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Abstract. Medical data is particularly interesting as a subject for relational
data mining due to the complex interactions which exist between different
entities. Furthermore, the ambiguity of medical imaging causes interpre-
tation to be complex and error-prone, and thus particularly amenable to
improvement through automated decision support. Probabilistic Induc-
tive Logic Programming (PILP) is a particularly well-suited tool for this
task, since it makes it possible to combine the relational nature of this field
with the ambiguity inherent in human interpretation of medical imaging.
This work presents a PILP setting for breast cancer data, where several
clinical and demographic variables were collected retrospectively, and
new probabilistic variables and rules reflecting domain knowledge were
introduced. A PILP predictive model was built automatically from this
data and experiments show that it can not only match the predictions of
a team of experts in the area, but also consistently reduce the error rate
of malignancy prediction, when compared to other non-relational tech-
niques.

1 Introduction

Probabilistic Inductive Logic Programming (PILP) is a subset of Statistical Rela-
tional Learning (SRL) that handles statistical information by using a probabilis-
tic first-order logic language to represent data and their induced models. This
technique merges technologies from the SRL and Inductive Logic Programming
(ILP) [19] fields in order to automatically compose theories as understandable
First Order Logic (FOL) sentences based on data annotated with probabilistic
information. PILP manipulates structured representations of data so as to cap-
ture the logic relations that lie beyond the low-level features and reason about
them by learning the (logical) structure of the data inductively.

The unique ability to combine the expressiveness of FOL rules with a de-
gree of uncertainty makes PILP methods particularly well-suited to be applied
in medical domains. Expert knowledge regarding the problem setting can be
coded as facts or rules with varying frequencies or degrees of belief [15], and
subsequently be used during the knowledge extraction stage to generate the
final model. In addition, this final model also consists of a FOL theory which ex-
plains the behaviour of the system, and is easily interpretable by human experts
(even though it may also be used to perform prediction over new examples).
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Breast cancer is one of the most common forms of cancer and mammograms
are the most commonly used technique to detect patients at risk. Image-guided
core needle biopsy of the breast is then performed to decide on surgery. Biopsy
is a necessary, but also aggressive, high-stakes procedure. The assessment of
malignancy risk following breast core biopsy is imperfect and biopsies can be
non-definitive in 5-15% of cases [2]. In particular, the dataset used in this work
consists of demographic-related variables and information about the biopsy
procedure and BI-RADS (Breast Imaging Reporting and Data System) [12] an-
notations, as well as domain knowledge annotated both prospectively and ret-
rospectively by experts of three different areas: mammography, biopsy surgery
and biopsy pathology. Using an automated decision support system is con-
ducive to rigorous and accurate risk estimation of rare events and has the
potential to enhance clinician decision-making and provide the opportunity for
shared decision making with patients in order to personalize and strategically
target health care interventions.

This work proposes a PILP decision support system targeted to this breast
cancer setting. Contrary to other decision support systems, well-known in the
literature (for example, Bayesian-based or SVM-based), the model proposed in
this work combines probabilistic data with first order logic in order to produce
both probabilistic outputs and human interpretable rules. The proposed setting
includes experts’ domain knowledge as (i) probabilistic rules in the background
and (ii) probabilistic target values for examples. Experiments show that incor-
porating this domain knowledge in the model results in automated predictions
which are statistically similar to those of a multidisciplinary team of human
experts. Furthermore, the rules produced by the decision support system are
human interpretable and relevant to the domain, which can help clinicians
assess new cases.

2 Probabilistic Inductive Logic Programming

Introducing probabilistic information in a FOL setting allows for modelling
facts or rules which are believed to be true to some degree or with a given
frequency (as opposed to crisp true or false statements), which results in a closer
representation of reality. Probabilities in a logic setting can also be used in cases
where all the data were not gathered, since rules containing some information
(if available from other sources) can be taken into account when building the
final theory model. Additionally, in cases where there are privacy concerns, a
similar approach can be used to avoid using the patient instances explicitly,
while still considering some of the information contained in the original data.

