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Abstract. Medical data is particularly interesting as a subject for relational
data mining due to the complex interactions which exist between different
entities. Furthermore, the ambiguity of medical imaging causes interpre-
tation to be complex and error-prone, and thus particularly amenable to
improvement through automated decision support. Probabilistic Induc-
tive Logic Programming (PILP) is a particularly well-suited tool for this
task, since it makes it possible to combine the relational nature of this field
with the ambiguity inherent to human interpretation of medical imaging.
This work presents a PILP setting for breast cancer data, where several
clinical and demographic variables were collected retrospectively, and
new probabilistic variables and rules reflecting domain knowledge were
introduced. Experiments show that the probabilistic model produced can
not only match the predictions of a team of experts in the area, but also
produce meaningful rules which output better calibrated probability val-
ues.

1 Introduction

Probabilistic Inductive Logic Programming (PILP) is a subset of (Statistical Re-
lational Learning) SRL that handles statistical information by using a probabilis-
tic first-order logic language to represent data and their induced models. This
technique merges technologies from the SRL and Inductive Logic Programming
(ILP) [10] fields in order to automatically compose theories as understandable
First Order Logic (FOL) sentences based on data annotated with probabilistic
information. PILP manipulates structured representations of data so as to cap-
ture the logic relations that lie beyond the low-level features and reason about
them by learning the (logical) structure of the data inductively.

The unique ability to combine the expressiveness of FOL rules with a de-
gree of uncertainty makes PILP methods particularly well-suited to be applied
in medical domains. Expert knowledge regarding the problem setting can be
coded as facts or rules with varying frequencies or degrees of belief [8], and sub-
sequently be used during the knowledge extraction stage to generate the final
model. In addition, this final model also consists of a FOL theory which explains
the behaviour of the system, and is easily interpretable by human experts (even
though it may also be used to perform prediction over new examples).
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Breast cancer is one of the most common forms of cancer and mammograms
are the most commonly used technique to detect patients at risk. Image-guided
core needle biopsy of the breast is then performed to decide on surgery. Biopsy
is a necessary, but also aggressive, high-stakes procedure. The assessment of
malignancy risk following breast core biopsy is imperfect and biopsies can be
non-definitive in 5-15% of cases [1]. In particular, the dataset used in this work
consists of demographic-related variables and information about the biopsy
procedure and BI-RADS (Breast Imaging Reporting and Data System) [6] an-
notations, as well as domain knowledge annotated both prospectively and ret-
rospectively by experts of three different areas: mammography, biopsy surgery
and biopsy pathology. Using an automated decision support system is con-
ducive to rigorous and accurate risk estimation of rare events and has the
potential to enhance clinician decision-making and provide the opportunity for
shared decision making with patients in order to personalize and strategically
target health care interventions.

This work proposes a PILP decision support system targeted to this breast
cancer setting. Contrary to other decision support systems, well-known in the
literature (for example, Bayesian-based or SVM-based), the model proposed in
this work combines probabilistic data with first order logic in order to produce
both probabilistic outputs and human interpretable rules. The proposed setting
includes experts’ domain knowledge as (i) probabilistic rules in the background
and (ii) probabilistic target values for examples. Experiments show that incor-
porating this domain knowledge in the model results in automated predictions
which are statistically similar to those of a multidisciplinary team of human
experts. Furthermore, the rules produced by the decision support system are
human interpretable and relevant to the domain, which can be relevant to help
clinicians assessing new cases.

2 Methodology and Results

The dataset used for this experiment contains data from 130 biopsies dating from
January 2006 to December 2011, collected from the School of Medicine and Pub-
lic Health of the University of Wisconsin-Madison. The data was prospectively
given a non-definitive diagnosis at radiologic-histologic correlation conferences.
21 cases were determined to be malignant after surgery, and the remaining 109
proved to be benign. For all of these cases, several sources of variables were sys-
tematically collected including variables related to demographic and historical
patient information (age, personal history, family history, etc), mammographic
BI-RADS descriptors (like mass shape, mass margins or calcifications), patho-
logical information after biopsy (type of disease, if it is incidental or not, number
of foci, and so on), biopsy procedure information (such as needle gauge, type
of procedure), and other relevant facts about the patient.

Probabilistic data was then added to (i) the Probabilistic Examples (PE) and
(ii) the Probabilistic Background Knowledge (PBK). In the first instance, the
confidence in malignancy for each case (before excision) was used as the target
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(a) ROC curves (and area under the
curve) of PILP and Physicians, both
against ground malignancy after exci-
sion
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(b) Plot of benign and malignant cases
for errors greater than 0.1, using a neg-
ligible amount of jittering

Fig. 1: PILP and physician ROC curves for all cases (left) and PILP and physician
scores for large errors

predicate. This value was assigned by a multidisciplinary group of physicians
analysing that case. Thus, the target probabilities of examples represent the
perceived chance of malignancy for each patient.

Regarding the domain knowledge incorporated in the PBK, breast cancer lit-
erature values were used to complement the information on the characteristics
of masses, since these values are relied on by physicians when they perform a
diagnosis. For example, it is well known among radiology experts in mammog-
raphy that if a mass has a spiculated margin, the probability that the associated
finding is malignant is around 90%. The same kind of information is available
in the literature for mass shape and density (all part of the BIRADS terms).

The experiment presented in this work aims at demonstrating that it is
possible to use the probabilistic data to build a model that not only obtains
good predictive accuracy, but also presents a human-interpretable explanation
of the factors that affect the system in study. In the medical domain it is crucial
to represent data in a way that experts can understand and reason about, and as
such ILP can successfully be used to produce such models. Furthermore, PILP
allows for incorporating in the PBK the confidence of physicians in observations
and known values from the literature.

