l) =
{(val,2)|(val, a) ∈ l}.

The ⊕ operator works as follows. The decompose function extracts from the
list lvb of pairs (value, QCSP bases), for the outermost existentially quantified
variable y of the binder, a pair constituted of a list of pairs (val, list of guards))
and a list of pairs (val, remaining of the guards). The compose function builds
for y its set of guards by distributing the trees for the different values. Functions
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Algorithm 2 ⊕∃
In: xD : a variable and its domain
In: Q : a binder
In: l : a list of pairs (value, QCSP base)
Out: a QCSP base

if constants(l) then
return 〈∃xDQ | case base(l)〉

else
return 〈∃xDQ | [first values(l)| ⊕ (x, l)]〉

end if

Algorithm 3 ⊕∀
In: xD : a variable and its domain
In: Q : a binder
In: l : a list of pairs (value, QCSP base)
Out: a QCSP base or bl top

if constants(l) then
return bl top

else
return 〈∀xDQ | ⊕ (x, l)〉

end if

first and second give access to respectively the first and the second position of
a pair.

Algorithm 4 ⊕
In: x : a variable
In: lvb : a list of pairs (value, QCSP base)
Out: a list of guards

lg ← []
lvg ← extract guards(lvb)
while empty(lvg) do
dec y ← decompose(lvg)
lg ← [compose(x, first(dec y)|lg]
lvg ← second(dec y)

end while
return lg

The following example shows how the rec comp algorithm works.

Example 6. We compute for all valx, valy ∈ {0, 1, 2} the QCSP base Bvalxvaly

as the result of the following call :

rec comp(∀z∃t, {(x = (y ∗ z) + t), (x = valx), (y = valy)})

with z, t ∈ {0, 1, 2}.
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We obtain the QCSP bases (according to T
valxvaly
valt

) :

B00 = 〈∀z∃t| [[(0, T 00
0 =

z

0 1 2
)]]〉

B10 = 〈∀z∃t| [[(1, T 10
1 =

z

0 1 2
)]]〉

B20 = 〈∀z∃t| [[(2, T 20
2 =

z

0 1 2
)]]〉

B21 = 〈∀z∃t | [[(0, T 21
0 =

z

2
), (1, T 21

1 =

z

1
), (2, T 21

2 =

z

0
)]]〉

of for any other combination, Bvalxvaly = bl bottom.

The following example shows how the trees are shared by the ⊕ operator and
also the distribution of the trees.

Example 7. The operator ⊕∃ is applied during the execution of the call

rec comp(∃y∀z∃t, {(x = (y ∗ z) + t), (x = 2)})

with y, z, t ∈ {0, 1, 2}, to the QCSP bases B20, B21 and B22 which represent com-
patible QCSP bases with QCSP, respectively, ∀z∃t((x = (y ∗ z) + t) ∧ (x = 2) ∧ (y = 0)),
∀z∃t((x = (y ∗ z) + t) ∧ (x = 2) ∧ (y = 1)), ∀z∃t((x = (y ∗ z) + t) ∧ (x = 2) ∧ (y = 2)).

⊕∃(y,∀z∃t, [(0, B20), (1, B21), (2, B22)])

= 〈∃y∀z∃t | [[(0, 2), (1, 2)], [(0,

y

T 21
0

1

), (1,

y

T 21
1

1

), (2,

y

T 20
2

0
T 21

2

1

)]]〉
= B2

which is a compatible QCSP base with the QCSP ∃y∀z∃t((x = (y ∗ z) + t) ∧ (x = 2))
with y, z, t ∈ {0, 1, 2}.
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The following example shows how the existential player can play with an
optimal QCSP base instead of only one winning strategy how the optimal QCSP
base gives a direct access to the possibilities for a given existentially quantified
variable.

Example 8. (Previous examples continued.) Let the following QCSP be the ex-
pression of a very simple two-player game:

∃x∃y∀z∃t(x = (y ∗ z) + t), x, y, z, t ∈ {0, 1, 2}

Let us suppose that an existential player only knows the following winning
strategy:

x

y

z

t

2

0
t

1

t

0

2

1

2

For his first move, he decides to play (x = 2). Now, following its winning
strategy, he is supposed to play (y = 1). Let us suppose that it is no more
possible because of an unexpected reason. He can not follow its winning strategy
anymore. If he follows the compatible but not optimal base of Example 1 he
will follows one of the two other choices thinking that he still has a chance.
If he wants to be sure, he will have to pay the full computational price for
the QCSP ∀z∃t((x = (y ∗ z) + t) ∧ (x = 2) ∧ (y = 0)), z, t ∈ {0, 1, 2} and
∀z∃t((x = (y ∗ z) + t) ∧ (x = 2) ∧ (y = 2)), z, t ∈ {0, 1, 2}. If he follows its
compatible and optimal QCSP base of Example 5, he knows that he has already
lost.

The following theorem establishes that the rec comp algorithm not only com-
putes a compatible QCSP base from a QCSP but also that this QCSP base is
optimal.

Theorem 3. Let QC be a QCSP. rec comp(Q, C) return an optimal base and
compatible with the QCSP.

5 Conclusion

We have proposed in this article a framework for the compilation of QCSP:
the QCSP bases. We have defined an algorithm embedded in the state-of-the-
art search algorithm of QCSP solver to compute a QCSP base from a QCSP.
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We have shown that the obtained QCSP base is compatible with the initial
QCSP and optimal in the sense that the construction of any winning strategy is
polytime for the interpreration of a QCSP base.

We have implemented in Prolog the algorithms described in this article and
the programs and examples are downloadable. at the following address http://
www.info.univ-angers.fr/pub/stephan/Research/Download.html. We plan
to integrate it in our QCSP solveur developed in the generic constraint develop-
ment environment Gecode [15].

