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ABSTRACT
Map-Reduce is a programming model that has its roots in
early functional programming. In addition to producing
short and elegant code for problems involving lists or col-
lections, this model has proven very useful for large-scale
highly parallel data processing. In this work, we present the
design and implementation of a high-level parallel construct
that makes the Map-Reduce programming model available
for Prolog programmers. To the best of our knowledge, there
is no Map-Reduce framework native to Prolog, and so the
aim of this work is to offer data processing features from
which several applications can greatly benefit; the Induc-
tive Logic Programming field, for instance, can take advan-
tage of a Map-Reduce predicate when proving newly created
rules against sets of examples. Our Map-Reduce model was
comprehensively tested with different applications. Our ex-
periments, using the Yap Prolog system, show that: (i) the
model scales linearly up to 24 processors; (ii) a dynamic
distributed scheduling strategy performs better than cen-
tralized or static scheduling strategies; and (iii) the perfor-
mance varies significantly with the number of items being
sent to each processor at a time. Overall, our Map-Reduce
framework presents as a good alternative for both taking
advantage of the currently available low cost multi-core ar-
chitectures and developing scalable data processing applica-
tions, native to the Prolog programming language.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming

General Terms
Design, Languages, Performance
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1. INTRODUCTION
Logic programming (LP) languages, such as Prolog, have

been widely used to develop sophisticated, complex appli-
cations in diverse areas such as Natural Language Process-
ing, Machine Learning, Deductive Databases, Software En-
gineering, Program Analysis, among others. Despite the
power, flexibility and good performance that LP languages
has achieved, one major criticism is that they allow rapid
prototyping on small and medium sized problems, but do
not scale up to computationally demanding real-world ap-
plications, as they often address a variety of complicated
issues and manipulate large sets of data.

One possible way of overcoming this problem is to take ad-
vantage of the intrinsic parallelism available in LP applica-
tions. Many parallel LP systems implemented for shared and
distributed memory architectures exist in the literature [5],
but most of them are no longer available, maintained or
supported. The success of these systems was mainly driven
by the fact that parallelism was exploited implicitly. How-
ever, the lack of control over some of the main factors that
often limit performance in parallel systems restricted the
interest and applicability of these systems to real-world ap-
plications. Our past experience with Prolog applications
has shown that, very often, most of the execution time is
spent in performing computations that are inherently paral-
lel and independent, and only a small part of the execution
time is spent in sequential parts of code. These sequential
parts usually correspond to initialization code, code to par-
titioning the computational activities and/or data into small
sub-tasks, and code to aggregate/reduce data from different
sub-tasks.

One alternative to address these performance limitations
is to delegate the control of parallelism to the user. How-
ever, this solution is not elegant, since the user should be
allowed to focus on the declarative nature of LP. There are
high-level abstract and declarative constructs intrinsically
parallelizable which can be used by Prolog programmers and
at the same time hide details of parallelization. One such
construct is Map-Reduce. Map-Reduce is a programming
model dating back to early functional programming and it
is designed to transparently manipulate sets or collections of
data. One very popular implementation is Google’s MapRe-
duce [3], which focuses on processing large amounts of data
files in parallel.

The relevance of the Map-Reduce programming model
lies in the fact that the map and reduce operations are
suitable for expressing a number of classic processing al-
gorithms under a summation form. This form allows for



map_operation(key , value) -> (key , mapped_value) {

mapped_value = perform_map_operation(value);

}

reduce_operation(key , set_of(mapped_value)) -> (key , reduced_value) {

reduced_value = perform_reduce_operation(set_of(mapped_value));

}

aux_aggregator(set_of(key , mapped_value)) -> set_of(key , set_of(mapped_value)) {

for each key compute

set_of(mapped_value) = aggregate_by_key(key , set_of(key , mapped_value));

}

Figure 1: Pseudo-code for the map and reduce operations

a direct conversion to map and reduce operations, and it
has been shown that algorithms such as locally weighted
linear regression, expectation maximization and neural net-
works, amongst others, can be applied successfully to a Map-
Reduce framework [2]. The Map-Reduce model is, however,
by no means limited to these algorithms, as many possible
map and reduce operations can be defined. One needs only
to ensure that the operations have no side-effects on data
other than that being used in the operation. Furthermore,
it is necessary to guarantee that the operations on the data
are associative and commutative, so that they can be exe-
cuted in parallel.

