
Design and Implementation of a Multithreaded
Virtual Machine for Executing Linear Logic Programs

Flavio Cruz
Carnegie Mellon University
Pittsburgh, PA 15213, USA
fmfernan@cs.cmu.edu

Ricardo Rocha
CRACS & INESC TEC

University of Porto
Rua Campo Alegre 1021/1055

4169-007 Porto, Portugal
ricroc@dcc.fc.up.pt

Seth Copen Goldstein
Carnegie Mellon University
Pittsburgh, PA 15213, USA

seth@cs.cmu.edu

Abstract
Linear Meld is a concurrent forward-chaining linear logic program-
ming language where logical facts can be asserted and retracted in
a structured way. In Linear Meld, a program is seen as a database
of logical facts and a set of derivation rules. The database of facts
is partitioned by the nodes of a graph structure which leads to
parallelism when nodes are executed simultaneously. Due to the
foundations on linear logic, rules can retract facts in a declarative
and structured fashion, leading to more expressive programs. We
present the design and implementation of the virtual machine that
we implemented to run Linear Meld on multicores, with particu-
lar focus on thread management, code organization, fact indexing,
rule execution, and database organization for efficient fact inser-
tion, lookup and deletion. Our results show that the virtual machine
is capable of scaling programs with up to 16 threads and also ex-
hibits interesting scalar performance results due to our indexing
optimizations.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming—Parallel Program-
ming; D.3.4 [PROCESSORS]: Interpreters; D.3.4 [PROCES-
SORS]: Run-time environments

General Terms Design, Languages, Performance

Keywords Linear Logic, Virtual Machine, Implementation

1. Introduction
The last decade has seen a tremendous growth in content avail-
able in the World Wide Web, and, more specifically, in information
generated from online social networks. The structure of such con-
tent is usually a graph, a very flexible structure suited to represent
content where pairs of items are linked. In order to process such
information, there has been an increased interest in running graph-
based algorithms concurrently and efficiently on top of distributed
networks and computer architectures (multicores). Currently avail-
able libraries and frameworks are built on top of imperative pro-
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gramming languages, which require the programmer to know how
to properly use the framework and the language. Reasoning about
such programs requires knowing the intricacies of the framework,
how computation is scheduled and how processing units coordinate
between each other.

Some well known frameworks include Dryad, Pregel and
GraphLab. The Dryad system [19] combines computational ver-
tices with communication channels (edges) to form a data-flow
graph. The program is scheduled to run on multiple processors or
cores and data is partitioned during runtime. Routines that run on
computational vertices are sequential, with no synchronization. The
Pregel system [28] is also graph based, although programs have a
more strict structure. They must be represented as a sequence of it-
erations where each iteration is composed of computation and mes-
sage passing. Pregel is specially suited to work on big graphs and
to scale to large architectures. GraphLab [27] is a C++ framework
for developing parallel machine learning algorithms. While Pregel
uses message passing, GraphLab allows nodes to have read/write
access to different scopes through different concurrent access mod-
els in order to balance performance and data consistency. While
some programs only need to access the local node’s data, others
may need to update edge information. Each consistency model will
provide different guarantees that are better adapted to some algo-
rithms. GraphLab also provides different schedulers that dictate the
order in which node’s are computed.

Logic programming is an attractive approach to the graph-
based algorithms, since logic-based languages provide a high-level,
declarative approach to programming. An important characteristic
of logic programming is that it offers great potential for implicit
parallelism, thus making logic programs much easier to parallelize
than imperative programs. First, logic programs are easier to reason
about since they are based on logical foundations. Second, logic
programmers do not need to use low level programming constructs
such as locks or semaphores to coordinate parallel execution, be-
cause logic systems hide such details from the programmer.

Logic programming split into two main groups: backwards-
chaining and forward-chaining languages. In a backwards-chaining
programming language, programs are composed of a set of rules
that can be activated by inputting a query. Given a query q(x̂), an
interpreter will work backwards by matching q(x̂) against the head
of a rule. If found, the interpreter will then try to match the body
of the rule, recursively, until it finds the program axioms (rules
without body). If the search procedure succeeds, the interpreter
finds a valid substitution for the x̂ variables. A popular backwards-
chaining programming language is Prolog [7], which has been a
productive research language for executing logic programs in par-
allel. Researchers took advantage of Prolog’s non-determinism to



evaluate subgoals in parallel with models such as And-parallelism
and Or-parallelism [14].

In a forward-chaining logic programming language, programs
start with a database of facts (filled with the program’s axioms)
and a set of logical rules. The database of facts is then used to
fire the program’s rules and derive new facts that are then added to
the database. This process is repeated recursively until the database
reaches quiescence and no more information can be derived from
the program. A popular forward-chaining programming language
is Datalog [31].

We have designed Linear Meld (LM), a forward-chaining logic
programming language that is specially suited for concurrent pro-
gramming over graph structures [9]. LM differs from Datalog-
like languages because it integrates both classical logic and linear
logic [11] into the language, allowing some facts to be retracted and
asserted in a logical fashion. Although most Datalog and Prolog-
like programming languages allow some kind of state manipula-
tion [24], those features are extra-logical, reducing the advantages
brought forward by logic programming.

The roots of LM are the P2 system [25] and the original Meld
language [3, 4]. P2 is a Datalog-like language that maps a com-
puter network to a graph, where each computer node can perform
computations locally and communicate with neighbors. Meld is in-
spired by the P2 system but adapted to the concept of massively
distributed systems made of modular robots with a dynamic topol-
ogy. LM still follows the same graph model of computation of
Meld, which makes LM programs naturally concurrent since the
graph of nodes can be easily partitioned to be executed by differ-
ent threads. As a forward-chaining linear logic programming lan-
guage, LM also shares similarities with Constraint Handling Rules
(CHR) [6, 22]. CHR is a concurrent committed-choice constraint
language used to write constraint solvers. A CHR program is a set
of rules and a set of constraints (which can be seen as facts). Con-
straints can be consumed or generated during the application of
rules. Some optimizations used in LM such as join optimizations
and the use of different data structures for indexing facts were in-
spired by research done in CHR [18].