When a QCSP solver returns there is or there is no winning strategy, there
is no way to check if the answer is correct while for CSP the associated result
to the decision (a complete instantiation) is easy to check. A certificate for a
QCSP which has a winning strategy is any piece of information that provides
self-supporting evidence of the existence of a winning strategy for that QCSP.
Due to the lack of space, we have not treated certificates for QCSP: our for-
malism includes QCSP certificates as a particular case. During the execution of
the solver, a QCSP base is generated but only with strategies as guards. The
interpretation of these trees (cf Definition 2) in tuples permits to verify such a
QCSP certificate w.r.t. a QCSP by the resolution of a co-NP-complete problem.
(The complexity is similar to the check of a winning strategy for QBF [4].)

We have proposed a recursive construction of the QCSP base but in practice
it is often more efficient to consider a cooperation between a solver which emits
a trace and a trace analyzer which builds the QCSP base. We have also develop
this approach but due to the lack of space we only give here the main two
important reasons for this cooperation between a solver and a trace analyzer:
If the construction of the QCSP base is embedded into the solver, the memory
management of the solver by means of a backtrack stack will have also to keep
the state of the current QCSP base. We want to take into account modern
architectures with multi-core multithreaded processors.
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Abstract. LP is a common formalism for the field of databases and
CSP, both at the theoretical level and the implementation level in the
form of Datalog and CLP. In the past, close correspondences have been
made between both fields at the theoretical level. Yet correspondence at
the implementation level has been much less explored. In this article we
work towards relating them at the implementation level. Concretely, we
show how to derive the efficient Leapfrog Triejoin execution algorithm of
Datalog from a generic CP execution scheme.

1 Introduction

Constraint programming (CP) is a well-known paradigm in which relations be-
tween variables describe the properties of a solution to the problem we wish
to solve [1]. The strategy how to actually compute these solutions is left to
the system. Databases have been an interesting research topic since the 1960’s.
Constraint programming and databases span two separate domains, each with
their own insights and techniques. They are not immediately similar. However
database theory and CP, in particular CLP, actually have much in common [2],
at least at the theoretical level. A common language for them is first-order logic,
which does not involve any computational aspects.

Cross-fertilization between the two could give us more expressive systems and
better results. Hence we look at logic programming as a common computational
language: Datalog is a query language for deductive databases used in a variety
of applications, such as retail planning, modelling, . . . [3].

This paper aims to show that Datalog and CP are also compatible at the
implementation level. We do so by showing how a standard CP implementation
scheme, as formulated by Schulte and Stuckey [4], can be specialized to obtain
a recently documented Datalog execution algorithm called Leapfrog Triejoin [5].
Leapfrog Triejoin has a good theoretical complexity and is simple to implement.

This integration opens up the possibility for further cross-fertilization be-
tween actual CP and Datalog systems. In particular, we aim to integrate CP
propagation techniques in the Datalog join algorithm for query optimization.

2 The Abstract Constraint Solving Scheme

Our starting point is the abstract algorithm for efficient CP propagator engines
as formulated by Schulte and Stuckey [4], listed in Figure 1.



The inputs to the algorithm are a set of old (constraint) propagators Fo, a
set of new propagators Fn and the domain D of the constraint variables. Ini-
tially the set of old propagators is empty and a toplevel calls takes the form
search(∅, Fn, D). These inputs are derived from a declarative problem specifica-
tion that relates a finite set of constraint variables V by means of a number of
constraints C:

– All of the variables have an initial set of admissible values, which are captured
in D. This domain D is a mapping from V to the admissible values; we denote
the set associated with a variable x as D(x). For example, if the admissible
values for x are the integers from one to four, we write D(x) = {1, 2, 3, 4}.

– The constraints are captured in a set of constraint propagators F (typically
one or several per constraint). Such a propagator f is a monotonically de-
creasing function on domains that removes values that do not feature in any
possible solution to the constraint.
Define, in addition to x and its domain defined above, a variable y with
D(y) = {3, 4, 5}. A constraint propagator for x = y can then eliminate the
values {1, 2} from D(x) and 5 from D(y).

Given these inputs it is the algorithm’s job to figure out whether the con-
straint problem has a solution. To do so, it alternates between two phases: con-
straint propagation and nondeterministic choice.

Constraint propagation computes a fixpoint of the constraint propagators; it
is captured in the function isolv(Fo, Fn, D) which we will explain in more detail
below. This may yield one of three possible outcomes:

1. One of the variables has no more admissible values. Then there is no solution.
2. All of the variables have exactly one admissible value. A solution has been

found.
3. At least one of the variables has two or more admissible values.

The first two cases terminate the algorithm. The last case leads to nondeter-
ministic choice. The current search space C ∧ D is partitioned using a set of
constraints {c1, . . . , cn}. Typical approaches include the use of two constraints
that each split the domain of a certain variable in half, or constraints that ei-
ther remove or assign a value. A large number of strategies for choosing a split
variable or a value exists. One may pick the variable with the largest domain,
the smallest domain, . . . , the smallest value or a random one, etc. In all of those
cases each of the subspaces is explored recursively in a depth-first order. The ith
recursive subcall gets Fo ∪ Fn as old propagators1 and the new propagators of
ci as the new ones.

Incremental Constraint Propagation Figure 2 shows an incremental algorithm
for constraint propagation. It takes a set of old propagators Fo, new propagators
Fn and a constraint domain as inputs, and returns a reduced domain as output.
The invariant is that for every old propagator fo ∈ Fo, D is a fixpoint (i.e.,
1 We know that D is a fixpoint of them.
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search(Fo, Fn, D)
D := isolv(F0,Fn,D) % propagation
if (D is a false domain)

return
if (∃x ∈ V. |D(x)| > 1)

choose {c1, . . . , cm} where C ∧D |= c1 ∨ · · · ∨ cm % search strategy
for i ∈ [1..m]

search(Fo ∪ Fn, prop(ci), D)
else

yield D

Fig. 1. General constraint solver

isolv(Fo, Fn, D)
F := Fo ∪ Fn; Q := Fn;
while (Q 6= ∅)

f := first(Q)
Q := Q− {f}; D′ := f(D)
if (D′ 6= D)

Q := new(f, F, D, D′)
D := D′

return D

Fig. 2. Incremental constraint propagation

D = fo(D)). The propagators that may still reduce D are in Fn; they are used
to initialize a worklist Q.