In this work we are interested in a high-level parallel con-
struct that implements the Map-Reduce programming model
for Prolog. To the best of our knowledge, there is no Map-
Reduce framework native to Prolog. Map-Reduce is an in-
trinsically parallel model and our motivation lies in the need
for a tool to transparently distribute sub-computations in
Prolog. Rather than focusing on managing large amounts of
data files, we focus on executing the data processing tasks
in parallel. We believe this can contribute towards more
and simpler data processing support in Prolog, and find it
particularly relevant at an age when multi-core processors
are increasingly common and inexpensive. Experimental
results, using the Yap Prolog system [10], show that our
Map-Reduce model can effectively reduce the execution time
and scale well up to 24 processors, for a number of different
applications, proving itself as a good alternative for taking
advantage of the currently available low cost multi-core ar-
chitectures.

The remainder of the paper is organized as follows. First,
we introduce some background about the Map-Reduce pro-
gramming model and discuss related work. Then, we intro-
duce our high-level Map-Reduce parallel construct for Pro-
log and describe the most relevant implementation details.
Finally, we discuss experimental results and we end by out-
lining some conclusions.

2. BACKGROUND
The most popular implementation of distributed Map-

Reduce is Google’s MapReduce [3], developed in the early
2000’s and aimed at processing large amounts of data stored
in disk. As in the original functional model, it is composed
of two elementary operations: the map and the reduce. The
map operation applies a transformation to a set of key/value
pairs, resulting in another set of the same size consisting of

pairs with the same key but with a mapped value. The re-
duce operation groups all the mapped pairs with the same
key and aggregates their values, usually into one – or no
– result. Note that the original model of the map and re-
duce operations is not restricted to a set of key/value pairs.
The pseudo-code in Fig. 1 illustrates the map and reduce
operations. The aux aggregator() operation aggregates the
mapped data by key, in order to ensure that the reduce
operation is run with data of the same key only. It was
not explicitly mentioned earlier because it is independent of
both the data being processed and the map and reduce op-
erations, rendering it autonomous from the remaining pro-
gram. This operation is merely auxiliary when several differ-
ent data types are processed simultaneously, and it it is not
necessary if all the data in the program concern the same
call.

Figure 2 illustrates a very simple Map-Reduce example
using a set of squares, triangles and circles, either black or
white. The colour of the shapes represents their key and the
shape itself is the value. The mapping process first trans-
forms each shape into the first letter of its name, thus map-
ping a square to an S, a triangle to a T, and so on. The
mapped values are then aggregated by colour, correspond-
ing to the aux aggregator() operation. Finally, the reduce
function counts how many T’s there are for each group. In
the example, the final result is found to be two white T’s
and one black T.

3. RELATED WORK
Srinivasan et al. [13] introduce an approach combining

the Prolog inductive logic programming system Aleph [12]
and the Hadoop’s MapReduce framework [11]. Their aim
was to investigate whether Prolog Aleph’s engine could be
applicable to very large datasets, since the amount of data
available for processing has become so large that it could not
fit into one machine’s memory, and Hadoop’s MapReduce
was the selected framework for this task. The approach
used in this work consisted of two distinct engines, one for
running Aleph and the other for running the actual Map-
Reduce operations using the Hadoop framework.

Two different sets of map and reduce functions were de-
veloped for the combined system, with different aims. The
first set was meant to distribute the background knowledge
across the Map-Reduce cluster, so as to ensure that the sec-
ond set of functions – which actually perform the calculation
for the given examples – had all the necessary clauses to be



Figure 2: A Map-Reduce example

able to use a greedy algorithm [13]. The Map-Reduce and
Aleph engines communicate and the latter transforms ex-
amples not yet covered in Map-Reduce queries. When the
last reduce operation finishes, the minimum cost clause de-
termined is then returned back to the Aleph engine.