More formally, PILP is a machine learning technique which learns predictive
models from a set of probabilistic logic facts and rules. Like ILP, PILP uses a
set of Probabilistic Examples (PE) and additional probabilistic logical informa-
tion about the domain, the Probabilistic Background Knowledge (PBK), to find
a model that explains the probabilistic examples. The PBK is a description of
observed data composed of Horn clauses that can be annotated with proba-
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bilistic information known a priori. If not annotated, it is assumed that their
probabilistic value is 1. The PE represent the observations that the system is at-
tempting to explain. They also have probabilistic values a priori. Good models
will approximate the probabilistic examples values with minimum error.

In this work, probabilities are annotated according to ProbLog’s syntax,
using possible world semantics [11]. Each fact p j :: c j in the PBK represents an
independent binary random variable in ProbLog, meaning that it can either be
true with probability p j or false with probability 1 − p j. This means that each
probabilistic fact introduces a probabilistic choice in the model. Each set of
possible choices over all facts of the PBK represents a possible world ωi, where
ω+

i is the set of facts that are true in that particular world, andω−i = ωi \ω+
i is the

set of facts that are false. Since these facts have a probabilistic value, a ProbLog
program defining a probabilistic distribution over the possible worlds can be
formalized as shown in Equation 1.

P(ωi) =
∏

c j∈ω+
i

p j

∏
c j∈ω−i

(1 − p j) (1)

A ProbLog query q is said to be true in all worlds wq where wq
|= q, and false

in all other worlds. As such, the success probability of a query is given by the
sum of the probabilities of all worlds where it is found to be true, as denoted in
Equation 2.

P(q) =
∑
ωi |=q

P(wi) (2)

PILP systems learn models in the form of probabilistic logic programs.
The theories used to explain examples in PILP are built from the literals that

are present in the program’s PBK. The rule (AND) search space is composed
by all Rules whose body contains one or more of those literals. Rules can be
combined using logical conjunction to form longer more specific rules. Let Literals
be the set of distinct literals in the PBK. The AND search space is then the power
set of Literals, P(Literals).

The theory (OR) search space can be defined in a similar way. Theories are
formed by combining a set of distinct rules using logical disjunction. In the same
way that literals are the building blocks of rules, rules are the building blocks of
theories. Adding a rule to a theory makes it more general. The OR search space
is then the set of all theories Theories such that Theories = P(Rules).

Fully exploring the PILP search space is equivalent to evaluating all theories
in order to determine the best theory according to a given metric. This can be
done in two steps: (i) exploring the AND search space, and (ii) exploring the
OR search space. Algorithm 1 presents this procedure.

Algorithm 1 explores the AND search space in a direction of increasing
specificity. It starts out by generating rules containing only one literal, using the
mode declarations (line 2), and then uses these rules to generate combinations,
which are possible according to the language bias, for the next iteration (lines
5–8), and removing the redundant rules. The combination process is repeated
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Algorithm 1 PILP search space(PBK,PE,MaxRuleLen,MaxTheoryLen)

1: Rall = ∅
2: R1 = generate rules one literal(PBK,PE)
3: Rnew = R1

4: Rlen = 1
5: while Rnew , ∅ and RLen ≤MaxRuleLen do
6: Rall = Rall ∪ Rnew

7: Rnew = {r1 ∧ rnew | (r1, rnew) ∈ R1 × Rnew}

8: Rlen = Rlen + 1
9: Tall = ∅

10: T1 = Rall

11: Tnew = T1

12: Tlen = 1
13: while Tnew , ∅ and TLen ≤MaxTheoryLen do
14: Tall = Tall ∪ Tnew

15: Tnew = {t1 ∨ tnew | (t1, tnew) ∈ T1 × Tnew}

16: Tlen = Tlen + 1
17: return Tall

until it yields no new rules, or until the number of literals in the rules is greater
than a pre-defined maximum number of literals. The set of initial theories T1 is
then populated with all rules in Rall (line 10). Similarly to the AND search space,
T1 is used to generate new theories Tnew through combination using logical
disjunction (lines 13–16). This process is analogous to the exploration of the
AND search space.