In this paper, we present the design and implementation of the
LM virtual machine and compiler. The LM virtual machine was de-
signed from scratch to run LM programs on multicore machines in
an efficient manner1. The virtual machine is multithreaded and ex-
ecutes byte-code that is generated by the LM compiler. To test our
language and virtual machine we have implemented several graph
algorithms, search algorithms and machine learning algorithms, in-
cluding: belief propagation [13], belief propagation with residual
splash [13], PageRank, graph coloring, N-Queens, shortest path,
diameter estimation, map reduce, quick-sort, neural network train-
ing, minimax, etc.

Our results show that our virtual machine is scalable and
presents some interesting execution times when compared with
other competing systems. The virtual machine uses a simple, but
effective, work stealing algorithm that is able to balance the load
across threads, improving scalability. Another important feature of
our virtual machine is the dynamic indexing algorithm. It is a run-
time algorithm that decides how to index logical facts and which
data structure is best to use, so that database lookup and insertion
time during rule application is effectively reduced.

This remainder of the paper is organized as follows. First, we
briefly introduce the LM language. Then, we present an overview
of the virtual machine and describe in more detail the code organi-
zation, thread management, rule execution and database organiza-
tion. Finally, we present our experiments and outline some conclu-
sions.

1 Source code available at http://github.com/flavioc/meld

2. The LM Language
Linear Meld (LM) is a logic programming language that offers a
declarative and structured way to manage mutable state. A program
consists of a database of facts and a set of derivation rules. The
database includes persistent and linear facts. Persistent facts cannot
be deleted, while linear facts can be asserted and retracted.

The dynamic (or operational) semantics of LM is identical to
Datalog. Initially, we populate the database with the program’s
axioms (initial facts) and then determine which derivation rules can
be applied by using the current database. Once a rule is applied,
new facts can be derive, which are then added to the database. If
a rule uses linear facts, they are retracted from the database. The
program stops when quiescence is achieved, i.e., when rules no
longer apply.

Each fact is a predicate on a tuple of values, where the type of
the predicate prescribes the types of the arguments. LM rules are
type-checked using the predicate declarations in the header of the
program. LM has a simple type system that includes types such as
node, int, float, string, bool. Recursive types such as list X and pair
X; Y are also allowed. Each rule in LM has a defined priority that is
inferred from its position in the source file. Rules at the beginning
of the file have higher priority. We consider all the new facts that
have been not used yet to create a set of candidate rules. The set
of candidate rules is then applied (by priority) and updated as new
facts are derived.

2.1 Example

type left(node, node). 1

type right(node, node). 2

type linear value(node, int, string). 3

type linear replace(node, int, string). 4

5

// set of rules 6

replace(A, K, New), 7

value(A, K, Old) 8

-o value(A, K, New). // we found our key 9

10

replace(A, RKey, RValue), 11

value(A, Key, Value), 12

!left(A, B), 13

RKey < Key 14

-o value(A, Key, Value), 15

replace(B, RKey, RValue). // go left 16

17

replace(A, RKey, RValue), 18

value(A, Key, Value), 19

!right(A, B), 20

RKey > Key 21

-o value(A, Key, Value), 22

replace(B, RKey, RValue). // go right 23

24

// initial configuration 25

!left(@0, @1). !right(@0, @2). 26

!left(@1, @3). !right(@1, @4). 27

!left(@2, @5). !right(@2, @6). 28

29

value(@0, 3, a). value(@1, 1, b). 30

value(@2, 5, c). value(@3, 0, d). 31

value(@4, 2, e). value(@5, 4, f). 32

value(@6, 6, g). 33

34

// update key 6 to value x 35

replace(@0, 6, x). 36

Figure 1. LM program for replacing a key’s value in a binary tree
dictionary



We now present in Fig. 1, a LM program that implements
the update operation for a binary tree dictionary represented as
key/value pairs. We first declare the predicates (lines 1-4) which
represent the facts we are going to use. Predicate left/2 and
right/2 are persistent while predicates value/3 and replace/3
are linear. Predicate value/3 assigns a key/value pair to a tree
node and predicate replace/3 represents an update operation that
updates the key in the second argument to the value in the third
argument.

The algorithm uses three rules for the three cases of updating a
key’s value: the first rule performs the update (lines 6-9); the second
rule recursively picks the left branch for the update operation (lines
11-16); and the third rule picks the right branch (lines 18-23). The
initial axioms are presented in lines 26-33 and they describe the
initial binary tree configuration, including keys and values. Finally,
with the replace(@0, 6, x) axiom instantiated at the root node
@0 (line 36), we intend to change the value of key 6 to value x. Note
that when writing rules or axioms, persistent facts are preceded
with a ‘!’.

Figure 2 illustrates the trace of the execution. Note that the
program database is partitioned by the tree nodes using the first
argument of each fact. In Fig. 2(a), we present the database filled
with the program’s axioms. Next, we follow the right branch using
rule 3 since 6 > 3 (Fig. 2(b)). We then use the same rule again in
Fig. 2(c) where we finally reach the key 6. Here, we apply rule 1 and
value(@6, 6, g) is updated to value(@6, 6, x) (Fig. 2(d)).

2.2 Syntax
Table 1 shows the abstract syntax for rules in LM. An LM pro-
gram Prog consists of a set of derivation rules Σ and a database
D. Each derivation rule R can be written as BE ( HE where
BE is the body of a rule and HE is the head. Rules without bod-
ies are allowed in LM and they are called axioms. Rules without
heads are also allowed. The body of a rule, BE, may contain linear
(L) and persistent (P ) fact expressions and constraints (C). Fact
expressions are template facts that instantiate variables (from facts
in the database). Variables can be used again in the body for match-
ing and also in the head when instantiating facts. Constraints are
boolean expressions that must be true in order for the rule to be
fired. Constraints use variables from fact expressions and are built
using a small functional language that includes mathematical op-
erations, boolean operations, external functions and literal values.
The head of a rule, HE, contains linear (L) and persistent (P ) fact
templates which are uninstantiated facts to derive new facts. Head
expressions may use the variables instantiated in the body. The head
can also have comprehensions (CE) and aggregates (AE).