To evaluate the system, the authors have used both syn-
thetic and real-world datasets, with sizes ranging from tens
of thousands up to millions, and their results demonstrated
that the MapReduce Hadoop framework can be efficiently
applied in this context. Still, the size of the dataset must
be significant, greater than 500,000, in order to obtain some
speed-up. Also, the speed-ups are not nearly linear until
datasets of size 5 million, and for datasets smaller than
500,000 the data processing time actually increases when
compared with the sequential processing time due to the
cost of data communication and disk access in the cluster,
amongst other factors.

Orthogonally, in [14] Wielemaker presents and discusses a
case study also concerning ILP and the Aleph system, and
their parallelization. This case study consisted of performing
multi-threaded runs of a randomised local search algorithm
– used in the rule-inference process by the Aleph system –
and varying the number of threads. Even though the data
and task allocation process is not explicitly presented as a
Map-Reduce operation, it could easily be transformed into
one. The results of this experiment show that the approach
obtained under linear speed-ups, reaching a maximum ac-
celeration of approximately 7.5 for 16 threads.

4. MAP-REDUCE FOR PROLOG
In this section we present our high-level Map-Reduce par-

allel construct for Prolog and discuss the most relevant im-
plementation details.

4.1 Architecture
Most Map-Reduce frameworks described in the literature,

if not all, use a master-slave paradigm [3, 4, 6, 7, 8, 9],

with the purpose of reducing data processing times by taking
advantage of the available computational resources. Given
the sometimes huge size of the clusters in which Map-Reduce
frameworks are applied, they must be highly fault-tolerant
and robust. Amongst other precautions mentioned in the
literature, the master node is usually responsible for pinging
the slave nodes, as well as backing up the processed data and
re-scheduling work in case of slave failure.

Our model’s architecture is loosely based on the architec-
ture described in [3] in the sense that it supports clusters
of machines and a master-slave paradigm, but it innovates
by taking advantage of the parallelism within each machine.
We also do not focus on distributed data files. Figure 3
shows how our framework can apply to a generic distributed
architecture.

There are three hierarchical levels in this architecture:
the Global Master (GM), the Local Masters (LMs) and the
Slaves (SLs). The GM controls the flow of communica-
tions and first-level scheduling, dispatching data to the LMs.
There are as many LMs as machines in the cluster and each
LM is responsible for local data scheduling and dispatching
among the SLs running on that machine. The SLs execute
both map and reduce predicates on their data and return
the reduced value to the respective LM. Each LM then per-
forms a reduce operation on all its SLs’ reduced values, and
similarly the GM executes the last reduce operation of the
call. This architecture applies to distributed memory sys-
tems composed of multi-core machines.

For shared memory architectures (SMA), our Map-Reduce
for Prolog uses multi-threading while for distributed mem-
ory architectures (DMA), it uses MPI [1]. In the SMA imple-
mentation, the first thread – LM0 – starts as many threads
as the number of machine cores. Each thread runs a slave in-
terface, which waits for thread messages from LM0 and car-
ries out the work. In the DMA implementation, processes
are started for each machine core or for each distributed
computer node. The SLs can be thought of as resources
that LMs manage according to different scheduling meth-
ods; the SLs do not keep track of how many operations they
have executed, and they do not self terminate. Instead, LMs
are responsible for their creation, task assignment and ter-
mination.

The system requires a set-up time, in which each LM loads
any files that may have been requested by the user, so as to
have the necessary information to carry out queries. This
information is named background knowledge; in the case of
different LMs, each one can have its own background knowl-
edge. The set-up time is only spent once for each LM and
each background knowledge file requested, for the SMA im-
plementation. For the DMA implementation, files need to
be read by all LMs. Since the data files are only loaded on
LMs during the initialization of the program, this model al-
lows for no communication overheads during runtime. Note
that the user is responsible for having a copy of the pro-
gram source code in each machine, as well as the map and
reduce predicates and any other data required to complete
the queries.