3 Methodology

Breast cancer is one of the most common forms of cancer. Mammograms are
the most commonly used technique to detect patients at risk. Image-guided
core needle biopsy of the breast is then performed to decide on surgery. Biopsy
is a necessary, but also aggressive, high-stakes procedure. The assessment of
malignancy risk following breast core biopsy is imperfect and biopsies can be
non-definitive in 5-15% of cases [2,3,4,14,17,18].

A non-definitive result means that the chance of malignancy remains high
due to possible sampling error (i.e., the obtained biopsy is not representative
of the suspicious finding), for which surgical excisional biopsy or aggressive
radiologic follow-up is proposed. Non-definitive biopsies may therefore result
in missed breast cancers (false negatives) and unnecessary interventions (false
positives). In the US, the women over the age of 20 years have an annual breast
biopsy utilization rate of 62.6 per 10,000 women, translating to over 700,000
women undergoing breast core biopsy in 2012. As a result of non-definitive
biopsies, approximately 35,000-105,000 of these women will require additional
biopsies or follow-up secondary to judged inadequacy of breast core biopsy.
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Interpretation can be complex and error-prone, and thus particularly amenable
to improvement through automated decision support, where rigorous and ac-
curate risk estimation of rare events have the potential to enhance clinician
decision-making and provide the opportunity for shared decision making with
patients in order to personalize and strategically target health care interventions.

The dataset used for this experiment contains anonymised data from 130
biopsies dating from January 2006 to December 2011, collected from the School
of Medicine and Public Health of the University of Wisconsin-Madison. The
data was prospectively given a non-definitive diagnosis at radiologic-histologic
correlation conferences. 21 cases were determined to be malignant after surgery,
and the remaining 109 proved to be benign. For all of these cases, several sources
of variables were systematically collected including variables related to demo-
graphic and historical patient information (age, personal history, family history,
etc.), mammographic BI-RADS descriptors (like mass shape, mass margins or
calcifications), pathological information after biopsy (type of disease, if it is in-
cidental or not, number of foci, and so on), biopsy procedure information (such
as needle gauge, type of procedure), and other relevant facts about the patient.

Probabilistic data was then added to (i) the Probabilistic Examples (PE)
and (ii) the Probabilistic Background Knowledge (PBK). In the first instance,
the confidence in malignancy for each case (before excision) is associated with
the target predicate is_malignant/1. The chance of malignancy is an empirical
confidence value assigned by a multidisciplinary group of physicians who meet
to discuss and reach an agreement about each case. Thus, the target probabilities
of examples represent the perceived chance of malignancy for each patient. A
high probability indicates the team of physicians thinks the case is most likely
malignant, and conversely a low probability indicates the case is most likely
benign. This probabilistic value was then added to the probabilistic examples
and a sample of the PE is presented next:

example(is_malignant(case1), 0.10).

example(is_malignant(case2), 0.15).

example(is_malignant(case3), 0.01).

Each example is a patient case and the three examples above are part of the
PE used in this experiment (one per line). Each example has two arguments,
the first being the target predicate is_malignant/1 concerning a particular case
(case1, case2, or case3) and the second the chance of malignancy of this case
(10% for case1, 15% for case2, and 1% for case3).

Regarding the domain knowledge incorporated in the PBK, breast cancer
literature values were used to complement the information on the character-
istics of masses, since physicians rely on these values to perform a diagnosis.
For example, it is well known among radiology experts in mammography that
if a mass has a spiculated margin, the probability that the associated finding
is malignant is around 90%. The same kind of information is available in the
literature for mass shape or mass density (all part of the BIRADS terms). Fig-
ures 1, 2, and 3 show how these variables are encoded in the PBK, (the notation
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is probability_value::relation(...)...). Figure 1 encodes the probabilistic
information regarding mass shape obtained from the literature. There are three
possible rules, each one applicable to a particular kind of shape (oval, round, or
irregular). A rule of this type can be read as IF this Case has a Mass AND the Mass
is of type Shape THEN this feature exists with probability P. The probability value
annotated in each rule is the frequency with which a mass whose shape is of that
type is malignant. Independent rules such as the ones presented in Fig. 1 are not
mutually exclusive. This means that a finding may have simultaneously an oval
and round mass shape, for instance. Given that possible world semantics is used
to encode these rules, the probability of two rules occurring simultaneously is
given by the product of their probabilities. For instance, the probability that a
mass has both an oval and round shape is equal to 0.05 × 0.50 = 0.025.