Program Prog ::= Σ, D
Set of Rules Σ ::= · | Σ, R
Database D ::= Γ; ∆
Rule R ::= BE ( HE | ∀x.R
Body Expression BE ::= L | P | C | BE,BE | ∃x.BE | 1
Head Expression HE ::= L | P | HE,HE | CE | AE | 1
Linear Fact L ::= l(x̂)
Persistent Fact P ::= !p(x̂)
Constraint C ::= c(x̂)
Comprehension CE ::= { x̂; BE; SH }
Aggregate AE ::= [ A ⇒ y; x̂; BE; SH1; SH2 ]
Operations A ::= min | max | sum | count
Sub-Head SH ::= L | P | SH, SH | 1
Linear Facts ∆ ::= · | ∆, l(t̂)
Persistent Facts Γ ::= · | Γ, !p(t̂)
Terms t ::= node(n) | int(n) | float(f) |

string(s) | bool(b) | l | pair(t, t)
Lists l ::= nil | [t | l]

Table 1. Abstract syntax of LM

We created the concept of comprehensions to be used when the
consumption of a linear fact should generate a set of facts accord-

ingly to the current contents of the database. In a comprehension
{ x̂; BE; SH }, x̂ is a list of variables, BE is the body of the
comprehension and SH is the head. The body BE is used to gen-
erate all possible combinations for the head SH , according to the
facts in the database. The following program shows a simple exam-
ple that uses comprehensions:

!edge(@1, @2).
!edge(@1, @3).
iterate(@1).

iterate(A)
-o {B | !edge(A, B) | perform(B)}.

When the rule is fired, we consume iterate(@1) and then gen-
erate the comprehension. Here, we iterate through all the edge/2
facts that match !edge(@1, B), which are !edge(@1, @2) and
!edge(@1, @3). For each fact, we then derive perform(B),
namely perform(@2) and perform(@3) in this example.

Another useful feature is the ability to reduce several facts into
a single fact. For that, we have aggregates, a special kind of sub-
rule that works very similarly to comprehensions. In a aggregate
[ A ⇒ y; x̂; BE; SH1; SH2 ], A is the aggregate operation, x̂
is the list of variables introduced in BE, SH1 and SH2 and y is the
variable in the body BE that represents the values to be aggregated
using A. Like comprehensions, we use x̂ to try all the combinations
of BE, but, in addition to deriving SH1 for each combination, we
aggregate the values represented by y and derive SH2 only once
using y. As an example, consider the following program:

price(@1, 3).
price(@1, 4).
price(@1, 5).
count-prices(@1).

count-prices(A)
-o [sum => P | . | price(A, P) | 1 | total(A, P)].

By applying the rule, we consume count-prices(@1) and
derive the aggregate which consumes all the price(@1, P) lin-
ear facts. These are summed up and total(@1, 12) is derived.
LM provides several aggregate operations, including the minimum,
maximum, sum and count. Note that the . syntax indicates an empty
list of variables and 1 is borrowed from linear logic and represents
an empty derivation.

Comprehensions and aggregates are logically justified by the
underlying proof system of the language. Our proof system is
extended with greatest fixed points [5], which allows us to describe
recursive definitions such as comprehensions or aggregates. A more
detailed description is found in [9].

2.3 Concurrency
LM is at its core a concurrent programming language. The database
of facts can be seen as a graph data structure where each node
contains a fraction of the database. To accomplish this, we force
the first argument of each predicate to be typed as a node. We then
restrict the derivation rules to only manipulate facts belonging to
a single node. However, the expressions in the head may refer to
other nodes, as long as those nodes are instantiated in the body of
the rule.

Due to the restrictions on LM rules, nodes are able to run rules
independently without using other node’s facts. Node computation
follows a don’t care or committed choice non-determinism since
any node can be picked to run as long as it contains enough facts to
fire a derivation rule. Facts coming from other nodes will arrive in
order of derivation but may be considered partially and there is no
particular order among the neighborhood. To improve concurrency,
the programmer is encouraged to write rules that take advantage of



!left(@0, @1)
!right(@0, @2)
value(@0, 3, a)

replace(@0, 6, x)

!left(@1, @3)
!right(@1, @4)
value(@1, 1, b)

value(@3, 0, d) value(@4, 2, e)

!left(@2, @5)
!right(@2, @6)
value(@2, 5, c)

value(@5, 4, f) value(@6, 6, g)

(a) Initial database

!left(@0, @1)
!right(@0, @2)
value(@0, 3, a)

!left(@1, @3)
!right(@1, @4)
value(@1, 1, b)

value(@3, 0, d) value(@4, 2, e)

!left(@2, @5)
!right(@2, @6)
value(@2, 5, c)

replace(@2, 6, x)

value(@5, 4, f) value(@6, 6, g)

(b) After applying rule 3 at node @0

!left(@0, @1)
!right(@0, @2)
value(@0, 3, a)

!left(@1, @3)
!right(@1, @4)
value(@1, 1, b)

value(@3, 0, d) value(@4, 2, e)

!left(@2, @5)
!right(@2, @6)
value(@2, 5, c)

value(@5, 4, f) value(@6, 6, g)
replace(@6, 6, x)

(c) After applying rule 3 at node @2

!left(@0, @1)
!right(@0, @2)
value(@0, 3, a)

!left(@1, @3)
!right(@1, @4)
value(@1, 1, b)

value(@3, 0, d) value(@4, 2, e)

!left(@2, @5)
!right(@2, @6)
value(@2, 5, c)

value(@5, 4, f) value(@6, 6, x)

(d) After applying rule 1 at node @6

Figure 2. An execution trace for the binary tree dictionary program

the non-deterministic nature of execution since too much determin-
ism will naturally imply less scalability and more synchronization
when executing the programs.