Then the algorithm repeatedly takes a propagator f from Q and uses it to
obtain a possibly reduced domain D′. Then an auxiliary function (not given)
new(f, F, D, D′) determines what new propagators from F to add to the work-
list; these should be propagators for which D′ may not be a fixpoint. A valid
but highly inefficient implementation of new just returns F , but typical imple-
mentations try to be more clever and return a much smaller set of propagators.

When the worklist is empty, the algorithm returns D which is now a fixpoint
of all propagators F .

2.1 Instantiation

In practice the generic scheme is instantiated to fill in unspecified details (like
how the partition is obtained) and refined to obtain better efficiency. For in-
stance, when D is reduced by a propagator, typically not all variables are af-
fected. The new function would only return those propagators that depend on
the affected variables. Moreover, efficient pointer-based datastructures would be
used to quickly identify the relevant propagators.
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In the rest of the paper we will apply various such instantiations and refine-
ments. Yet our goal is not to obtain a concrete CP system. Instead, we have as
target the Datalog Leapfrog-Triejoin execution algorithm.

3 The Datalog Instance

Datalog execution uses rules to derive new facts from known facts. A rule has
the form

h← b1, . . . , bn

where h, b1, . . . , bn are atomic formulas. An atomic formula has the form

p(X1, . . . , Xn)

where p is a predicate with arity n and the Xi are variables. Every predicate
refers to a table of facts of the form p(c1, . . . , cn) with the ci constants. If the
body is instantiated by known facts, then the head yields a (possibly) new fact.

The most performance-critical part of the instantiation is the join which finds
facts that share a common argument. Suppose we have the following facts:

p(a,b), p(c,d), p(e,f)

q(a,1), q(c,2), q(g,3)

Then the join p(X,Y ), q(X, Z) gives us the following results: {X 7→ a, Y 7→
b, Z 7→ 1} and {X 7→ c, Y 7→ d, Z 7→ 2}.

As is clear from the example, a join between three unary predicates looks
like

p(X), q(X), r(X)

We can rewrite the rule body to the following form

p(X), q(Y ), r(Z), X = Y = Z

that makes the equalities explicit. Now the following analogy with constraint
satisfaction problems becomes more obvious:

– The rule variables correspond to constraint variables.
– The predicates denote the domains of the variables.
– The equalities are constraints on the variables.

Note that Datalog only uses one kind of constraints: the global equality constraint.
A generic propagator for this constraint is shown in Figure 3, that only performs
propagation on the lower bound.

It introduces a variable mapping M from {0, . . . , n− 1} to V. The mapping
is essentially an array of pointers to the elements of D. We sort M by increasing
lower bound of the variables in D. Then, the variable x pointed to by the last
position in M has the largest lower bound lmax. For each of the other variables,
we eliminate values smaller than lmax. If this operation leads to a larger lower
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allequal(D)
make a variable mapping M = {0 7→ x1, . . . , n− 1 7→ xn} to D
sort M by increasing lower bound in D
lmax := lowerBound(D[M [n− 1]])
i := 0
while (lowerBound(D[M [i]]) 6= lmax)

D[M [i]].raiseLowerBound(lmax)
lmax := lowerBound(D[M [i]])
i := (i + 1) mod n

return D

Fig. 3. Generic equality propagator

bound, we start the entire process again. If, in contrast, the lower bound of all
variables is equal to lmax, we have found a fixpoint from which we can derive a
solution. Thus the algorithm maintains the invariant that the lower bounds of
the variables pointed to by the array elements at indices i . . . (i + n) mod n are
a sorted series.

As an example consider three variables X, Y and Z with respective domains
D(X) = {1, 2, 3, 4, 9, 10, 11}, D(Y ) = {3, 4, 7, 10} and D(Z) = {1, 4, 7, 10, 11}.
Sorting M by increasing lower bound then gives us {0 7→ X, 1 7→ Z, 2 7→ Y }. In
Table 1, we illustrate the process, underlining the domain with the largest lower
bound. The absence of a value means that there are no changes with respect to
the previous line in the table.

Initially lmax = 3. In the first iteration, we increase the lower bound of X
to 3 and lmax does not change. In the next iteration, the lower bound of Z is
increased to 4. The maximum lower bound lmax is updated accordingly. In the
next two iterations the lower bounds of Y and X are again increased to end up
at 4. We now have found a solution.

X Z Y
{1, 2, 3, 4, 9, 10, 11} {1, 4, 7, 10, 11} {3, 4, 7, 10}
{3, 4, 9, 10, 11}

{4, 7, 10, 11}
{4, 7, 10}

{4, 9, 10, 11}

Table 1. Example operation of the propagator for global equality
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3.1 Unary Datalog

When we restrict ourselves to unary Datalog, we only solve CP problems with
a single equality propagator at a time. For rules with multiple variables like

p(X), q(X), r(Y ), s(Y )

we calculate one join at a time. The final result is then the Cartesian product of
the solutions for X and Y .

In this situation, isolv is trivial to implement as a single invocation of the
propagator. This is valid because the propagator is idempotent:

allequal(allequal(D)) = allequal(D)

4 Making a choice

The abstract constraint solving scheme from Section 2 does not specify how to
add extra constraints ci to D when propagation alone does not yield a solution.
Recall that the set of constraints ci added in turn must partition the search space.
A well-known technique, the indomain-min strategy, is to select a variable x and
either assign or remove its lower bound lb: c1 ≡ (x = lb), c2 ≡ (x > lb).

This technique is particularly attractive here because the propagator has
already made sure that all variables have the same lower bound. Thus assigning
the lower bound of one variable with c1 requires no work. In particular it requires
no further propagation by the allequal propagator, so we immediately have a
solution that we can yield.

In the other branch, we increment the domain. That means we eliminate the
lower bound from a random variable. We then continue as before. We do not
need an additional propagator for c2: by eliminating the lower bound lb, the
constraint c2 is satisfied right away.

In Figure 4 we show the impact of this refinement on the specialized con-
straint solver. Note that the algorithm is now tail recursive and thus can easily
be turned into a while loop that runs in constant stack space. Contrast this
with conventional CP systems that need a stack to perform depth first search.
We illustrate the difference in Figure 5. On the left is a general search tree; on
the right the tree searched in our code. The dashed nodes represent the solution
found after the call to allequal. From this node, we can move on to the rest of the
tree by following the dashed arrow. It corresponds to the incDomain operation.