0.05::feature_shape(Case) :-

mass(Case, Mass),

mass_shape(Mass, oval).

0.50::feature_shape(Case) :-

mass(Case, Mass),

mass_shape(Mass, round).

0.50::feature_shape(Case) :-

mass(Case, Mass),

mass_shape(Mass, irregular).

Fig. 1: Probabilistic information from the literature regarding mass shape

Similarly, Fig. 2 also encodes independent rules, each for a characteristic of
the mass margin. In this case it becomes obvious that both the microlobulated
and spiculated margins have a high correlation with malignancy in the litera-
ture, given their high probability of malignancy (70% and 90% respectively).

Figure 3 differs from Fig. 1 and Fig. 2 in that it encodes three mutually
exclusive possibilities for the mass density: low, equal, or high (note the new
operator “;” for disjunction). The probability of malignancy from the literature
is encoded in the top three lines, which can be read as IF the density of Mass is
low, the probability of malignancy is 5%; ELSE IF the density of the Mass is equal,
the probability of malignancy is 10%; ELSE IF the density of the Mass is high, the
probability of malignancy is 50%. The density rule is then constructed based on
the mutual exclusivity introduced by the density/1 fact above.

PILP models produce classifiers which are composed by a set of FOL rules,
learnt automatically from the data, that represent a disjunctive explanation to
the target predicate being learned. Figure 4 presents an example of a PILP model
for the target predicate is_malignant/1, which explains malignancy in terms
of margin OR mass shape and density. Since the rules in this explanation are
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0.02::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, circumscribed).

0.20::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, indistinct).

0.70::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, microlobulated).

0.90::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, spiculated).

Fig. 2: Probabilistic information from the literature regarding mass margin

0.05::density(low);

0.10::density(equal);

0.50::density(high).

feature_density(Case) :-

mass(Case, Mass),

mass_density(Mass, MassDensity),

density(MassDensity).

Fig. 3: Probabilistic information from the literature regarding mass density

composed of probabilistic literals (feature_margin/1, feature_shape/1, and
feature_density/1), the target predicate is_malignant/1 will also predict a
probabilistic value ranging from 0 to 1, even though this is not made explicit
in the PILP model. This probability output is computed using the possible world
semantics [16], and it takes into account the mutual dependency between all the
probabilistic literals in the model.

The experiment presented in this work aims at demonstrating that it is
possible to use the probabilistic data to build a model that not only obtains
good predictive accuracy, but also presents a human-interpretable explanation
of the factors that affect the system in study. This model is learnt automatically
from the data. In the medical domain it is crucial to represent data in a way that
experts can understand and reason about, and as such ILP can successfully be
used to produce such models. Furthermore, PILP allows for incorporating in
the PBK the confidence of physicians in observations and known values from
the literature.
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is_malignant(Case) :-

feature_margin(Case).

is_malignant(Case) :-

feature_shape(Case),

feature_density(Case).

Fig. 4: A PILP model for the target predicate is_malignant/1

4 Experiments

The PILP SkILL system [6] was used for these experiments. It runs on top of
the Yap Prolog system [7] and uses TopLog [20] as the basis rules generator
and the ProbLog Yap library as its probabilistic inference engine. This system
was selected because it can perform exhaustive search over the theory search
space. Since this is a small dataset, exhaustive search is possible. However, if
the dataset were larger there might be scalability issues in using exhaustive
search, and so either SkILL with pruning strategies [5] or another PILP system
whose search engine is greedy could be used instead (such as ProbFOIL+ [10]
or SLIPCOVER [1]). In this experiment, 130 train and tune sets were used to
perform leave-one-out cross validation on the dataset, and the predicted values
for the test examples were recorded.