3. The Virtual Machine
We have developed a compiler that compiles LM programs to
byte-code and a multithreaded virtual machine (VM) using POSIX
threads that runs the byte-code.

3.1 Threads
A key goal of our design is to keep the threads as busy as possible
and to reduce inter-thread communication. When the VM starts, it
reads the byte-code file and starts all threads. Initially, the VM will
partition the application graph of N nodes into T subgraphs (the
number of threads) and then each thread will work on their own
subgraph. Reduction of communication between nodes in different
threads is achieved by first ordering the node addresses present in
the code in such a way that connected nodes are clustered together
and then partitioning them to threads. During compilation, we take
note of predicates that are used for communication (arguments with
type node) and then build a graph of nodes from them. The nodes of
the graph are then ordered by using a breadth-first search algorithm
that changes the nodes of addresses to the domain [0, n[, where n is
the number of nodes. Once the VM starts, we simply partition the
range [0, n[ into T subgraphs.

Figure 3 presents the layout of our virtual machine for a pro-
gram with six nodes and two running threads. Each thread space
includes the nodes owned by the thread (the dotted arrows repre-
sent the edges between nodes) and a Work Queue, a single linked
list containing active nodes, i.e., nodes that have new facts to pro-

cess. Initially, the Work Queue is filled with all the nodes of the
thread in order to derive the axioms.

During execution, threads can steal nodes of other threads to
keep themselves busy. The load balancing aspect of the system is
performed by our work scheduler that is based on a simple work
stealing algorithm. The pseudo-code for the main thread loop is
shown in Fig. 4. In each round, a thread inspects its Work Queue for
active nodes with new candidate rules and, if there is any, procedure
process node() is called on the target node. Otherwise, if the
Work Queue is empty, the thread attempts to steal one node from
another thread. Starting from a random thread, it cycles through
all the threads to find one active node. Eventually, there will be no
more work to do and the threads will go idle. There is a global
atomic counter, a global boolean flag and one boolean flag for each
thread that are used to detect termination. Once a thread goes idle,
it decrements the global counter and changes its flag to idle. If
the counter reaches zero, the global flag is set to idle. Since every
thread will be busy-waiting and checking the global flag, they will
detect the change and stop executing.

3.2 Nodes
Figure 3 also illustrates the internal structure layout of a node,
which includes: the database of linear facts (Linear DB); the
database of persistent facts (Persistent DB); the rule matching struc-
tures (Rule Engine); and an auxiliary buffer for storing intermediate
facts coming from other threads (Fact Buffer).

Whenever a new fact is derived through rule derivation, we need
to update the data structures for the corresponding node. This is
trivial if the thread that derived the fact also owns the node. If that
is not the case, then we have to synchronize since multiple threads
might be updating the same node’s data structures. We added a
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Figure 3. Layout of the virtual machine

void thread_work_loop(thread_id tid)
while (true)

node = pop_node_from_work_queue(tid)
if (node)

process_node(tid, node)
else

// need to steal a node
target = random(NUM_THREADS)
for (i = 0; i < NUM_THREADS && !node; i++)

target = (target + 1)
node = steal_node_from_thread(target)
if (node) break

if (!node)
// try to terminate
become_idle(tid)
if (synchronize_termination(tid))

return
become_active(tid)

Figure 4. Thread work loop

lock and a boolean flag to each node to protect the access to its
data structures. When the flag is activated, it means that the node
is currently being executed by the owning thread. For example, in
Fig. 3, if thread 2 derives a fact to node @1 (owned by thread 1), then
thread 2 checks the node’s flag and if not activated, will lock node
@1 and perform the required updates (New fact (1)). If the flag is
activated, it will not touch the main node data structures, but instead
will add the new fact to Fact Buffer (New fact (2)). The facts stored
in Fact Buffer will then be processed whenever the corresponding
node’s flag becomes active.

There is another thread interaction that might happen during fact
derivation if the node receiving a new fact is not active. In such
case, the sending thread needs to activate the node by pushing it to
the Work Queue of the target thread. For example, consider again
the situation in which thread 2 sends a new fact to node @1. If node
@1 is not active, then thread 2 also needs to activate it by pushing it
to the Work Queue of thread 1. After this synchronization point, if
the target thread is currently idle, it will become active and with a
new node to process.

3.3 Database Data Structures
We said before that LM rules are constrained by the first argument
and that each node has its own database of linear and persistent
facts. Moreover, since only one thread at a time will be using
a node’s database, we do not need to deal with synchronization
issues. Note also that the first argument of each fact is not stored.

The database must be implemented efficiently because during
matching of rules we need to restrict the facts using a given match
object, which fixes arguments of the target predicate to instantiated
values. Each node’s database is implemented using three kinds of
data structures:

• Trie Data Structures are used exclusively to store persistent
facts. Tries are trees where facts are indexed by common prefix
arguments.

• Doubly Linked List Data Structures are used to store linear
facts. We use a double linked list because it is a very efficient
way to add and remove facts.

• Hash Table Data Structures are used to improve lookup when
linked lists are too long and when we need to do search filtered



by a fixed argument. The virtual machine decides which argu-
ments are best to be indexed (see Section 3.6) and then uses
a hash table indexed by the appropriate argument. If we need
to go through all the facts, we just iterate through all the facts
in the table. For collisions, we use the above doubly linked list
data structure.

Figure 5 shows an example for a hash table data structure for a
a(int,int) predicate with 3 linear facts indexed by the second
argument and stored as a doubly linked list in bucket 2. Each
linear fact contains the regular list pointers, a flags field and the
fact arguments. Those are all stored continuously to improve data
locality. One use of the flags field is to mark that a fact is already
being used. For example, consider the rule:

a(A,B), a(C,D) -o ...