As an example of the approach, again consider the three variables X, Y and
Z with the same domains as above. The first solution is X = Y = Z = 4. After
yielding this solution, the domains are X = {4, 9, 10, 11}, Y = {4, 7, 10} and
Z = {4, 7, 10, 11}. We now increase the lower bound of variable X. During the
next iteration of the while loop, allequal is applied again to find the solution
X = Y = Z = 10. Once again incrementing the lower bound of X leaves us with
an empty domain and the while loop terminates.
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search(D)
D := allequal(D) % propagation
if (D is a false domain)

return
yield D % lower bounds equal
D := incDomain(D,x)
search(D)

⇓
search(D)

while (true)
D := allequal(D)
if (D is a false domain)

return
yield D
D := incDomain(D,x)

Fig. 4. Effect of the indomain-minimum value selection on the constraint solver

Fig. 5. General search tree (left) vs. tree searched by our tail recursive algorithm
(right).

5 Leapfrog Triejoin

When we inline the code for the allequal constraint from Figure 3 within the
constraint solver with indomain-min value selection, it is clear we can introduce
one more optimization. Indeed, we do not need to resort the variable domains on
every invocation of the propagator. This is because we know the variable modified
by the incDomain operation must be the one that has the new largest lower
bound. All other variables have not been modified since we found a solution.
To avoid having to change the position pmin where the solution was detected,
it is most convenient to increase the variable at position pmin − 1 mod n in M .
In that way, there is absolutely no work involved in maintaining the ordering.
The result can be seen in Figure 6. The algorithm is now exactly the same as
Leapfrog Triejoin.
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search(D)
make a variable mapping M to D
sort M by increasing lower bound in D
pmin := 0
lmax := lowerBound(D[M [n− 1]])
while (D is not a false domain)

foundSolution := false
while(¬ (foundSolution ∨ D is a false domain))

xmin := D[M [pmin]]
lmin := lowerBound(xmin)
if (lmin = lmax)

foundSolution := true
else

lmax := xmin.raiseLowerBound(lmax)
pmin := (pmin + 1) mod n

if (foundSolution)
yield D
D := incDomain(D,D[M [pmin − 1 mod n]])

Fig. 6. Leapfrog Triejoin algorithm

We begin by sorting the array of pointers M to variables x by increasing lower
bound. As before, we keep the maximum lower bound in lmax. The variable xmin

having the smallest lower bound can be found at position pmin in M . As before,
we know we have a solution if lmin is equal to lmax. The inner while loop either
stops because this is the case, or because there is a variable x with an empty
domain. In the latter case, all solutions have been found. In the former case, we
yield the solution and increment the domain. This is done in such a way that we
can immediately start the inner while loop again.

6 Full Datalog Implementation

Iterator implementation We have started from an abstract domain representa-
tion D. In CP it is typically represented as a union of intervals

⋃
[lbi, ubi] where

lbi+1 > ubi + 1. We only use a restricted set of operations in the algorithm of
Figure 6:

– Access to the lower bound from the domain of a variable x.
– Removing that lower bound from the domain.
– Removing all values smaller than a certain value from the domain.

In a Datalog context, tables are normally stored as trees. But as described in
Veldhuizen’s work [5], it is perfectly possible to implement the necessary opera-
tions on top of trees. The resulting concept is called an iterator.
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N-Ary predicates In addition to the operations needed in the unary case, an
iterator offers three additional operations for working with general predicates:
open and up are used to move in the tree-based representation of a relation.
From a higher level, we can describe this as moving between the variables in a
predicate. The function depth then indicates which variable we are currently
manipulating.

The basic approach for non-unary predicates is to use one Leapfrog Triejoin
per set of variables that must be equal. For example, if p(X, Y ) and q(Z, Q) are
two binary predicates and we join on X = Z, Y = Q, we first calculate a solution
for X = Z. Given this configuration, all solutions for Y = Q are looked for. Then
we look for the next solution where X = Y and repeat the entire process.

Datalog System A fully functional Datalog system has the ability to store the
new facts derived by the program rules. This can be achieved by collecting the
answers and storing them in trees. Recursive rules can be handled with a semi-
naive algorithm. Both capabilities do not influence the core algorithm described
in this paper.

7 Related Work

Much work has been done in coupling logic programming languages to relational
databases. The oldest method, relational access, lets Prolog access only one table
at a time and combines data from multiple tables using depth-first search. It
is clear that this method is very inefficient, since it does not exploit any of the
optimizations from the DBMS. Maier et al. [6, 7] have stressed the importance of
achieving this coupling efficiently. A more recent approach thus translates Prolog
database access predicates into appropriate SQL queries [8]. Although arguably
more efficient, the integration may have varying degrees of transparency. Queries
are generally isolated from the rest of the Prolog program. Therefore, they may
not use all information available in the Prolog program to restrict the number
of records accessed even more. Furthermore, not all queries expressible in Prolog
can be translated to SQL.

Compared to our work, these integration techniques are rather loosely cou-
pled. Back in 1986, Brodie and Jarke stated that tightly integrating logic pro-
gramming techniques with those of DBMSs will yield a more capable system.
They estimated this requires no more work than extending either with some fa-
cilities of the other [9]. Unfortunately, to date, no full integration of Prolog and
relational databases has gained a significant degree of acceptance [6]. Datalog,
on the other hand, has been successfully used as a more integrated approach.

8 Conclusions and Future Work

The integration of Datalog and constraint programming offers many interesting
perspectives in join optimization. In this article, we have only described the core
ideas behind this integration.
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In future, we will first and foremost generalize the approach for non-unary
predicates. Intuitively leapfrog triejoin for non-unary predicates corresponds to
nested searches. This only allows for propagation between the arguments in one
direction. Techniques that allow for more propagation between the arguments
definitely deserve our attention.