In this experiment, 130 train and tune sets conserving the positive/negative
ratio of the full dataset were used to perform leave-one-out cross validation on
the dataset, and the predicted values for the test examples were recorded. Fig-
ure 1a presents the ROC curves for the malignant class and the area under the
curve (AUC) for PILP’s predicted test values (green) and for the physicians orig-



4

is_malignant(Case):-

biopsyProcedure(Case,usCore),

changes_Sizeinc(Case,missing),

feature_shape(Case).

is_malignant(Case):-

assoFinding(Case,asymmetry),

breastDensity(Case,scatteredFDensities),

vacuumAssisted(Case,yes).

is_malignant(Case):-

needleGauge(Case,9),

offset(Case ,14),

vacuumAssisted(Case,yes).

Fig. 2: Theories extracted for physician’s mental models.

inal predictions (blue), both against the ground truth (confirmed malignancy or
benignity of a tumour after excision).

The ROC curves presented in Fig. 1a were compared using DeLong’s test
for two correlated ROC curves and its p-value was found to be 0.4476, thus
implying PILP’s classifier and a physician are statistically indistinguishable
when predicting the degree of malignancy of a patient in this dataset. This
experiment established that PILP can successfully mimic the mental model of
physicians in what concerns the probabilities of each case in this dataset.

Next, the absolute error of the PILP predictions was analysed. The absolute
error is calculated by finding the absolute value of the difference between the
PILP prediction and the physicians’ score, for a given case. In 94 cases (72%), the
PILP prediction lies within at most 0.1 of the physician’s value. For the remain-
ing 36 cases (28%), the PILP and physicians’ values were compared. Figure 1b
shows a plot of the PILP prediction value (x-axis) against the physicians’ predic-
tion value (y-axis). Points in green are cases where the tumour was found to be
benign after excision, and conversely points in red are cases where the tumour
was found to be malignant. This plot shows that for 8 of the 9 malignant cases,
PILP predicts a significantly higher malignancy value than physicians do (red
points under the diagonal line). In the single case where this does not happen,
PILP still predicts a reasonably high probability of malignancy (60%). Further-
more, for a malignancy threshold of 0.8, PILP still classifies five malignant cases
correctly, whilst this only happens for one case using the physicians’ scores.
This behaviour is desirable in medical data since a false negative corresponds
to assigning a benign label to a patient who in fact has a malignant tumour.

Next, the full dataset was used to extract non-trivial knowledge regarding
the physician’s mental model that is being mimicked and the final theories
found are reported in Fig. 2. From the rules shown in Fig. 2, the first one
contains a probabilistic fact related to one mammography descriptor: the shape
of a mass. In medical literature, irregular or spiculated shapes indicate higher
risk of malignancy. This is captured by the system, as well as other features
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such as no observed increase in mass size and an ultrasound core needle biopsy
type. Similarly, the other two rules present features that are evidence of higher
risk of malignancy, such as asymmetry, the gauge of the needle and a possible
displacement of the needle (offset) during biopsy which can contribute as a
confounding factor.

This experiment can also be compared against the predictions (using the
same data) of a Naive Bayes classifier using a similar methodology as discussed
by Kuusisto et al. [9], and it was found that the probabilities produced using
PILP are much closer to the values given by the physicians than the probability
values produced by the Naive Bayes classifier, making PILP predictions much
closer to the actual values that the physicians use to asses their patients.

3 Related Work

Relational learning in the form of ILP (without probabilities) has been success-
fully used in the field of breast cancer. Burnside et al. [4] uncovered rules that
showed high breast mass density as an important adjunct predictor of malig-
nancy in mammograms. Later, using a similar dataset, Woods et al. validated
these findings [11] performing cross-validation. In another work, Davis et al.
used SAYU, an ILP system that could evaluate rules according to their score in
a Bayesian network, in order to classify new cases as benign or malignant. Re-
sults for a dataset of around 65,000 mammograms consisting of malignant and
benign cases showed ROC areas slightly above 70% for Recall values greater
than 50% [5]. Dutra et al. showed that the integration of physician’s knowledge
in the ILP learning process yielded better results than building models using
only raw data [7]. The model we use in this paper was presented in more detail
in [3] and [2]. One of the datasets used in those works is the same used in
this paper, but only for comparing system’s execution times. To the best of our
knowledge, this is the first work that applies PILP to the area of breast cancer,
and illustrates how a probabilistic knowledge representation can be linked with
a logic representation to learn stronger and more expressive data models.

4 Conclusion

This work presented a machine learning technique that can perform a reason-
ably accurate estimate of breast cancer risk after image-guided breast biopsy,
thus alleviating biopsy sampling error. This model combines first order logic
with probabilistic data in order to obtain interpretable models that predict prob-
abilities for each new case. The results show that a PILP model can achieve
similar results to other traditional classifiers and that its predictions on the test
sets are quite close to the experts’ predictions. Furthermore, in the cases where
PILP predictions are significantly different from expert values, PILP consistently
assigns high malignancy probabilities to malignant cases. Moreover, this model
can explicitly explain why some probability is given to a particular case (us-
ing the FOL rules generated), unlike non-relational models. These results are
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encouraging, but still there is room for improvements. Future work includes
studying how changing PILP parameters affects the performance of the system
on this and other datasets, as well as studying whether other relevant facts and
rules from medical literature can be incorporated in the model.
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