When we first pick a fact for a(A, B) from the hash table, we
mark it as being used in order to ensure that, when we retrieve facts
for a(C, D), the first one cannot be used twice since that would
violate linearity.

prev
next

1
2

flags

prev
next

2
12

flags

prev
next

2
42

flags

0

1

3

2

Hash Table

...

9

Figure 5. Hash table and doubly linked data structures for a
a(int,int) predicate

3.4 Rule Engine
The rule engine decides which rules may need to be executed while
taking into account rule priorities. Figure 6 shows the rule engine
data structures in more detail. There are 4 main data structures for
scheduling rule execution: Rule Queue is the bitmap representing
the rules scheduled to run; Active Bitmap contains the rules that
have enough facts to be fired; Dropped Bitmap contains the rules
that must be dropped from Rule Queue and Active Bitmap if
the rule being executed succeeds; and Predicates Count counts
the number of facts per predicate. To understand how our engine
works, consider the following set of facts and rules:

a.
e(0).

a, e(1) -o b. // rule 1
a -o c. // rule 2
b -o d. // rule 3
e(0) -o f. // rule 4
c -o e(1). // rule 5

Since we have facts for predicates a/0 and e/1, the Active
Bitmap starts with rules 1, 2 and 4 marked as having enough facts
to be fired. The Rule Queue bitmap also starts with the same
three rules. In order to pick rules for execution, we take the rule
corresponding to the least significant bit from the Rule Queue
bitmap, initially the first rule a, e(1) -o b. However, since we
don’t have fact e(1), this rule fails and we execute the second rule
a -o c. Figure 6(a) shows the rule engine data structures at that
point.

Because the derivation for the second rule succeeds, we will
consume fact a and derive fact c. We thus update Predicates
Count accordingly, mark the first and second rules in Dropped
Bitmap since such rules are no longer applicable (a was consumed)
and mark the fifth rule in Active Bitmap since c was derived.
Finally, to update the Rule Queue, we remove the bits marked
in Dropped Bitmap and add the active rules marked in Active
Bitmap that use the newly derived predicates, rule 5 in this case.
In the continuation, the engine will schedule the fourth and fifth
rules to run. Figure 6(b) shows the rule engine data structures at
that point.

Note that every node in the program has the same set of data
structures presented in Fig. 6. We use 32 bits integers to implement
the 3 bitmaps and an array of 16 bits integers to count facts.

We do a small optimization to reduce the number of derivations
of persistent facts and, for that, we divide the program rules into
two sets: persistent rules and non persistent rules. Persistent rules
are rules where only persistent facts are involved. We compile
such rules incrementally, i.e., we attempt to fire all rules where
a persistent fact is used. This is called the pipelined semi-naive
evaluation and it originated in the P2 system [25]. This evaluation
method avoids excessing re-derivations of the same fact. The order
of derivation does not matter for those rules, since only persistent
facts are used.

3.5 Rule Execution
A byte-code file contains meta-data about the program’s predicates,
initial nodes, partitioning information, and code for each rule. Each
VM thread has 32 registers that are used during rule execution. Reg-
isters can store facts, integers, floats, node addresses and pointers to
runtime data structures (lists and structures). When registers store
facts, we can reference fields in the fact through the register.

Consider the example in Fig. 7 that shows the LM byte-code
for the rule !a(X,Y), b(X,Z), c(X,Y) -o d(Y). Consider also
a database with the facts !a(1,2), !a(2,3), b(1,3), b(5,3),
c(1,2), c(1,3), c(5,3). Rule execution for this rule and facts
proceeds in a series of recursive loops, as follows. The first loop
retrieves an iterator for the persistent facts of !a/2 and moves the
first valid fact, !a(1,2), to register 0. The inner loop retrieves
linear facts that match b(1,Z) (from the join constraint) and moves
b(1,3) to register 1. The final loop moves c(1,2) to register 2 and
the body of the rule is successfully matched. Next, we derive d(2),
where 2 comes from register 0.

PERSISTENT ITERATE a MATCHING TO reg 0
LINEAR ITERATE b MATCHING TO reg 1

(match).0=0.0 // match argument X
LINEAR ITERATE c MATCHING TO reg 2

(match).0=0.0 // match argument X
(match).1=0.1 // match argument Y
ALLOC d TO reg 3
MVFIELDFIELD 0.1 TO 3.0 // get argument Y
ADDLINEAR reg 3 // derive d(Y)
REMOVE reg 2
REMOVE reg 1
TRY NEXT

NEXT
NEXT

RETURN

Figure 7. LM byte-code for rule !a(X,Y), b(X,Z), c(X,Y)
-o d(Y)

In case of failure, we jump to the previous loop in order to try
the next candidate fact. In case of rule success, the head is derived
and we should backtrack to the inner most valid loop, i.e., the older
loop that uses linear facts or, if there are no linear facts involved, to



0 0 0 0 1 0 1 0 Rule Queue

Active Bitmap0 0 0 0 1 0 1 1

Dropped Bitmap0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 Predicates Count
abcdef

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0
abcdef

(a) (b)

Figure 6. Rule engine data structures (a) before and (b) after applying the rule a -o c.

the previous loop. We need to jump to a valid loop because we may
have loops with linear facts that are now invalid. In our example, we
would jump to the loop of b(X,Z) and not c(X,Y), since b(1,3)
was consumed.

As an optimization, the compiler re-orders the fact expressions
used in the body in order to make execution more efficient. For
example, it forces the join constraints in rules to appear first so that
matching will fail sooner rather than later. It also does the same
for constraints. Note also that for every loop, the compiler adds the
match object, which contains information about which arguments
need to match, so that runtime matching be efficient.

Our compiler also detects cases where we re-derive a linear
fact with new arguments. For example, as shown in Fig. 8, the
LM byte-code for rule a(N) -o a(N+1) will compile to code that
reuses/updates the old a(N) fact when deriving the new a(N+1)
fact.