Furthermore, we will also investigate both impact and advantages of adding
propagators for additional constraints. A well-known example is the X < Y
constraint. Consider this constraint and the domains X = {1, 8} and Y =
{2, 3, 5, 6, 9}. It is clear that after finding all solutions where X = 1, one can
at once discard the values {2, 3, 5, 6} from the domain of Y .

When the less-than constraint is used together with a join, as in

p(X), q(Y ), r(Y ), X < Y

we would now first do the join on q(Y ) and r(Y ) and then filter out the values
where X < Y . It is clear we can improve here with more propagation. Finally,
many standard constraint programming optimizations can still be added to the
system.
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Interning Ground Terms in XSB
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Abstract. This paper presents an implementation of interning of ground
terms in the XSB Tabled Prolog system. This is related to the idea of
“hash-consing”. I describe the concept of interning atoms and discuss the
issues around interning ground structured terms, motivating why tabling
Prolog systems may change the cost-benefit tradeoffs from those of tra-
ditional Prolog systems. I describe the details of the implementation of
interning ground terms in the XSB Tabled Prolog System and show some
of its performance properties. This implementation achieves the effects
of that of Zhou and Have [7] but is tuned for XSB’s representations and
is arguably simpler.

1 Introduction

Prolog implementations (and all implementations of functional languages that
I know of) intern atomic constants. An atomic constant (called an “atom” in
Prolog) is determined by the character string that constitutes its name. Rather
than representing each occurrence of an atom by its character string name, the
character strings are kept uniquely in a global table and the atom is represented
by a pointer to its string in that table. This (usually) saves space in that multiple
occurrences of the same atom are represented by multiple occurrences of a pointer
rather than multiple occurrences of its string. But more importantly, comparison
of atoms is simplified; two atoms are the same if and only if their pointers are
the same. The important direction here is that, since each string appears only
once in the global table, two atoms differ if their pointers differ. This makes
atom comparison simpler and more efficient.

The atom table is indexed, usually by a hash index, so finding whether a
new atom already exists in the table (and adding it if it does not) is a relatively
efficient operation. This operation is known as “interning”, indicating that an
atom representation is converted from a string representation to an internal
representation, i.e., the pointer representation.

The question arises as to whether this kind of representation might be lifted
to more complex terms, i.e., applied not only to atoms but to structured terms.
This idea has been explored in the Lisp language community [2] and goes by the
name of “hash-consing” (originally proposed by [1]). The name comes from the
use of a “hash” table to store the structures, and in Lisp the way that complex
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structures are constructed is by means of an operation called “cons”. Zhou and
Have [7] present an implementation of this concept in B-Prolog. I compare my
approach to theirs in more detail later in the paper.

There are several reasons why interning of structured terms is more com-
plex than interning atoms, and its potential advantages over a traditional direct
implementation of structured terms less clear. The interning operation itself,
while optimized by sophisticated indexing strategies, still takes time. Interning
of atoms is required when a new atom is created. Atoms are created (mostly)
at read-in time, and sometimes in particular builtins such as atom codes/2. Ex-
ecution of pure code (e.g., without builtins) does not cause the creation of new
atoms so the overhead of interning atoms is relatively small and localized in most
Prolog programs. However, structured terms are created continuously during ex-
ecution of pure code. I assume a “copy” based implementation of terms, which
is the implementation in WAM-based Prolog systems. For example, running the
traditional definition of append/3 to concatenate two lists requires the creation
of as many structured subterms as there are elements in the first list. So the
interning cost for complex terms can be quite high. Significant memory may be
saved by interning structured terms, but the space-time tradeoffs are not clear.
Many terms may be created and used once but then not used again. Locality of
reference is also changed, so caching behavior may be affected, perhaps for the
better, perhaps for the worse.

There is another complication in the case of Prolog that does not arise in
functional programming systems: Prolog terms may have variables embedded in
them. Interning a term containing a variable is problematic. For example terms,
such as f(a,X) and f(a,Y), cannot be interned to the same hash table entry, since
X may become bound to b and Y to c, in which case the terms are distinct.
However, if they are interned to distinct table entries, then if X and Y both
become bound to a, the terms are then the same but in this situation there
are two distinct copies of the same term in the hash table, which undermines
a major reason for interning. These (and other) difficulties strongly mitigate
against trying to intern terms in Prolog that contain variables, i.e., terms that
are not ground. (See the recent work of Nguyen and Demoen [3] for an interesting,
and deeper, discussion of this issue.)

One might explore interning every term when it is created. In the WAM,
terms can be created in a variety of ways. In pure code (i.e., not in builtins)
terms are built in a top-down way by a sequence of instructions starting with
a get-structure instruction and followed by a sequence of unify-something type
instructions, one for each field of the term. These instructions could be changed
to support checking whether all subfields contain constants or interned subterms,
and to intern the constructed term if so. But this would require major surgery
to these instructions. A better solution would probably be to modify the WAM
instructions and compilation strategy to build terms bottom-up. But again, it is
not clear, even with such optimizations, that the overhead of hashing every time
a ground term is constructed would be out-weighed by other improvements.
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For all these reasons, I believe, general interning of ground complex terms is
not a general implementation strategy considered in Prolog systems.

The advent of Prolog systems that support tabling, however, may have
changed the cost-benefit analysis of sometimes interning ground terms. When
a tabled predicate is called with new arguments, the arguments of the call are
copied into the table; and when new answers are returned to a tabled predicate,
they are also copied into the table. Answers are also copied out of tables when
they are used to satisfy subsequent calls. This copying of calls and answers to
and from tables may lead to significant time and table space usage. For example,
when using a DCG (Definite Clause Grammar) in the standard way for parsing,
the input string (represented as a list) is passed into each nonterminal predicate
and the list remaining after the nonterminal has recognized a prefix is passed
out. So, for example, when tabling a nonterminal predicate that removes just
the first atom in a long list, the entire list is copied into the table once for the
call, and the entire list minus the first element is (again) copied into the table
as the answer. (The fact that tries are used to represent calls and answers in
tables may in special cases reduce the copying, but in general, it is needed.) So
when using DCG’s to parse lists of terminal symbols, there is much copying of
lists into and out of tables. Tabling a DCG can in principle give the performance
of Earley recognition, but this extensive copying of the input list adds an extra
“unnecessary” linear factor to the complexity, in both space and in time.