The Map-Reduce predicates are user-defined but follow a
specific pre-defined signature. The map predicate has two
arguments, the first being an element from the list of values
to be mapped and the second the mapped result. The reduce
predicate also has two arguments, the first being a list of
Prolog terms to be reduced and the second the reduced result.



Figure 3: Framework architecture

Each Map-Reduce call receives as arguments the names of
predicates to be used to map and reduce data. As such, the
user can specify several different predicates and use them in-
discriminately in different Map-Reduce calls without having
to re-initialize the system. The Map-Reduce predicate also
requires a data array as input. This array can be created by
the user, or it can be loaded from a file automatically. Our
framework includes predicates capable of creating an array
of data from a given file. The positions in the array contain
the respective line of the file, in the form of a generic Prolog
term. We consider this to be a flexible approach, since the
user can use data from any other source he/she requires, as
long as he/she makes it available to the system under this
structure.

One of the main goals of this implementation is to provide
a flexible system, which supports both heavy computations
across several machines and lighter iterative runs of Map-
Reduce possibly executing on one machine alone. We have
designed a transparent architecture divided in three func-
tional modules as follows:

Initializer Creates a communication grid encompassing the
LMs and the SLs, and loads the data for each LM.

Map-Reduce This module is composed of the master and
the slave files. Only one of these files is used at any
given time, according to the entity’s hierarchical level.
The slave version executes the map and reduce predi-
cates, while the master version performs reduce oper-
ations and implements communication protocols.

Terminator Terminates the communication grid created
by the Initializer and frees the allocated memory.

Additionally, user-defined files are required in order to
specify the several map and reduce predicates to be used.

The fact that this information is specified as Prolog predi-
cates allows the user to easily reconfigure them – including
system architecture and map and reduce predicates; it is also
possible to run distinct Map-Reduce calls simultaneously.

4.2 Scheduling Methods
Most parallel and distributed Map-Reduce systems are

not very concerned with the efficiency of the scheduling
strategies, rather with their redundancy and fault-tolerance
strategies. Conversely, and since Map-Reduce for Prolog is
an implementation for more modest computing capabilities,
we concern ourselves with the speed-up that this construct
achieves, when compared to executing the Map-Reduce call
sequentially. It is then crucial to have a scheduling method
which allows for good performance in parallel, and bear-
ing this in mind we developed four scheduling methods: (i)
single-step scheduling ; (ii) static scheduling ; (iii) dynamic
scheduling and (iv) workpool scheduling.

Figure 4 depicts the interaction between LMs and SLs
for each type of scheduling. This interaction can obviously
extrapolate to GMs and LMs, respectively. All figures depict
three stages of the scheduling algorithm, temporally from
left to right, and the explanatory text is presented below.

Single-step scheduling is used as a base case. It takes
the total number of items and distributes them evenly
across slaves in just one step. One block of items goes
to one slave, another to the second slave and so on, en-
suring every SL is assigned the same number of queries,
approximately. In stage two of Fig. 4(a), the method
of dividing data is depicted, and in stage three the
division is completed.

Static scheduling consists of dividing the M data items in
chunks of N elements and distribute them in a round-
robin fashion by all the slaves. It differs from single-



(a) Single-step scheduling

(b) Static scheduling

(c) Dynamic scheduling

(d) Workpool scheduling

Figure 4: Scheduling methods



init_communicator(-Comm).

init_communicator(-Comm ,+ NoCores).

end_communicator (+Comm).

data_from_file (+Filename ,-DataArray).

map_reduce (+Comm ,+MapPred ,+ReducePred ,+DataArray ,-Result).

map_reduce (+Comm ,+MapPred ,+ReducePred ,+DataArray ,-Result ,+ Scheduling).

map_reduce (+Comm ,+MapPred ,+ReducePred ,+DataArray ,-Result ,+Scheduling ,+ NoElements).

map(+Value ,-MappedValue).

reduce (+ ListOfValues ,-ReducedValue).

Figure 5: High-level Prolog predicates for Map-Reduce

step scheduling because the queries are distributed in
several small chunks, in turns. Figure 4(b) shows that
it first attributes a chunk to each slave and from then
all the data is distributed alternately by the slaves.