LINEAR ITERATE a MATCHING TO reg 0
MVFIELDREG 0.0 TO reg 1 // initial argument
MVINTREG INT 1 TO reg 2
reg 1 INT PLUS reg 2 TO reg 3
MVREGFIELD reg 3 TO 0.0 // reuse/update argument
UPDATE reg 0
TRY NEXT

RETURN

Figure 8. LM byte-code for rule a(N) -o a(N+1)

3.6 Indexing
To improve fact lookup, the VM employs a fully dynamic mecha-
nism to decide which argument may be optimal to index. The al-
gorithm is performed in the beginning of the execution and em-
pirically tries to assess the argument of each predicate that more
equally spreads the database across the values of the argument. A
single thread performs the algorithm for all predicates.

The indexing algorithm is performed in three main steps. First,
it gathers statistics of lookup data by keeping a counter for each
predicate’s argument. Every time a fact search is performed where
arguments are fixed to a value, the counter of such arguments is
incremented. This phase is performed during rule execution for a
small fraction of the nodes in the program.

The second step of the algorithm then decides the candidate ar-
guments of each predicate. If a predicate was not searched with any
fixed arguments, then it will be not indexed. If only one argument
was fixed, then such argument is set as the indexing argument. Oth-
erwise, the top 2 arguments are selected for the third phase, where
entropy statistics are collected dynamically.

During the third phase, each candidate argument has an entropy
score. Before a node is executed, the facts of the target predicate
are used in the following formula applied for the two arguments:

Entropy(A, F ) = −
∑

v∈values(F,A)

count(F,A = v)

total(F )
log2

count(F,A = v)

total(F )

where A is the target argument, F is the set of linear facts for the
target predicate, values(F,A) is set of values of the argument
A, count(F,A = v) counts the number of linear facts where
argument A is equal to v and total(F ) counts the number of linear
facts in F . The entropy value is a good metric because it tells us
how much information is needed to describe an argument. If more
information is needed, then that must be the best argument to index.

For one of the arguments to score, Entropy(A,F ) multiplied
by the number of times it has been used for lookup must be larger
than the other argument. The argument with the best score is se-
lected and then a global variable called indexing epoch is up-
dated. In order to convert the node’s linked lists into hash tables,
each node also has a local variable called indexing epoch that
is compared to the global variable in order to rebuild the node
database according to the new indexing information.

Our VM also dynamically resizes the hash table if necessary.
When the hash table becomes too dense, it is resized to the double.
When it becomes too sparse, it is reduced in half or simply trans-
formed back into a doubly linked list. This is done once in a while,
before a node executes.

We have seen very good results with this scheme. For example,
for the all-pairs shortest paths program, we obtained a 2 to 5-
fold improvement in sequential execution time. The overhead of
dynamic indexing is negligible since programs run almost as fast
as if the indices have been added from the start.

3.7 Runtime Data Structures
LM also supports recursive types such as lists and pairs. These
complex data structures are stored in the heap of the VM and are
managed through reference counting. For instance, each list is a
cons cell with 3 fields: tail, the pointer to the next element of the
list; head, the element stored by this element of the list; and refs
that counts the number of pointers to this list element in the VM.
The list is deleted from the heap whenever refs is decremented to
zero.

We avoid garbage collection schemes since objects are created
and discarded in very specific points of the virtual machine and
our objects cannot contain circular references. A reference count-
ing mechanism is thus more appropriate than a parallel garbage
collector which would entail pausing the execution of the program
to garbage collect all the unused objects.

4. Experimental Results
This section presents initial results for our VM. First, we present
a comparison with similar programs written in other programming
languages in order to show evidence that our VM is viable. Then,



we present scalability results in order to show that LM programs
can take advantage of multicore architectures.

For our experimental setup, we used a machine with 32 (2x16)
Core AMD Opteron (tm) Processor 6274 @ 2.2 GHz with 32
GBytes of RAM memory and running the Linux kernel 3.8.3-
1.fc17.x86 64. We compiled our VM using GCC 4.7.2 (g++) with
the flags -O3 -std=c+0x -march=x86-64. We run all experi-
ments 3 times and averaged the execution time.

4.1 Absolute Execution Time
To put our VM in perspective, we first compare it in terms of
absolute execution time with other competing systems using a
single thread.

In Table 2, we compare LM’s version of the classic N-Queens
puzzle against 3 other versions: a straightforward sequential pro-
gram implemented in C using backtracking; a sequential Python
implementation [33]; and a Prolog implementation executed in
YAP Prolog [8], an efficient implementation of Prolog. Numbers
less than 1 mean that LM is faster and larger than 1 mean that LM
is slower. We can observe that LM easily beats Python, but is 5 to
10 times slower than YAP Prolog and around 15 times slower than
C. Note however that, as we will see next, if we use at least 16
threads in LM, we can beat the sequential implementation written
in C.

Problem System
Size C Python YAP Prolog

10x10 16.92 0.62 5.42
11x11 21.59 0.64 6.47
12x12 10.32 0.73 7.61
13x13 14.35 0.88 10.38

Table 2. Comparing the absolute execution times (LM/System) for
the N-Queens program

In Table 3, we compare LM’s Belief Propagation (BP) pro-
gram, a machine learning algorithm to denoise images, against
a sequential C, Python and GraphLab [27] version of the algo-
rithm. GraphLab is a parallel C++ library used to solve graph-based
problems in machine learning. C and GraphLab perform about the
same since they are both compiled to machine code, although the
GraphLab version is highly optimized to run on multicore archi-
tectures. Python runs very slowly since it is a dynamic program-
ming language and BP has many mathematical computations. We
should note, however, that LM’s version uses some external func-
tions written in C++ in order to improve execution time, therefore
the comparison is not totally fair.