In addition to the PILP model described earlier, three other methods were
used to compare against PILP in terms of predictive accuracy, using default
parameters: a Support Vector Machine (SVM), a Linear Regression (LREG), and
a Naive Bayes classifier (NB). The scikit-learn python library [21] was used to
perform the preprocessing of these experiments for the three non-relational
methods. Since these data contain several categorical features, it was necessary
to transform them into numerical features to be able to apply these methods. As
such, each possible label was first encoded as an integer. Once this was done,
each feature was transformed in several auxiliary features, each one of them
binary and regarding only one of the labels. This methodology was used to
prevent the integer values corresponding to the labels of a feature from being
interpreted as being ordered, which would not represent the independence
between the labels accurately. Once these operations were performed over all
categorical features, a scaler (standardization) was applied so as to reduce all
features to mean 0 and unit variance. The predictions for each method were
then obtained.

Figure 5 presents the ROC curves for the malignant class and four methods
tested: PILP, SVM, LREG and NB. Each sub-figure shows the ROC of the physi-
cians’ predictions (blue dashed line) and the ROC of a method (brown solid
line), both against the ground truth (confirmed malignancy or benignity of a
tumour after excision). Each figure also presents the respective AUCs and the
p-value found using DeLong’s test for comparing both curves plotted.
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Fig. 5: ROC curves, AUCs and p-values for PILP, SVM, LREG and NB methods
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The ROC curves presented in Fig. 5 were compared using DeLong’s test
for two correlated ROC curves and the difference between them was found to
be statistically not significant, thus implying that all methods are statistically
indistinguishable from a physician when predicting the degree of malignancy
of a patient in this dataset. This experiment established that both PILP and other
non-relational methods can successfully mimic the mental model of physicians
in what concerns the probabilities of each case in this dataset.

Next, the absolute error of the predictions was analysed. The absolute error is
calculated by finding the absolute value of the difference between the prediction
and the physicians’ score, for a given case. It is relevant to consider the absolute
error of predictions because these are the points where the classifiers’ predictions
disagree with the physicians’ mental model, and more information about the
performance of the classifier can be obtained from them. Figure 6 shows a plot
of the classifiers prediction values (x-axis) against the physicians’ prediction
values (y-axis), for points where the absolute error was greater than 10%. Points
in green (round markers) are cases where the tumour was found to be benign
after excision, and conversely points in red (square markers) are cases where
the tumour was found to be malignant.

Ideally, malignant prediction by both physician and the classifier should
agree and appear on the top right of the plot. Conversely, benign predictions
would appear on the bottom left. Points that are plotted below the diagonal line
have higher classifier scores than physician scores, and conversely points which
are plotted above the diagonal line have higher physician scores than classifier
scores.

From the plots in Fig. 6, it is clear to see that the PILP classifier assigns higher
malignancy values than physicians do to the confirmed malignancy cases (red
points under the diagonal line). This is the case for 8 of the 9 malignant cases, and
in the single case where this does not happen, PILP still predicts a reasonably
high probability of malignancy (60%). Furthermore, for a malignancy threshold
of 0.8, PILP still classifies five malignant cases correctly, whilst this only happens
for one case using the physicians’ scores. When PILP is compared to the other
methods tested, it becomes clear that, in most cases, the other methods do not
assign higher scores to malignant points than physicians do (few red points
beneath the diagonal line), therefore not being of as much use to physicians
as PILP, to aid in the diagnosis of malignant tumours. The ability to identify
malignant cases is desirable in medical data since a false negative corresponds
to assigning a benign label to a patient who in fact has a malignant tumour.

Since the aim of decision support systems is to aid the process of medical
diagnoses, two more models were built based on the results obtained previously.
These two models are human and machine models, meaning that they take
into account both the physicians’ and the classifiers scores. The PILP classifier
was selected since it proved to be best at identifying malignant cases that the
physicians had difficulty with (unlike other methods). For this reason, two
models were analysed: calculating the average of physician and the PILP scores,
and calculating the maximum of the physician and the PILP scores. Figure 7
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Fig. 6: Plot of benign and malignant cases for the PILP, SVM, LREG and NB
methods, for errors greater than 0.1, using a negligible amount of jittering
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presents the ROCs, AUCs and p-values using DeLong’s test for both these
models.
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Fig. 7: ROC curves, AUCs and p-values for the average of physician and PILP
scores and for the maximum of physicians and PILP scores

The ROC curves plotted in Fig. 7 show no significant difference to the physi-
cians predictive power, similarly to all other classifiers tested. Figure 8 performs
the absolute error analysis, plotting the points where these models’ predictions
and physician’s predictions differ by a value greater than 10%.