Dynamic scheduling is more adaptive than the previous
methods, but also more demanding on the LM in terms
of computation time. At first, it also attributes a
chunk of data to each slave, in order, but then the
LM waits for a reply from one of the SLs, informing
that it is free. This algorithm behaves differently from
static scheduling because, as shown on stage three of
Fig. 4(c), the LM waits for a reply from one of the
SLs. The LM then attributes further work to the free
SL and waits again. Ultimately, and if the data granu-
larity is low, the dynamic scheduling converges towards
static scheduling, since all SLs take the same time to
complete the same number of queries.

Workpool scheduling is similar to the dynamic one, but
implements a pool of work that is consumed on de-
mand of idle slaves. As depicted in Fig. 4(d), the SLs
have access to a pool of work that is filled by the LM
with chunks of data to be processed. The SLs remove
one chunk of work when they are finished with their
current one, until the pool is empty. The LM is not
responsible for distributing the work between SLs, and
this can be computationally less taxing on the LM en-
tity. However, the access to the workpool is heavily
competed for, and more so with a growing number of
SLs.

4.3 User Interface
The Map-Reduce for Prolog user interface is composed of

six predicates, as illustrated in Fig. 5.
To initialize the system, both init_communicator/1 and

init_communicator/2 predicates can be used: if no NoCores

argument is provided, the Map-Reduce for Prolog deter-
mines the number of cores in the machine and starts the
corresponding number of slaves. The predicate then re-
turns the slave’s information in the Comm argument. The
end_communicator/1 predicate should be used to terminate
the communication grid and free memory.

The data_from_file/2 predicate can be used to consult
a file and load its lines, as Prolog terms, into an array. The
use of this predicate is optional, since the user may build
an array from other sources and pass it as argument to the

map reduce() call. This predicate supports three levels of
customization. The most basic form – map_reduce/5 – uses
the standard scheduling options. The map_reduce/6 and
map_reduce/7 allow the user to select a scheduling method
and the number of elements per chunk for that method, if
applicable. These predicates can be called iteratively and
with different map and reduce operations, and they return
only the final result.

Finally, the map/2 and reduce/2 are not part of the in-
terface per se, but they are included in the description for
completeness and also because even though they are user-
defined, their signature must match the one in Fig. 5. These
predicates define the specific map and reduce operations and
their names are passed as arguments to the map_reduce/5

predicate. This allows for great flexibility, since the user can
define several predicates prior to execution, as well as specify
different behaviours according to the machine the predicates
are running in, for instance.

Due to the MPI communication protocol usage, the inter-
face differs between shared memory and distributed memory
architectures. The predicates for the distributed memory
version do not contain the Comm argument, since the program
is run as an MPI executable, meaning that the communica-
tion grid must be configured in the MPI protocol, outside
the Map-Reduce for Prolog interface. For distributed mem-
ory systems, it is assumed that the grid has been configured
and is running, and that a copy of the relevant files has been
placed in every machine in the cluster. It is also not possi-
ble to change the scheduling method to workpool, since the
SLs behaviour is radically different from the one exhibited
in the other three scheduling methods. Other than that, the
interface is very similar in both cases, and the configuration
options are common to both cases. Note that the user can
abstract from the details of the parallel implementation and
machine architecture as we provide interfaces with different
levels of transparency.

An usage example is presented in Fig. 6. The map1/2

predicate verifies whether a given query is true and the
reduce/2 predicate sums all the numbers in a list, which
calculates how many queries are true for map1/2. The map2

/2 predicate is an example of a generic computation, and
the purpose of that Map-Reduce call is to determine the
number of odd numbers. This example is intended to be il-
lustrative of a map operation native to Prolog, but there are
many other possible applications for the simple but powerful
framework we provide, such as run map_reduce/5 calls in a



example(Result) :-

init_communicator(Comm ,8),

data_from_file(’queries.pl’,MyArray),

map_reduce(Comm ,map1 ,reduce ,MyArray ,Result1),

do_something(Result1 ,MyArray ,MyNewArray),

map_reduce(Comm ,map2 ,reduce ,MyNewArray ,Result),

end_communicator(Comm).

map1(Query ,1) :- call(Query), !.

map1(_,0).

map2(N,Val) :- Val is N mod 2.

reduce ([],0) :- !.

reduce ([H|T],Val) :- reduce(T,AuxVal), Val is H+AuxVal.