Problem System
Size C Python GraphLab
10 1.00 0.03 1.00
50 1.77 0.04 1.73

200 1.99 0.05 1.79
400 2.00 0.04 1.80

Table 3. Comparing the absolute execution times (LM/System) for
the Belief Propagation program

We also compared a LM’s version of the PageRank program
against a similar GraphLab version and LM showed to be around 4
to 6 times slower. Our worse results were obtained for the all-pairs
shortest distance algorithm where a LM’s version of the problem
was around 50 times slower than a C sequential implementation of
the Dijkstra algorithm, but almost twice as fast when compared to
the same implementation in Python.

4.2 Scalability
In this section we measure the scalability of the VM along with the
performance gains due to work stealing and dynamic indexing. For
this purpose, we used 4 configurations for the VM: WI, the full
configuration that includes work stealing and dynamic indexing;
WN, with work stealing but without dynamic indexing; NI, with
indexing but without work stealing; and NN, without work stealing
and without dynamic indexing. We ran each configuration using 1,
2, 4, 6, 8, 10, 12, 14 and 16 threads and compared the run time
against the sequential execution (1 thread) of WI. We used the
following set of programs:

• PageRank implements a PageRank algorithm without synchro-
nization between iterations. Every time a node sends a new rank
to its neighbors and the change was significant, the neighbors
are scheduled to recompute their ranks.

• Greedy Graph Coloring (GGC) colors nodes in a graph so that
no two adjacent nodes have the same color. We start with a
small number of colors and then we expand the number of
colors when we cannot color the graph.

• Shortest Distance (SD) computes the shortest distance of all
nodes to all nodes.

• MiniMax, the AI algorithm for selecting the best player move
in a game of Tic-Tac-Toe.

• N-Queens, the classic puzzle for a 13x13 board.
• Belief Propagation, a machine learning algorithm to denoise

images.

The PageRank results are shown in Fig. 9(a). We used a search
engine graph of 12,000 webpages2. Since this dataset follows the
power law, that is, there is a small number of pages with a lots
of links (1% of the nodes have 75% of the edges), it can be
difficult to parallelize. Our results show that the VM is able to
scale the program with up to 14 threads. We also notice the huge
performance drop when we run the VM without work stealing.
Dynamic indexing is also an advantage, since it detects that the
facts for the pagerank of neighboring nodes need to be indexed
efficiently.

Figure 9(b) presents the results for the GGC program with a
random dataset of 2,000 nodes with an uniform distribution of
edges. There is a slight drop in scalability as the number of threads
goes up, but the VM is still capable of reducing the run time. We
note that in this program, the work available is reduced as the graph
becomes increasingly colored.

In Fig. 10(a) we show the results for the Shortest Distance
program. We attain a 13-fold speedup for 16 threads with both work
stealing and dynamic indexing (WI). We note that indexing is more
advantageous than work stealing because indexing the distance
facts according to the source node is more crucial than improved
load balancing.

The results for the MiniMax algorithm are presented in Fig. 10(b).
MiniMax is very different than the other algorithms because the
graph of nodes is dynamic and is created during program execu-
tion. The load balancing is also problematic since there is little
work to do in the initial and final phases of the algorithm. Still,
our VM has decent performance, with almost a 7-fold speedup
for 14 threads. The scalability drops with 16 threads but we think
that is due to the simplicity of the current work stealing algorithm.
Dynamic indexing has no effects in this program.

The results for the N-Queens program are shown in Fig. 11(a).
The program is not regular since computation starts at the top of

2 Available from http://www.cs.toronto.edu/~tsap/
experiments/download/download.html
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(a) PageRank using a graph of web pages with around 12,000 nodes
and 292,000 edges
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(b) GGC using a random graph with 2,000 nodes and 600,000 edges

Figure 9. Experimental results for the PageRank and GGC algorithms
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(a) Shortest Distance for a graph with around 5,000 nodes and 13,000
edges
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(b) MiniMax algorithm for the Tic-Tac-Toe game (complete tree)

Figure 10. Experimental results for the Shortest Distance and MiniMax algorithm

the grid and then rolls down, until only the last row be doing
computation. Because the number of valid states for the nodes in
the upper rows is much less than the nodes in the lower rows, this
may potentially lead to load balancing problems. The results show
that our system is able to scale well. When work stealing is left out
(NI and NN), we see a serious drop in performance with 16 threads.

Finally, we shown the results for the Belief Propagation (BP)
program in Fig. 11(b). BP is a regular and asynchronous program
and benefits (as expected) from having multiple threads executing
since the belief values of each node will converge faster. The super-
linear results prove this assertion.

4.3 Memory Statistics
In this section, we present the amount of memory used by the VM
after the programs presented in the previous section complete. We
also count the number of facts stored in the database. This serves
as an indication of how much memory is needed in terms of the
number of facts stored in the database. Results are shown in Table 4.

The most unexpected result in Table 4 is that of the MiniMax
program. There is a very low number of facts (that indicate the

Program Facts Memory Per Fact
PageRank 1,180,603 203,832 KB 176 bytes

GGC 2,363,536 292,682 KB 127 bytes
SD 502,347 45,387 KB 92 bytes

MiniMax 3 886,443 KB 295,481 KB
N-Queens 74,557 55,408 KB 760 bytes

BP 2,235,200 617,417 KB 283 bytes
Average (without MiniMax) 288 bytes

Table 4. Memory usage of programs after completion using 1
thread.

final player decision) and a huge amount of memory. How can
this be explained? We note that MiniMax builds a huge decision
tree of nodes with almost 9! leaves. Although these nodes do not
participate in the computation after the MiniMax result is computed
for them, the VM does not garbage collect nodes that do not contain
facts and that do not have external references from other nodes.
This is a potential improvement that can be done in the future.
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(a) N-Queens program (13x13 board)
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Figure 11. Experimental results for the N-Queens and Belief Propagation programs

PageRank, GGC and SD show a low memory usage per fact.
This makes sense since the predicates used in those programs are
relatively simple with only a few arguments. This changes with
the N-Queens problem where the predicates have lists representing
the valid positions of the queens in the board. Storing lists is far
more expensive than storing integral values such as integers or
floating point numbers. The same happens with BP because the
belief values are stored as lists of floating point numbers.