Note also that when a term is copied into the table, it must, of course,
be traversed. So it adds no extra complexity to check for its goundedness and
intern it if it is ground. Another situation in which this happens is in assert.
Since an asserted term is fully traversed to convert it into internal “code form”
(in the XSB implementation of assert), one can intern ground subterms during
that process without increasing complexity. Another opportunity would be in
findall/3.

2 Implementation of Interned Ground Terms

2.1 Representation of Interned Ground Terms

I describe the representation of interned ground terms in XSB. In the WAM
structured records are represented as a sequence of words, the first is a pointer to
a global record for the function (aka structure) symbol. For a structure symbol of
arity n, that initial word is followed immediately by n tagged words representing
the subfields of that structure. List (or cons) records are just pairs, with the
structure symbol optimized away in favor of a tag. A picture of a portion of
the state for interned terms, containing the ground term f(1,g(a)), is shown in
Figure 1.

Interned structure records of arity n are stored in blocks of records, each
of n + 2 words, “linked records” in the figure. The records are accessed (for
interning) by using the record arity to index into an array to access a hash table
for records of that arity. The hash value is computed using the n+1 fields of the
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Fig. 1. Storage of Interned Ground Terms

record. The subfields of an interned record can contain only atoms, numbers, or
tagged pointers to other interned records, and so the hash value computed from
these values will be canonical. The hash value is used to index into the hash
table to access a hash bucket chain that can be run to find the desired record.
The bucket link field immediately precedes its record. List (or cons) records have
their own special hash table.

The representation of interned terms is exactly the same as in the heap;
the only difference is that the records are stored in globally allocated blocks,
not in the heap. For example, in the Figure, the pointer from the bottom to
the f/2 record could well be from the heap, and for any code traversing this
representation, the data structure looks exactly the same as it would were in on
the heap. This means that all existing code in XSB for accessing and processing
structured terms continues to work with interned ground terms.

Whether a structured term pointer is pointing to an interned term or not
is determined by examining the pointer itself; if it points into the heap, it is
not interned; otherwise it is interned. One can think of this as adding another
“tag” to a pointer to a structured term, but the “tag” is implemented using a
pointer range, rather than an explicit bit in the pointer. The general unification
algorithm is modified to check, when unifying two structured terms, if the terms
are both interned, in which case it fails if the addresses are not equal. (Note that
the algorithm already succeeds immediately if two pointers to structure records
are equal.)
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Other builtin functions can be modified to take advantage of knowing a sub-
term is interned. For example, the builtin ground/2, which checks for grounded-
ness, need not descend into an interned subterm; the builtin copy term/2 does
not need to descend into an interned ground term but can simply copy the
reference.

2.2 Interning Ground Terms

A new function (accessible through a builtin) takes a Prolog data object (usually
a structured term) and creates a copy of that term in which all ground subterms
are interned. The term is traversed bottom-up, using an explicit stack, and the
new copy is created on the heap. (Of course, if the term is ground, the new
heap copy will be a single word pointing the interned term.) Clearly subterms
that are already interned need not be traversed; the reference to the existing
interned representation is simply copied. Note this operation is different from
the standard copy term/2, since the new term contains the same variables as
the old term, whereas in copy term/2 the new term contains new variables.

The user can call the builtin intern term/2 at any time to make a logically
identical copy of any term. Since interned ground terms are represented exactly
as regular heap terms, except that they reside in a different place in memory,
nothing in the XSB system needs to be changed to support the terms created by
the new builtin intern term/21. However to take full advantage of the new term
storage mechanism, other system changes can be made. I describe changes made
to asserting of dynamic code and to the handling of complex terms in tables.

2.3 Interning before Asserting

Terms are fully traversed in XSB when a clause is asserted to the generate WAM
code that will be executed when the clause is called. Also, when that code is
called, it may construct a copy of a term on the heap. Thus interned terms
can be used to good effect when asserting clauses. New WAM instructions are
added for get-intern-structure (and unify-intern-structure) whose (non-register)
argument is a pointer to an interned term. If a dynamic predicate is declared
as intern, then clauses are automatically interned before they are asserted. This
can save space if the same ground term occurs multiple time in asserted clauses.
Again, this doesn’t increase the complexity of assert, since the clause has to be
fully traversed in any case.

Get-intern-structure unifies a term with an interned term. Unlike get-structure,
it will never construct any subterm on the heap, since all subterms of the in-
terned term are interned and unifying an interned term with a variable simply
sets the variable to point to the interned term. So this can save space on the
heap and the time it would otherwise take to construct the term on the heap.
1 In fact, in XSB the builtin findall/3 copies terms out of the heap and uses the fact

that term pointers do or do not point into the heap to determine sharing. Therefore
the distinction between findall/3 terms not in the heap and interned terms not in
the heap had to be handled carefully within this operation.
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Note that indexing is not an issue with asserted clauses in XSB, if they are
not trie-indexed. Standard hash indexing still hashes on the same portion of
an argument term, whether it is interned or not. Based on the resulting hash
value, it chooses the set of clauses that might unify, and then executes the chosen
clauses that actually do the unification.

2.4 Interning before Tabling

The computational advantage of interned terms is that the system never needs
to make a copy of one; it can simply use its reference. As described above, terms
are copied into and out of tables to represent calls and answers. With interned
subterms much of this copying can be avoided.

In XSB a variant table can be declared as intern, in which case all calls will
be interned before being looked up, and possibly entered, in the table. Similarly,
all returned answers will be interned before being (checked and perhaps) added
to the table. In XSB terms in a call (and return) table are represented in tries,
using a linearization based on a pre-order traversal of the terms. Figure 2 shows
schematically a trie that contains interned ground terms.