Figure 6: Map-Reduce example

loop, or define map and reduce operations so as to apply
the Näıve Bayes algorithm on a dataset, as described in [2],
amongst others.

5. EXPERIMENTAL SETTINGS
Our testing environment consisted of two shared memory

machines, used both independently and as a cluster. Their
technical specifications are the same: four six-core AMD
Opteron 8425 processors, 2.1 GHz (totalling 24 cores), with
64 GB RAM, 1.5 TB HD and running Red Hat Enterprise
Linux in 64-bit mode.

For distributed memory architectures, our implementa-
tion uses MPI to communicate between machines. Because
the Yap Prolog system currently does not support MPI and
threads simultaneously, it is necessary to adapt the Map-
Reduce construct in one of two ways: (i) use each machine
as uni-core, and have it run one slave only; or (ii) when
setting up the MPI grid, take into account the number of
cores in each machine and start a slave for each core before
runtime. In the experiments that follow, we used the lat-
ter approach. We are aware of the limitations this presents,
both in usability and performance of the system. In partic-
ular, both adaptations remove the possibility of having two
scheduling levels. Even though we have, obviously, no way
to compare two-level scheduling with single scheduling at
this time, we believe there could be a significant difference
performance-wise.

Four datasets of different characteristics were selected to
validate the Map-Reduce for Prolog implementation. Two
of them are composed of data native to Prolog, as well as
background knowledge files (data files specified by the user)
which must be consulted during execution. The other two
consist of integers, and simple operations are performed on
them. Table 1 summarises this information.

We next describe the map and reduce operations applied
to these datasets:

ODD the map operation verifies whether a number is odd
and the reduce operation counts how many odd num-
bers there are in the dataset. Code implementing these
operations can be found in Fig. 6.

PROB the map operation assigns a partition of the prob-
abilistic space to an occurrence and the reduce oper-

Table 1: Data type and background knowledge file
size

Dataset Data type Background knowledge

ODD Arithmetic –
PROB Probabilistic –
MAMMO Prolog facts 91.2 MB
BLOG Prolog facts 1.5 GB

ation counts the total number of occurrences in each
partition. This can be used to calculate conditional
probabilities so as to implement a step of a Bayesian
network, for instance.

MAMMO/BLOG the map and reduce operations applied
to these datasets are similar and the reduce operation
is also the one reported in Fig. 6. The map operation
verifies whether a term is true based on rules specified
in the background knowledge files (which differ accord-
ing to the dataset) and the reduce operation counts
how many terms were covered by that rule.

6. EXPERIMENTAL RESULTS
Tests were run for both the shared memory and the dis-

tributed memory implementations, across the two machines
in the cluster, using different numbers of queries (300,000,
600,000 or 1,200,000 queries were posed for each test). We
also performed experiments with the four different schedul-
ing strategies for a fixed number of queries (dataset size) and
fixed number of items sent to each slave (chunk size). Exper-
iments varying the dataset and chunk sizes were performed
for 1, 2, 4, 8, 16 and 24 slaves.

6.1 Loading Initial Data Files
Table 2 contains the set-up time spent loading the queries

files and the background knowledge, when applicable, for
each dataset and query number. This time is only spent
on the first run of the Map-Reduce for Prolog and it was
recorded in seconds. In shared memory, the time of thread
creating and termination is not taken into account, since it
is negligible. For distributed memory, the termination time



is also negligible. Note that the set-up time for distributed
memory is highly dependent on the number of running slaves
and on the machines’ hard drive: if the files being loaded are
shared between several processes, the set-up time could be
slightly increased.