5. Related Work
Virtual machines are a popular technique for implementing in-
terpreters for high level programming languages. Due to the in-
creased availability of parallel machines and distributed architec-
tures, several machine models have been developed with paral-
lelism in mind [21]. One example is the Parallel Virtual Machine
(PVM) [32], which serves as an abstraction to program heteroge-
neous computers as a single machine. Another important machine
is the Threaded Abstract Machine (TAM) [10, 12], which defines
a self-scheduled machine language of parallel threads where a pro-
gram is represented as conventional control flow.

Prolog, the most prominent logic programming language, has a
rich history of virtual machine research centered around the Warren
Abstract Machine (WAM) [34]. Prolog is naturally parallel because
several clauses for the same goal (AND-parallelism) or all goals
in a clause (OR-parallelism) can be tried in parallel. Different
abstract machines for AND-parallelism has been developed for
the WAM [16, 23]. For OR-parallelism we have several models
such as: the SRI model [35], the MUSE model [1] and the BC
machine [2]. Although these models are built on top of the WAM,
some machines use different approaches, such as the PPAM [20]
with its data-flow model.

Several linear logic programming languages have been devel-
oped in the past [29]. Lolli, a programming language based on a
fragment of intuitionistic linear logic [17], proves goals by lazily
managing the context of linear resources during backward-chaining
proof search. Forum [30] is an extension of Lolli that is based on
a classical proof system. While Lolli uses an intuitionistic proof
system that supports only one conclusion, Forum allows multiple
conclusions. Forum is therefore better adapted to represent concur-
rent computations than Lolli, since many multiple goals need to be
proved at once. Another extension of Lolli is LolliMon [26], a con-
current linear logic programming language that integrates both for-
ward and backward-chaining search, where the backward-chaining

phase is done sequentially but the forward-chaining is done con-
currently inside a monad. The backward-chaining phase is sus-
pended between the forward-chaining phases, where a fix-point is
computed. LolliMon is derived from the logical framework called
CLF [36].

Lygon [15] is a backward-chaining linear logic programming
language that extends Prolog with linear resources. Lygon is not
only able to run Prolog programs but also allows the body of
clauses to be linear that can be used exactly once in each query. In
contrast to Prolog, where there is no clause selection, Lygon needs
to use heuristics to decide which clause to prove first, since that
will help finding a proof and finding it efficiently. Notably, Lygon
is very suitable to solve graph-based problems due to the mutable
state provided by linear clauses.

6. Conclusions
We have presented a parallel virtual machine for executing forward-
chaining linear logic programs, with particular focus on thread
management, code organization, fact indexing, rule execution and
database organization for fast insertion, lookup, and deletion of lin-
ear facts. Experimental results show that our VM is able to scale the
execution of programs when run with up to 16 threads. Our results
also show the importance of having an efficient indexing mech-
anisms for facts. With our dynamic indexing, the VM automati-
cally detects which predicates need to be indexed in order to im-
prove performance. Due to these and other optimizations, the VM
fairs relatively well against other programming languages, includ-
ing compiled languages. Moreover, since LM programs are con-
current by default, we can easily get better performance from the
start by executing them with multiple threads. As further work, we
want to improve parallel scalability and take advantage of linear
logic to perform whole-program optimizations, including comput-
ing program invariants, loop detection in rules and bypass of rule
priorities.

We think that our virtual machine is a promising starting point
to make logic programming more desirable in the data-mining,
machine learning and distributed/parallel programming commu-
nity. Moreover, our virtual machine can be easily extended to ex-
ecute over computer networks or to execute programs on really
big datasets. In a nutshell, LM provides a concise way to describe
graph-based algorithms that can be more easily reasoned about, a
clear advantage over competing systems.
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[26] P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic concur-
rent linear logic programming. In International Conference on Prin-
ciples and Practice of Declarative Programming, PPDP ’05, pages
35–46, New York, NY, USA, 2005.

[27] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Graphlab: A new framework for parallel machine learn-
ing. In Conference on Uncertainty in Artificial Intelligence (UAI),
pages 340–349, 2010.

[28] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In International Conference on Management of Data
(SIGMOD), pages 135–146, 2010.

[29] D. Miller. An overview of linear logic programming. In in Computa-
tional Logic, pages 1–5, 1985.

[30] D. Miller. A multiple-conclusion meta logic In Logic in Computer
Science (LICS), pages 272–281, 1994.

[31] R. Ramakrishnan and J. D. Ullman. A survey of research on deductive
database systems. Journal of Logic Programming, 23:125–149, 1993.

[32] V. S. Sunderam. Pvm: A framework for parallel distributed computing.
Concurrency: Practice and Experience, 2:315–339, 1990.

[33] G. van Rossum. Python reference manual. Report CS-R9525, Cen-
trum voor Wiskunde en Informatica, Amsterdam, the Netherlands,
Apr. 1995. URL http://www.python.org/doc/ref/ref-1.
html.

[34] D. H. D. Warren. An abstract prolog instruction set. Technical Report
309, AI Center, SRI International, 333 Ravenswood Ave., Menlo Park,
CA 94025, Oct 1983.

[35] D. H. D. Warren. Or-parallel execution models of prolog. In II and
Colloquium on Functional and Logic Programming and Specifications
(CFLP) on TAPSOFT ’87: Advanced Seminar on Foundations of Inno-
vative Software Development, pages 243–259, New York, NY, USA,
1987. Springer-Verlag New York, Inc. ISBN 0-387-17611-X. URL
http://dl.acm.org/citation.cfm?id=67683.67699.

[36] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework: The propositional fragment. In Types for Proofs
and Programs, volume 3085 of Lecture Notes in Computer Science,
pages 355–377. 2004. .