The scatter plots in Fig. 8 show that the maximum model can now predict
higher scores for all malignant points (all red points below the diagonal line).
This is to be expected since the model’s scores are in effect the maximum score of
the PILP and the Physician’s model. However, both these models predict higher
values for the benign cases as well, which is particularly evident in the case of
the maximum model, where there are no points above the diagonal line. Whilst
a high recall is a desirable feature in a medical decision support system, the
ability to discriminate between malignant and benign cases is also important.
The PILP model performs better in this area (Figure 6), since there is a vertical
cluster of benign points which are clearly identified by the PILP model as being
benign (score of 0.1 or less), and which are no longer present in the combined
models analysed here.

Next, the full dataset was used to extract non-trivial knowledge regarding
the physician’s mental model that is being mimicked and the final theories
found are reported in Fig. 9.

From the rules shown in Fig. 9, the first one contains a probabilistic fact
related to one mammography descriptor: the shape of a mass. In medical litera-
ture, irregular shapes or spiculated margins indicate higher risk of malignancy.
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(b) Maximum model

Fig. 8: Plot of benign and malignant cases for the average and maximum of
physician and PILP models, for errors greater than 0.1, using a negligible amount
of jittering

This is captured by the system, as well as other features such as no observed
increase in mass size and an ultrasound core needle biopsy type. Similarly, the
other two rules present features that are evidence of higher risk of malignancy,
such as asymmetry, the gauge of the needle and a possible displacement of the
needle (offset) during biopsy which can contribute as a confounding factor.

5 Related Work

Relational learning in the form of ILP (without probabilities) has been success-
fully used in the field of breast cancer. Burnside et al. [8] uncovered rules that
showed high breast mass density as an important adjunct predictor of malig-
nancy in mammograms. Later, using a similar dataset, Woods et al. validated
these findings [22] performing cross-validation. In another work, Davis et al.
used SAYU, an ILP system that could evaluate rules according to their score in
a Bayesian network, in order to classify new cases as benign or malignant. Re-
sults for a dataset of around 65,000 mammograms consisting of malignant and
benign cases showed ROC areas slightly above 70% for Recall values greater
than 50% [9]. Dutra et al. showed that the integration of physician’s knowledge
in the ILP learning process yielded better results than building models using
only raw data [13]. The model we use in this paper was presented in more
detail in [6] and [5]. One of the datasets used in those works is the same used in
this paper, but only for comparing system’s execution times. To the best of our
knowledge, this is the first work that applies PILP to the area of breast cancer,
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is_malignant(Case):-

biopsyProcedure(Case,usCore),

changes_Sizeinc(Case,missing),

feature_shape(Case).

is_malignant(Case):-

assoFinding(Case,asymmetry),

breastDensity(Case,scatteredFDensities),

vacuumAssisted(Case,yes).

is_malignant(Case):-

needleGauge(Case,9),

offset(Case ,14),

vacuumAssisted(Case,yes).

Fig. 9: Theory extracted for physician’s mental models.

and illustrates how a probabilistic knowledge representation can be linked with
a logic representation to learn stronger and more expressive data models.

6 Conclusion

This work presented a study conducted over breast cancer data, where a PILP
model is learnt from the data. This and other machine learning techniques were
used to perform a reasonably accurate estimate of breast cancer risk after image-
guided breast biopsy, thus alleviating biopsy sampling error. The PILP model
combines first order logic with probabilistic data in order to obtain interpretable
models that predict probabilities for each new case. The results show that a PILP
model can achieve similar results to other traditional classifiers and that its pre-
dictions on the test sets are quite close to the experts’ predictions. Furthermore,
the cases where the models and physicians disagree were analysed in greater de-
tail and it was found that the PILP model consistently assigns high malignancy
probabilities to malignant cases, unlike the other models tested. Moreover, the
PILP model can explicitly explain why some probability is given to a particular
case (using the FOL rules generated), unlike non-relational models. Future work
includes studying how changing PILP parameters affects the performance of the
system on this and other datasets, as well as studying whether other relevant
facts and rules from medical literature can be incorporated in the model.
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