Table 2: Set-up times (in seconds) for varying
dataset sizes

Dataset 300,000 600,000 1,200,000

ODD 2.35 4.20 7.79
PROB 24.03 47.51 95.49
MAMMO 30.18 34.00 41.76
BLOG 377.47 381.90 387.11

6.2 Sequential Execution Times
Tables 3 and 4 show the overall time (walltime), in mil-

liseconds, of a Map-Reduce call for each dataset. Note that
the corresponding times between SMA and DMA vary signif-
icantly. This can be justified by the fact that MPI runs pro-
cesses (and not threads), which are managed at kernel level,
and thus more efficiently. Also, Yap’s sequential version
run in MPI processes uses simpler data structures than the
multi-threaded version, making it significantly faster when
loading data.

Table 3: Sequential execution times (in millisec-
onds) for SMA and varying dataset sizes

Dataset 300,000 600,000 1,200,000

ODD 240 485 956
PROB 479 968 2,016
MAMMO 1,238 2,194 4,623
BLOG 824 1,872 3,783

Table 4: Sequential execution times (in millisec-
onds) for DMA and varying dataset sizes

Dataset 300,000 600,000 1,200,000

ODD 226 453 905
PROB 376 733 1,447
MAMMO 707 1,413 2,829
BLOG 573 1,148 2,294

6.3 Varying Scheduling Strategies
Figure 7 plots the seven scheduling methods made avail-

able by Map-Reduce for Prolog for each dataset. The results
presented here do not take into account the set-up times de-
scribed in Table 2. The aim of these plots is to demonstrate
the variation of the performance of the scheduling methods
according to the type of data and also with the implementa-
tion used. The data used to plot these graphs was obtained
by running five trials of each Map-Reduce call and calcu-
lating their average value. Finally, the data from dataset

BLOG is incomplete in the distributed memory instances
because memory constraints did not allow for running six-
teen instances of this application on the cluster. Each ma-
chine of the cluster is equipped with 64GB RAM and each
Yap instance requires about 7GB of RAM memory to load
the background knowledge of this particular application. As
such, it is possible to run 8 such processes on each machine,
but 12 would require at least 84 GB RAM.

These results show that Map-Reduce for Prolog achieves
nearly linear speed-ups, for both shared and distributed
memory, and for all the different datasets tested. The dis-
tributed memory implementation has proved to be consis-
tently faster than the shared memory one. This is to be ex-
pected since Yap is not yet finely tuned for thread support.
In fact, this could explain the somewhat under achieving re-
sults for the dataset BLOG in shared memory. The BLOG
dataset requires intensive use of the Yap atom table, whose
synchronization is centralized. Since this table is shared be-
tween all slaves in a process, it can cause a significant over-
head. In the future, it would be interesting to de-centralize
access to shared data structures in Yap and assess the effect
of that change in our approach’s SMA execution times.

The excellent results of the DMA implementation are also
partially due to the very low network traffic MapReduce
for Prolog generates. Since data is loaded as an array, the
work scheduled for a SL is described as an interval of that
array. As such, the information to an SL is composed of two
integers representing the array indices and the names of the
map and reduce predicates, and the information from an SL
is merely the reduce value of corresponding to that interval.
In our particular setup, the two machines used as a cluster
are physically linked to the same network bus, and so our
results for distributed memory may not be representative of
the most typical cluster architecture.

From Fig. 7, we can also observe that globally the most
efficient scheduling methods are the workpool (SMA-POOL)
and the dynamic scheduling (SMA-DYNAMIC or DMA-
DYNAMIC). If the data’s granularity was negligible, the
dynamic algorithm would tend to static scheduling, with
slightly worse performance due to the small wait caused by
the master only sending work when the slave is already free.
In the workpool strategy, the slaves are responsible for their
own work management, thus making it even more efficient
than the dynamic scheduling. However, and to ensure com-
patibility between both Map-Reduce for Prolog versions, we
will adopt the dynamic scheduling method as the default
strategy, since it displays the best behaviour for distributed
memory and a close second for shared memory.

6.4 Load Balancing
In order to assess load balancing in the different scheduling

methods, the CPU time of each slave was measured and
plotted in Fig. 8. This test was run for 1.2 million queries
and for sixteen slaves, with the exception of DMA-BLOG,
in which case it was only possible to use eight slaves due
to memory constraints. The y-axis of Fig. 8 denotes the
maximum deviation between slaves, as a percentage of the
average walltime of the respective run. As before, each Map-
Reduce call was run 5 times and all values presented are
calculated from the averages of those runs.