Fig. 2. Trie Containing Interned Ground Terms

The Figure shows a trie containing three calls to p/3: p(a,c,d), p(a,f(b,c),e),
and p(a,f(k,n),m), assuming that p/3 is declared as intern. The new feature
here is that, for example, f(b,c) is a ground complex term and so is interned
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before being entered into the trie. So the entire interned subterm is treated as
a unit and represented as being on one link, such as between node 2 and node
5. When an interned subterm is encountered when adding (or looking) up a
component in such a trie, it is treated as an atomic constant, with the reference
treated as the unique identifier. This figure shows a (possibly complex) symbol
on each link, but of course, in the implementation that is a pointer to some
canonical representation for that symbol. For a constant it is a pointer to the
interned string of its name; for an interned structured term, it is a pointer to
the canonical representation for that term in the interned term data structure.

Notice that interning the arguments when making a tabled call does not in-
crease the complexity of processing the table, since the terms, were they not
interned, would have to be completely traversed in any case. At worst, the con-
stant factor may increase due to the multiple traversals.

It is worth noting how interned terms interact with the indexed lookup of
calls (and answers) in the table. Each node in the trie can be indexed, so, for
example, a hash index is built (as necessary) on the outgoing links from a node
to quickly move to the target node on the right outgoing link. For example,
node 2 in the Figure would have a hash table to quickly access nodes 3, 5, or
7. Thus tries ordinarily provide full indexing on every constant and function
symbol in a term being looked up. However, as we have seen, interned terms are
treated as (unstructured) constants in the trie, and are indexed as constants.
This means that there is no indexing on the main function symbol (or indeed
any component) within an interned term. So, for example, if a call is made to
p/3 of the form p(a,f(k,X),m), when trie traversal reaches node 2, it cannot use
the hash table to index at this point to find quickly the one term (on the link
to node 7) that matches. Since the input term is f(k,X) is not ground, it is not
interned, and the index, which is based on pointers to ground terms cannot be
used. Note that were p/3 not tabled as intern, the trie would have more links,
and the symbols f/2 and k could be used to index the traversal. But given that
p/3 is tabled as intern, the only choice would be to look at every outgoing link
from 2, and see whether the possibly complex symbol unifies with the lookup
term.

So this loss of indexing may potentially have serious performance conse-
quences. However, if only variants of the source term are to be retrieved, and
all ground subterms in both the source lookup term and the trie are known to
be interned, which is the case for variant table processing, then this problem is
avoided. Note also that tables that are not declared as intern will process in-
terned terms just as they do regular terms, traversing them and processing each
atomic component.

The implementation in XSB currently avoids this potential problem by dis-
allowing the entry of interned terms into tries for which retrieval by unification
would be required. This may be revisited, since there do seem to be situations
in which the benefits of interning could be gained and the pitfalls of the loss of
indexing avoided.

80



3 Performance

All tests were done on a laptop, running Windows 7 Professional, 64-bit OS, on a
Intel(R) Core(TM i5) CPU, 2.67 GHz with 8 GB of memory. XSB was compiled
using MSVC in 64-bit mode.

Figure 3 shows how long it takes to intern a list of integers. Each run starts

List Length CPU Time (secs)

100000 0.0160
200000 0.0470
300000 0.0630
400000 0.0940
500000 0.1090
600000 0.1400
700000 0.1720
800000 0.2030
900000 0.2180

1000000 0.2340

Fig. 3. Time to intern a ground list

with an empty intern table, so every new subterm must be added.
A simple (but not very realistic) example in which interning can provide

great performance improvements (see [7]) is to table a predicate that tests that
a term is a proper list:

:- table islist/1 as intern.
islist([]).
islist([_|L]) :- islist(L).

and call it with a list of distinct integers of various lengths. Figure 4 shows the
results. Without interning, each recursive call causes the sublist to be copied

List Len nonintern nonintern intern intern
Cpu Time Table Space Cpu Time Table Space

(secs) (bytes) (secs) (bytes)

100 0.0000 427,304 0.0000 27,264
800 0.0160 25,813,640 0.0000 213,600
2700 0.2490 292,321,384 0.0160 721,344
6400 1.3570 1,640,106,376 0.0000 1,722,720
12500 5.8960 6,253,333,160 0.0150 3,333,120

Fig. 4. Interning of islist/2: Space and Time Comparisons
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into the table. So every suffix of the initial input list is copied to the table, and
the space required is quadratic in the length of the input list. With interning,
only a pointer to an interned list is copied into the table, so the space required
is linear in the length of the input list.

DCGs normally process lists and can benefit significantly from interned struc-
tures. Consider the following DCG for a grammar that recognizes even-length
palindromes:

:- table epal/2.
epal --> [].
epal --> [X],epal,[X].

Figure 5 shows the results of recognizing a list of randomly chosen numbers be-
tween 1 and 10,000,000, appended to its reverse, to make an even-length palin-
drome. The xx’s indicate instances that do not run due to memory limitations.

List Len nonintern nonintern intern intern
Cpu Time Table Space Cpu Time Table Space

(secs) (bytes) (secs) (bytes)

200 0.0000 3,642,296 0.0000 65,664
1600 0.2340 230,735,064 0.0000 526,944
5400 2.6060 2,625,534,840 0.0160 1,766,336
12800 xx xx 0.0310 4,213,088
25000 xx xx 0.0780 8,231,424
43200 xx xx 0.1090 14,259,296
68600 xx xx 0.1720 22,751,040
102400 xx xx 0.2960 34,226,528
145800 xx xx 0.4680 48,288,128
200000 xx xx 0.6560 65,848,928

Fig. 5. Palindrome (epal) DCG: Space and Time Comparisons

Note that with interning, palindrome recognition is linear in time and space.
An example of a grammar for which tabling is required is the following left-

recursive grammar, which recognizes all strings consisting of just the integers 1,
2, and 3.

:- table lr/2.
lr --> [].
lr --> lr,[1].
lr --> lr,[2].
lr --> lr,[3].

Figure 6 shows the results of using this grammar to recognize strings, when
using and not using interning. The strings are lists of integers 1, 2, and 3 chosen
randomly. Again note that interning makes it linear in time and space.
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List Len nonintern nonintern intern intern
Cpu Time Table Space Cpu Time Table Space

(secs) (bytes) (secs) (bytes)

100 0.0000 388,248 0.0000 5,168
800 0.0620 25,366,688 0.0000 36,752
2700 0.5770 290,570,648 0.0000 116,848
6400 xx xx 0.0160 322,192
12500 xx xx 0.0160 631,728
21600 xx xx 0.0310 995,728
34300 xx xx 0.0620 1,503,728
51200 xx xx 0.0940 2,310,800

Fig. 6. Left Recursive (lr) DCG: Space and Time Comparisons

Figure 7 compares the space and time cost of loading (and initializing) a
large ontology when interning all ground structures and when interning none.
The application loads and initializes a large ontology (and data) using XSB’s

nonintern nonintern intern intern intern intern
asserted space cpu Time asserted space interned space total space cpu Time

(bytes) (secs) (bytes) (bytes) (bytes) (secs)

4,456,675,216 484.945 2,765,179,136 506,172,376 3,271,351,512 513.290

Fig. 7. Loading a large database of ontology facts

CDF representation (a package within the XSB System [6]). The CDF represents
classes and objects and relationships between them. Classes are represented by
small terms, such as cid(local class name,name space), and objects and proper-
ties similarly. Also measures (quantity and units) are represented by small (and
some not so small containing perhaps 15 symbols) ground terms as well. This
ontology has over 1.7 million objects and 7.5 million attributes, represented by
facts such as hasAttr ext(Oid,Rid,Cid), where each id is an object id term, re-
lation id term, or class id term. So there are many ground terms asserted in
this database, so interning ground subterms in these asserted facts may save
signification space.

When interning ground terms for all dynamic predicates, there is 26.6% de-
crease in space used traded for a 5.84% increase in load and initialization time.
Note that initialization includes more than just the asserting of the facts; so the
time overhead for just the interning of asserted facts would be a higher percent-
age. But this does give an idea of the trade-offs of using interning in a large and
complex application.
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Another perhaps nonintuitive example is the following simple program that
uses tabling and interning to provide asymptotic log access to entries in a sorted
list.

% find Ent in SortedList, which is Len long
find(Ent,Len,SortedList) :-

Len > 0,
split_sorted(Len,SortedList,LoList,HiList),
HiList = [Mid|_],
(Mid == Ent
-> true
; LoLen is Len // 2,

(Ent @< Mid
-> find(Ent,LoLen,LoList)
; HiLen is Len - LoLen, HiLen > 1,

find(Ent,HiLen,HiList)
) ).

:- table split_sorted/4 as intern.
% Split a sorted list in half (knowing its length)
split_sorted(Len,List,LoList,HiList) :-

Len1 is Len // 2, split_off(Len1,List,LoList,HiList).

split_off(Len,List,LoList,HiList) :-
(Len =< 0
-> LoList = [], HiList = List
; List = [X|List1], LoList = [X|LoList1], Len1 is Len - 1,

split_off(Len1,List1,LoList1,HiList) ).

% Query to build a long list of 500,000 elements,
% and look up 100 elements that are not there.
:- import intern_term/2 from machine.
?- mkevenlist(1000000,L0), cputime(T0),

(intern_term(L0,L), between(1,I,100), I2 is 100*I+1,
find(I2,500000,L), fail
;
true ),
cputime(T1), Time is T1-T0, writeln(cputime(Time)), fail.

This query builds a list of even numbers 500,000 elements long starting from
0 and in increasing order. It interns that ground list, and then uses find/3 to
use split sorted/4 to allow it to do a binary search on the list to look up each
of 100 odd numbers (of course finding none of them.) The basic work is done by
split sorted/4, which takes a sorted list and its length and produces two lists:
the first half of the list, and the second half, so the middle element of the list
is the first element in the second list, which split sorted/4 makes immediately
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accessible. Since split sorted/4 is tabled as intern, the lists that split sorted/4
generates are interned. So no explicit lists are stored in the trie, only pointers to
interned ground lists. This query takes 0.2650 seconds, uses 111,464,680 bytes of
space for the interned terms and 466,608 bytes of table space to store the calls to
and returns from find/4. Without the explicit call to intern term/2, this query
takes approximately the same space, but over 7 seconds of cputime, since it has
to intern the list of 500,000 elements for each of the 100 calls to find/3. I didn’t
try running this query without interning, for what are, I think, obvious reasons.

4 Related Work

Nguyen and Demoen [3] describe the general issue of sharing term representions
in the implementation of Prolog. They motivate the advantages of representa-
tion sharing and provide effective implementations. They do not consider its
potential impact with respect to tabling. They constrain their approach to avoid
any change in the standard representation of terms in their implementations,
while our approach does change the representation of terms to the extent of
interpreting tagged term references outside of the heap to be interned terms.
Our unification algorithm does change, minimally, to take advantage of the new
representation.

Zhou and Have [7] present an implementation of hash-consing in B-Prolog
with goals similar to those of this work: to eliminate an unnecessary extra linear
factor in both the time and space complexity of tabling when naive copying of
subgoals and answers into and out of tables is done. Their work is clearly prior
to this, but their algorithm is somewhat different, using hash tables instead of
tries to store tables and requiring and extra optimization of hash code memo-
ization to obtain the improved time complexity. It is intimately connected with
their implementation of tabling. Our algorithm can be effectively applied when
asserting terms. I was motivated to write this paper, since I believe that this
implementation is simpler, clearer, and more general and orthogonal to tabling,
and deserves consideration as an alternative implementation.

5 Discussion

The approach to representation sharing described in this paper is simple and
designed primarily to improve the complexity of tabling on certain kinds of
programs. The implementation in XSB is usable, but further effort is necessary
to make if fully robust. Foremost, it must be extended to support the expansion of
the size of hash tables used to access the interned records. This is straightforward
to do. Secondly, I would like to support garbage collection of the interned records.
XSB currently supports garbage collection of the atom space. It is not difficult
to add to this function the ability to garbage collect the interned space.

As described in Section 2.4, this implementaiton currently don’t allow the use
of interned tables when interning might compromise indexing. However, there
are cases, in particular when using answer subsumption [5], in which loss of
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indexing would be acceptable. I would like to revisit and further explore this
issue. One option that suggests itself, and might be good for other reasons, is
to allow interning of specific designated arguments, rather than interning all or
none.
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