From Fig. 8 it becomes evident that static scheduling is
generally more efficient for datasets PROB and ODD and
dynamic scheduling for datasets MAMMO and PROB. This
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Figure 7: Comparison of scheduling methods (600,000 queries and 1,000 elements per chunk)
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Figure 8: Load balancing for different scheduling
methods (1,200,000 queries and 1,000 elements per
chunk)

is caused by the data granularity of the datasets native to
Prolog; queries can take variable times to succeed or fail,
which can contribute to load imbalance. The fact that the
SMA is consistently slower than DMA, and more so for
single-step scheduling, can be justified by the fact that the
communication between threads is slower than between MPI
nodes due to synchronization issues in the Yap Prolog sys-
tem; this would cause a significant detachment between the
reception of the first data in each slave. This effect becomes
more evident when the slaves are only processing a large
block of data, at once.

6.5 Varying Chunk Sizes
Figure 9 depicts the effect of varying the size of the chunks

in the two best performing scheduling methods. The time is
given in milliseconds and it is an average of five consecutive
and equal Map-Reduce runs.

For all four datasets used for testing, there appears to be
an optimum number of queries to minimize execution time.
In our methodology, when testing scheduling methods using
chunks, we have used queries of size 1,000 precisely to obtain
the fastest result possible when assessing other parameters.
1,000 elements per chunks is a somewhat empirical choice,
however, because even though the curves all demonstrate a
tendency towards a minimum around that point, it would
require testing every single value to ensure that 1000 is in
fact the best choice.

6.6 Varying Data Sizes
Figure 10 depicts the behaviour of dynamic scheduling, for

each dataset, with varying queries size and 1,000 elements
per chunk.

In general, these results show that DMA seems to be im-
mune to variations on the dataset size. On the other hand,
for SMA, these results show a generic tendency to obtain
better speed-ups as we increase the dataset size and the
number of slaves, which confirms the good scalability of our
Map-Reduce for Prolog framework.

We believe all these tests consider and evaluate the most
relevant features of Map-Reduce for Prolog. They demon-

strate that our construct can scale efficiently, and that it can
manage data with different granularity. We provide a flex-
ible user interface, which allows for adapting the schedul-
ing method to the data type, should the user wish to do
so. The results are good for both shared and distributed
memory implementations, making Map-Reduce for Prolog
a flexible and agile Map-Reduce implementation for modest
computing capabilities, whose focus is data native to Prolog.

7. CONCLUSIONS AND FURTHER WORK
A Map-Reduce parallel construct was designed and imple-

mented in the Yap Prolog system. This construct provides
an elegant way of implementing many applications in the
summation form in Prolog, with the advantage of being in-
trinsically parallelizable. Two parallel implementations of
the Map-Reduce are provided: a multithreaded and a mes-
sage passing. In contrast to the Google’s MapReduce imple-
mentation, whose focus is on distributed processing of data
stored in disk, our implementation focuses on parallelization
of the map and reduce operations where the data is already
in memory.

We tested our implementation with four applications and
evaluated how different scheduling strategies and chunk sizes
can affect performance and concluded that: (i) our Map-
Reduce construct can have linear speed-ups up to 24 pro-
cessors; (ii) a dynamic distributed scheduling strategy, in
general, performs better than centralized or static strate-
gies; (iii) the performance varies significantly with the num-
ber of items being sent to each processor at a time; and
(iv) our Map-Reduce model is a good alternative for tak-
ing advantage of the currently available low cost multi-core
architectures.

One of the limitations of performance is related to the data
synchronization used in the Yap implementation. Work is
in progress to decentralize the access to data structures in
order to further improve performance. We have also been
studying best ways of executing Map-Reduce in the hybrid
distributed shared-memory multi-core architectures.
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Figure 10: Effect of variation of queries size with dynamic scheduling (1,000 elements per chunk)


